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Abstract

Diffusion-based Handwritten Text Generation (HTG)
approaches achieve impressive results on frequent, in-
vocabulary words observed at training time and on regu-
lar styles. However, they are prone to memorizing train-
ing samples and often struggle with style variability and
generation clarity. In particular, standard diffusion models
tend to produce artifacts or distortions that negatively af-
fect the readability of the generated text, especially when
the style is hard to produce. To tackle these issues, we
propose a novel sampling guidance strategy, Dual Orthog-
onal Guidance (DOG), that leverages an orthogonal pro-
jection of a negatively perturbed prompt onto the original
positive prompt. This approach helps steer the generation
away from artifacts while maintaining the intended content,
and encourages more diverse, yet plausible, outputs. Un-
like standard Classifier-Free Guidance (CFG), which relies
on unconditional predictions and produces noise at high
guidance scales, DOG introduces a more stable, disentan-
gled direction in the latent space. To control the strength
of the guidance across the denoising process, we apply a
triangular schedule: weak at the start and end of denois-
ing, when the process is most sensitive, and strongest in the
middle steps. Experimental results on the state-of-the-art
DiffusionPen and One-DM demonstrate that DOG improves
both content clarity and style variability, even for out-of-
vocabulary words and challenging writing styles.

1. Introduction

Handwritten Text Generation (HTG), or Styled HTG, is a
task that has only relatively recently gained traction com-
pared to the more “traditional” Document Imaging tasks,
like Handwritten Text Recognition (HTR) [6, 22, 39–41] or

*equal contribution

Figure 1. Qualitative examples of generation without (left) and
with (right) our proposed DOG guidance strategy.

Keyword Spotting (KWS) [19, 37, 38], in terms of effec-
tive models and methods. One motivation for HTG systems
is user personalization in digital applications, where it can
be useful in aiding individuals with physical impairments to
produce handwritten notes in a personalized style. Another
crucial goal for HTG is to play the role of an efficient tool
for data augmentation, acting in an auxiliary way for other
main, downstream Document Analysis tasks [10]. This is
especially useful in low-resource contexts [31], where in-
adequately documented scripts or languages with few writ-
ers or with few digitized, annotated training samples consti-
tute a serious impediment to creating automated document-
imaging tools.

Diffusion-based HTG models have recently shown
promising results in producing readable handwritten images
replicating an existing style. However, two major issues
persist:
1. They frequently generate artifacts that degrade content

clarity, even for common, in-distribution examples.
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2. They tend to memorize style-content pairs seen during
training, making them brittle in low-data regimes or for
unseen combinations.

To partially address the first issue, Classifier-Free Guid-
ance (CFG) [17] has been proposed as a sampling method
that interpolates between unconditional and conditional pre-
dictions, typically improving alignment with the target con-
dition. However, CFG introduces a trade-off: high guid-
ance scales may help with clarity but often result in over-
saturation or degraded detail.

In this work, we introduce Dual Orthogonal Guidance
(DOG), a guidance strategy that pushes generation along
an orthogonal direction derived from a negatively perturbed
version of the conditioning prompt. The idea is to encour-
age clearer generation by suppressing entangled distortions
from a perturbed condition (see Fig. 1), while still enabling
structured variation. Unlike CFG, which relies on uncondi-
tional sampling, DOG uses a negative prompt derived from
the actual condition (e.g., noised style or content), which is
then orthogonalized with respect to the original. This pro-
duces a more targeted and stable modification of the sam-
pling trajectory. To control the influence of this guidance
throughout the diffusion process, we use a triangular sched-
ule, which limits the effect at early and late steps, where the
process is most sensitive, and maximizes it in the middle
steps, where it can influence the structure without causing
instability.

In particular, our main contributions are the following:
• Dual Orthogonal Guidance (DOG): A test-time sampling

strategy that introduces an orthogonal direction derived
from a negative prompt, enabling clearer generation and
controlled variability.

• Stability through triangular scheduling: We modulate the
guidance scale across timesteps, peaking mid-process to
avoid distorting global structure or introducing artifacts.

• Plug-and-play integration: DOG is model-agnostic, re-
quires no retraining, and can be applied directly to pre-
trained diffusion-based HTG models.

• Compelling Performance: We beat the state-of-the-art in
terms of posterior sampling variety, with tangible benefits
in terms of qualitative and quantitative results.
The remainder of this paper is structured as follows. In

Section 2, we review the related work. In Section 3, we de-
scribe the proposed Dual Orthogonal Guidance. Section 4
presents numerical experiments and showcases illustrative
qualitative results. Finally, we conclude the paper with Sec-
tion 5, where we summarize our contributions and discuss
future work.

