
Best Practices for a Handwritten Text
Recognition System

George Retsinas1, Giorgos Sfikas2,3,4, Basilis Gatos2, and Christophoros Nikou3

1 School of Electrical and Computer Engineering
National Technical University of Athens, Greece

2 Computational Intelligence Laboratory
Institute of Informatics and Telecommunications, National Center for Scientific

Research “Demokritos”, Greece
3 Department of Computer Science and Engineering

University of Ioannina, Greece
4 Department of Surveying and Geoinformatics Engineering

University of West Attica, Greece
gsfikas@uniwa.gr, gretsinas@central.ntua.gr, cnikou@cse.uoi.gr,

bgat@iit.demokritos.gr

Abstract. Handwritten text recognition has been developed rapidly in
the recent years, following the rise of deep learning and its applications.
Though deep learning methods provide notable boost in performance
concerning text recognition, non-trivial deviation in performance can be
detected even when small pre-processing or architectural/optimization
elements are changed. This work follows a “best practice” rationale;
highlight simple yet effective empirical practices that can further help
training and provide well-performing handwritten text recognition sys-
tems. Specifically, we considered three basic aspects of a deep HTR sys-
tem and we proposed simple yet effective solutions: 1) retain the aspect
ratio of the images in the preprocessing step, 2) use max-pooling for con-
verting the 3D feature map of CNN output into a sequence of features
and 3) assist the training procedure via an additional CTC loss which
acts as a shortcut on the max-pooled sequential features. Using these
proposed simple modifications, one can attain close to state-of-the-art
results, while considering a basic convolutional-recurrent (CNN+LSTM)
architecture, for both IAM and RIMES datasets. Code is available at
https://github.com/georgeretsi/HTR-best-practices/.

Keywords: Handwritten Text Recognition, Convolution - Recurrent
Neural Network, Best Practices

1 Introduction

Handwritten Text Recognition (HTR) is an active area of research, combining
ideas from both computer vision and natural language processing. Unlike recog-
nition of machine-printed text, handwriting is related to a number of unique
characteristics that make the task much more challenging than traditional optical

2 Retsinas et al.

character recognition (OCR). The challenging nature of handwriting recognition
stems mostly from the potentially high writing variability between individuals.
To this end, along with visually decoding an image into sequence of characters,
several HTR works adopt language models to reduce this innate ambiguity of
handwritten characters, making use of contextual and semantic information.

In general, designing an effective and generalizable learning system is a ongo-
ing challenge, with transferability between different learned writing styles more
being not a given in most cases [22]. Neural Networks (NNs), among a variety
of other learning systems, have been used for the recognition of handwriting
from early on, with a span ranging between simpler subtasks such as single digit
recognition [1] up to full, unconstrained offline HTR [7,21]. Following the rise of
deep learning and its applications, recent developments in HTR are monopolized
by Deep Neural Networks (DNNs). The seminal work of Graves et al. [9] played
a pivotal role in the rise of deep learning for HTR applications by enabling the
training of recurrent nets without assuming any prior character segmentation.
A plethora of subsequent works for HTR relied on Graves et al. in order to train
modern and notably effective DNNs [14,16,21,24].

This work focuses on finding best practices for building modern HTR sys-
tems. We explore a set of guidelines for training HTR DNNs, re-examining and
extending ideas from several previous works of ours [23–25]. We start with a fairly
common deep network architecture for HTR, consisting of a CNN backbone and
a BiLSTM head, and we make simple yet effective architectural and training
choices. These best practice suggestions can be categorized and summarized as
follows:

1. pre-processing: retain aspect ratio of images and use batches of padded
images in order to effectively use mini-batch Stochastic Gradient Descent
(SGD)

2. architectural: replace the the column-wise concatenation step between the
CNN backbone and the recurrent head with a max-pooling step. Such a
choice not only reduces the required parameters but has an intuitive moti-
vation: we care only about the existence of a character and not its vertical
position.

