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Abstract

Object pose estimation is a task that is of central importance in 3D Computer Vision.
Given a target image and a canonical pose, a single point estimate may very often be
sufficient; however, a probabilistic pose output is related to a number of benefits when
pose is not unambiguous due to sensor and projection constraints or inherent object sym-
metries. With this paper, we explore the usefulness of using the well-known Euler angles
parameterisation as a basis for a Normalizing Flows model for pose estimation. Isomor-
phic to spatial rotation, 3D pose has been parameterized in a number of ways, either in or
out of the context of parameter estimation. We explore the idea that Euler angles, despite
their shortcomings, may lead to useful models in a number of aspects, compared to a
model built on a more complex parameterisation.

1 Introduction
Estimating the pose of objects from a single RGB image is an important and challenging
problem in computer vision [1, 10, 20]. It is closely connected to several scientific chal-
lenges, such as navigation in 3D scenes, augmented and virtual reality, robotic manipulation,
and autonomous driving [11, 33]. In its more general form, the problem of estimating ob-
ject pose encompasses 6 degrees of freedom (DOF); 3DOF for spatial position and 3DOF
for spatial rotation. In this work, we focus on 3D object pose estimation, i.e., estimation of
object spatial rotation [1]. Furthermore, we are interested in obtaining a probability density
function instead of just a single point estimate, as in standard rotation regression (e.g. [17]).
The motivation for this choice is that a probabilistic formulation of the problem constitutes
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an elegant way to describe both ambiguities due to inherent uncertainty of pose given a sin-
gle image related to the characteristics of central projection, as well as uncertainty arising
due to the geometry of the object itself. A deterministic prediction will be inadequate given
the multimodal nature of the problem, resulting in oversimplified solutions that ignore sym-
metry and uncertainty. Hence, in general there is an irreducible, aleatoric component of un-
certainty that is incorrect to disregard. Furthermore, the probabilistic approach subsumes the
non-probabilistic case as the latter can always be described as a Dirac PDF around the point
estimate. Several parametric distributions have been proposed for probabilistic modeling of
rotations, including the von Mises distribution for Euler angles [18, 27], the Bingham dis-
tribution for quaternions [3, 9], and the Matrix Fisher distribution for rotation matrices [23].
While these models are statistically grounded, their unimodal nature limits their ability to
accurately capture symmetric objects, which are common in real-world environments [18].

In the proposed approach, we use Normalizing Flows (NFs) as our model for den-
sity estimation. NFs are a powerful and flexible framework for learning complex distri-
butions through invertible mappings from simple base distributions. Although NFs have
been successfully applied in Euclidean spaces [5], their extension to the non-Euclidean
manifold SO(3) remains underexplored. Part of existing approaches, such as ReLie [6]
and ProHMR [15], attempt to project latent Euclidean flows onto SO(3). Other meth-
ods [5, 19, 21] develop flows on general Riemannian manifolds without exploiting the geo-
metric structure of SO(3), often resulting in limited representational capacity and subopti-
mal performance [18]. Liu et al. [18] suggest constructing a flow as a composition of Mb̈ius
transforms and the newly introduced quaternion affine layer. Their Möbius transform works
as a modification of the original use for spheres in [29], where a coupling approach uses one
column of a rotation matrix as input for the conditioner, while the coupling transformer acts
on a second column. As the output of the transform is not necessarily a valid rotation matrix,
in each flow step, transform parameters are projected so that the result stays in SO(3). The
quaternion affine layers act via a linear transform over a R4 representation of the rotation
quaternion. Again, the result is projected to the rotation manifold. In this paper, we explore
the following idea: Given the complexity of the rotation matrix parameterisation in the con-
text of estimation with NFs, can it be beneficial to employ a simpler parameterisation of
rotation? We hypothesize that a simpler parameterisation may constitute a simpler objective
for our learning model. Ideally, we would want a lower dimensionality parameterisation,
and one that would not require per-flow step reprojections to the rotation manifold as in [18].
Euler angles are a parameterisation that fits this description [7]; they are the simplest param-
eterisation possible, using 3 unconstrained angles of rotation about fixed axes, a number that
matches the intrinsic degrees of freedom of spatial rotation. Euler angles have been (right-
fully) critiqued due to well-known shortcomings (cf. Section 3). However, they are very
much in use in specific contexts, for example, in Photogrammetry [32]. We test our assump-
tion with experimental trials on a number of datasets that cover diverse object geometries
that may encompass complex symmetries. We show that the proposed model will lead to
better density estimation compared to other models, including NFs that use rotation matri-
ces for parameterisation [18]. We also check the effectiveness of our model on cases where
data lie on subsets of SO(3) that are related to gimbal lock singularities for Euler angles.
Qualitative results suggest that Euler angles are related to different inductive biases that may
often be suboptimal (cf. e.g. Figure 1). However, overall, we obtain slightly better fits than
rotation matrix parameterisation NFs. Perhaps not unsurprisingly, an exception to this rule
is datasets with ground truth heavily concentrated around points of Euler angle singularity.