2. Related work

Styled HTG & Classifier-free Guidance. Styled HTG is
the task of generating handwritten images given a style and

a content condition. Early HTG methods relied on exten-
sive hand-crafted feature extraction and text resynthesizing
using rule-based methods [24, 46, 48]. Later, recurrent ar-
chitectures demonstrated the ability to generate handwrit-
ing [15]. Building on early methods, GAN-based tech-
niques [1, 9, 14, 20, 21, 28, 43], including several that
integrate transformer architectures [4, 35, 47], have en-
hanced handwriting generation. However, these approaches
still face challenges such as training instability and lim-
ited diversity [2, 13, 30]. More recently, Diffusion Models
[5, 8, 16, 32, 33, 49] have been put forward as an alterna-
tive to GAN-based models. While the paradigm of diffusion
forms a cohesive foundation for styled HTG, several prob-
lems have proved to be non-straightforward to solve in a sat-
isfactory manner, including style variability, rare character
combinations, and training data memorization. Classifier-
free guidance (CFG) [17] has shown improvement in the
quality of the generation by performing a linear interpola-
tion between the conditional and unconditional estimations,
λϵ(x|c) + (1 − λ)ϵ(x|∅). A few works have showcased
the effect of CFG in HTG by exploring the standard ap-
proach [5, 8, 11, 29]. However, only [5] explores the effect
of CFG on the generation.

Negative Prompting in Diffusion Models. Diffusion Mod-
els are state-of-the-art latent variable generative models that
are consistently setting new benchmarks in numerous and
diverse tasks [44], including those that pertain to one or an-
other form of prompting, in the sense of a textual condition
to the model [7, 18]. Negative Prompting seeks to steer the
guidance away from unwanted attributes. In [25], an ob-
jective that may include multiple conditions is broken down
to a sum of composing directions in the latent space. Un-
wanted conditions are then assigned a negative weight, in
principle allowing the end-user to specify the set of condi-
tions at will. This translates to a simple but very effective
test-time algorithm. Perp-Neg [3] is another sampling algo-
rithm for standard Text-to-Image Diffusion Models, which
computes a negative gradient that is perpendicular to the
main prompt. The rationale related to this choice is that
two conditions should not be taken a priori to be condition-
ally independent; moving in the orthogonal direction en-
sures that unwanted details are suppressed without interfer-
ing with the primary semantic content. Both works under-
score the importance of carefully adjusting the positive and
negative cues to enhance the fidelity and controllability of
the generated images. Our proposal is inspired by this pre-
vious work, and puts forward a technique that is also based
on test-time guidance of sampling.

Interestingly, a very recent and independent work also
explores the use of orthogonal projections in diffusion guid-
ance [42]. This method, named Adaptive Projected Guid-
ance (APG), applies a perpendicular projection of the un-
conditional CFG term to improve saturation in text-to-



Figure 2. Qualitative results of the application of the proposed DOG guidance strategy at inference time to the Diffusion-based OneDM
and DiffusionPen HTG approaches.

image generation for the case of high guidance scales.
While our approach was developed independently and is
specifically tailored to HTG, both our work and [42] high-
light the benefit of introducing orthogonal components to
steer the generative process without conflicting with the
main conditioning. However, unlike DOG, APG further as-
signs a small weight to the parallel component and lacks a
scheduling mechanism to modulate the influence of guid-
ance across denoising steps. As we show, the absence of
such scheduling can make guidance scale selection deli-
cate, introducing a trade-off between control and artifact-
free generation. In our work, we compare both existing
guidance strategies with our proposed DOG.

3. Dual Orthogonal Guidance (DOG)

3.1. Preliminaries on Diffusion Models

Diffusion models are a class of generative models that
synthesize data by learning to reverse a fixed noise pro-
cess through iterative denoising steps. Denoising Diffu-
sion Probabilistic Models (DDPM) [44], a widely used
instantiation of this idea, define a latent variable model
p(x) =

∫
p(x, z) dz, where z = {z1, z2, . . . , zT } is a la-

tent Markov chain over T timesteps. The forward pro-
cess q(z|x) gradually corrupts data with Gaussian noise in
a variance-preserving manner, and the reverse process is
learned to approximate p(x|z). This formulation resembles
a hierarchical Variational Autoencoder [26]. In our case, we
adopt the DDIM formulation [45], a deterministic alterna-
tive to DDPM, while keeping the same core noise prediction

structure.
In the Styled HTG setting, the conditioning c typically

consists of the desired content ct (e.g., the target text) and
the style cs (e.g., writer identity or visual features). Sam-
pling is performed via ancestral denoising, starting from
pure noise z0 ∼ N (0, I) and progressively refining it
through a learned reverse process:

x ∼ p(x|c) =
∫
p(x|z1) p(z1|z2) · · · p(zT |z0) p(z0) dz1:T (1)

We use the notation p(x|c) to denote this generative process
conditioned on the dual c. During training, the model learns
to predict the noise ϵθ added to a sample x0 at timestep t, by
using a noised input xt and conditions c. At inference, this
prediction is used to iteratively reconstruct the image from
noise.

3.2. Motivation and Synopsis
In HTG, modifying the conditioning inputs can introduce
variation in the generated image, but often in an unstruc-
tured and entangled way. Since content and style represen-
tations are not fully disentangled in practice, perturbing the
style component cs can inadvertently degrade the fidelity of
the content ct, resulting in unclear or semantically corrupted
outputs.