3. training: add an extra shortcut branch, consisting of a single 1D convolution
layer, at the output of the CNN backbone. This branch results to an extra
character sequence estimation, trained in parallel to the recurrent branch.
Both branches use a CTC loss. The motivation behind such a choice comes
from the increased difficulty of training recurrent layers. However, if such
a straightforward shortcut exists, the output of the CNN backbone should
converge to more discriminative features, ideal for fully harnessing the power
of recurrent layers compared to an end-to-end training scheme.

The contribution of this paper is best highlighted through the experimen-
tal section, where we achieve state-of-the-art results with the aforementioned
choices, despite the simplicity of the employed network. Furthermore, other
state-of-the-art existing methods propose complex architectures and augmenta-

Best Practices for a Handwritten Text Recognition System 3

tion schemes which are orthogonal to our approach, highlighting the importance
of the suggested best practices.

2 Related Work

As is the case with most, if not all, tasks in computer vision, modern HTR litera-
ture is dominated by neural network-based methods. Recurrent neural networks
have become the baseline [15, 21], as they naturally fit to the sequential nature
of handwriting.

Recurrent-based approaches have thus practically overshadowed the previous
state-of-the-art, which was based mostly on Hidden Markov Model (HMM)-
based approaches. Since the introduction of the standard recurrent network
paradigm [6,7], many key advances have emerged paving the way for very efficient
HTR systems. A characteristic example is the integration of the Long Short-
Term Memory models (LSTMs) into HTR systems [10], that effectively dealt
with the vanishing gradient problem. More importantly, Graves et al. [9] intro-
duced a very effective algorithm algorithm for training such HTR systems with
sequence-based loss using dynamic programming. Specifically, this Connection-
ist Temporal Classification (CTC) method and corresponding output layer [8],
a differentiable output layer that maps a sequential input into per-time unit
softmax outputs, allows simultaneous sequence alignment and recognition with
a suitable decoding scheme. Multi-dimensional recurrent networks have been
considered for HTR [15], however there has been criticism that the extra com-
putational overhead may not translate to an analogous increase in efficiency [21].

Even though in this work we will focus only on greedy decoding of a CTC-
trained network, research on decoding schemes is also active [4], with the beam
search algorithm being a popular approach, capable of exploiting an external
lexicon as an implicit language model.

Sequence-to-Sequence approaches, involving translating an input sequence
to an output sequence of a different length in general, became very popular
when achieved state-of-the-art results in Natural Language Processing and grad-
ually evolved to Transformer networks with attention mechanisms [29]. Such ap-
proaches were later adopted successfully by the HTR community [3,19,25,27,30].

Recent research directions include complex augmentation schemes ([14, 16,
31]), novel network architectures/modules (e.g. Seq2Seq/Transformers, Spatial
Transformer Networks [5], deformable convolutions [24]) and multi-task losses
with auxiliary training feeds (e.g. n-gram training [28]).

3 Proposed HTR System

In what follows, we will describe in detail the proposed HTR system with em-
phasis given on the suggested best practice modifications. The described system
takes as input either a word or a line image and then returns the predicted
sequence of characters based on an unconstrained greedy CTC decoding algo-
rithm [8].

4 Retsinas et al.

3.1 Preprocessing

The pre-processing steps, applied to every image, are:

1. All images are resized to a resolution of 128 × 1024 pixels for line images or
64 × 256 pixels. Initial images are padded (using the image median value,
usually zero) in order to attain the aforementioned fixed size. If the initial
image is greater than the predefined size, the image is rescaled. The padding
option aims to preserve the existing aspect ratio of the text images.

2. During training, image augmentation is performed. A simple global affine
augmentation is applied at every image, considering only rotation and skew
of small magnitude in order to generate valid images. Additionally, gaussian
noise is added to the images.

3. Each word/line transcription has spaces added before and after, i.e. ”He
rose from” is changed to ” He rose from ”. This operation aims to assist
the system to adapt to the marginal spaces that exist in the majority of
the images during the training phase. For the testing phase, these additional
spaces are discarded.