The remainder of the paper is structured as follows. Section 2 discusses extensions of
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flow models to non-Euclidean domains, including SO(3). The proposed alternative is pre-
sented in Section 3, including a succinct introduction on Euler angles and their advantages
and shortcomings as a parameterisation of rotation. Experimental results are presented in
Section 4, and we close the paper with our conclusions and future work in Section 5.

2 Normalizing Flows on circular and spherical domains

This section reviews using NFs on non-Euclidean domains like S or SO(3). Much of the
framework has been laid down in [29], while [18] have adapted the toolset for use with the
rotational manifold.

Elements. The basic idea in NFs is as follows. Consider first a simple Gaussian model
for density estimation: p(x; µ,Σ) ∝ exp{− 1

2 ||gµ,Σ(x)||2}, where gµ,Σ(x) = Σ−1/2(x−µ). In
NFs, the affine g•(x) is replaced by a non-linear transformation, and in particular, a special
class of invertible neural networks. Of course, a closed-form Maximum Likelihood (ML)
solution is out of the question if gθ (·) is a neural network, but we can still use the arsenal
of gradient-based optimisation to obtain reasonable estimates (much like in the rest of Deep
Learning).Furthermore, invertibility and differentiability of gθ (·) ensure that processes like
sampling and evaluation with respect to the learned distribution are tractable and conceptu-
ally very straightforward. For example, sampling amounts to simply drawing a sample from
a standard Gaussian and transforming it according to the inverse transformation g−1

θ (·). So,
the likelihood model in NFs is: p(x;θ) ∝ exp{− 1

2 ||(gθ (x)||2}, where gθ (x) is defined as a
non-linear bijection. 1 The major benefit of non-linearity over gθ (x) is that we can model
any distributional form (given constraints for the form of g) [14].

Conditional flows. NFs can be used in a supervised setting, and similar to the paradigm
of GANs or Diffusion models, here, too, we have a conditional counterpart of the basic
model. In terms of density estimation, we aim to learn p(x|z) instead of p(x). In the current
application context of pose estimation, condition z is an input image (or image plus canonical
pose), and the expected outcome is a distribution over likely poses.

Modeling of joint or more complex distributions follows similar considerations, whereas
p(x1,x2) can be written as p(x2|x1)p(x1), and we need a way to model conditional PDFs
with flows. Coupling flows and autoregressive flows are two alternatives that may be used to
model conditional flows.

Handling circular and spherical topologies. NFs on bounded and circular domains like
circles (S) or Tori (T) require special considerations. First, the Gaussian as a base distribution
is inadequate, as it implies an unbounded, Euclidean topology, for any n∈N and Rn. Second,
flow layers also need to be carefully designed so that the circular character of these topologies
is respected. For example, transformations that are defined over S (the circle) should take
into account the periodicity of the domain.

1The larger part of the Normalizing flow literature follow the convention that the normalizing transform g is
the “inverse” direction and g−1 is the “forward” direction [26, Ch.16]. The current convention is used to simplify
formulae and follow the implementation of [18]. Hence, here g represents the normalizing direction and g−1

represents the generative direction [26, Ch.16.1.2]
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Rezende et al. [29] have pioneered working with NFs on circles and tori, and have in-
troduced a number of suitable flow layers to this end. A number of options that satisfy the
conditions set by [29] among which the Möbius transformations [13]. Other options are
circular splines and non-compact projections, the latter of which is a complex form of the
Möbius transform [29, Appendix H]. The Möbius transformation [13] is defined as follows.
Given a D-dimensional sphere SD, we can consider it as the locus of points with unitary
distance from the origin in RD+1. Let w ∈ RD+1 be a vector with ||w|| < 1, which will act
as the parameter of the transformation. Then a point x ∈ RD+1 is mapped according to the
Möbius transform with parameter w as follows:

gw(x) =
1−||w||2

||x−w||2
(x−w)−w. (1)

It can be easily checked that w = 0 corresponds to an identity transformation. The part of the
sphere that is close to the parameter point w is expanded as a result, and the rest is contracted.