To address this, we move beyond naive perturbation.
Rather than using the perturbed condition directly, which
may conflate content and style, we define a guidance mech-
anism that encourages the generation to be faithful to the
intended (ct, cs) condition, while actively steering it away
from a negative pairing. This negative pairing is formed



by corrupting one of the conditions (or both of them) and
acts as a counterexample. This builds naturally on the
CFG framework, which interpolates between unconditional
and conditional predictions to enhance content clarity. In-
stead of using an unconditional signal, we use a corrupted
condition and isolate its influence by projecting out the
component aligned with the original (positive) prediction.
The remaining orthogonal direction provides a controlled,
content-preserving signal that still allows for variability.

The core challenge is how to construct this orthogonal
direction from a noisy negative prompt in a way that main-
tains meaningful structure and avoids pushing the model to-
ward unrealistic outputs. In the next section, we define this
construction formally and explain how it is integrated into
the diffusion trajectory.

3.3. Subspace Projection
We define the positive and negative dual prompts based on
the content-style condition. Let rt and rs denote the repre-
sentations for ct and cs, respectively. The clean pair (rt, rs)
serves as the positive prompt.

To simulate a negative pair, we generate noisy variants of
the content and style representations by applying element-
wise dropout and scaled Gaussian noise:

r̃s = λs · ηs · N (0, I), (2)
r̃t = λt · ηt · N (0, I), (3)
ηs, ηt ∼ Bernoulli(p),

where λs and λt control the magnitude of the noise, and
p determines the sparsity of the active dimensions through
dropout masks. This formulation enables selective cor-
ruption of latent attributes, encouraging the model to ex-
plore attribute-specific guidance paths rather than uniformly
noisy directions. Empirically, we find that this stochas-
tic masking mechanism yields more informative contrastive
gradients. Depending on the intended contrastive setup, one
may perturb either the style or content representation inde-
pendently, or both jointly, while keeping the other compo-
nent fixed from the original (positive) pair.

Given the perturbed condition, we compute two noise
predictions:

ϵp = ϵ(xt, t, rt, rs), (4)
ϵn = ϵ(xt, t, r̃t, r̃s). (5)

While ϵn introduces perturbations, it likely contains both
structured and unstructured deviations from ϵp. To isolate a
direction that influences generation without corrupting the
core signal, we subtract the projection of ϵn onto ϵp:

ϵ∗ = ϵn − projϵp(ϵn). (6)

where the projection term is given by:

projϵp(ϵn) =
⟨ϵn, ϵp⟩
∥ϵp∥2

· ϵp. (7)

This orthogonal component ϵ∗ captures contrastive varia-
tion while remaining disjoint from the intended generation
direction.

To ensure numerical stability and prevent degenerate be-
havior at large magnitudes, we clip the norm of ϵn, before
the projection step, using a threshold τ :

ϵn ← min

(
1,

τ

∥ϵn∥

)
· ϵn. (8)

The final denoising prediction becomes:

ϵ̂ = ϵp + g(t) · (ϵp − ϵ∗), (9)

where g(t) is the time-dependent guidance scale, described
in Section 3.4.

3.4. Guidance Scale with Scheduling
The denoising behavior naturally follows a coarse-to-fine
progression. The first timesteps of the denoising process
are dominated by noise and lack a clear structure, making it
undesirable to enforce a strong guidance signal and have a
very heavy influence on the decisions. Conversely, in later
“cleaner" timesteps, the sample is refined with intricate de-
tails, and over-conditioning may hinder the preservation of
subtle features and cause the appearance of artifacts. To ad-
dress this, we influence the guidance signal across timesteps
by using a triangular schedule. For every given timestep
t ∈ [0, T ], a threshold uT is defined such that:

γ(t) =


t

uT
, if t ≤ uT ,

1− t− uT

T − uT
, if t > uT .

(10)

Here, ut controls the location of the peak in the triangle.
The overall guidance scale at timestep t is then given by
multiplying γ(t) by a base guidance factor gs:

g(t) = gs · γ(t). (11)

3.5. Sampling with Dual Orthogonal Guidance
The proposed guidance is applied during each denoising
step of the reverse diffusion process. At step t, we com-
pute the standard conditional prediction ϵp using the given
content-style pair (ct, cs), and the negative prediction ϵn us-
ing the perturbed counterpart (either c̃s, c̃t, or both). The
orthogonal direction ϵ∗ is derived by subtracting the projec-
tion of ϵn onto ϵp, as discussed previously.

The final residual from Eq. (9) is used within the DDIM
sampling rule to update the sample xt:

xt−1 = DDIMStep(xt, ϵ̂, t), (12)

where DDIMStep denotes the deterministic transition rule
at timestep t. This operation can be implemented directly
using any scheduler that supports DDIM-style updates.



Figure 3. Qualitative comparison between guidance strategies applied to DiffusionPen when generating a target text in different styles.

