Hypercomplex Generative Adversarial Networks
for Lightweight Semantic Labeling

Giorgos Sfikas'3*, George Retsinas®#, Basilis Gatos', and Christophoros
Nikou*

! Computational Intelligence Laboratory
Institute of Informatics and Telecommunications, National Center for Scientific

Research “Demokritos”, Greece

2 School of Electrical and Computer Engineering

National Technical University of Athens, Greece

3 Department of Surveying and Geoinformatics Engineering
University of West Attica, Greece
4 Department of Computer Science and Engineering
University of Ioannina, Greece
{sfikas,cnikou}@cs.uoi.gr,gretsinas@central .ntua.gr,bgat@iit.demokritos.gr

Abstract. Following recent advances on parameterized hypercomplex
multiplication [21], we explore the usefulness of hypercomplex convolu-
tions and deconvolutions in a document labeling task. We show that the
proposed Hypercomplex Generative Adversarial Networks achieve ex-
cellent results while requiring significantly less independent parameters
than real-valued models.

Keywords: Quaternions, Parameterized Hypercomplex Multiplication,
Semantic Labeling, Multiple labels, Document Image Processing, Gen-
erative Adversarial Networks

1 Introduction and Related work

Quaternions are numbers that are part of the family that is known as hypercom-
plex numbers, and perhaps the better known member of this family. Regarding
their applications, again the most well-known example concerns quaternions and
their use in expressing rotations in 3D (and 4D) space [9, 20]. Other applications
in computer science are more or less unknown to the majority of researchers in
the community, and at best seem exotic or of marginal use. One line of research
involves quaternions, and to some extend other hypercomplex numbers, as a tool
to generalize standard methods in signal and image processing. Notable exam-
ples are the Quaternion Fourier Transform [4], and Quaternion Singular Value
Decomposition [10], or extensions of standard image filters like Sobel or the
Laplacian to R? and colour image processing. In keypoint detection, a quater-
nionic variant of the Harris-Stephens detector has been recently described [17].
The advantage of a hypercomplex framework is, in a nutshell, that any method-
ology that assumes scalar values, signals or tensors can be extended to account

2 Sfikas et al.

for multiple values per number, as each hypercomplex number encapsulates in
itself multiple (real) values in a holistic manner. On the downside, quaternions
and other hypercomplex number systems involve various difficulties; quaternions
define a non-commutative multiplication rule, which subsequently leads to prob-
lems in many facets of their use. For example, an immediate implication is that
the problem Az = Az is different than Ax = a2\, which means that there ex-
ist two different types of eigenvalues and eigenvectors [22,17]. A determinant is
impossible to define for quaternion matrices [3] (at least, without dropping im-
portant defining properties of the classic determinant), and so on and so forth.

Another, more recent line of applications of hypercomplex numbers involves
their use with neural networks. Networks with values, inputs, outputs, layers,
parameters that are hypercomplex-valued have been proposed and succesfully
used in a variety of signal processing, vision, and pattern recognition tasks in
general. In general, perhaps the most succesful feature of these networks is that
they lead to implementations that are not-as-demanding as real valued models in
terms of storage space requirements, while achieving good results for most tasks
where they were employed. The key to their being less resource demanding, lies
with the definition of hypercomplex multiplication, which in the context of a
neural network layer definition, leads naturally to extended parameter sharing.
Quaternions have been the paradigm most prominently used in this respect
[16,13,11,12]. Extensions to other high-dimensional number domains have been
recently shown not only to be possible, but also very beneficial [21].

Parameterized Hypercomplex Multiplication is a technique that has recently
been proposed as a means to extend the parameter sharing / sparsness benefits
of quaternion neural networks to arbitrary, n-dimensional number systems [21,
7]. Under this framework, quaternion networks are considered a special case for
n = 4, and the multiplication is learnable.