One crucial property that, in the context of flow expressivity, proves to be a drawback
is that the group of Möbius transformations is closed under composition [13, Theorem 2].
There are two workarounds concerning this point: either use a convex combination of two
or more Möbius transforms, or compose a flow using other flow layers other than Möbius
transforms in-between them. Both solutions are used in practice. Unlike the Möbius trans-
form itself, there is no closed-form for the inverse of the convex combination of Möbius
transforms. However, it can be numerically inverted with precision ε using bisection search
within O(logε−1) iterations.
Defining flows on SO(3). In Liu et al. [18], a NF for SO(3) is defined. This is defined as
a cascade of Möbius layers and Quaternion affine layers. In order to capture the geometric
constraints of the SO(3) manifold, the Möbius transforms are defined in a very specific
manner, acting in each flow layer over a single column of the rotation matrix R = [r1 r2 r3],
where ri are the columns of R. As the column to be transformed, say r2, must adhere to being
unit-norm, it is treated as a point on the two-dimensional sphere S2. At the same time, r2
must be orthogonal to r1 and r3. The strategy of [18] is to use one of the remaining columns
as the conditioner, meaning that it will act as input to the coupling NN, which will output
Möbius transform parameters . The transformer column is ensured to be orthogonal to the
conditioner column by applying a suitable projection over the Möbius transforms parameters
(w = w′ − r1[r1 ·w′]), where w and w′ are output and input parameters, respectively. The
other column, say r3, will be computed as the outer product of the rest (r3 = r1 × r2). With
this, all rotation matrix constraints are met. In each subsequent Möbius layer, the role of each
column, i.e., whether it is a conditioner, a transformer, or it is computed via the outer product,
is changed in order to ensure that no single column has any special bias. Quaternion affine
layers act by defining a linear transformation over a real-valued representation of the rotation
quaternion. Judging by the presented results of [18], between Möbius and Quaternion affine,
Möbius transforms arguably contribute the more “added value” to the model.

3 Proposed Euler Angles-based Flow
Euler angles. NFs work by defining a transformation over data, the characteristics and
motivation of which we have already described. In the context of the current application,
our data are elements of the SO(3) manifold. Various ways have been put forward to pa-
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rameterize SO(3), each one with its advantages and disadvantages. In section 2 we saw that
previous work uses the Rotation matrix [18].

Perhaps the simplest parameterisation available is by using “Euler angles”. Their mo-
tivation is related to a celebrated theorem by Euler, which states that any two independent
orthonormal coordinate frames can be related by a sequence of rotations about coordinate
axes, where no two successive rotations may be about the same axis [16, Section 4.3]. Cru-
cially, not more than three successive rotations are necessary to describe any arbitrary rota-
tion. Also, the axes of rotation may be chosen arbitrarily. A straightforward choice of axes
is the coordinate frame axes, X ,Y,Z. Hence, given a fixed sequence of axes, we only require
three angles to describe a rotation, which are called Euler angles [7, 16]. A usual convention
in Photogrammetry is to denote rotations about X ,Y,Z with letters ω,ϕ ,κ respectively (for
example, [12, 32]). These define a set of rotation matrices:

Rω =

1 0 0
0 cosω sinω
0 −sinω cosω

 ,Rϕ =

cosϕ 0 −sinϕ
0 1 0

sinϕ 0 cosϕ

 ,Rκ =

 cosκ sinκ 0
−sinκ cosκ 0

0 0 1


(2)

and the full rotation is written as a composition of the three composing rotations. Corre-
sponding to the sequence of rotation around X ,Y , then Z, we have R = Rκ Rϕ Rω . An inverse
relation, taking us from the rotation matrix to Euler angles, can be elaborated. However, here
manifests the problem of “gimbal lock”: there exist areas that are not matched to a set of Eu-
ler angles in a unique manner. For example, for ϕ = π

2 we can only determine the difference
of Euler angles ω −κ , but not each one of them separately:

R =

0 cos(ω −κ) sin(ω −κ)
0 −sin(ω −κ) cos(ω −κ)
1 0 0

 (3)

A similar result holds for ϕ = −π
2 . In our implementation, we redefine these relations to

be bijective: Euler angles to rotation matrices are forced to be unambiguous definitions.
For example, when converting rotation matrices to Euler angles and cosϕ = 0, we use the
convention κ = 0 and the remaining degree of freedom is assigned effectively to ω . Note that
the measure described here by no means “solve” gimbal lock in Euler angles. Our point of
view is that we may be able to take advantage of the positive aspect related to Euler angles
(i.e., their simplicity to implement), under the premise that the greater part of the SO(3)
manifold does not suffer from this singularity.