By leveraging both a faithful prompt and a structured
negative variant, the proposed guidance effectively encour-
ages content-clarity and controlled stylistic variation. The
orthogonal decomposition ensures that generation is nudged
along contrastive directions that preserve semantic fidelity.

4. Experiments
In this section, we evaluate our proposed guidance strategy,
DOG, by applying it to pre-trained, off-the-shelf diffusion-
based HTG models. We present both qualitative and quan-
titative results that demonstrate the effectiveness of DOG in
improving generation quality. In addition, we provide ab-
lation studies analyzing the impact of key components and
hyperparameters of our method.

4.1. Experimental Setup
We conduct experiments with the two main existing pre-
trained diffusion-based HTG backbones, DiffusionPen [33]
and One-DM [8], trained on the IAM offline handwriting
database [27]. We also use a version of DiffusionPen [33]
that is pre-trained on the GNHK dataset [23]. DiffusionPen
is a latent-diffusion HTG that deploys a hybrid metric- and
classification-style encoder to embed style features in a few-
shot setting, while One-DM operates on pixel space in a
one-shot style encoding setting.

For comparison with the guidance literature, we further
set up CFG [17] and APG [42] on DiffusionPen. To this
end, we re-train DiffusioPen [33] with style and content
conditions dropped with a probability of 0.2 in order to use
the unconditional components necessary for CFG and APG
that were not included in the original training. We keep the
HTG models in evaluation mode and use them for sampling
in their default settings, integrating ours and the competitor
guidance strategies as described in Sec. 3. Hence, except for
the adaptation of DiffusionPen for comparative reasons, no
training process is included. The hyperparameters for DOG

are set as follows. For the triangular scheduling, we use a
peak threshold timestep of uT = 700. Throughout all ex-
periments, we fix the noise magnitudes to λs = λt = 1000
and use a keep-probability of p = 0.75 for dropout masks.

Figure 4. Qualitative examples of the proposed DOG on Diffu-
sionPen when replicating unseen styles from the GNHK dataset.

4.2. Qualitative Results
We present qualitative examples in different scenarios
showcasing the effect of our proposed method, focusing on
aspects such as content robustness, style replication, and
variability, while comparing with other guidance strategies.

Content and Style Robustness. DOG appears to stabilize
the generation and produce more accurate text in both seen
and unseen style cases. Fig. 2 showcases the effect of DOG
on both DiffusionPen [33] and One-DM [8] when gener-
ating Out-of-Vocabulary (OOV) words using seen writer
styles of the IAM database. Furthermore, Figs. 1 and 4
show how the adaptation of DOG on DiffusionPen for the
GNHK dataset [23] fixes hard cases of unseen styles while
preserving the intended style. It is clearly observed that
DOG enhances the quality of the generation by consistently
improving the content of the generated words while keep-
ing the style characteristics close to the initial generation.



Notably, DOG is model-agnostic, yielding similar content
improvements when applied to both DiffusionPen [33] and
One-DM [8].

To properly assess our method, we also compare it
against the alternative guidance strategies CFG [17] and the
recently introduced APG [42]. Fig. 3 shows comparative
qualitative examples of DiffusionPen in its original form,
i.e., without any guidance, and with the additional guid-
ance strategies. It is clear that all guidance strategies assist
the content preservation. However, our proposed method
is able to generate “cleaner” images with less noisy ar-
tifacts. In addition to preserving content and style, our
method supports substantially higher guidance scale values,
as shown in Fig. 5. This robustness is enabled by the pro-
posed scheduling strategy, which allows for more effective
guidance, even in challenging cases, while reducing sensi-
tivity to the hyperparameter gs. We present further proof of
this property in Sec. 4.3.

Finally, while the existing diffusion HTG models have
the ability to generalize to datasets like IAM [27], in harder
cases, such as GNHK [23], an unseen style might be hard to
reproduce with faithful content. In Fig. 4, we observe that
using DOG, the generation process manages to approach
harder cases of unseen styles during training, while preserv-
ing the content.

Figure 5. Comparison between different guidance strategies as
guidance scale gs increases. We showcase gs values of 2, 5, 10,
20, and 30 (left to right column).

Variability. Diffusion-based HTG models tend to memo-
rize the training set and often struggle to generate variations
of the same words written by a specific writer, especially
when only a single example of this instance exists. This
means that the model has not learned to produce different
instances of a given query word in a specific writer’s style.
This issue becomes evident when comparing DOG’s varia-
tion capabilities with CFG and APG in Fig. 6. DOG consis-
tently generates diverse instances of the same word across
multiple runs, whereas CFG and APG exhibit only limited
visual variation, often producing nearly identical outputs,
even from random noise initialization, where different sam-
pling output is expected.

Figure 6. Comparison between CFG, APG, and the proposed DOG
in terms of variance obtained from multiple samplings with differ-
ent noise initializations.

