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ABSTRACT: Building thermal output determination is fundamental for the development of energy use 

optimisation strategies, and can provide important inputs for the estimation of flexibility in demand response 

strategies. Current building energy assessment procedures are based on design values, not taking into account 

the uncertainties introduced during the construction and installation processes. The analysis of thermal images 

of buildings provide the opportunity to carry out the estimation of energy demand based on the actual building 

performance. 

This research presents a deep neural network-based method for the accurate estimation of thermography 

statistics from pairs of RGB and thermal images. The proposed method identifies a region of interest (ROI), 

which is assumed to be a building found approximately at the centre of the image field of view ('target building'). 

The visible spectrum/RGB input is used to determine the position and outline of the target building in the field of 

view, and create a pixel-level binary mask with non-zero mask elements corresponding to the target. The binary 

mask is used to produce an intensity matrix containing only the values that correspond to the building / ROI, and 

applied to its corresponding thermal image pair. This enables the consideration of the thermal output of the 

region of interest, as opposed to the whole image, improving the accuracy of the estimation of the ROI’s 

thermography statistics. 

KEYWORDS: digital image processing, automatic structure detection, infrared image processing, deep neural 

network features, thermal statistics, unmanned aerial vehicle, demand response potential estimation 

 

 

1. INTRODUCTION 

There is an increasing need for accurate building thermal output determination methods that can be used to 

assess the actual energy performance of buildings. Currently, the determination of the thermal output of a 

building presents a series of challenges, due to the difficulty in accounting for the differences between the 

building design values that are considered in the estimation of energy demand, and the actual performance of 

buildings. This is largely due to the uncertainties associated with the accuracy of building project documentation, 

the quality of building materials, and the quality of the construction and installation process.  

The estimation of thermography statistics and their usage as a basis for the estimation of energy demand in 

buildings has been considered as an alternative to current energy assessment methods, which are based on design 

values (Fokaides et al. 2011; González-Aguilera et al. 2013; Ham & Golparvar-Fard 2012), such as SAP in the 

UK (BEIS 2014). Accurate methods for the estimation of energy demand in buildings are a key input for the 

optimization of building energy use, including effective demand response (DR) programs.  

Demand response programs are mechanisms developed to ensure that the electricity grid remains stable during 

times of peak demand (Rodriguez-Trejo et al. 2018). DR programs prompt actions that alleviate the load on the 



 

 

electricity grid by leveraging the flexibility that users have in their electricity consumption at specific times of 

the day (Crosbie et al. 2017). Flexibility is established in contracts between companies acting as aggregators and 

the Transmission Network Operator (TNO) or Distribution Network Operator (DNO). Aggregators acquire 

flexibility from users (mainly industry and large energy consumers) managing the available assets in response to 

the grid’s requests to increase or reduce electricity consumption or generation (Rodriguez-Trejo et al. 2018; 

Sisinni et al. 2017). The potential impact of smaller energy consumers on DR flexibility is increasingly being 

recognized, and challenges such as the lack of integrated tools for optimization, planning and 

control/management of supply side equipment have been the focus of research efforts such as the Demand 

Response in Blocks of Buildings (DR-BOB) project (Rodriguez-Trejo et al. 2018).  

This research investigates the use of pairs of thermal/infrared (IR) and visible-spectrum (RGB) digital images 

captured using an UAV to produce features that could aid in identifying the demand response potential of 

building assets. One such feature that could be correlated to DR potential, is an image of the thermographic 

characteristics of a building. In the current paper, a novel deep neural network-based method is proposed for the 

localization and estimation of the thermal output of a region of interest given a pair of thermal (IR) and visible-

spectrum (RGB) images. The need to consider pairs of thermal (IR) and visible-spectrum (RGB) images, as 

opposed to the use of IR images solely, stems from the fact that while IR images already contain temperature 

data that is used to determine areas of low or high thermal output, they are not appropriate to be used to 

semantically differentiate objects.  

The proposed image processing pipeline has been successfully applied to RGB/thermal image pairs of an 

existing building captured using a UAV. Preliminary results obtained from the application of the proposed 

method are expected to contribute to more accurate estimation of baseline and DR flexibility in order to increase 

the exploitation potential of building assets in DR programs. In addition, the obtained thermal statistics can in 

perspective be analysed to provide detailed insights in users/customers behaviour. Our proposed method can be 

leveraged by both smaller energy consumers and energy providers in order to increase the amount of flexibility 

in DR programs.  