Defining flows with Euler angles. The proposed flow uses the Möbius transform as its
backbone. Compared to a flow that uses rotation matrices (cf. sec. 2, the implementation is
arguably much more straightforward. In each flow step, our input is the three Euler angles
x = (ω,ϕ ,κ). The domain of each is taken to be a unit sphere S1, so ω,ϕ ,κ all take values
∈ [0,2π]. Equivalently, we have x ∈ S1 × S1 × S1. Our strategy is to use a coupling flow
(cf. Section 2), where in each flow step, one subset of the Euler angles will correspond to
the conditioner, and the other corresponds to the transformer. Assuming angle κ is being
transformed in a given step, we have:

ω ′ = ω,ϕ ′ = ϕ ,κ ′ =
K

∑
i=1

ρi[
1−||wi||2

||κ −wi||2
(κ −wi)−wi],
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Table 1: Comparisons of the proposed Euler angles-based model (“Ours”) versus prior mod-
els. The quality of fit to pose data is evaluated using a log-likelihood measure.

log likelihood ↑ avg. peak cone cube/fisher24 line

Riemannian [21] 5.82 13.47 8.82 1.02 -0.026
ReLie [6] - - 5.32 3.27 -6.97
IPDF [25] 4.38 7.30 4.75 4.33 1.12
Mixture MF [23] 6.04 10.52 8.36 4.52 0.77
Moser Flow [30] 6.28 11.15 8.22 4.42 1.38
Möbius [18] 7.28 13.93 8.99 4.81 1.38
Möbius+Affine Flow [18] 7.28 13.93 8.99 4.81 1.38
Euler angles flow (ours) 8.07 15.09 9.35 5.71 2.14

where ∑K
i=1 ρi = 1 and ρi ≥ 0 for all i ∈ [1,K]. As parameters of the transformer, we

have: {ρi,wi}K
i=1 = ϕ [cosω,sinω,cosϕ ,sinϕ ], where ϕ [·, ·, ·, ·] is defined as a standard (non-

invertible) neural network, which will output parameters for the K combined Möbius kernels.
Akin to a minimal version of positional encoding [22], we have mapped conditioner Euler
angles as θ 7→ (cosθ ,sinθ), in order to allow the network ϕ [·, ·, ·, ·] to use the fact that the
domain of the angles is periodic. The output parameters are fed to the coupling neural net-
work. In effect, the above equations describe a coupling transform where the transformer is
defined via a convex combination of Möbius transforms over S1. Of course, this formulation
will allow transformation only for the Euler angle κ . In order to allow transformations for
the other two Euler angles, we apply permutations of the role of each angle, in a round-robin
manner.

The end result is a flow model that aims to perform estimation in a distinctly simpler
manner than the approach based on rotation matrix parameterisations (cf. Section 2, [18]).
The dimensionality of the target quantity is lower, where we have a single angle in each step,
and unconstrained, meaning that no projections are required. We argue that this scheme is
more convenient for learning and inference, both in the sense of a learning objective, as well
as in terms of computational load.

4 Experimental Results
We conduct experiments to evaluate our proposed method, deploying Euler angles on NFs.
We have run experiments on a collection of different datasets that cover different aspects of
the task. Datasets “Synthetic” and “Gimbal” are used to gauge performance on uncondi-
tional density estimation on rotation data. Datasets “SYMSOL I” and “ModelNet10-SO3”
are benchmarks that involve image input data, covering both objects that lend to inherently
multimodal as well as unimodal pose ground truths.

