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Abstract. Quaternionized versions of standard (real-valued) neural net-
work layers have shown to lead to networks that are sparse and as ef-
fective as their real-valued counterparts. In this work, we explore their
usefulness in the context of the Keyword Spotting task. Tests on a col-
lection of manuscripts written in modern Greek show that the proposed
quaternionic ResNet achieves excellent performance using only a small
fraction of the memory footprint of its real-valued counterpart. Code is
available at https://github.com/sfikas/quaternion-resnet-kws.
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1 Introduction

Keyword spotting (KWS) in document images is the go-to application when a
search for a specific word or words and their instances inside a digitized docu-
ment is required, but full recognition of the document may not be the optimal
option. Handwritten Text Recognition (HTR) is in general not a trivial task,
especially when the collection includes many different writing styles, is of bad
digitization quality or is heavily degraded. Furthermore, while learning-based
HTR has had many spectacular successes owing to the use of deep learning,
accurate recognition relies on a well-trained system, which in turn requires a
large and diverse annotated training set. Transferability of a model, i.e. training
for a specific style or styles of handwriting and applying to a different target
is usually not to be considered as granted. For these reasons, KWS is still a
very much viable alternative. Modern KWS methods also rely heavily on deep



2 Sfikas et al.

learning models [21], however in comparison to HTR methods and the training
data requirements, they tend to be less resource-hungry as the task is objectively
simpler.

Since the advent of convolutional neural networks for KWS [23, 20], the liter-
ature on KWS methods largely follows and builds on the developments in deep
learning for signal or vision applications in general. A recent trend is the use of
layers that challenge the status of the two-dimensional canonical grid of input
images and feature maps as an immutable parameter; graph convolutional net-
works operate on word graph inputs, and [35] use a neural network to map word
image graph representations to Pyramidal Histogram of Character (PHOC) de-
scriptions. With respect to a wider application scope, a recent trend in machine
learning is the use of self-attention layers, popularized in the transformer model
[32] initially proposed for a natural langage processing setting. The mechanism of
self-attention aspires to completely replace two other “pillars” of neural networks,
namely fully-connected layers and convolution layers, and indeed has found suc-
cess in a diverse array of application contexts. In computer vision it has quickly
been employed in many different applications [9].

Creating sparse, light-weight neural networks is another important trend [19].
Many different techniques have been proposed in this regard, in an effort to cre-
ate networks that are as efficient as networks that are larger and/or slower. One
such technique is the use of quaternion network layers, which replace standard
(real-valued) inputs, parameters and outputs with quaternion-valued compo-
nents [1, 38]. Quaternions form an algebra of intrinsically four-dimensional ob-
jects, equipped with its special version of the multiplication operation. Except a
very well-known application in representing rotations in space, quaternion alge-
bra has found uses in digital image processing and vision [3, 10, 26]. Starting in
the 90s, a parallel line of research has given formulations that described neural
networks with non-real values for inputs, features and layers [13, 1, 14, 11]. Com-
plex and hypercomplex neural networks have been rediscovered recently, with
applications that further extended the scope of the first formulations. Following
the deep learning “revolution” of the latter half of the 2010s, deep complex neural
networks have been proposed in 2017 [31], and they were very soon to be followed
by papers on quaternion neural networks [38, 6, 16], published almost simultane-
ously. These works covered quaternion versions for dense, convolution and recur-
rent layers. Later works [15] have explored quaternion versions of other layers,
models and diverse applications (e.g. Generative Adversarial Networks [25] or
CNN-RNN networks for speech recognition [16]). Also, theoretical extensions of
the quaternionic layer were considered, which included exploring higher hyper-
complex dimensions [2] or parameterizing a generic hypercomplex operation [36,
30].

In the current work, we propose employing quaternion layers combined with a
ResNet architecture, in order to create a light-weight KWS system. In a nutshell,
compared to related prior work, our contribution with this paper is:

– the introduction of a Quaternionic version of the ResNet block, and the
Quaternionic ResNet as a network that is comprised of this type of blocks.
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– testing the proposed model for the problem of KWS, and showing that it can
be as effective as its real-valued counterpart. The important advantage here
(present also in quaternion networks in general) is that the network requires
only one quarter of the parameters of a real-valued model that uses the same
architecture (same number of layers, and Quaternionic layer blocks in place
of standard layer blocks).

The remainder of this paper is structured as follows. In Section 2 we present
elementary notions concerning the algebra of quaternions, and discuss how it
is applied to create quaternionic variants of neural networks. We explain why
quaternionic layers inherently lead to lightweight / “less-costly” networks in
Section 3. In Section 4 we review the proposed quaternionic network for key-
word spotting. Section 5 numerically confirms our approach compared to non-
quaternionic architectures. We close the paper with Section 6 where we draw
our conclusions and discuss future work.