Augmentation operations are part of every modern deep learning system
and can consistently provide increased performance, allowing better generaliza-
tion [21]. The used augmentation scheme is very basic, trying to have minimal
overhead from this step.

The addition of extra spaces in the transcription is not explicitly referred to
recent existing works, but it is intuitive given the pad operation of step 1 which
creates large empty margins. It has a minor yet positive impact to our system
and thus is added as a step. Due to the reduced significance of this step in the
overall performance, it is not explored in the experimental section.

On the other hand, we found the padding operation critical in many set-
tings. A typical trade-off, met in many recent text recognition/spotting works,
concerns the definition of the input size: using a predefined fixed size can assist
the architectural design of CNNs and training time requirements, while retaining
the initial image size by processing individually each image (e.g. [26]) may lead
to better performance at the cost of discarding the mini-batch option.

Modern DNN training relies on creating batches of several images, since batch
manipulation of images can notably affect the training time by fully utilizing
the GPU resources. Thus image resizing is a widely-used first step for any vision
problem when DNNs are involved. On the contrary, when using different sized
images by processing each image individually and update the network’s weights
after a predefined number of images, as if a batch was processed, leads to an
impractical time-consuming training procedure to otherwise lightweight DNNs,
where the existing hardware is under-utilized.

In this work, contrary to the majority of existing approaches, we propose a
simple, yet elegant, solution: we aim to retain the aspect ratio of the images
and simultaneously organize them into batches. The images are transformed
into the same, predefined, shape without resizing, if possible. Specifically, if the
image size is smaller than the predefined size, we pad the image accordingly. The

Best Practices for a Handwritten Text Recognition System 5

padding operation is performed equally at each direction, positioning the initial
image at the center of the new one, with a fixed value, the median value of the
initial image. If the image is larger than the predefined size, it is resized,affecting
the aspect ratio. To assist the proposed approach, we can compute the average
height and width over the whole set of the initial images and select an appropriate
size in order to perform the aforementioned resize operation scarcely (only for
very large words/sentences) and thus avoid deformations that are generated by
frequently violating the aspect ratio.

𝐶𝑜𝑙𝑢𝑚𝑛 𝑀𝑎𝑥𝑃𝑜𝑜𝑙

BiLSTM, 256

MaxPool, 2 × 2

𝑐𝑜𝑛𝑣 7 × 7, 32

𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 3 × 3, 642 ×

𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 3 × 3, 1284 ×

𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 3 × 3, 2564 ×

MaxPool, 2 × 2

MaxPool, 2 × 2

3 ×

input image: 128 × 1024

3D feature map: 16 × 128 × 256

feature sequence: 128 × 256

𝐿𝑖𝑛𝑒𝑎𝑟, n_classes

𝑐𝑜𝑛𝑣 3, n_classes1 ×

CTC Shortcut

128

16

256

128
256

character predictions: 128 × n_classes

CNN Backbone

Recurrent Head

𝐶𝑜𝑙𝑢𝑚𝑛 𝑀𝑎𝑥𝑃𝑜𝑜𝑙

Fig. 1. Overview of the DNN architecture. Apart from the CNN backbone, the re-
current head, we also depict the auxiliary CTC shortcut branch which will be the
core component of the proposed training modification. Furthermore, we visualize the
column-wise max-pooling operation that is performed between the CNN backbone and
the recurrent head.

3.2 Network Architecture

The model that we will use to test the proposed technique can be characterized
as a convolutional-recurrent architecture (an architecture overview is depicted in
Figure 1). The convolutional-recurrent architecture can be broadly defined as a

6 Retsinas et al.

convolutional backbone being followed by a recurrent head, typically connected
to a CTC loss. Convolutional-recurrent variants have given routinely very good
results for HTR [5,21].