4.3. Quantitative Results
We evaluate the generated data by including Handwriting
Text Recognition (HTR) experiments using the system pro-
posed in [40], in similar ways as [34]. We mainly focus
on an OOV-generated set of seen writer styles from IAM to
quantify the ability to produce variable styles and preserve
text content. Moreover, we compute commonly used scores
such as HWD [36] and FID [12] on generated IAM test sets
using the guidance strategies. For this section, we proceed
with DiffusionPen as a backbone, as it performs faster gen-
eration than One-DM due to its latent space operation.

Table 1. HTGOOV (CER ↓) for DiffusionPen with various guidance
types and strengths. The lower the better. Bold refers to the best
score per gs value and underlined per guidance strategy.

Guidance

gs none CFG APG DOG (ours)

– 22.8 – – –
2 – 20.1 20.8 18.3
10 – 19.9 20.8 18.1
20 – 39.4 24.0 18.4
30 – 90.8 29.4 18.5

OOV Words. We showcase how DOG improves content
accuracy by creating a small set of ∼ 18.6K OOV words
generated with random seen writer styles from IAM. We
quantify the effect of CFG, APG, and DOG by presenting
HTROOV for the best guidance scale gs for each strategy
in Tab. 1. HTGOOV refers to using an HTR trained on the
real IAM corpus and testing the recognition of the OOV
set, which is a Character Error Rate (CER), hence evaluat-
ing the readability. We can see that DOG achieves better
performance in terms of content accuracy with the lowest
CER in the HTGOOV.

Guidance Scale Range. Our proposed DOG enables
larger values of the base guidance scale gs as shown
in Fig. 5. To quantify that effect and obtain the best scores



Figure 7. Qualitative results of CFG, APG, and our proposed DOG for gs = 20 (left) and gs = 30 (right) in correlation with FID score.

Table 2. HTR performance on the real IAM validation and test sets
when incorporating large-scale generated data with and without
DOG. For DOG, we use gs = 20.

Training
CER ↓

validation test

Real IAM 3.58 4.92

DiffPen [33] 2.43 4.17

+DOG (ours) 2.27 3.99

for every guidance strategy, we present HTGOOV in various
guidance scales in Tab. 1, spanning gs values from 2 to 30.
It is clear that our method gives more robust results as gs in-
creases, while CFG and APG output much more noise and
artifacts, harming the readability.

Handwritten Text Recognition (HTR). To ensure that
the generation using our proposed guidance does not sim-
plify the text, resulting in the high recognition performance
obtained in the HTGOOV results, we incorporate generated
data into the training process of an HTR system [40]. To
this end, we generate a large corpus of ∼376K samples
from IAM training writer styles using DiffusionPen with
and without the DOG guidance. We incorporate the large
generated sets in the training process of the HTR along with
the real data, aiming to boost the performance, and present
the CER on the real validation and test sets of the IAM
database. The results are presented in Tab. 2. In both gen-
erated cases, the performance improves; however, the gen-
erated data produced using our guidance strategy improves
the recognition even more. We should note that to avoid
harming the HTR learning with too noisy data, we filter the
generated data as proposed in [34]. This means that with
our proposed DOG, in one generation pass, we are able to
keep more data that is useful to train an HTR system.

Table 3. HWD, FID, and CER scores of the IAM test set generated
by DiffusionPen using no strategy or CFG, APG, and our proposed
DOG. For all scores, the lower the better. Bold refers to the best
result per score, and underlined refers to the best value of each
score per guidance strategy.

Guidance gs HWD↓ FID↓ CER↓

None – 1.57 12.05 10.2

CFG

2 1.56 12.39 8.7
10 1.55 13.95 9.0
20 1.61 22.16 22.3
30 2.40 134.81 82.1

APG

2 1.57 12.79 8.9
10 1.55 13.57 9.7
20 1.56 16.63 11.6
30 1.62 21.48 16.4

DOG (ours)

2 1.65 22.16 7.8
10 1.65 22.16 7.2
20 1.65 22.49 7.5
30 1.64 20.66 7.5

Generation Scores. We present HWD [36], FID [12], and
CER scores, comparing the IAM test set generation quality
of DiffusionPen, with and without the guidance strategies,
in Tab. 3. While our method clearly improves readability ac-
cording to the CER results, HWD is slightly harmed, which
is expected as the style output might drift due to the guid-
ance. FID is increasing by a value of 10 across all gs values
for our proposed DOG compared to CFG and APG, which
have increased scores for gs > 20. However, if we look
qualitatively at the outputs, it is clear that FID is not ap-
propriate to evaluate the quality of the generation as shown
in Fig. 7. There, we can see that for lower values of FID for
gs = 20, both CFG and APG output noisy samples, while
DOG, which has the worst (highest) FID score, presents the
most stable samples. In the case of gs = 30, we can observe
that CFG outputs completely erroneous samples, which jus-



tifies the exploded FID score it obtains, while APG has a
worse score, still, though, lower than the gs = 20 of DOG
that produces the most “clean” results. This confirms that
FID is not an appropriate score to measure HTG quality.

