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Abstract—Automatic road crack detection can play an sig-
nificant role in improving driving safety. However, a number of
factors make this task challenging. Background complexity, as
well as the fact that cracks are visually inhomogenous to one
another also contribute to this difficulty. Furthermore, cracks in
road surfaces can be easily confused with foreign objects, shadows
and background textures leading to detection ambiguities. Timely
detection of cracks is important for both drivers and road
maintenance crews. Quaternion neural networks (QNNs) are a
relatively new class of neural networks that employ quaternion-
valued activations and parameters. They benefit from reduced
costs in terms of hardware as they require fewer parameters. In
this work, we explore the usability of QNNs for automatic road
crack detection. To this end, we propose quaternionic versions of
deep networks and evaluate their performance in datasets with
images of road cracks. We show that the proposed models are
light-weight in terms of parameter requirements while they are on
par in terms of performance with real-valued networks for crack
detection, with potential applications in resource constrained
scenarios or in cases where few training data is available.

Keywords—Quaternions, Road Crack Detection, Hypercomplex
Numbers

I. INTRODUCTION

Road crack detection is a complex task which involves
detecting irregularities and damage in road surfaces such as
concrete, cement, pavement or asphalt. It is a multi-faceted task
which also requires classification and segmentation in order to
produce accurate results. Due to their nature, cracks in surfaces
involve many low-level features and visual patterns and are
thus hard to detect and classify. When designing accurate and
robust models for road crack detection, one needs to take into
account additional factors that make this process challenging.
Such factors include sub-par image quality which often appears
in the form of variances in illumination, low resolution, or
blurring, as well as visual noise, for example from stains,
shadows, reflections, or litter on the road surface. Applications
for road crack detection can be found in real life problems,
such as automatic car driving safety, automated road inspection
and also in ensuring the quality of transport services.

This research has been partially co-financed by the EU and Greek national
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Detecting road cracks (in a non-automatic way) is a time-
consuming and potentially dangerous job that requires a sig-
nificant amount of time, many hours of manpower, special-
ized equipment as well as trained road crews and engineers.
Progress in computer vision and machine learning has enabled
researchers to develop automatic crack detection methods that
produce good results. Nowadays, most methods take advantage
of the effectiveness of representative features provided by
deep convolutional neural networks (CNNs) for road crack
detection in a supervised classification manner [1], [2]. Road
crack detection is a time-critical task, as the time between
detection and repair can be long, resulting in accidents that
could otherwise be prevented. In addition, prolonged exposure
to the elements could further deteriorate damage to the road
surface, requiring longer time to repair as well as increased
costs. A potential drawback of deep convolutional methods
is their running speed and cost of resources, preventing them
from being utilized in real-time scenarios or in portable devices
and equipment available to road maintenance personnel.

Quaternions are hypercomplex numbers that are comprised
of 4 components: one real and three imaginary. Their three
imaginary components make them ideal for image processing
since each one of these components can embed a color part
of an RGB image. Lately, research interest in quaternions
has increased with many proposed models outperforming
their real-valued equivalents in various tasks such as image
processing [3], [4] and speech recognition [5]. Additionally,
due to the interactions of the Hamilton product, quaternion-
valued networks benefit from parameter sharing, which results
in lightweight models that require fewer parameters and less
storage space. Quaternionic layers can be used in place of
traditional (real-valued) ones to provide these advantages to
deep architectures, reducing their size without significant loss
of performance.

In this work, we compare the results of image classification
and segmentation CNN architectures with their respective
quaternionic counterparts in the task of road crack detection.
Specifically, we replace standard layers with quaternion-valued
versions and compare the accuracy, precision and number
of parameters required by the new models. A reduced-data
training regime is devised, in which new datasets are produced
by sampling from a large source dataset of road crack images
to assess network performance in conditions where training
data is not readily available.