2 Quaternions in Neural Networks

2.1 Elementary notions

Quaternions have been introduced in the 19th century by Hamilton [34]. It was
presented as a special kind of algebra over quadruples of real numbers, after
having being realized that a triplet-based algebraic structure would necessarily
be inherently constrained in term of its properties. The definition of a quaternion
is:

q = α+ βi + γj + δk, (1)

where α, β, γ, δ are real numbers and i, j,k are imaginary units. This definition is
reminiscent of the definition of complex numbers, and indeed one may interpret
quaternions H as a generalization of C. The important difference is that while
we have a single “real” part (α) in both C and H, in quaternions we have three
independent imaginary parts (β, γ, δ) and an equal number of imaginary units /
axes (i, j,k). This relation is made more evident with the Cayley-Dickson form
of quaternions:

q = χ+ ψj, (2)

where now χ and ψ are complex coefficients, χ = α + βi, ψ = γ + δi. The form
eq. 2 is equivalent to eq. 1. One may arrive from one to the other after considering
the following multiplication rule for imaginary units:

i2 = j2 = k2 = ijk = −1,

ij = −ji = k, jk = −kj = i,ki = −ik = j. (3)

As illustrated in eq. 3, multiplication for quaternions is not commutative, and for
imaginary units in particular, changing the order of multiplications leads to the
opposite of the initial result. In general, we can write that pq 6= qp for p, q ∈ H.
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Fig. 1. Sample pages from the two datasets used in this work, “Memoirs” (top row)
and “PIOP-DAS” (bottom row).

Addition is defined simply by adding up respective coefficients, and retains
the “usual” properties with no big surprises (commutative law, associative law,
and the distributive property combined with the aforementioned multiplication
rule). These considerations lead to the following multiplication rule:

pq =(αpαq − βpβq − γpγq − δpδq)+

(αpβq + βpαq + γpδq − δpγq)i+

(αpγq − βpδq + γpαq + δpβq)j+

(αpδq + βpγq − γpβq + δpαq)k, (4)
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Fig. 2. Word image samples from the “PIOP-DAS” dataset.

where p = αp +βpi+ γpj + δpk and q = αq +βqi+ γqj + δqk. This rule can also
be shorthanded as:

pq = S(p)S(q)− V (p) · V (q) + S(p)V (q) + S(q)V (p) + V (p)× V (q), (5)

where · and × denote the dot and cross product respectively, S(·) is the “scalar”
part of the quaternion and V (·) is the “vector” part of the quaternion (i.e. S(p) =
α ∈ R and V (p) = [β γ δ]T ∈ R3).

Other useful relations include the definition of a quaternion conjugate, and
a quaternion magnitude. These are defined as follows:

q̄ = α− βi− γj − δk, (6)

and
|q| =

√
qq̄ =

√
q̄q =

√
α2 + β2 + γ2 + δ2. (7)

Again, analogies to complex numbers can be straightforwardly drawn, consider-
ing γ = 0, δ = 0 to obtain the well-known relations for complex numbers. Finally,
we note that matrix calculus can be extended to matrices with quaternionic el-
ements, Hm×n [37].

2.2 Quaternionized versions of standard NN layers

Quaternion Neural Networks (QNNs) are defined as neural networks that have
quaternion-valued inputs, outputs and parameters. In order to deal with provid-
ing quaternion-valued inputs where real-valued scalars and matrices are avail-
able, the respective structures are padded with zero channel values when the
dimensionality of the input is d < 4. In the present use-case, grayscale images
are inherently one-dimensional -valued in each pixel, and colour images would
be three-dimensional -valued, accounting for the Red, Green and Blue channels
(using a different colorspace would lead to an analogous consideration). Hence
in particular, a scalar value a is mapped to quaternion a + 0i + 0j + k, and a
colour value [r, g, b]T is mapped to quaternion 0 + ri + gj + bk by convention.
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Fig. 3. Word image samples from the “Memoirs” dataset.

Dense layer. A QNN comprises a cascade of layers as is the case with real-
valued neural networks. The dense or fully-connected layer for quaternions can
be written as

fdense(x;W,h) = Wx+ h

where x ∈ HN is a quaternion-valued input vector,WM×N is a quaternion-valued
matrix of weights and h ∈ HN denotes a quaternion-valued bias term. We assume
that the input is of dimensionality equal to N , and the output dimensionality is
equal to M .