The main points of contribution of this work are as follows: First, we explore
the use of parameterized hypercomplex multiplication and Hamilton (quater-
nion) product to extend convolution and deconvolution layers. Previous work has
addressed convolutions only, and in the context of very standard feed-forward
models (VGG, ResNet [7]). The hypercomplex layer integration addressed in the
current work is done in the context of a Generative Adversarial Network, with
fully convolutional generator and discriminator components. Second, we apply
the novel hypercomplex model in a document layout labeling task. Specifically,
the task is to label each pixel of a document image according to the semantics
of the pixel and its neighbourhood. The task is different than standard semantic
segmentation, in that multiple labels are allowed per pixel. We show that a hy-
percomplex architecture can lead to a useful, lightweight model in terms of size,
corroborating the results of recent related work [21].

The paper is structured as follows. In section 2 we present the proposed
model, after discussing theoretical preliminaries: we review elements of quater-
nion algebra, hypercomplex numbers, parameterized hypercomplex operations
and describe the proposed model architecture. In section 3 we apply the model

Hypercomplex GANs for Lightweight Semantic Labeling 3

on a document labeling task. In section 4 we discuss our conclusions and envisage
future work.

Fig. 1. Sample scanned pages from the PIOP-B dataset, used in our labeling experi-
ments with the proposed Hypercomplex GANs.

2 Proposed Model

2.1 Hypercomplex Layers

Quaternions and Elements of Quaternionic Algebra. Quaternions have
been introduced in the 19t century by Hamilton. Historically, Hamilton was
initially trying to create a 3-dimensional algebra that would employ one real part
and two imaginary components, all orthogonal to one another. He eventually
found the undertaking to be impossible, which gave birth to the algebra of
quaternions. The latter instead prescribes one real part and three imaginary
components. This result has been subsequently codified and formalized in a
theorem by Frobenius, which states that the only associative division algebras
(up to an isomorphism) that are possible are the real numbers R, the complex
numbers C, and quaternionic numbers H [5].
A quaternion can be formally defined as a number ¢ € H:

qg=a+bt+cj+dk, (1)

where 2, j, k are independent unit “imaginary” components, and a,b,c,d €
R are respective coefficients to the real and the imaginary parts. From eq. 1
it is straightforward that H is isomorphic to R*. Hence, quaternions can be
understood as a four-dimensional generalization of complex numbers, with two
extra imaginary components.

Analogous to what holds with numbers in C, the square of the imaginary
unit is —1, ie. 42 = j2 = k%> = —1, where of course the relation holds for
any of the three imaginary units. This leads to the interesting consequence that

4 Sfikas et al.

12 = —1 has infinite solutions for € H. For quaternion multiplication, we have
the following rule:

pq=S(p)S(q) —=V(p)-V(g) +Sp)V(g) + S(@)V(p) +V(p) x V(g), (2)

where S(q) is the scalar (real) component of ¢ and V' (g) is the “vector” compo-
nent of ¢, V(q) = [b ¢ d]T (hence ¢ = S(¢) + V(g)). Operands - and x denote
the dot and cross product respectively. The rule eq. 2 is ocassionaly referred to
as a Hamilton product in the literature [11]. Another equivalent way to write
the same rule is:

pq =(apaq — — CpCq — dpdg)+ (3)
(apbq + b pq + Cpdq q)H' (4)
(apcq — bpdg + cpag +d by)j+ (5)
(apdy + bpcq — cpbg + dpag)k, (6)

where p = ap + byt + cpJ + dpk and g = ag + byt + cqj + dgk. Finally, we can
also write the product rule using a matrix-vector notation:

Apq ap —bp —cp —dp Qq

bpq _ by ap—dp ¢ bg (7)
Cpq cp dp ap —by cq |’

dpq dp —¢p by ap dg

where we write the product result as pg = apq + bpgt + cpqd + dpgk. We shall see
in Section 2 that this way of writing the Hamilton product is useful in underpin-
ning the relation of parameterized hypercomplex multiplication to quaternionic
operations, also discussed in the same section.

A quaternion conjugate is defined analogously to the complex conjugate, as
7 = a—bi—cj —dk, and likewise a quaternion magnitude, as |q| = /qq = v/qq =
Va2 4+ b2 + 2 + d2. Generalizing the formula for e*’, for any p € H for which
p? = —1 and 6 € R it holds e*? = cosf + psinf. Using the latter formula, a
polar representation of quaternions is possible, as: ¢ = |¢|e*?, where y € H and
0 € R are called eigenaxis and eigenangle [4].