Synthetic dataset. Each subset of this dataset is made up of a number of samples
off the SO(3) manifold. It was introduced in [18], and the quality of the fit to the data is
measured in terms of log-likelihood, as shown in Table 1. We use 24 Euler angle-based
Möbius flow layers, each of which uses K = 64 Möbius kernels. A batch size of 1024 and
learning rate equal to 10−4 is used. Models are trained for 50k iterations. Samples from
learned distributions can be examined in fig. 1 and 2. We use the visualisation tool of [25].
The two models – the rotation matrix-based [18] and the proposed Euler angles flow model
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– exhibit distinctly different inductive biases. We can discern two kinds of differences. First,
the rotation matrix model handles cases where the PDF is made up of disjoint islands of
mass. Second, the Euler angles model tends to estimate variance more faithfully. Overall,
these differences stack up to a slight advantage for the Euler angles implementation, as per
the numerical results of Table 1.

Figure 1: Results for “synthetic” dataset.
From top row to bottom row: Ground
truth and results for subsets “peak”, “cone”,
“cube”. From left column to right column:
Ground truth distribution, samples generated
by the model proposed in [18], and sam-
ples generated by the proposed Euler angles-
based flow model. The rotation matrix of [18]
tends to model better disjoint “islands” of
mass; however, the proposed Euler angles
model is better at estimating variance. (see
also comment on fig. 2).

Figure 2: Detail from Figure 1. From left
column to right column: Ground truth dis-
tribution, samples generated by the model
proposed in [18], and samples generated by
the proposed Euler angles-based flow model.
Note the difference in inductive biases be-
tween the two models: Liu et al. [18] tends to
misestimate variance by a considerable mar-
gin; the proposed Euler angles flow is closer
to the correct value.

Gimbal dataset. We introduce an additional dataset for unsupervised density estimation
that we call Gimbal, in order to gauge the efficiency of the proposed Euler flows exactly
with areas of SO(3) that are problematic for our parameterisation. Regardless of the choice
of axes in an Euler angles parameterisation, there will always exist parts of SO(3) where
gimbal lock takes place (cf. discussion in Section 3). Under the convention we use, this
happens when ϕ = π

2 or ϕ = −π
2 . We produce random elements of SO(3) by sampling as

follows: ω ∼N (0,σ2), ϕ ∼ 1
2N (π

2 ,σ
2
ϕ σ2)+ 1

2N (−π
2 ,σ

2
ϕ σ2), κ ∼N (0,σ2), where we set

σ2
ϕ = 0.1. We set σ2 = {1,0.1}. Following the layout of the “synthetic” dataset discussed

in the previous subsection, we split the sampled rotations into a training and test set that
are made up of 60k and 12k iterations, respectively. We have compared the proposed model
versus the model of Liu et al. [18], using the setups described in subsection 4. Numerical
results are reported in Table 2. We can deduce that the more data is concentrated around
areas of singularity, the harder it is for the Euler angles model to achieve a good fit. It is

Table 2: Results for “gimbal” dataset. Testing of the proposed Euler angles flow model in
areas of singularity. Log-likelihood is used to evaluate the quality of fit.

log likelihood ↑ σ2=1 σ2=0.1

Möbius + Affine Flow [18] 4.50 13.31
Euler angles flow 2.74 9.46
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worth noting that here we see a different picture than the one of the results of the previous
synthetic experiment (Table 1), as there is a stark difference in log-likelihood, but now Euler
angles are the model that fares less competitively. This is perhaps not surprising, as the data
of this set cover deliberately the areas of SO(3) related to Euler angles singularity.

SYMSOL I dataset. We perform experiments on SYMSOL I [25], which comprise
sets of objects with pose ground truths that are inherently multimodal due to object sym-
metries. SYMSOL I contains high-order symmetry shape images such as tetrahedron, cube,
cone, and cylinder. We train our model for 900k iterations and otherwise follow the training
regime for the Möbius and Quaternion affine-based models of Liu et al. [18]. For our imple-
mentation, we use the same flow step sequence where we have disabled Quaternion affine
flow layers. Otherwise, the default parameters for running the code were used. The results
are presented in Table 3. Our method achieves the best log-likelihood performance for the
cone and cylinder shapes and the second-best for the cube shape, resulting in the second-best
average log-likelihood performance. As a comment on the results, it seems that there is a
negative trend on objects which have ground truth pdfs with numerous disjoint islands of
mass. Such are objects like the icosahedron or the tetrahedron. This is perhaps related to a
similar effect in the “Synthetic” dataset (cf. Figure 1 & discussion in Section 5).

Table 3: Numerical results on SYMSOL I. Ex-
ponents M and M+A correspond to using [18]
with only Möbius layers or the full model. Best
and second-best performance are highlighted
with boldface and underline, respectively.

log likelihood ↑
avg. cone cube cyl. ico. tet.