Convolutional Backbone: In our model, the convolutional backbone is made
up of standard convolutional layers and ResNet blocks [12], interspersed with
max-pooling and dropout layers. In particular, the first layer is a 7× 7 convolu-
tion with 32 output channels, followed by cascades of 3 × 3 ResNet blocks [12]:
a series of 2 ResNet blocks with 64 output channels, 4 ResNet blocks with 128
output channels and 4 ResNet blocks with 256 output channels. The standard
convolution and the ResNet blocks are all followed by ReLU activations, Batch
Normalization and dropout. Between cascades of blocks we downscale the pro-
duced feature map with 2 × 2 max-pooling operations of stride 2, as shown in
Figure 1. Overall, the convolutional backbone accepts a line image and outputs
a tensor of size h×w× d (e.g. assuming the line image case, the tensor is of size
16 × 128 × 256).

Flattening Operation: The convolutional backbone output should be trans-
formed into a sequence of features in order to processed by recurrent networks.
Typical HTR approaches, assume a column-wise approach (towards the writ-
ing direction) to ideally simulate a character by character processing. In our
work, the CNN output is flattened by a max-pooling operation in a column-wise
manner. Flattening of the extracted feature maps by the widely-used concate-
nation operation would result into a sequence of length w with feature vectors
of size hd, while max-pooling results to reduced feature vectors of size d. Apart
from the apparent computational advantage, column-wise max-pooling achieves
model translation invariance in the vertical direction. In fact, the reasoning be-
hind max-pooling is that we care only about the existence of features related
to a character and not their spatial position. This has been the major moti-
vation for column-wise max-pooling, as successfully employed in our previous
works [24,25,28].

Recurrent Head: The recurrent component consists of 3 stacked Bidirectional
Long Short-Term Memory (BiLSTM) units of hidden size 256. These are followed
by a linear projection layer, which converts the sequence to a size equal to the
number of possible character tokens, nclasses (including the blank character,
required by CTC). The final output of the recurrent part can be translated into
a sequence of probability distributions by applying a softmax operation. During
evaluation, the aforementioned greedy decoding is performed by selecting the
character with the highest probability at each step and then removing the blank
characters from the resulting sequence [8].

Best Practices for a Handwritten Text Recognition System 7

3.3 Training Scheme

The training of the HTR system is performed via an Adam [13] optimizer using
an initial learning rate of 0.001 which gradually decreases using a multistep
scheduler. The overall training epochs are 240 and the scheduler decreases the
learning rate by a factor of 0.1 at 120 and 180 epochs.

This optimizing scheme, with minor modifications, is commonly used for
HTR systems. Nonetheless, we assume an end-to-end training approach where
both the convolutional and the recurrent parts of the system are optimized
through the final CTC loss. Even though this typical approach produces well-
performing solutions, the LSTM head may encumbers the overall training pro-
cedure, since recurrent modules are known to exhibit convergence difficulties.

To circumvent this training hindrance, we introduce an auxiliary branch as
shown in Figure 1. We dub this extra module as a “CTC shortcut”. In what
follows, we describe this module and its functionality in detail.

CTC shortcut: Architecture-wise, the CTC shortcut module consists only of
a single 1D convolutional layer, with kernel size 3. Its output channels equal
to the number of the possible character tokens (nclasses). Therefore, the 1D
convolutional layer is responsible for straightforwardly encoding context-wise
information and providing an alternative decoding path. Note that we strive for
simplicity for this auxiliary component, since its aim is to assist the training
of the main branch and thus a shallow convolutional part of only one layer is
ideal for this task. We do not expect from the CTC branch to result to precise
decodings.

The CTC shortcut is trained along with the main architecture using a multi-
task loss by adding the corresponding CTC losses of the two branches with the
appropriate weights. Specifically, if fcnn represents the convolutional backbone,
frec represents the recurrent part and fshortcut represents the proposed shortcut
branch, while I is an input image and s its corresponding transcription, the
multi-task loss is written as:

LCTC(frec(fcnn(I)); s) + 0.1LCTC(fshortcut(fcnn(I)); s) (1)

Since CTC shortcut acts only as an auxiliary training path, it is weighted by 0.1
to reduce its relative contribution to the overall loss.