Hypercomplex numbers beyond Quaternions. Historically, quickly after
quaternions were introduced, it was understood that numbers of higher intrinsic
dimensionality than that of quaternions (i.e., d=4), were possible (where again,
“possibility” should be understood as feasibility of construction of a field or field-
like algebraic structure, based on those numbers). Eight-dimensional numbers,
called octonions, and sixteen-dimensional numbers, called sedenions, were in in-
troduced in this manner, as well as a multitude of other constructions [5, 15].
These number systems have been collectively came to be known as hypercom-
plex numbers. In this work, numbers with dimensionality d > 4 are of interest
as they are related to parameterized hypercomplex variations of “traditional”
(i.e. real-valued) neural network operations [21]. Octonions and sedenions also

Hypercomplex GANs for Lightweight Semantic Labeling 5

define operations in an analogous manner to that described for quaternions in
the previous paragraphs. In a nutshell, “movement” to a higher dimensionality
comes at a cost of losing important algebraic structure properties. For example,
octonion multiplication is non-commutative, like quaternions, however unlike the
latter, it is furthermore non-associative.

Fig. 2. Example of manual annotation. Polygon colours correspond to the following
semantic labels: 1) Dark green: Handwritten text. 2) Blue: Stamp. 3) Olive green:
Matrix. 4) Violet: Signature. 5) Brown: Page number. A single pixel may correspond
to a number of labels ranging from none, up to multiple labels.

Parameterized Hypercomplex Convolutional / Deconvolutional layer.
As a building block in our architecture, we use convolutional and deconvolutional
layers. The GAN generator uses a cascade of convolutions and deconvolutions;
the GAN discriminator uses a cascade of convolutions (The specific architecture
will be described in more detail in the following subsection). Models that make
use of parameterized hypercomplex convolutions have been explored recently
[7]. In our model, we also experiment with parameterized hypercomplex ver-
sions of deconvolutions. Generally, we can write a convolution or deconvolution,
parameterized by its kernel H as:

y=Hx*ux, (8)

6 Sfikas et al.

where x,y are the input and output tensors respectively, of dimensionality y
and v respectively. The operation kernel H is assumed to be rectangular with
side equal to k. These operations are well-known to be linear, so we can equiva-
lently write y = C'yx, where Cg is the respective Toeplitz or Circulant matrix,
depending on the specifics of the operation [8]. Kernel H is in RX*¥*kxk and
the total number of independent parameters (or “degrees of freedom”) involved
isxxyxkxk.

Following the parameterized hypercomplex construction introduced with [21],
we can write the operation

y=ZAZ-®Fi*x, (9)

i=1

where the operation kernel is determined by the sum of kronecker products of
matrices A; and Fj, i € [1,n], and n is a operation hyperparameter that deter-
mines the characteristics of the operation. Matrices A; are in R™*", independent
of the input and output tensor dimensions. Matrices F; are in R %% xkxk The
resulting kronecker products are in R%X%X’”k, hence the sum Y., A; ® F; of
eq. 9 is also of the same dimensionality. However, the important difference to
standard convolution and deconvolution is here that the corresponding param-
eters are not independent; in fact, in this formulation the operation parameters
form n-sized groups of shared parameters.

Interestingly, quaternion convolution and deconvolution [16] can be written
in the form set in eq. 9, with n equal to 4 and fixed matrices Ay, Ao, A3, Ay.
Specifically, for quaternion operations these matrices are:

|
PR R

—
=]
=

Ay =14, Ay = ,Ag = VA =

SO O
o o o
O = OO
O = OO
_ o O O
oS O O
o O = O
_ o oo
o OO
OO)l—‘O

0—
1
0
0

Essentially, the matrices of eq. 10 are determined by the Hamilton product rule
(eq. 2), and more specifically its matrix-vector version (eq. 7).