The remainder of this paper is structured as follows: In
Section II we present related work in the areas of road
crack detection with deep convolutional features, as well as
recent research on quaternions. Elements and properties of
quaternions are overviewed in Section III. We provide an
analysis of our proposed method in Section IV. Experimental
setups, datasets, evaluation metrics, and results are presented
in Section V. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

A. Road Crack Detection with CNNs

The success of convolutional neural networks (CNNs) in
many computer vision tasks has led to researchers developing
various architectures for road crack detection. For instance, [6]
developed a CNN architecture, which classifies image patches
that contain cracks. The central pixels of a patch determine
whether it is regarded as positive (contains a crack) or negative.
More recently, the authors of [1] combined a deep CNN for
crack detection with thresholding for crack extraction from
images that are classified as containing cracks. Their method
consists of two steps: first, a CNN is used to determine the
presence of cracks in an image, and then, for the positive
samples, adaptive thresholding takes place to segment and
extract the cracks. In [2] an end-to-end deep hierarchical CNN
that predicts pixel-wise crack segmentation called DeepCrack
is proposed. In contrast to the typical approaches to feature
extraction which occurs at the last convolutional layer of the
network, DeepCrack aggregates features from multiple scales
and levels while a deeply-supervised net is used for feature
supervision which is applied at each convolutional stage. The
outputs are then fused, and the final predictions are obtained
by guided filtering.

B. Quaternion Neural Networks

Quaternion neural networks (QNNs) utilize quaternion-
valued layers and inputs instead of real-valued ones. Even
though research in quaternion representations on deep learning
is relatively new, a few works have been proposed that explore
their applications. More specifically, [7] proposed deep quater-
nion networks for classification as well as segmentation. Their
results show that quaternions achieve competitive performance
for these tasks and they require fewer parameters. [4] devel-
oped Quaternion Convolutional Neural Networks (QCNNs) to
better represent colored images in the quaternion domain. They
test their QCNN models for color image classification and
denoising and compare them to traditional CNNs achieving
better results. In [8], the authors focus on the effect of the
Hamilton product on color image reconstruction with gray-
scale only training. To that end, they develop a quaternion
convolutional encoder-decoder architecture for reconstruction
of a unique gray-scale image. Compared to a traditional con-
volutional encoder-decoder network, their model demonstrates
the ability to successfully learn to reconstruct the image colors
while trained only on the gray-scale version of an image.
They conclude that quaternion-valued architectures are not
hampered by internal and global dependencies and are suit-
able for applications in image recognition. The same authors
propose Quaternion Recurrent Neural Networks (QRNNs) for
sequential tasks such as speech recognition [3]. They show
that their quaternion-based recurrent architectures outperform

non-quaternion versions while requiring 2 to 3 times fewer
parameters. Sfikas et al. [9] extended generative adversarial
networks (GANs) with quaternions for text detection in the
wild. The proposed network performs on par with a real-valued
GAN, while being much less expensive in terms of model
size which has potential applications in resource-constrained
scenarios.
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Fig. 1: Architecture of the CNN used as baseline. FC stands
for Fully-Connected, and MP for Max-Pooling.

III. QUATERNIONS

Quaternions are hypercomplex numbers, introduced by
Hamilton in 1843 as extensions of complex numbers to four
dimensions. Each quaternion q ∈ H consists of 1 real and 3
imaginary parts and can be represented as:

q = a+ bi + cj + dk, (1)

where a, b, c, d ∈ R and i, j,k are independent imaginary units
that obey the following multiplication rules:

i2 = j2 = k2 = ijk = −1

and
ij = −ji = k, jk = −kj = i,ki = −ik = j.