Convolution layer. Regarding convolution, we must note that a number of
different options here are possible regarding the exact form of the convolution
operation. In particular for two-dimensional convolution, which is of interest
in an image processing network, there is a left-sided convolution, a right-sided
convolution, and also a two-sided convolution (or “bi-convolution”) [4], with the
difference being in whether the convolution kernel multiplies the signal from the
left or the right. The two-sided option corresponds to the case where an hori-
zontal kernel multiplies the signal from the left, and a vertical kernel multiplies
the signal from the right. In this work, we choose to use the left-multiplying
convention, so formally we have:

fconv(m;K) = K ∗m,

where m ∈ HM×N is the input feature map, and K ∈ Hd×d is the convolution
kernel.

Activation functions. We use “split - activation” functions to handle non-
linearities in the quaternion domain, which means that each quaternion channel
is treated by the activation function separately, as if it were part of a tensor
valued in R4. For our architecture, we use split-activation versions of standard
real-valued functions (Rectified Linear Unit, the leaky Rectified Linear Unit,
sigmoid). The same rationale is followed for other network components: the
dropout layer and the batch normalization layer are applied as if a quaternionic
tensor H ×W ×D were its real isomorphic image H ×W × 4D.
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3 Why are Quaternionic Layers less costly?

The main motivation behind using a quaternionic network for a given task is that
quaternionic layers are inherently less costly than corresponding standard (real-
valued) layers (And more importantly, without significant sacrifices in terms of
performance). “Cost” here is to be understood in terms of total required in-
dependent parameters. The reason for this useful trait is that the definition of
quaternionic layers comes with extensive parameter sharing. This is due to i) the
definition of quaternionic (“Hamilton”) multiplication itself, and ii) that every
four real-valued tensor channels are grouped together and mapped to quater-
nion real/imaginary components. For example, an input color image, comprising
of 3 channels plus 1 zero-padded channel would be mapped as a single-channel
quaternionic 2D signal.

Let us illustrate this with a simple example. Assume a real-valued linear layer,
without bias or activation, that transforms an input comprised of 4 neurons to
an output of 4 neurons. In other words, an input x ∈ R4 is mapped to an output
y ∈ R4, and the operation can be written as the matrix-vector multiplication:

y1
y2
y3
y4

 =


α β γ δ
ε ζ η θ
ι κ λ µ
ν ξ o π



x1
x2
x3
x4

 , (8)

where greek letters α, β, · · · , π denote the 4× 4 = 16 operation parameters. As-
suming that we want to define a quaternionic linear layer on the same input and
a same-sized output, the input and output vectors would be mapped to a sin-
gle quaternion each; we shall again denote these quaternions using the notation
x1, x2, x3, x4 and y1, y2, y3, y4, where components 1 − 4 correspond to the real
and the the three imaginary quaternion components. As our input and output,
under these terms, is a single quaternion and a single quaternion respectively, a
quaternionic linear layer is composed of a single multiplication operation. This
operation can be written as:

y1
y2
y3
y4

 =


α −β −γ −δ
β α −δ γ
γ δ α −β
δ −γ β α



x1
x2
x3
x4

 , (9)

where we have re-written eq. 4 as a matrix-vector multiplication and changed
notation accordingly. The parameters of the operation are again 16 as in eq. 8,
but they are grouped into 4 groups of 4, or in other words we have 4 independent
parameters.

This paradigm is extended to cover any-size inputs and outputs, as long as
they are multiples of 4. If they are not multiples of 4, they can easily be padded
using zero-valued channels to the next closest multiple of 4 (The network will
easily learn to ignore the paddings, hence there is no real overhead involved).
Alternatively, an operation such as 1 × 1 convolution can be used to map a
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real-valued input to the desired channel multiple [30]. In general, an operation
that is written as y = Wx, where y ∈ R4K , x ∈ R4L and W ∈ R4K×4L is
thus mapped to a quaternionic operation ŷ = Ŵ x̂, where ŷ ∈ HK , x̂ ∈ HL and
Ŵ ∈ HK×L. Parameter vector Ŵ only contains 4×K×L parameters compared
to 4× 4×K × L of W , hence we have a 4× saving.

The above considerations hold for any operation, as long as it can be written
as a linear transformation, or a composition that includes linear transformations.
Hence, not only linear layers can be quaternionized, but convolutions [38, 8] and
deconvolutions [30], or resnet blocks as in the current work.

4 Proposed Model

The proposed model is structured as a feed-forward convolutional network, ac-
cepting a batch of word images as input, and processing them into a batch of
fixed-size PHOC descriptor targets [24]. The input is set to the real part of the
quaternion input map, and imaginary components are set to zero.