The remainder of this paper is structured as follows. In section 2, we present the proposed method, that involves 

using a pre-trained neural network and unsupervised machine learning methods to localize the structure of 

interest. In section 3, we discuss the details of image acquisition as well as the test site used for this work, and 

present qualitative and numerical experiments. We close the paper with conclusions and a discussion of future 

work in section 4. 

 

 

2. PROPOSED METHOD  

The proposed method involves processing an input of optical and thermal images that depict a building, with an 

aim to obtain a measurement of thermal characteristics; we shall further assume that this statistic is desirable to 

be obtained in the form of a thermal intensity histogram (Klette 2014). In order to achieve this aim, as an initial 

step we use the optical input in order to localize the structure of interest position, and subsequently we use the 

calculated mask over the thermal input to produce the desired thermal intensity histogram. An overview of the 

proposed pipeline is provided in Fig. 1. 

 



 

 

Fig. 1: Proposed image processing pipeline. 

 

2.1 Deep features 

The first step of the proposed algorithm involves processing the optical input in order to extract deep features 

(Sfikas et al. 2016, Retsinas et al. 2019). Deep features are defined as pixel-level cues that are obtained by 

feeding a pretrained neural network with a particular input – in our case, the input optical image – and 

calculating the activations of an intermediate network layer by performing a standard feed-forward pass (Strang, 

2019). The neural network involved is thus used as a tool for feature extraction, instead of the goal it has 

originally been trained for.  

 

 

Fig. 2: Typical architecture of feed-forward neural network. Information flows from the input (left) towards the 

output (right). Intermediate layers correspond to feature maps, each produced by some linear combination of the 

previous layer or layers (e.g. a convolution). Deep features extraction amounts to simply computing any one of 

the intermediate feature maps instead of the final network output. 

 

The rationale behind using intermediate layer activations of neural networks as features comes is that we can see 

a neural network as a representation learning machine (Goodfellow 2016). For example, considering a neural net 

classifier we can express its output as a linear combination of the penultimate layer activations (composed with a 

softmax function to produce probability vector). Other, non-neural network classifiers such as the Support 

Vector Machine (SVM) are based on the same principle, that is perform a linear combination over some set of 

features and determine whether the output falls in this or the other part of some hyperplane. The difference is 

that while neural networks follow the same principles as other learning machines, the representation is learned 

during training instead of being hard-coded in the form of ‘hand-crafted’ features. In the current work, while 

there is no proper ‘training’ phase for our method, we assume that the employed networks use weights that have 

been produced as the optimum of a previous training process, on a third-party dataset, unrelated to the current 

task (hence the term “pre-training”). 

In the current application, we have used the Deeplab v3+ neural network, a network that has been proposed for 

semantic segmentation (Chen et al. 2016). Deeplab comprises a series of convolutional layers, topped by non-

linear activations, which eventually lead to a pixel-level set of K+1 softmax outputs. The number of K possible 

outputs is the number of object classes that the network is trained with, plus one reserved for background. The 

deep feature cues are returned as a matrix of resolution H x W, with each of the cues comprising in general D 

channels; in other words, on each pixel of the feature map grid, a vector in RD is produced. 

2.2 Calculating the building detection mask 

Deep features are processed in order to produce structure of interest segmentations. We perform clustering over 

the computed deep features, reduced with Principal Component Analysis (PCA) to 8 dimensions. k-means is 

Optical image input Feature map #1 Feature map #2 ..... Feature map #N Network output



 

 

used to cluster the 8-dimensional features, and k is heuristically set to 3, initialized with the k-means++ scheme. 

Between the computed clusters, we have in practice observed that one of the clusters will correspond to the 

structure of interest, provided of course that the structure of interest covers a significant part of the field of view. 

We tag the cluster that is situated the closest to the center of the field of view to be the structure of interest 

cluster. Formally, we use the cluster j that minimizes the heuristic: 

 

 

 

where xjn is the position of the nth datum of the jth cluster, and c is the position of the field of view center on the 

image. 