The motivation behind this extra branch is rather simple: overall conver-
gence is assisted by quickly generating discriminative features at the top of the
CNN backbone through the straightforward 1D convolutional path, simplifying
the training task for the recurrent part. Due to its training-oriented assisting
nature, CTC shortcut is used only during training and omitted during evalua-
tion. Therefore, this proposed shortcut does not introduces any overhead during
inference.

8 Retsinas et al.

4 Experimental Evaluation

Evaluation of the proposed system is performed on two widely used datasets,
IAM [18] and Rimes [11]. The ablation study, considering different settings of
the proposed methodology, is performed on the challenging IAM dataset, con-
sisting of handwritten text from 657 different writers and partitioned into writer-
independent train/validation/test sets (we use the same set partition as in [21]).
All experiments follow the same setting: line-level or word-level recognition us-
ing a lexicon-free unconstrained greedy CTC decoding scheme. Character Error
Rate (CER) and Word Error Rate (WER) metrics are reported in all cases (lower
values are better).

4.1 Ablation Study

First, we explore the impact of the proposed modifications over both the val-
idation and the test set of IAM dataset. Moreover, both line-level recognition
(Table 1) and word-level recognition (Table 2) are considered. Specifically, we in-
vestigate the difference in performance when we: 1) use resized or padded (retain
aspect-ratio case) input images, 2) use concatenation of max-pooling flattening
operation between the convolutional backbone and the recurrent head and 3)
use or not the CTC shortcut during the training process.

Table 1. Line-level recognition results for IAM dataset: Exploring the impact of the
proposed modifications.

Validation Test

Preprocessing Flattening CTC Shortcut CER(%) WER(%) CER(%) WER(%)

resized concatenation
no 4.28 15.29 5.93 19.57
yes 3.72 13.18 5.11 16.96

resized max-pooling
no 3.73 13.54 5.28 17.77
yes 3.47 12.77 4.85 16.19

padded concatenation
no 4.06 14.40 5.54 18.60
yes 3.37 12.22 4.71 15.94

padded max-pooling
no 3.46 12.55 4.93 16.81
yes 3.21 11.89 4.62 15.89

The following observations can be made:

– Retaining the aspect-ratio of the images (padded option) achieves improved
results for the majority of cases.

– Performing the flattening operation via max-pooling not only is more cost-
effective, but it has a positive impact on performance. This is more evident
in line-level recognition setting.

– Training with a CTC shortcut module provides notable boost over all cases.
For example, in line-level recognition the significant difference in performance
when considering different flatting operations is considerably decreased when

Best Practices for a Handwritten Text Recognition System 9

Table 2. Word-level recognition results for IAM dataset: Exploring the impact of the
proposed modifications.

Validation Test

Preprocessing Flattening CTC Shortcut CER(%) WER(%) CER(%) WER(%)

resized concatenation
no 4.35 12.55 5.58 15.46
yes 4.27 12.02 5.46 15.13

resized max-pooling
no 4.25 12.17 5.69 15.87
yes 4.09 11.65 5.23 14.40

padded concatenation
no 4.17 11.99 5.66 15.66
yes 3.98 11.50 5.37 14.98

padded max-pooling
no 4.00 11.25 5.43 15.06
yes 3.76 10.76 5.14 14.33

the CTC shortcut approach is adopted (e.g. for padded line-level recogni-
tion the WER performance difference drops from 1.79% to only 0.05%). This
hints that the initial difference in performance is mainly attributed to dif-
ficulties in training (concatenated version has a much larger feature vector
to manage). Note that evaluating the CTC shortcut branch yields poor de-
codings, despite the notable performance increase of the main network. For
example, assuming line-level recognition and the padded/max-pooling set-
ting, we report 5.26% CER/19.76% WER for the validation set and 7.36%
CER/25.66% WER for the test set.

– Applying all three modifications together achieves the best results across all
setting and metrics.