For either quaternion or parameterized hypercomplex versions of the convo-
lution and deconvolution operations, their degrees of freedom is much lower than
the dimensionality of the tensor space where they are defined. In particular, a
paramerized hypercomplex kernel has £ x % x k2 degrees of freedom for each
matrix Fj, for a total of X x ¢ x k2 for all n matrices. The matrices 4; have n xn
degrees of freedom each, for a total n? for all n matrices. Hence, a parameter-
ized hypercomplex convolution or deconvolution has a total of n3 + X X ap x k2
independent parameters. For the quaternionic case, we have to set n = 4 and
disregard the A; matrices since these are fixed, thus we have ¥ x ¢ x k? indepen-
dent parameters. In most practical cases, these numbers should be understood
as dominated by the parameters of the F; matrices, or £ x 1) x 1) x k? > n3. The
degrees of freedom associated with each operation kernel version are summarized
in Table 1.

Hypercomplex GANs for Lightweight Semantic Labeling 7

Table 1. Degrees of freedom for each convolution / deconvolution kernel operation.
Real, quaternion and parameterized hypercomplex variants are compared. n is a “user-
defined” operation hyperparameter, k is the size of the kernel, x and 1 are the input
and output feature map dimensionalities.

Operation variant Degrees of freedom
Standard (real-valued) variant X X ¢ x k?
Quaternion variant X xp x k?
Parameterized Hypercomplex variant|| n® + X X 9h x k2

2.2 Model Architecture

A Generative Adversarial Network is composed of two networks: The generator
and the discriminator network, denoted as functions G(-) and D(-) respectively.
In this work, both networks are fully convolutional. The generator is structured
as a U-Net [14], with skip connections used to bridge the corresponding “mir-
ror” layers in the encoder and the decoder part. Both models use hypercomplex
convolutions and deconvolutions in all cases, unless stated explicitly otherwise.

The generator is structured as follows: The input is first padded with as
many zero channels as required, in order to match the PHM hyperparameter n.
We set this padding to 16 channels, to match the maximum value for n that
is considered in this work. This action is equivalent to zero-ing the imaginary
components of the input. The padded input is passed to a series of convolutional
layers, followed by deconvolutional layers, as is the standard structure of U-Net.
Four convolutional layers, topped by batch normalization and split-activation
leaky ReLU, are followed by an equal number of deconvolutional layers. The
number of channels are: 64, 128, 128, 256, 128, 128, 64, 16 (these are real-valued
channels; when hypercomplex layers are considered, channels are grouped in n-
tuples, hence these numbers should be divided by n for a PHM /n convolution
or deconvolution. For quaternion layers, n = 4). The first two deconvolutions
are also followed by Dropout layers. The last convolutional output is processed
by a real-valued 1 x 1 convolution in order to drop the number of channels
to the number of classes K = 5. This K-depth map is essentially a stack of
class-specific activation maps, with each one corresponding to a different class.
This map is followed naturally by a sigmoid activation. Note that, a sigmoid
activation is used as each pixel may correspond to zero, one, or more classes, i.e.
classes are not mutually exclusive. Hence, the generator is structured so as to
take a document image as input, and produce a K-level activation map.

The discriminator is structured as follows: A total of six convolutional blocks
comprise the discriminator, each having a convolutional layer and batch nor-
malization. Tensor (real-valued) depths for each block are 16, 64, 128, 256, 256,
16. Then follow a sum over channel values, topped by a sigmoid activation. The
input of the discriminator is the document image with the (real or fake) anno-
tation activation map, and the result is an estimate of the model whether the
document with the provided annotation seem like an “authentic” pair or not.

8 Sfikas et al.

Regarding situations where training and evaluation classes are not balanced,
several strategies have been proposed, as proceeding with standard loss and/or
no resampling or reweighting is non-optimal. Briefly, one major strategy is us-
ing resampling in order to prioritize classes that are initially under-represented,
by sampling more augmented samples from low-volume classes. The other ma-
jor strategy is to tweak the loss function, so that under-represented classes are
artifically assigned a larger loss. In this manner, training can be implicity manip-
ulated towards an optimum that classifies small classes as well the larger ones.
In this work, we have used a reweighting strategy, and balanced each per-class
loss term inverse proportionally to the number of “positives” of each class.