In our architecture, we group QNN processing layers in ResNet blocks. Each
block groups a cascade of quaternion convolutions, structured as follows: We
assume that a feature map x is the input of the block. A quaternion convolution
of stride equal to 1 and kernel size equal to 3× 3 is followed by a batch normal-
ization layer and a ReLU activation. The result of this step is convolved by a
second quaternion convolution with the same operation characteristics, followed
by a second batch normalization layer. The output φ(x) is connected with the
input x via a skip connection and followed by a final ReLU activation, so the
block output can be written formally as ReLU(φ(x) + x).

On a high level, the network is composed as a sequence of a convolutional
backbone, followed by a pooling and flattening layer, which in turn is topped by
a fully-connected head. The backbone is made up of 7 ResNet blocks. These are
parametrized, in terms of the number of input and output channels respectively,
as follows: (1, 16), (16, 32), (32, 64), (64, 64), (64, 64), (64, 128), (128, 32), where
the nth tuple is equal to (#input channels, #output channels). Pooling is per-
formed using pyramidal spatial pooling with 3 layers and an output size of 2, 688.
Then, two quaternionic dense layers follow, mapping first to 256 neurons before
passing to a dropout layer and the output logits. The logits are transformed into
per-attribute (unigrams, bigrams) probabilities with a split-activation sigmoid
function. The quantity to be optimized by the network is a binary cross-entropy
(BCE) loss function, measuring divergence of the attribute estimate probabilities
against the true PHOC values.

5 Experiments

5.1 Datasets

For our experiments, we have used two different collections of handwritten pages.
The manuscripts are written in the modern greek language. The very few non-
greek words which exist in the set have been manually removed for the tests,
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Table 1. Model size comparison, in terms of total number of trainable parameters. For
the quaternionic variants, the equivalent number of real-valued parameters is reported,
to ease comparisons.

Model / Network type “Small” size “Standard” size
Quaternionic Resnet 1, 317, 428 5, 946, 164

Real-valued Resnet 5, 233, 840 23, 730, 864

as training would be too difficult for them due to their small sample size. Both
datasets have been manually segmented into a number of word images, which we
use as queries and retrieval targets for our Query-by-Example keyword spotting
trials. Also, both datasets use the polytonic Greek script [24]. However, for the
PIOP-DAS dataset we have only monotonic annotations, meaning that only
the “acute” accent and the “diairesis” are used, and the actually existing text
diacritics are either represented by an acute accent (this is the case for the grave
accent and the circumflex) or not mapped at all (this is the case for the smooth
and rough breatings, subscript). Samples of the pages contained in the set are
shown in Figure 1.

PIOP-DAS dataset. The PIOP-DAS dataset consists of 22 manuscripts, that
were scanned from the archives of the Greek “Πειραϊκή-Πατραϊκή” (“Peiraiki-
Patraiki”) bank. The documents record 4 sessions of the bank governing commi-
tee, held between December 1971-April 1972. The manuscript digitizations have
been segmented into a total of 12, 362 words. 80% of the dataset was assigned
as the training set, and the rest is used as the test set. In absolute figures, 9, 341
words and 3, 021 words are assigned to the training and test set respectively.
We use as queries all words in the test set, except those that appear only once.
Examples of segmented words from this set are shown in Figure 2. The dataset
is publicly available at https://github.com/sfikas/piop-das-dataset.

Memoirs dataset. The Memoirs dataset [5, 7] comprises 46 manuscripts, writ-
ten in the late 19th century in the form of a personal diary. The text is written by
a single author, Sophia Trikoupi, who was the sister of the Greek prime minister
Charilaos Trikoupis. A total of 4, 941 is available in this dataset. We use the
training and test partitions defined in [24], which comprise 2, 000 words each.
There are 941 remaining words that correspond to the validation set, which we
do not use in this work. To select queries, we “initially” use the words selected in
[5]. [5] uses a learning-free KWS baseline, so this query list is trimmed down sub-
sequently here as some words do not exist in the test set. Examples of segmented
words from this set are shown in Figure 3. The dataset is publicly available at
https://github.com/sfikas/sophia-trikoupi-handwritten-dataset/.
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5.2 Hyperparameters and other training considerations

Concerning the encoding of the Greek script into unigram descriptor bins, we
choose to use separate bins for unaccented and accented characters, following
[24] (for example, ω and ώ are treated as different letters. A shared bin is used
for upper-case and lower-case versions of the same letter. We set the learning
rate to 10−3, and the batch size to 40. All images are resized to 32× 128 pixels
and cast as grayscale images before entering the network, either for training or
inference. We use the Adam optimizer with weight decay set to 5× 10−5, and a
cosine annealing scheduler with restarts every 300 epochs, for a maximum of 900
epochs of training. Data augmentation is employed during training, applying a
small affine transform on each drawn training sample [22].

