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A Architecture Design and Implementation Details

A.1 Overall Architecture
Figure 1 contains the entire architecture with a detailed per-module description. In the fol-
lowing, we briefly describe the architecture of each basic submodule.

Convolutional Backbone consists of four convolutional stacks (conv1− conv4), com-
prising 1,2,4 and 4 layers respectively, form residual blocks (all but conv1) topped by
ReLU nonlinearities preceded by Batch Normalization and dropout layers. Convolution
window sizes on stacks 1 to 4 are 7× 7, 3× 3, 3× 3, 3× 3, with output channels equal
to 32,64,128,256 respectively. Max-pooling is performed on 2× 2 windows of stride 2
between the convolutional stacks. The convolutional backbone is followed a column-wise
max-pooling.

CTC branch consists of three 1D convolutional layers with kernel size equal to 5, along
with BN, ReLU and dropout are used. The first two have 256 output channels, while the
last layer’s output channel size is equal to the number of characters (n_classes). A softmax
activation is used on the output of the CTC branch in order to provide character predictions.
Note that CTC branch is only used in training as an assistive module and discarded during
evaluation.

Seq2Seq Encoder uses a bidirectional GRU [3] of 3 layers with 256 hidden size. The
3× 2× 256 dimensional output vector of its hidden response (3 layers, 2 directions, 256
hidden size) is then compressed into the desired word embedding (of size f eat_size) with a
fully connected (FC) linear layer.

Seq2Seq Decoder uses a unidirectional GRU of 1 layer and f eat_size hidden size and
takes as input the generated word embedding, as extracted by Seq2Seq Encoder. At each
step the GRU takes as input the previous character and the hidden vector computed so far
and predict the next character. To this end, the character predictions (represented by one-hot
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vectors) are transformed by a liner embedding layer into feature vectors equal to the hidden
size, while the he output at each step is transformed by a linear (FC) layer into nclasses size
in order to predict the next character. Since this formulation leads to a classification problem
per step, a softmax is applied on each output and the cross entropy loss is selected.

More formally, let gd be the GRU cell of the decoder module which takes as input a
character ci−1 and the current hidden state vector hi−1 and outputs the updated hidden state
vector hi and the next character ci. According to our formulation, c0 = SP, where SP stands
for the space token. Also, let xenc the output of the encoder module which would be the
input to the decoder module as the initial hidden state vector. Each decoding step can then
be written as:

c0 = SP & h0 = xenc

ci, hi = gd(ci−1,hi−1), i > 0 (1)

Specifically, the next predicted character ci is given by selecting the character with the high-
est probability/score from a vector of characters’ probabilities generated as follows:

pi = so f tmax(Wphi) (2)

, where Wp is a weight matrix belonging to the decoder’s trainable parameters. The decoding
process terminates when a space token is predicted for i> 0. The predicted sequence of char-
acters is the string s = c0c1 · · ·cK−1, where c0 = cK−1 = SP. Decoder training is described in
the following section.

String Encoder consists of a bidirectional GRU of 2 layers with 256 hidden size, where
its hidden vector output (2× 2× 256) is projected to the word embedding space by a fully
connected layer of f eat_size output size. A linear embedding layer is also used before GRU,
which transforms the one-hot representation of characters into feature vectors of size 256,
forming sequences of vectors.

Remark: State of the art sequence-to-sequence approaches successfully employ atten-
tion mechanisms [9]. As we have already explained, attention is not helpful in our work,
since it bypasses the word embedding and therefore it cannot generate discriminative fea-
ture vectors. In fact preliminary tests with the presented pipeline along with an attention
mechanism indicated a discouraging QbS performance of less than 50% MAP. Nonetheless,
attention approaches can notably increase the recognition performance [6, 12].

A.2 Training Details

In this section we describe in more detail several training related aspects of our work.
Multi-task Loss: Training the proposed architecture requires a multi-task loss as Equa-

tion 1 suggests. Concerning the multi-task loss weight λ in Eq. 1, we found that applying
a larger weight to the Seq2Seq branch (λ = 10) was beneficial, since CTC branch can be
trained more easily and its aim is to assist the overall convergence.