After taking into account the aforementioned considerations, the required
penalties are combined to a single, multi-task term as Liotal = Ladversarial+ALbce,
where we have Logversariat = Ez[logD(y)] + Ez[log(1 — D(G(z)))]], and Lpee =
E, ,BCE(G(x),y), where Ay is a hyperparameter that controls the relative
importance of the BCE to the adversarial term on the generator. The BCE
term considers inconsistency of the estimate map G(x) to ground truth y, by
accounting divergence w.r.t. all class separately.

Fig. 3. Plots for resulting Intersection over Union (IoU) values. From top row to bottom
row, in “reading order”, plots correspond to classes: Handwritten text, Stamp, Matrix,
Signature, Page number. Colours correspond to type of employed GAN: Vanilla/real-
valued GAN (red), Quaternion GAN (blue), PHM/n=2 (green), PHM/n=4 (black),
PHM/n=8 (magenta), PHM /n=16 (cyan).

3 Experiments

The PIOP-B dataset consists of 203 manuscripts, scanned from the archives of
the Greek Peiraiki- Patraiki bank. The dataset has been partitioned into a train-
ing and a test set with 162 and 41 document images respectively. All pages have

Hypercomplex GANs for Lightweight Semantic Labeling 9

Fig. 4. Plots for resulting test binary cross entropy values. Lower values are better.
From top row to bottom row, in “reading order”, plots correspond to classes: Hand-
written text, Stamp, Matrix, Signature, Page number. Colours correspond to type of
employed GAN: Vanilla/real-valued GAN (red), Quaternion GAN (blue), PHM /n=2
(green), PHM /n=4 (black), PHM /n=8 (magenta), PHM /n=16 (cyan).

been manually annotated with respect to 5 semantic classes (plus background).
These classes are: 1.Handwritten text, 2.Stamp, 3.Matrix, 4.Signature, 5.Page
number. Sample pages can be viewed in Figure 1. An example manually anno-
tated page can be examined in Figure 2. Note that a single pixel may correspond
to multiple labels.

The choices of hyperparameters for our model are as follows. We used a batch
size equal to 14, multi-task hyperparameter equal A = 10, learning rates for the
generator and discriminator equal to 0.01 and 0.001 respectively. All convolutions
and deconvolutions use a kernel size equal to 4 x 4 and stride equal to 2. Leaky
ReLU split-activation uses parameter equal to 0.2, and Dropout uses probability
parameter equal to 0.5. The Adam optimizer was used to train the models, with
cosine annealing and restarts at every 300 epochs, with training for a total of 900
epochs for each case. Activation functions on the hypercomplex networks were
“split-type”, i.e. all activations treated their inputs as if they were sets of real
numbers. Input document images have been sub-sampled to a fixed size, equal to
512 x 704. This resolution has been chosen with the consideration of preserving
aspect ratio as much as possible, while easing computational burden and enabling
batch processing during training. Furthermore, as the hypercomplex models treat
channels as n-sized groups, care has been taken so as the input and intermediate
processing tensors in the generator and discriminator are sized as multiples of
the considered values for n, i.e. 2, 4, 8, 16. This was necessary in order to ensure
a fair comparison between compared real-valued and hypercomplex models.

Numerical results comparing the vanilla (standard/real-valued) GAN model
using the described architecture, against hypercomplex variants, are reported in
detail in Table 2. The compared architectures are: vanilla GAN, i.e. a standard
GAN with real-valued parameters; this is used as the baseline model. Quaternion

10 Sfikas et al.

GAN and the PHM/n models use hypercomplex layer, input values, intermedi-
ate network values, and split-type activations as described in Section 2. The
difference between PHM/n models is in the choice of the hyperparameter n.
Concerning PHM/n=4 and Quaternion GAN, network values are grouped in
quaternions in both cases, but in PHM/n=4 the {A;}} ; matrices are learn-
able, unlike the Quaternion GAN where they fixed w.r.t. the Hamilton product
definition. Intersection over Union figures were computed after binarizing the
sigmoid-activated map using threshold = 0.5. Additional plots are in Figure 3
and Figure 4, showing the progression of Intersection over Union (higher is bet-
ter) and test Binary Cross Entropy (lower is better) per semantic class.