(2)

From these relations one can observe that multiplication is
non-commutative for quaternions. Other fundamental relations
on H are defined as follows, for two quaternions p, q where
p = ap + bpi + cpj + dpk and q = aq + bqi + cqj + dqk:

Addition:

p+ q = (ap + aq)+ (bp + bq)i+(cp + cq)j+(dp + dq)k. (3)

Scalar Multiplication:

λq = λa+ λbi + λcj + λdk. (4)

Conjugation:
q = a− bi − cj − dk. (5)

Quaternion magnitude:

|q| =
√
qq =

√
qq =

√
a2 + b2 + c2 + d2. (6)

In addition, the real part of a quaternion can be expressed as
sum of a scalar S(q) and an imaginary part as a three dimen-
sional vector V (q). Thus, the quaternion can be represented
as:

q = S(q)+V (q) = (a+0i+0j+0k)+(0+bi+cj+dk). (7)

For two quaternions p, q using the above expression, the
Hamilton product (⊗) can be written as:

p⊗ q = S(p)S(q)− V (p) · V (q)

+ S(p)V (q) + S(q)V (p) + V (p)× V (q)
(8)



TABLE I: Accuracy and F-score comparison for standard and quaternion-valued (Q) models, after training on the various dataset
sizes, evaluated on the concrete images dataset [10]. “RS“ stands for Reduced Size (see Section IV, §3).

Method Metric Training dataset size Parameters28K 21K 14K 7K 3.5K 1.75K 0.7K 0.35K

AlexNet [11] Accuracy 0.989 0.982 0.942 0.935 0.931 0.741 <0.5 <0.5 58.285.441F-Score 0.985 0.979 0.937 0.932 0.928 0.634 <0.5 <0.5

AlexNet (Q) Accuracy 0.997 0.989 0.991 0.987 0.981 0.971 0.840 <0.5 14.584.513F-Score 0.996 0.987 0.990 0.985 0.978 0.968 0.803 <0.5

VGG-16 [12] Accuracy 0.997 0.996 0.996 0.992 0.984 0.984 0.966 0.959 33.609.793F-Score 0.994 0.994 0.993 0.990 0.982 0.977 0.956 0.959

VGG-16 (Q) Accuracy 0.994 0.994 0.994 0.989 0.983 0.971 0.968 0.943 8.421.313F-Score 0.991 0.993 0.993 0.987 0.977 0.968 0.962 0.932

Proposed Accuracy 0.997 0.993 0.991 0.989 0.978 0.968 0.908 0.51 4.747.489F-Score 0.996 0.992 0.990 0.988 0.976 0.963 0.890 0.640

Proposed (Q) Accuracy 0.996 0.992 0.995 0.991 0.985 0.971 0.932 <0.5 1.187.553F-Score 0.995 0.992 0.993 0.988 0.982 0.966 0.921 <0.5

Proposed (RS) Accuracy 0.994 0.990 0.992 0.990 0.976 0.978 <0.5 <0.5 1.188.037F-Score 0.992 0.990 0.992 0.987 0.973 0.977 <0.5 <0.5

where · is the dot product and × is the cross product. An
equivalent formulation of the Hamilton product is the matrix
form:

p⊗ q = (apaq − bpbq − cpcq − dpdq)

+ (apbq + bpaq + cpdq − dpcq)i
+ (apcq − bpdq + cpaq + dpbq)j
+ (apdq + bpcq − cpbq + dpaq)k.

(9)

The Hamilton product replaces the standard real valued dot
product; in case the real parts of p and q are zero, it boils
down to simply a cross product.

Quaternion convolutional neural networks [4], [8] are com-
posed of quaternionic parameters, inputs, activation functions
and outputs. An RGB image can represented in the quaternion
domain as:

q(px,y) = 0 +R(px,y)i +G(px,y)j +B(px,y)k. (10)

If olab and Sl
ab are the quaternion output and pre-activation

quaternion output respectively at layer l and (a, b) are the
indexes of the new feature map, for a K×K-sized quaternion-
valued weight filter map w, the quaternion convolution can be
described as:

olab = s(Sl
ab) (11)

with

Sl
ab =

K−1∑
c=0

K−1∑
d=0

wl ⊗ ol−1
(a+c)(b+d), (12)

where s is the activation split function. The split activation
function is defined as:

s(q) = f(a) + f(b)i + f(c)j + f(d)k, (13)

where f can be any standard (real-valued) activation function.