2.3 Calculating thermal statistics 

After having computed the building segmentation in the previous step, we proceed to calculate thermal statistics 

over the structure of interest. As the two inputs (optical, thermal) are products of two cameras with different 

characteristics, both intrinsic (lens, field of view) and extrinsic (different position and pose), the mask cannot be 

directly applied on the thermal input. The deep feature map, and subsequently the building segmentation map is 

obtained as a product of the optical cue, hence a step of registration must be applied on the thermal cue. In this 

work, we register the images manually, by applying an affine transform on one of the inputs so that the two 

modalities visually match. While this approach will lead to small errors due to misalignment, we must note that 

alignment of images of different modalities can be a non-trivial task, as different modalities are related to 

different gradient information, leading to difficulties in feature-based matching that typically uses gradient 

information to work (Klette 2014). 

After applying the segmentation mask over the thermal input, we obtain the set of thermal intensities that 

correspond to the structure of interest surface. These can be in turn used to compute thermal intensity statistics. 

We have computed histograms of thermal intensities, as well as computed thermal intensities means, though in 

practice any other, possibly more complex, statistic can be computed over the features. The advantage that stems 

from the proposed scheme, is that only the actually relevant thermal intensity values are obtained, thus any 

statistic over thermal values will objectively be more accurate. In the numerical results section, we show that 

indeed in practice a great disparity on the thermal estimate using our method versus not using it can exist, 

validating the usefulness of the method. 

 

3. EXPERIMENTAL RESULTS 

3.1 Experiment site  

The site used for the aerial image acquisition is the Smart Home building, located at CERTH’s facilities in 

Thessaloniki, Greece. It is a rapid prototyping & novel technologies demonstration infrastructure resembling a 

real domestic building where occupants can experience actual living scenarios. It was chosen because it is 

equipped with features found at a typical modern domestic building (PV array, solar water heating, heat pump 

units) and is located within adequate distance from other structures, making it convenient to safely fly a drone 

for aerial surveys.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: UAV typical flight plan used for our experiment over the test site. 

 

3.2 Image acquisition 

The UAV used was a DJI Matrice M200, equipped with a DJI Zenmuse XT2 Visual+Thermal Imaging camera. 

The visual camera uses a 4K (Ultra HD) sensor with a resolution of 3840x2160 pixels while the thermal camera 

uses a Vanadium Oxide Microbolometer with an output resolution of 640x512 pixels. Video capture of the 

cameras were at 29.97 frames per second for the visual imager and 30Hz for the thermal imager. A flight plan 

(Fig. 3) was programmed for the drone to perform an aerial survey as an autonomous mission, followed by a 

manual flight around the building for video acquisition. In Fig. 4 an example of an input IR/RGB image pair is 

provided. 

 

Fig. 4: Example input pair. An optical camera frame (left) and corresponding thermal input frame (right). Images 

were captured with cameras mounted on an Unmanned Aerial Vehicle (UAV), surveying the structure of interest. 

 

 

 

 



 

 

3.3 Results 

Let us note that the proposed pipeline is completely unsupervised, in the sense that it requires no annotated data 

or a training phase to run. We have run tests using either ADE20k or the Pascal VOC pretrained weights 1. These 

have been trained on the respective homonymous datasets, which comprise 150 and 20 classes respectively. We 

have found that either of the two weight sets produces useful results, segmenting the target structure correctly; 

this is certainly a useful feature, especially for the Pascal VOC weights, as training in this dataset has been done 

in a set that does not contain buildings or structures as a separate class.  

Fig. 5: Visualization of deep features for input images. High-dimensional, pixel-wise deep features were reduced 

to 3 dimensions with PCA and shown here as pseudo-colorized images. Note that on each frame semantically 

similar objects correspond to similar colors. 

Furthermore, with preliminary tests on buildings other than the location and structure discussed in subsection 3.1, 

we have noted that the proposed structure estimation algorithm runs quite well in a wide range of structure types. 

Regarding computation of deep features, we have used the ReLU activation (Strang, 2019) of the last feature 

map before the network output (“decoder/decoder_conv1_pointwise”).  Deep features originally are of 

dimension equal to 256, i.e. each pixel-level cue is a vector in the R256 space. These vectors are reduced to the R3 

space using Principal Component Analysis (PCA) (Strang, 2019), solely for the purposes of visualization. Each 

of the three obtained channels is then assigned to one of the optical Red, Green or Blue channels, and after 

scaling values to an 8-bit range (0..255) the visualizations shown in Fig. 5 are produced. Note that the visualized 

features do indeed carry semantic information, as areas of similar color correspond to semantically same or 

similar areas. For example, the whole are of the building is marked with a similar reddish color, even though its 

image in either the optical or thermal domain is visibly diverse, in the sense that it comprises areas with different 

colors and/or different thermal intensities (see Fig. 5). 