– Word recognition reports improved results compared to line-level recognition
with respect to the WER metric. This was expected, since word-level setting
assumes perfect word segmentation. Interestingly enough, this is not the case
for the CER metric. This can be explained by the lack of sufficient context
(i.e. find a capital letter or a punctuation from the whole line information).

We also explore in more depth the CTC shortcut option, which seems to
provide the best boost in performance. Specifically, we report the progress of both
the loss and the CER/WER metrics (over the validation set) during the training
procedure for the line-level recognition setting. The loss curves are depicted in
Figure 2, while the validation set evaluation metrics are reported in Figure 3. As
we can see, loss curves are similar, but the case of CTC shortcut consistently has
slightly better behavior. The impact of the CTC shortcut is more clearly shown
in CER/WER curves and thus solutions with greater generalization properties
are expected when a model is trained along with the CTC shortcut.

4.2 Comparison to State-of-the-Art Systems

Finally, we compare our method to several existing state-of-the-art methods,
as shown in Table 3. The reported methods follow the same setting: line-level
lexicon-free recognition. The proposed HTR system along with the suggested

10 Retsinas et al.

0

10

20

30

40

50

60

lo
ss

#epochs

w/o CTC shortcut

w/ CTC shortcut

Fig. 2. Behavior of HTR performance in terms of loss value with and without the extra
CTC shortcut branch during the training phase. Reported curves correspond to the
proposed line-level HTR system trained on the IAM dataset.

3
4
5
6
7
8
9

10
11

10 40 70 100 130 160 190 220

C
ER

#epochs

w/o CTC shortcut
w/ CTC shortcut

11

16

21

26

31

10 40 70 100 130 160 190 220

W
ER

#epochs

w/o CTC shortcut
w/ CTC shortcut

Fig. 3. Behavior of HTR performance in terms of CER (left) and WER (right) metrics
with and without the extra CTC shortcut branch during the training phase. Reported
curves correspond to the proposed line-level HTR system, trained on IAM dataset and
evaluated on the validation set.

modifications achieves results comparable to the best performing methods. No-
tably, it outperforms the majority of existing works for both datasets and met-
rics despite many of the reported methods propose novel elements to further
increase performance that are in general orthogonal to our approach. For ex-
ample, the work of Chowdhury et al. [3] presents better WER for the RIMES
dataset while using a sequence-to-sequence approach (such models can produce
increased WER as implicit language models can be learnt [25]), while our previ-
ous work [24] achieves better CER for the IAM dataset while using similar net-
work (max-pooling flattening and padded input images) along with deformable
convolutions and a post processing uncertainty reduction algorithm.

Moreover, the very recent work of Luo et al. [16] manages to outperform our
method for the word-level recognition setting on the IAM dataset by using a
STN component and a complex augmentation method, where ”optimal” aug-
mentations are learnt. Specifically, our method achieves 5.14% CER / 14.33%,
while Luo et al. achieve 5.13% CER / 13.35% WER for the exact same setting.

Best Practices for a Handwritten Text Recognition System 11

Nonetheless, their initial baseline network, stripped of all the extra modules
(which could be added to the proposed architecture without any problem), per-
forms poorly: 7.39% CER and 19.12% WER.

Overall, we achieve very competitive results (outperforming other existing
lexicon-free methods for line-level recognition on IAM) by only using a typical
convolutional-recurrent architecture along with a set of simple, yet intuitive and
effective modifications, forming an effective set of best practice suggestions which
can be applied to the majority of HTR systems.