Quaternion-valued networks share weights through the
Hamilton product, which allows them to learn the internal
relations of the features of a quaternion, effectively encoding
the component information. Thus, models using quaternion-
valued layers can benefit from parameter savings since a
quaternion weight that links two quaternion units has 4 degrees
of freedom, compared to a standard neural net that has 4× 4
and requires more parameters as a result [3].

IV. DEEP NETWORKS FOR CRACK DETECTION

Baseline model We propose a real-valued CNN architec-
ture (shown in Figure 1) based on [6] to be used as a baseline
for our experiments. It consists of 4 convolutional and max
pooling layers, followed by 2 linear layers and a sigmoid
activation function. The total number of parameters of this
model are 4.747.489.

Proposed quaternion-valued variants We replace the
convolution and linear layers with their quaternion-valued
equivalents in our proposed model as well as in popular CNN
architectures from the literature. In the quaternion models we
convert the RGB image into a quaternion matrix in which
every element is a quaternion that contains the RGB values
of the pixel in its imaginary part. As a result, when convolu-
tion between quaternion matrix and kernel is performed, the
Hamilton product will produce an output which is a quaternion
with RGB values in the imaginary part [4]. At the output of
the last quaternionic linear layer the 4 channels are summed.

As discussed briefly in Section III and in [3], using
quaternion-valued layers leads to a parameter reduction to
about 1/4 of the original amount. Due to the amount of
training data with respect to the number of parameters of
the real-valued architectures, overfitting is possible, especially
in cases of limited available data. Therefore, to make the
performance comparison more accurate, we modify the number
of channels in our proposed model to obtain a real-valued
reduced size version with a comparable number of parameters
to its quaternion equivalent.

V. EXPERIMENTS AND ANALYSIS

A. Datasets

Training: For a more robust evaluation of the proposed
method, different dataset sizes were used for training. We use
[10], which contains images of concrete of a resolution of
227 × 227 × 3 (height, width and channels), as a source to
generate new datasets of reduced size. The original dataset is
divided in two sets, as negative and positive crack images, each
containing 20.000 samples. Figure 2 (top row) depicts some
examples from both classes. By randomly reducing the number
of samples, while keeping the number of crack and non-crack
images equal we generate 8 new reduced-size datasets, named
after the total number of training samples, to be used for



TABLE II: Performance comparison of standard and quaternionic (Q) models on the asphalt dataset [13] under different training
sizes. Accuracy and F-scores are shown.

Method Metric Training dataset size Parameters28K 21K 14K 7K 3.5K 1.75K 0.7K 0.35K

AlexNet [11] Accuracy 0.795 0.762 0.747 0.820 0.835 0.782 <0.5 <0.5 58.285.441F-Score 0.737 0.783 0.728 0.645 0.801 0.716 <0.5 <0.5

AlexNet (Q) Accuracy 0.647 0.575 0.675 0.755 0.615 0.675 0.720 <0.5 14.584.513F-Score <0.5 <0.5 <0.5 0.652 <0.5 <0.5 0.585 <0.5

VGG-16 [12] Accuracy 0.770 0.722 0.787 0.712 0.830 0.835 0.802 0.772 33.609.793F-Score 0.661 0.520 0.717 0.560 0.754 0.806 0.801 0.765

VGG-16 (Q) Accuracy 0.682 0.745 0.703 0.817 0.772 0.812 0.767 0.850 8.421.313F-Score 0.513 0.607 0.530 0.786 0.682 0.746 0.765 0.824

Proposed Accuracy 0.802 0.837 0.851 0.795 0.797 0.832 0.760 <0.5 4.747.489F-Score 0.727 0.746 0.803 0.715 0.736 0.784 0.652 0.659