Perhaps the most straightforward conclusion is that all models attain eval-
uation measures that are comparable to each other. Concerning the attained
IoU value of ~ 55%, it is hampered chiefly by the results in the Matrix and
Signature classes, which are perhaps objectively the hardest to detect correctly.
The Matrix class for example, differs to Handwritten text only in terms of the
way the content is structured, and table horizontal and vertical lines are not
necessarily always present. The other classes — Handwritten text, Stamp, Page
Number attain higher values. In particular, the final values attained in terms
of ToU, per class, for the PHM/n=2 model are: 88.7, 72.4, 27.2, 30.8, 58.4 for
Handwritten text, Stamp, Matrix, Signature, Page number respectively.

The great advantage of the proposed PHM models is that they manage to
attain results that are in the ballpark of the standard, real-valued model, by
using only a fraction of the model’s computational footprint, measured in terms
of model size. All versions, including the most light one, PHM /n = 16, which
uses only 7.3% of the vanilla model size, give similar, competitive end-results.
Also, we note the slight improvement over the vanilla model attained IoU/loss
values for the PHM /n=2 model; while such a difference could be statistically
insignificant, it is not inconsistent to similar comparisons in the literature [21, 7,
16]. In this respect, we believe that we must also take into account the size of each
model with respect to it being a defining factor during model training. Indeed,
in model training essentially we look for an optimal value in a search space; if
this search space is significantly smaller than a baseline space, then attaining a
good value should (all other factors being equal) be significantly easier for the
smaller model. Apparently, PHM nets share this benefit while (crucially!) not
leading to significant loss w.r.t. the model expresiveness.

4 Conclusion and Future work

In this work, we have validated the usefulness of parameterized hypercomplex
multiplications used in the context of a GAN architecture, comprised of convo-
lutional and deconvolutional layers. Tested in a document labeling scenario, the
proposed Hypercomplex GANs attain accuracy that is comparable to that of the
GAN baseline, but using only a small fraction of the baseline cost, measured in
terms of model size. As future work, we plan to extend the labeling model by
considering more modern reweighting / class-balancing methods [1], exploring

Hypercomplex GANs for Lightweight Semantic Labeling 11

Table 2. Comparison of GAN models. All models bear the same architectural structure
in both generator and discriminator, with the difference being in the type of convolu-
tion and deconvolution layers. The “vanilla” variant is a standard, real-valued GAN.
The “quaternion” variant uses quaternionic convolutions and deconvolutions, while the
PHM variants use parameterized hypercomplex versions of the same layers, for differ-
ent values of the hyperparameter n. “Economy” denotes how smaller the model is,
compared to the vanilla version (rounded up to a single decimal).

[Model type [[IoU|Test BCE[Generator size[Discriminator size[Economy]

Vanilla 53.3| 4.74 2,280,117 3, 886, 688 0%
PHM (n=2) ||55.5| 4.42 1,141,493 1,945,232 —49.9%
Quaternion (|53.0/ 4.92 572,085 974,432 —74.9%
PHM (n=4) ||53.9] 4.86 572,597 974,816 —74.9%
PHM (n=8) ||52.5| 4.96 291, 509 492,128 —87.3%

PHM (n=16)||52.3| 5.82 177,845 270,944 —-92.7%

the use of Ising-like smoothness penalties [2,19, 18], or experiment with using
keyword spotting or shape [6] as a semantic content cue. In terms of hyper-
complex components, we also plan to experiment with activation functions that
are also fully hypercomplex (non “split-type”). Also, an interesting point would
be whether imposing an orthogonality constraint on the PHM components (A;
matrices) could improve or accelerate learning.