4.4. Ablation
We perform ablation studies on the key elements of our pro-
posed method: the orthogonal projection and the schedul-
ing strategy. The importance of both components is evident
as shown in Fig. 8. Without the orthogonal projection, the
generation collapses under the influence of high-magnitude
noise, which overwhelms the meaningful style and con-
tent signals. Similarly, removing the scheduling component
leads to noticeably noisier outputs. In this case, we have
used a value of λs and λt equal to 100 to better demonstrate
the effect of the examined components. This issue becomes
increasingly severe at higher gs values, even when orthog-
onal projection is applied.

Figure 8. Ablation on the use of our proposed guidance scheduling
and orthogonal component. The second column represents the full
DOG method. The samples are generated using gs = 2.

Figure 9. Ablation on the possible negative conditions (style and
content) to obtain the negative direction using gs = 25. Second
column corresponds to using the unconditional prediction as the
negative prompt, while the third and fourth column keep the con-
tent and the style, respectively, the same as the positive prompt.

Moreover, we examine the effect of using different neg-
ative conditions, namely style and content, when construct-
ing the negative direction in Eq. (5), as shown in Fig. 9.
We compare several configurations: using only the nega-
tive style or negative content while keeping the other fixed,
and replacing the negative condition entirely with the un-
conditional prediction (second column), keeping the projec-
tion and scheduling components constant across all cases.
The results lead to two key observations. First, while using
the unconditional prediction improves over the original sys-
tem without guidance, it provides less variability and clarity

compared to using negative prompts, even when only one
condition is altered. Second, applying a negative condition
to either the style or content alone appears to be effective,
supporting the flexibility of the proposed method depending
on the target needs of the generation.

Finally, we experiment with early, middle, and late
timestep values of the scheduling peak uT presented in the
triangular scheduling of our proposed DOG. As we can see
in Fig. 10, the early peak value choice of 200 generates
noisy outputs. A possible reason is that in later (cleaner)
steps, the sample has already been formed, hence a high
guidance at that point might create erosions. Looking at the
results, the earlier (noisier) timestep peak we choose for the
scheduling, the more stable results we have, as the guidance
is provided in a step where formation choices are still made,
and hence, our choice of uT = 700.

Figure 10. Ablation on the scheduling peak timestep uT showing
an early (left), middle (middle), and later (right) timestep. The
samples are generated using gs = 30.

5. Conclusion and Future Work
We introduced a simple yet effective sampling strategy for
diffusion-based HTG systems named DOG. Instead of the
unconditional prediction used in traditional CFG, DOG em-
ploys a structured negative prompt and derives an orthog-
onal update that is disentangled from the positive direc-
tion, providing a dual-component condition. We couple
the guidance with a triangular, time-aware schedule and
a scaling component for further robustness. DOG can be
plugged into any off-the-shelf diffusion-based HTG model
without further training and improves the generation with
more faithful content while preserving style variability. We
compare DOG with existing CFG and APG sampling strate-
gies, showcasing superior and more stable generation re-
sults. Through a combination of qualitative and quantitative
results, we also show how problematic the use of FID is in
domains outside of natural images, like HTG. While our
work proves robust in batch sampling, there is still room
for improvement, as each sample may benefit from its own
ideal guidance scale. In general, DOG can serve as a pre-
liminary exploration for future research on guiding the gen-
eration of handwritten words with more robust results, en-
hancing content accuracy while preserving the style.



Acknowledgment

The computations and data handling were enabled by the
Berzelius resource provided by the Knut and Alice Wallen-
berg Foundation at the National Supercomputer Centre at
Linköping University.

References
[1] Eloi Alonso, Bastien Moysset, and Ronaldo Messina. Adver-

sarial Generation of Handwritten Text Images Conditioned
on Sequences. In 2019 International Conference on Doc-
ument Analysis and Recognition (ICDAR), pages 481–486.
IEEE, 2019. 2

[2] Martin Arjovsky and Léon Bottou. Towards Principled
Methods for Training Generative Adversarial Networks.
arXiv preprint arXiv:1701.04862, 2017. 2

[3] Mohammadreza Armandpour, Ali Sadeghian, Huangjie
Zheng, Amir Sadeghian, and Mingyuan Zhou. Re-imagine
the Negative Prompt Algorithm: Transform 2d Diffusion
into 3D, alleviate Janus problem and Beyond. arXiv preprint
arXiv:2304.04968, 2023. 2

[4] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal,
Rao Muhammad Anwer, Fahad Shahbaz Khan, and Mubarak
Shah. Handwriting Transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 1086–1094, 2021. 2

[5] Kai Brandenbusch. Semi-Supervised Adaptation of Diffu-
sion Models for Handwritten Text Generation. arXiv preprint
arXiv:2412.15853, 2024. 2

[6] Silvia Cascianelli, Marcella Cornia, Lorenzo Baraldi, and
Rita Cucchiara. Boosting Modern and Historical Handwrit-
ten Text Recognition with Deformable Convolutions. Inter-
national Journal on Document Analysis and Recognition (IJ-
DAR), 25(3):207–217, 2022. 1

[7] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu,
and Mubarak Shah. Diffusion models in vision: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 45(9):10850–10869, 2023. 2