Proposed (Q) Accuracy 0.655 0.660 0.740 0.810 0.857 0.790 0.830 0.770 1.187.553F-Score 0.436 0.463 0.593 0.743 0.843 0.719 0.788 0.687

Proposed (RS) Accuracy 0.807 0.817 0.857 0.742 0.712 0.637 0.595 0.545 1.188.037F-Score 0.738 0.758 0.797 0.629 0.657 <0.5 <0.5 <0.5

training our models. A sample split of 70%-15%-15% for
training, validation and testing respectively is maintained for
all new datasets. The produced datasets can be seen on Table
III. This training regime allows us to assess the performance
of our models in conditions where training data is limited.

Fig. 2: Positive and negative samples from [10] (top row) and
[13] (bottom row).

Testing: We test our models in the concrete [10] and
asphalt [13] road crack datasets. [13] contains 400 images
taken from asphalt, 200 for each class (containing cracks for
positive, and without a crack for negative). The initial size of
448× 448× 3 is resized to 227× 227× 3.

TABLE III: Reduced-size datasets produced from [10] for
assessing network performance under different numbers of
available training samples. K indicates 1.000 and positive
means that the image contains a crack.

Samples 28K 21K 14K 7K 3.5K 1.75K 0.7K 0.35K
Train Positive 14.000 10.500 7.000 3.500 1.750 875 350 175
Val Positive 3.000 2.250 1.500 750 375 190 75 40
Train Negative 14.000 10.500 7.000 3.500 1.750 875 350 175
Val Negative 3.000 2.250 1.500 750 375 190 75 40

B. Evaluation Metrics

Let nij be the number of pixels of the class i predicted to
be the class j, where ncls is the number of different classes
and ti =

∑
j nij is the total number of pixels of the class i

(both true and false positives). The following metrics are used
for evaluating the networks:
Global Accuracy (G), which measures the percentage of pixels
that have been predicted correctly:

∑
i nii∑
i ti

, Precision (P):
TP

TP+FP , Recall (R): TP
TP+FN and F-Score (F): 2PR

R+R , where

TP, FP and FN are the true positives, false positives and false
negatives, respectively.

C. Training Setup

We evaluate the performance of various standard and
quaternionic models after training for 10 epochs on the afore-
mentioned reduced size datasets. All models are trained from
scratch with SGD using a learning rate of 0.01. The batch size
is set to 10. The experiments are performed on a machine with
a Nvidia Titan Xp GPU.

D. Analysis of results

We report maximum global accuracy and F-score results
on the concrete [10] and asphalt [13] test sets on Tables I
and II respectively. We note that using quaternionic layers
leads to a parameter reduction of about 75%. A general trend
observed is that reducing the dataset size lowers the accuracy
and F-scores for all networks, especially when tested on the
asphalt dataset. However, in both datasets, the quaternion-
valued versions retain acceptable performance even under a
very limited amount of training data, and in some cases
even perform better, while requiring fewer parameters. This
indicates that quaternionic networks can function better with
smaller datasets, avoiding overfitting, and thus can be viable
alternative to standard ones when there is not enough data.

VI. CONCLUSION

Timely detection and repair of road damage is essential for
the safety of drivers and passengers. In this work, we explored
the applicability of quaternion-valued layers in deep CNNs
for the task of road crack detection. We proposed quaternion
models that are able to accurately detect cracks in images
and perform on par with real-valued ones while requiring
significantly fewer parameters. In fact, utilizing all quater-
nionic layers leads to a parameter reduction of 75%, compared
to using standard layers. We conclude that quaternion-valued
networks are a promising alternative to real-valued ones, since
they are able to effectively reduce model size without low-
ering performance, even when trained on a very low amount
of samples. Consequently, quaternionic models are ideal for
deployment in scenarios where hardware requirements are low
or the available data are scarce. As future work, we aim to
further research recent developments in hypercomplex models
[14] and their application to crack detection.
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