Table 3. Performance comparison for IAM/RIMES datasets (line-level recognition)

IAM RIMES

Method CER(%) WER(%) CER(%) WER(%)

Chen et al. [2] 11.15 34.55 8.29 30.5
Pham et al. [20] 10.8 35.1 6.8 28.5

Khrishnan et al. [14] 9.78 32.89 - -
Chowdhury et al. [3] 8.10 16.70 3.59 9.60

Puigcerver [21] 6.2 20.2 2.60 10.7
Khrishnan et al. [14] 9.78 32.89 - -

Markou et al. [17] 6.14 20.04 3.34 11.23
Dutta et al. [5] 5.8 17.8 5.07 14.7
Wick et al. [30] 5.67 - - -

Michael et al. [19] 5.24 - - -
Tassopoulou et al. [28] 5.18 17.68 - -

Yousef et al. [32] 4.9 - - -
Retsinas et al. [24] 4.55 16.08 3.04 10.56

Proposed 4.62 15.89 2.75 9.93

5 Conclusions

In this paper, we proposed a series of best practice modifications over typical
convolutional-recurrent networks trained with CTC loss. Apart from presenting
a fairly compact architecture based on residual blocks, we present three im-
pactful modifications: 1) retain aspect-ratio of input images gathered in batches
through a padding operation, 2) apply a column-wise max-pooling operation
between the convolutional backbone and the recurrent head of a typical HTR
architecture for reduced computational effort and increased performance and 3)
enhance performance through a CTC shortcut during training in order to cir-
cumvent an end-to-end training over recurrent networks, which have been proven
”difficult” to train in various settings. All proposed modifications have proven to
be very helpful, considerably increasing the performance of the vanilla network.
Overall, the proposed system achieves results in the ballpark of state-of-the-art,
while being orthogonal to the majority of modern deep learning modules and
approaches.

12 Retsinas et al.

Acknowledgments

This research has been partially co - financed by the EU and Greek national
funds through the Operational Program Competitiveness, Entrepreneurship and
Innovation, under the calls : “RESEARCH - CREATE - INNOVATE”, project
Culdile (code T1E∆K - 03785) and “OPEN INNOVATION IN CULTURE”,
project Bessarion (T6YBΠ - 00214).

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
2. Chen, Z., Wu, Y., Yin, F., Liu, C.L.: Simultaneous script identification and hand-

writing recognition via multi-task learning of recurrent neural networks. In: 14th
IAPR International Conference on Document Analysis and Recognition (ICDAR).
vol. 1, pp. 525–530. IEEE (2017)

3. Chowdhury, A., Vig, L.: An efficient end-to-end neural model for handwritten text
recognition (2018)

4. Collobert, R., Hannun, A., Synnaeve, G.: A fully differentiable beam search de-
coder. In: International Conference on Machine Learning. pp. 1341–1350. PMLR
(2019)

5. Dutta, K., Krishnan, P., Mathew, M., Jawahar, C.: Improving CNN-RNN hybrid
networks for handwriting recognition. In: 2018 16th International Conference on
Frontiers in Handwriting Recognition (ICFHR). pp. 80–85. IEEE (2018)

6. Fischer, A., Keller, A., Frinken, V., Bunke, H.: Lexicon-free handwritten word spot-
ting using character HMMs. Pattern Recognition Letters 33(7), 934–942 (2012)

7. Fischer, A.: Handwriting recognition in historical documents. Ph.D. thesis, Verlag
nicht ermittelbar (2012)

8. Graves, A.: Connectionist temporal classification. In: Supervised Sequence La-
belling with Recurrent Neural Networks, pp. 61–93. Springer (2012)

9. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd international conference on Machine learning. pp. 369–
376 (2006)

10. Greff, K., Srivastava, R.K., Koutńık, J., Steunebrink, B.R., Schmidhuber, J.:
LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learn-
ing Systems 28(10), 2222–2232 (2016)

11. Grosicki, E., Carre, M., Brodin, J.M., Geoffrois, E.: Rimes evaluation campaign
for handwritten mail processing (2008)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 770–778 (2016)

13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proceedings
of the International Conference on Learning Representations (ICLR) (2015)

14. Krishnan, P., Dutta, K., Jawahar, C.: Word spotting and recognition using deep
embedding. In: 2018 13th IAPR International Workshop on Document Analysis
Systems (DAS). pp. 1–6. IEEE (2018)