Qualitative results can be examined in the subsequent Figures 6 and 7, where the building detection mask step is 

shown for the test frames (Fig. 6), and the final thermal statistic calculation step is performed (Fig. 7).  

 

1  Publicly available under https://github.com/tensorflow/models  . 

https://github.com/tensorflow/models
https://github.com/tensorflow/models


 

 

 

Fig. 6: Detection of main structure in each frame (2nd and 4th row) juxtaposed to original optical input frames (1st 

and 3rd rows). The areas marked in red correspond to the automatically detected structure. 

 

We report numerical results on Table 1. The reported figures are disparity metrics computed over a number of 

frames of the captured footage, and they serve to measure the divergence between the statistics of the infrared / 

thermal image as computed when taking into account the proposed structure localization scheme versus to not 

taking it into account and just computing statistics over the whole infrared frame each time. In particular, we 

compute disparity using the following formula: 

 

 

 

where μ(.) denotes mean values over either the while infrared input frame (IRfull) or the infrared frame masked 

using the localization result with the proposed scheme (IRproposed). The reported figures show that the disparity 

between the two cases is certainly not at all negligible, with figures ranging around the 15% mark. In practice, 

this means that a ‘naïve’ estimate of the structure thermal signature, i.e. without localizing it correctly first, will 

lead to a significant error in estimating the correct temperature of the region of interest. Note also from the 

shown infrared intensity histograms (Fig. 7), that not only the means and peaks of the two infrared intensity 

distributions differ significantly, but also the whole distributions as a whole. The structure thermal distribution is 

characterized by a second, low intensity peak, which corresponds to the photovoltaic units found on the structure 

roof (shown in histogram figures in blue color). This is completely missed by the naïve thermal estimate (shown 

in histogram figures in green color), which erroneously shows a roughly unimodal thermal distribution. Aside 

from being an important aspect in the context of computing a thermography statistic estimate per se, using the 

bimodal nature of the histogram could have implications in further digital image processing steps, as for example 

performing a simple intensity histogram-based algorithm to localize the low-intensity cluster that corresponds to 

the photovoltaic units. 

 



 

 

 

Fig. 7: Segmentation of thermal imaging intensities that correspond to the structure of interest (2 nd and 4th rows), 

juxtaposed to full thermography scans (1st and 3rd rows). Thermography statistics using our method versus using 

all thermography intensities, for each frame are shown (3 rd and 6th row). In all cases there is a clear disparity 

between thermal statistics versus only the structure intensities, justifying the use of our detection method. In the 

histograms, the horizontal axis comprises bins from minimum to maximum thermal intensity, and the vertical 

axis corresponds to the number of pixels with the given thermal intensity. 

 

 

 

 

 



 

 

Table 1: Disparity between thermal statistics computed using the proposed method versus computing whole 

thermal image frames. Figures are computed over the 8 test images shown in figures 2-4. In all cases, disparity is 

far from being negligible; hence, using the proposed method is necessary to produce accurate thermal statistics. 

 
Percentage offset 

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8 Mean +- St.dev. 

12.9% 12.8% 12.5% 14.6% 14.9% 15.8% 18.2% 17.6% 14.9% +- 2% 

 

4. CONCLUSION AND FUTURE WORK 

In this paper we have presented a method that uses a dual input of optical (RGB) and thermal inputs in order to 

localize a structure of interest and simultaneously obtain an accurate reading of its thermal characteristics. The 

proposed method is completely unsupervised, with no training or manual annotation of the structure of interest 

required. A neural network is used to produce deep features, that are processed to produce the required outputs. 

The pretraining of the network is not even required to have ‘seen’ a building class, and we have checked that 

valid outputs are obtained with two different sets of network pretrained weights. In perspective, the method can 

be extended to perform detection of other assets, like photovoltaic units. Also as future work, we plan to use 

multispectral image processing methods (Sfikas et al. 2011) to align and process the optical and thermal pairs 

more accurately, or integrate the proposed method with an Internet-of-Things (IoT)-based scheme (Sfikas et al. 

2016). Furthermore, we look forward to applying thermography-based image processing to other tasks related to 

construction and materials (for example, relation of temperature and concrete cracking risk) (Kanavaris et al. 

2017, Kanavaris et al. 2019) and exploring other uses of UAV-obtained thermal statistics of surveyed structures. 
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