5.3 Results

We have run trials testing the proposed Quaternionic model against models that
differ in terms of the domain of their structural components (layers, parame-
ters, inputs and outputs) and in terms of their size. With regard to the size of
the models, we name the two sizes “standard” and “small”. The “standard” model
corresponds exactly to the architecture presented in section 4. The “small” model
comprises only 3 resnet blocks, instead of 7 blocks for the “standard” model. Ex-
periments were run over both datasets PIOP-DAS and Memoirs. Model training
results may be examined in figures 4, 5 and table 2. We report loss and accuracy
in terms of the progression of model training, as well as the best accuracy figures
by the end of training and best attained overall. We show training and test loss,
both computed as a binary cross-entropy average over data on the training and
test sets respectively. Over the same plots, model accuracy is measured in terms
of mean average precision (MAP).

We can see that in all cases the quaternion-valued and the real-valued models,
regardless of size fare equally well, with almost excellent results. In one case
–in particular, Memoirs/“small” network – the quaternionic network achieves
better accuracy figures that its real counterpart. We believe however that the
most important trait of the quaternionic models is related to the size of the
respective architectures, as reported in table 1. Therein, we see that quaternionic
models enjoy a much smaller size in terms of number of trainable parameters (see
discussion in Section 3 for a theoretical justification of this result). The eventual
gain is an operation of significantly lower complexity.

6 Conclusion and Future work

With this work we have introduced a novel Quaternionic ResNet block and val-
idated the value of using Quaternionized versions of standard (i.e., real-valued)
layers in the context of the document keyword spotting task. We have used a
PHOC-based architecture as our baseline, and extended it to a Quaternion Neu-
ral Network. Our results show that the proposed QNN has achieved excellent
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Fig. 4. Results for the “PIOP-DAS” dataset: The top (bottom) plot shows results
for the “standard” (“small”) network. Training set BCE loss, test set BCE loss and
MAP are shown using red, blue and green colors respectively. Solid lines correspond
to the proposed Quaternionic models. Dashed lines correspond to real-valued networks
with the same architecture as the proposed networks, but using standard real-valued
components in place of the quaternionic ones. The horizontal axis corresponds to the
number of training epochs. The vertical axis corresponds to loss value (shown on the
left, lower is better) and map accuracy percentage (shown on the right, higher is better).
The plots were smoothed with a uniform kernel of size 10 to ease visualization.
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Fig. 5. Results for the “Memoirs” dataset: The top (bottom) plot shows results for the
“large” (“small”) network. Training set BCE loss, test set BCE loss and MAP are shown
using red, blue and green colors respectively. Solid lines correspond to the proposed
Quaternionic models. Dashed lines correspond to real-valued networks with the same
architecture as the proposed networks, but using standard real-valued components
in place of the quaternionic ones. The horizontal axis corresponds to the number of
training epochs. The vertical axis corresponds to loss value (shown on the left, lower is
better) and map accuracy percentage (shown on the right, higher is better). The plots
were smoothed with a uniform kernel of size 10 to ease visualization.
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Table 2. Model accuracy in terms of mean average precision (higher is better). Results
correspond to the end of training and best figure reported over all epochs.

MAP% Memoirs PIOP-DAS
Last epoch Best epoch Last epoch Best epoch

Quaternion / Standard 96.1% 98.6% 92.9% 94.3%

Real / Standard 89.3% 98.6% 93.3% 94.6%

Quaternion / Small 90.2% 94.6% 90.3% 92.8%

Real / Small 86.3 94.5% 90.0% 92.2%

retrieval performance while being much less resource-demanding compared to
non-quaternionic networks, in terms of model size. Concerning the new PIOP
dataset, we plan to publish a much extended version of the dataset, along with
richer annotation meta-data, in the near future. Regarding future work, we plan
to continue with more extensive experiments, which may include the newer de-
velopments in the field of applications of hypercomplex layers in neural networks
[36]. Other considerations include working with more complex network architec-
tures [17, 35, 33] or combining with a probabilistic, Bayesian paradigm using a
more “classic” [28, 27, 18, 29] or a more modern formulation [12].

With respect to new research directions, perhaps an interesting question
would be why are quaternion networks (and in general, hypercomplex networks)
so effective. We believe that a factor here is the ease of “navigation” on a much
more compact parameter space during learning; there may however exist other,
more important factors that are related to this (unreasonable?) effectiveness.
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