15. Leifert, G., Strau, T., Gr, T., Wustlich, W., Labahn, R., et al.: Cells in multidimen-
sional recurrent neural networks. Journal of Machine Learning Research 17(97),
1–37 (2016)

Best Practices for a Handwritten Text Recognition System 13

16. Luo, C., Zhu, Y., Jin, L., Wang, Y.: Learn to augment: Joint data augmentation
and network optimization for text recognition. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 13746–13755 (2020)

17. Markou, K., Tsochatzidis, L., Zagoris, K., Papazoglou, A., Karagiannis, X., Syme-
onidis, S., Pratikakis, I.: A convolutional recurrent neural network for the handwrit-
ten text recognition of historical greek manuscripts. In: International Workshop on
Pattern Recognition for Cultural Heritage (PATRECH) (2020)

18. Marti, U.V., Bunke, H.: The iam-database: an english sentence database for of-
fline handwriting recognition. International Journal on Document Analysis and
Recognition 5(1), 39–46 (2002)

19. Michael, J., Labahn, R., Grüning, T., Zöllner, J.: Evaluating sequence-to-sequence
models for handwritten text recognition. In: 2019 International Conference on Doc-
ument Analysis and Recognition (ICDAR). pp. 1286–1293. IEEE (2019)

20. Pham, V., Bluche, T., Kermorvant, C., Louradour, J.: Dropout improves recurrent
neural networks for handwriting recognition. In: 2014 14th international conference
on frontiers in handwriting recognition. pp. 285–290. IEEE (2014)

21. Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwrit-
ten text recognition? In: 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR). vol. 1, pp. 67–72. IEEE (2017)

22. Retsinas, G., Sfikas, G., Gatos, B.: Transferable deep features for keyword spotting.
In: Multidisciplinary Digital Publishing Institute Proceedings. vol. 2, p. 89 (2018)

23. Retsinas, G., Sfikas, G., Nikou, C.: Iterative weighted transductive learning for
handwriting recognition. In: International Conference on Document Analysis and
Recognition. pp. 587–601. Springer (2021)

24. Retsinas, G., Sfikas, G., Nikou, C., Maragos, P.: Deformation-invariant networks
for handwritten text recognition. In: 2021 IEEE International Conference on Image
Processing (ICIP). pp. 949–953. IEEE (2021)

25. Retsinas, G., Sfikas, G., Nikou, C., Maragos, P.: From Seq2Seq recognition to hand-
written word embeddings. In: Proceedings of the British Machine Vision Confer-
ence (BMVC) (2021)

26. Sudholt, S., Fink, G.A.: PHOCNet: A deep convolutional neural network for word
spotting in handwritten documents. In: Proceedings of the 15th International Con-
ference on Frontiers in Handwriting Recognition (ICFHR). pp. 277–282 (2016)

27. Sueiras, J., Ruiz, V., Sanchez, A., Velez, J.F.: Offline continuous handwriting recog-
nition using sequence to sequence neural networks. Neurocomputing 289, 119–128
(2018)

28. Tassopoulou, V., Retsinas, G., Maragos, P.: Enhancing handwritten text recogni-
tion with n-gram sequence decomposition and multitask learning. In: 2020 25th
International Conference on Pattern Recognition (ICPR). pp. 10555–10560. IEEE
(2021)

29. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

30. Wick, C., Zöllner, J., Grüning, T.: Transformer for handwritten text recognition
using bidirectional post-decoding. In: International Conference on Document Anal-
ysis and Recognition. pp. 112–126. Springer (2021)

31. Wigington, C., Stewart, S., Davis, B., Barrett, B., Price, B., Cohen, S.: Data
augmentation for recognition of handwritten words and lines using a cnn-lstm
network. In: 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR). vol. 1, pp. 639–645. IEEE (2017)

14 Retsinas et al.

32. Yousef, M., Hussain, K.F., Mohammed, U.S.: Accurate, data-efficient, uncon-
strained text recognition with convolutional neural networks. Pattern Recognition
108, 107482 (2020)