[8] Gang Dai, Yifan Zhang, Quhui Ke, Qiangya Guo, and
Shuangping Huang. One-DM: One-Shot Diffusion Mim-
icker for Handwritten Text Generation. In European Con-
ference on Computer Vision, pages 410–427. Springer, 2025.
2, 5, 6

[9] Brian L. Davis, Chris Tensmeyer, Brian L. Price, Curtis Wig-
ington, B. Morse, and R. Jain. Text and Style Conditioned
GAN for the Generation of Offline-Handwriting Lines. In
Proceedings of the 31st British Machine Vision Conference
(BMVC), 2020. 2

[10] Moises Diaz, Andrea Mendoza-García, Miguel A Ferrer, and
Robert Sabourin. A survey of handwriting synthesis from
2019 to 2024: A comprehensive review. Pattern Recogni-
tion, page 111357, 2025. 1

[11] Haisong Ding, Bozhi Luan, Dongnan Gui, Kai Chen, and
Qiang Huo. Improving Handwritten OCR with Training
Samples Generated by Glyph Conditional Denoising Diffu-
sion Probabilistic Model. In International Conference on

Document Analysis and Recognition, pages 20–37. Springer,
2023. 2

[12] DC Dowson and BV666017 Landau. The Fréchet distance
between multivariate normal distributions. Journal of Multi-
variate Analysis, 12(3):450–455, 1982. 6, 7

[13] Farzan Farnia and Asuman Ozdaglar. Do GANs always have
Nash equilibria? In International Conference on Machine
Learning, pages 3029–3039. PMLR, 2020. 2

[14] Ji Gan, Weiqiang Wang, Jiaxu Leng, and Xinbo Gao. Hi-
GAN+: Handwriting Imitation GAN with Disentangled Rep-
resentations. ACM Transactions on Graphics (TOG), 42(1):
1–17, 2022. 2

[15] Alex Graves. Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850, 2013. 2

[16] Aniket Gurav, Narayanan C Krishnan, and Sukalpa Chanda.
Word-Diffusion: Diffusion-Based Handwritten Text Word
Image Generation. In International Conference on Pattern
Recognition, pages 53–72. Springer, 2025. 2

[17] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion
Guidance. In NeurIPS 2021 Workshop on Deep Generative
Models and Downstream Applications, 2021. 2, 5, 6

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffu-
sion Probabilistic Models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 2

[19] Sana Khamekhem Jemni, Sourour Ammar, Mohamed Ali
Souibgui, Yousri Kessentini, and Abbas Cheddad. ST-KeyS:
Self-supervised Transformer for Keyword Spotting in His-
torical Handwritten Documents. Pattern Recognition, page
112036, 2025. 1

[20] Lei Kang, Pau Riba, Yaxing Wang, Marçal Rusinol, Ali-
cia Fornés, and Mauricio Villegas. GANwriting: Content-
Conditioned Generation of Styled Handwritten Word Im-
ages. In European Conference on Computer Vision, pages
273–289. Springer, 2020. 2

[21] Lei Kang, Pau Riba, Marcal Rusinol, Alicia Fornés, and
Mauricio Villegas. Content and style aware generation of
text-line images for handwriting recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2021.
2

[22] Lei Kang, Pau Riba, Marçal Rusiñol, Alicia Fornés, and
Mauricio Villegas. Pay attention to what you read: non-
recurrent handwritten text-line recognition. PR, 129:108766,
2022. 1

[23] Alex WC Lee, Jonathan Chung, and Marco Lee. GNHK: A
Dataset for English Handwriting in the Wild. In Document
Analysis and Recognition–ICDAR 2021: 16th International
Conference, Lausanne, Switzerland, September 5–10, 2021,
Proceedings, Part IV 16, pages 399–412. Springer, 2021. 5,
6

[24] Zhouchen Lin and Liang Wan. Style-preserving english
handwriting synthesis. Pattern Recognition, 40(7):2097–
2109, 2007. 2

[25] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and
Joshua B Tenenbaum. Compositional Visual Generation
with Composable Diffusion Models. In European Confer-
ence on Computer Vision, pages 423–439. Springer, 2022.
2



[26] Calvin Luo. Understanding diffusion models: A unified per-
spective. arXiv preprint arXiv:2208.11970, 2022. 3

[27] U-V Marti and Horst Bunke. The IAM-database: an English
sentence database for offline handwriting recognition. Inter-
national Journal on Document Analysis and Recognition, 5:
39–46, 2002. 5, 6

[28] Alexander Mattick, Martin Mayr, Mathias Seuret, Andreas
Maier, and Vincent Christlein. Smartpatch: Improving
Handwritten Word Imitation with Patch Discriminators. In
International Conference on Document Analysis and Recog-
nition, pages 268–283. Springer, 2021. 2

[29] Martin Mayr, Marcel Dreier, Florian Kordon, Mathias
Seuret, Jochen Zöllner, Fei Wu, Andreas Maier, and Vin-
cent Christlein. Zero-Shot Paragraph-level Handwriting Im-
itation with Latent Diffusion Models. International Journal
of Computer Vision, pages 1–22, 2025. 2