Acknowledgments

This research has been partially co-financed by the EU and Greek national funds
through the Operational Program Competitiveness, Entrepreneurship and Inno-
vation, under the calls “OPEN INNOVATION IN CULTURE” (project Bessar-
ion - T6YBII-00214) and “RESEARCH - CREATE - INNOVATE” (project
Culdile - TIEAK-03785).

References

1. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on
effective number of samples. In: Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 9268-9277 (2019)

2. Dimitrakopoulos, P., Sfikas, G., Nikou, C.: Ising-GAN: Annotated data augmen-
tation with a spatially constrained generative adversarial network. In: 2020 IEEE
17th International Symposium on Biomedical Imaging (ISBI). pp. 1600-1603. IEEE

2020)

3.](Dyson, F.J.: Quaternion determinants. Helvetica Physica Acta 45(2), 289 (1972)

4. Ell, T.A., Sangwine, S.J.: Hypercomplex fourier transforms of color images. IEEE

Transactions on image processing 16(1), 22-35 (2007)

Fraleigh, J.B.: A first course in abstract algebra, 7th (2002)

6. Giotis, A.P., Sfikas, G., Nikou, C., Gatos, B.: Shape-based word spotting in hand-
written document images. In: 13th International conference on document analysis
and recognition (ICDAR). pp. 561-565. IEEE (2015)

o

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Sfikas et al.

Grassucci, E., Zhang, A., Comminiello, D.: Lightweight convolutional neural net-
works by hypercomplex parameterization. arXiv preprint arXiv:2110.04176 (2021)
Jain, A.K.: Fundamentals of digital image processing. Prentice-Hall, Inc. (1989)
Kuipers, J.B.: Quaternions and Rotation Sequences: A primer with application to
orbits, aerospace and virtual reality. Princeton University Press (1999)

Le Bihan, N., Mars, J.: Singular value decomposition of quaternion matrices: a new
tool for vector-sensor signal processing. Signal processing 84(7), 1177-1199 (2004)
Parcollet, T., Morchid, M., Linares, G.: Quaternion convolutional neural networks
for heterogeneous image processing. In: ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 8514-8518.
IEEE (2019)

Parcollet, T., Morchid, M., Linares, G.: A survey of quaternion neural networks.
Artificial Intelligence Review 53(4), 2957-2982 (2020)

Parcollet, T., Zhang, Y., Morchid, M., Trabelsi, C., Linares, G., De Mori, R.,
Bengio, Y.: Quaternion convolutional neural networks for end-to-end automatic
speech recognition. arXiv preprint arXiv:1806.07789 (2018)

Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234-241. Springer (2015)

Sangwine, S.J.: Biquaternion (complexified quaternion) roots of- 1. Advances in
Applied Clifford Algebras 16(1), 63—68 (2006)

Sfikas, G., Giotis, A., Retsinas, G., Nikou, C.: Quaternion generative adversarial
networks for inscription detection in byzantine monuments. In: 2nd International
Workshop on Pattern Recognition for Cultural Heritage (PatReCH) (2021)
Sfikas, G., loannidis, D., Tzovaras, D.: Quaternion harris for multispectral keypoint
detection. In: 2020 IEEE International Conference on Image Processing (ICIP). pp.
11-15. IEEE (2020)

Sfikas, G., Nikou, C., Galatsanos, N., Heinrich, C.: MR brain tissue classification us-
ing an edge-preserving spatially variant bayesian mixture model. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. pp.
43-50. Springer (2008)

Sfikas, G., Nikou, C., Galatsanos, N., Heinrich, C.: Majorization-minimization mix-
ture model determination in image segmentation. In: CVPR 2011. pp. 2169-2176.
IEEE (2011)

Vince, J.: Quaternions for computer graphics. Springer Science & Business Media
(2011)

Zhang, A., Tay, Y., Zhang, S., Chan, A., Luu, A.T., Hui, S.C., Fu, J.: Beyond
fully-connected layers with quaternions: Parameterization of hypercomplex multi-
plications with 1/n parameters. arXiv preprint arXiv:2102.08597 (2021)

Zhang, F.: Quaternions and matrices of quaternions. Linear algebra and its appli-
cations 251, 21-57 (1997)