[4] 0.81 2.45 -2.15 1.34 -0.16 2.56
[8] 1.86 6.13 0.00 3.17 0.00 0.00
[28] 0.42 -1.05 1.79 1.01 -0.10 0.43
[25] 6.39 6.74 7.10 6.55 3.57 7.99
[18]M 9.41 10.52 9.68 10.00 5.35 11.51
[18]M+A 10.38 10.05 11.64 9.54 8.26 12.43
Ours 9.66 12.36 10.20 11.64 4.15 9.97

Table 4: Numerical results of
ModelNet10-SO3. Indices U and F
denote the base distribution used for the
flow in each case. Best and second-best
performance is highlighted, with boldface
and underline, respectively.

Acc@15◦↑ Acc@30◦↑ Med. (◦)↓

[4] 0.562 0.694 32.6
[28] 0.456 0.528 49.3
[24] 0.693 0.757 17.1
[25] 0.719 0.735 21.5
[18]U 0.760 0.774 14.6
[18]F 0.744 0.768 12.2

OursU 0.742 0.753 19.5
OursF 0.736 0.754 12.7

ModelNet10-SO3 dataset. We further conduct experiments on the ModelNet10-SO3
dataset [17] that is widely used for regressing rotations from single images. The dataset
is comprised of the uniformly rotated renderings of CAD models from the ModelNet10
dataset [34]. We present the performance using both the uniform and pre-trained Fisher
distributions in terms of Acc@15◦ , Acc@30◦ , and Median Error in Table 4. As we can
see, our proposed approach achieves competitive accuracies, close to the highest performing
methods, while we achieve the second-best median error after [18] with the corresponding
Fisher distribution.
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4.1 Training speed comparison

Training speed comparison. We report a training speed comparison over the proposed
Euler flows alternative, versus two of the versions presented in Liu et al. [18]. Speed tests
were run on an RTX 2080Ti GPU. Tests on unsupervised density estimation (synthetic) use
default settings, and conditional estimation uses a batch size of 2. Results are shown in Table
5. The speed of the proposed model can be attributed to the simpler architecture of the flow,
owing to the minimal character of the Euler angles representation.

Table 5: Training speed comparison: Reported figures are milliseconds per training iteration,
on average. Exponents M and M +A correspond to using [18] with only Möbius layers or
the full model. See text for details.

Time per iteration (ms) ↓ Unconditional Conditional

[18]M 483 384
[18]M+A 966 734
Ours 387 335

5 Conclusion and Future Work

As a one-sentence answer to the titular question of this paper, “Are Euler angles a useful
parameterisation of rotation for pose estimation with Normalizing Flows?” Yes, despite their
shortcomings, they can be used to construct a useful model. Our experiments corroborate
this point of view, and numerical results are routinely in the ballpark of the state of the art.
However, our analysis has shown that there are several important nuances that must be taken
into account if we are to decide whether we should use this model in a practical scenario
versus a model that does not use this parameterisation. There do exist caveats, some of
which were not completely surprising. In particular, the proposed model does not fare well
in areas related to gimbal lock singularity. In a practical scenario, this, of course, must be
taken into account; as with the use of Euler angles, the key factor here is whether or not
we have prior knowledge that our angles are related to areas of singularity (cf. the case of
aerophotogrammetry). A point that we believe is worth mentioning is related to the reasons
for which we have slightly better results in many cases. This appears to be related to two
factors: a) a different inductive bias than the one related to the rotation matrix model; b)
a learning-wise “easier” objective. The Euler angles model seems to have some difficulty
modeling those cases where there are disjoint masses in the ground truth. This is a well-
known issue with Normalizing Flows in general, and there is current research that may lead
to considerable improvements in this respect [2]. Another point that is noteworthy is that
Euler angles lend to a much less costly model, as it can be trained faster than both alternatives
of the rotation matrix that we compared against. Further, we have seen that the Euler angles
model outperforms routinely other non-NF-based models for rotation estimation. Finally,
let us note that the current implementation using Euler angles is not the only way that one
can construct a flow with them, as there are several hyperparameters in place. First and
foremost is the Möbius transform itself, or the way we implement coupling (one dimension
for the transformer versus two for the conditioner), putting in place phase-translating flows
to improve expressivity, and so on. Other considerations could include integration with more
capable transformer backbones or fusing with other types of probabilistic models [31, 35].
This could be the subject of future work.
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