[30] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for GANs do actually converge?
In International Conference on Machine Learning, pages
3481–3490. PMLR, 2018. 2

[31] Konstantina Nikolaidou, Mathias Seuret, Hamam Mokayed,
and Marcus Liwicki. A Survey of Historical Document Im-
age Datasets. International Journal on Document Analysis
and Recognition (IJDAR), 25(4):305–338, 2022. 1

[32] Konstantina Nikolaidou, George Retsinas, Vincent
Christlein, Mathias Seuret, Giorgos Sfikas, Elisa Bar-
ney Smith, Hamam Mokayed, and Marcus Liwicki.
WordStylist: Styled Verbatim Handwritten Text Generation
with Latent Diffusion Models. In International Conference
on Document Analysis and Recognition, pages 384–401.
Springer, 2023. 2

[33] Konstantina Nikolaidou, George Retsinas, Giorgos Sfikas,
and Marcus Liwicki. DiffusionPen: Towards Controlling the
Style of Handwritten Text Generation. In European Confer-
ence on Computer Vision, pages 417–434. Springer, 2024. 2,
5, 6, 7

[34] Konstantina Nikolaidou, George Retsinas, Giorgos Sfikas,
and Marcus Liwicki. Rethinking HTG Evaluation: Bridg-
ing Generation and Recognition. In European Conference
on Computer Vision, pages 179–195. Springer, 2024. 6, 7

[35] Vittorio Pippi, Silvia Cascianelli, and Rita Cucchiara. Hand-
written Text Generation from Visual Archetypes. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 22458–22467, 2023. 2

[36] Vittorio Pippi, Fabio Quattrini, Silvia Cascianelli, and Rita
Cucchiara. HWD: A Novel Evaluation Score for Styled
Handwritten Text Generation. In BMVC, 2023. 6, 7

[37] George Retsinas, Georgios Louloudis, Nikolaos Stam-
atopoulos, and Basilis Gatos. Keyword Spotting in Hand-
written Documents Using Projections of Oriented Gradients.
In 2016 12th IAPR Workshop on Document Analysis Systems
(DAS), pages 411–416. IEEE, 2016. 1

[38] George Retsinas, Georgios Louloudis, Nikolaos Stam-
atopoulos, and Basilis Gatos. Efficient Learning-Free Key-
word Spotting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 41(7):1587–1600, 2018. 1

[39] George Retsinas, Giorgos Sfikas, Christophoros Nikou, and
Petros Maragos. From Seq2Seq Recognition to Handwritten
Word Embeddings. In BMVC, 2021. 1

[40] George Retsinas, Giorgos Sfikas, Basilis Gatos, and
Christophoros Nikou. Best practices for a handwritten text
recognition system. In International Workshop on Document
Analysis Systems, pages 247–259. Springer, 2022. 6, 7

[41] George Retsinas, Konstantina Nikolaidou, and Giorgos
Sfikas. Enhancing CRNN HTR Architectures with Trans-
former Blocks. In International Conference on Document
Analysis and Recognition, pages 425–440. Springer, 2024. 1

[42] Seyedmorteza Sadat, Otmar Hilliges, and Romann M Weber.
Eliminating Oversaturation and Artifacts of High Guidance
Scales in Diffusion Models. In The Thirteenth International
Conference on Learning Representations, 2025. 2, 3, 5, 6

[43] Sharon Fogel and Hadar Averbuch-Elor and Sarel Cohen
and Shai Mazor and Roee Litman. ScrabbleGAN: Semi-
Supervised Varying Length Handwritten Text Generation.
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4323–4332, 2020. 2

[44] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, pages 2256–2265. PMLR, 2015.
2, 3

[45] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing Diffusion Implicit Models. In ICLR, 2021. 3

[46] Achint Oommen Thomas, Amalia Rusu, and Venu Govin-
daraju. Synthetic handwritten captchas. Pattern Recognition,
42(12):3365–3373, 2009. 2

[47] Bram Vanherle, Vittorio Pippi, Silvia Cascianelli, Nick
Michiels, Frank Van Reeth, and Rita Cucchiara. VATr++:
Choose Your Words Wisely for Handwritten Text Genera-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 47(2):934–948, 2025. 2

[48] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Process-
ing, 13(4):600–612, 2004. 2

[49] Yuanzhi Zhu, Zhaohai Li, Tianwei Wang, Mengchao He, and
Cong Yao. Conditional Text Image Generation with Diffu-
sion Models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14235–
14245, 2023. 2


	Introduction
	Related work
	Dual Orthogonal Guidance (DOG)
	Preliminaries on Diffusion Models
	Motivation and Synopsis
	Subspace Projection
	Guidance Scale with Scheduling
	Sampling with Dual Orthogonal Guidance

	Experiments
	Experimental Setup
	Qualitative Results
	Quantitative Results
	Ablation

	Conclusion and Future Work