Seq2Seq Decoder: Training of Seq2Seq decoder is performed using the per-character
cross entropy loss. Essentially, we try to enforce per-character predictions to match the target
sequence st = c′0c′1 · · ·c′K−1, where c′0 = c′K−1 = SP. Moreover, the target sequence is padded
with SP tokens (using a predefined length - larger than any possible predicted word) in order
to take into account the potential difference in length of predictions. Formally, the Seq2Seq
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Figure 1: Proposed architecture design. We distinguish four discrete modules: 1) convolutional back-
bone 2) CTC branch 3) Seq2Seq Encoder 4)Seq2Seq Decoder and 5) String Encoder. Seq2Seq Encoder
and Seq2Seq Decoder comprise the Seq2Seq branch, while String Encoder and Seq2Seq Decoder form
an autoencoder.

loss is calculated as follows:

LS2S(Ps,st) =
k−1

∑
i=0

LCE(Wphi,c′i) (3)

,where Ps corresponds to a 2D matrix of the characters’ probabilities for each prediction step,
i.e. Ps = {pi} = {Wphi}, i = 0 . . .K− 1. This matrix is the output of the whole decoding
procedure (the per-step application of gd), represented by the function fdec. Therefore, we
have that Ps = fdec(xenc).

To assist the training procedure, we employ the teacher forcing scheme [2]. Specifically,
we randomly select the decoder input at step i to be either the predicted character of the
previous step ci−1 or the real character c′i−1 from the target sequence. In this manner we avoid
frequent error propagation from a miss-predicted character during step-by-step decoding.

Character Encoder: The problem that arises from the addition of the extra character
encoder module is the simultaneous training along with the visual encoder of the Seq2Seq
component. If we train only one path (auto-encoder or Seq2Seq) and we constrain the output
of the character encoder to be similar to the visual encoder output, e.g. using MSE loss,
there is no guarantee that both encodings can be decoded successfully, since even a small
Euclidean divergence between the encoding may result into two different decodings. We
overcome this problem by randomly choosing to decode one of the two information flows
at each iteration, while constraining them to be close to each other. More formally, let fcnn
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be the backbone CNN, fenc/ fdec the encoder/decoder of Seq2Seq and fcenc the character
encoder. Given an image I and its corresponding groundtruth string st = c′0c′1 . . .c

′
K−1, the

two encodings can be written as follows:

xenc = fenc( fcnn(I;wcnn);wenc) & xcenc = fcenc(st ;wcenc) (4)

The loss for the Seq2Seq branch is then extended according to the following formula
(replacing the corresponding term in the full model multi-task loss of Eq.1):

LS2S(Ps,st ;wcnn,ws2s)+d(xenc,xcenc) (5)

where d(·, ·) stands for an extra distance loss (e.g. cosine or euclidean) and the prediction
probability matrix Ps (defined below Eq. 3) corresponds to the decoding of either xenc or
xcenc, randomly selected, as follows:

Ps = fdec(bxenc +(1−b)xcenc;wdec), b∼ Bernoulli(0.5) (6)

The distance metric d(·, ·) enforces word representations, which are generated by the
two different encoders, to be close to each other. Since these word representations are
directly used for spotting by employing cosine distance, we used a distance metric that
includes cosine distance. However, we do not want these representations of different en-
coders to drift apart (with respect to L2 norm) since the decoder will undertake the task of
projecting different representations into the same string prediction, adding increased com-
plexity to the problem. To this end, we empirically set the following distance function:
d(x,y) = 0.1||x− y||2 +1− cos(x,y), where cos(x,y) denotes the cosine similarity function.
Note that, alternatively, we could normalize the encoder outputs (with an appropriate layer)
and apply a euclidean distance loss, simulating the cosine distance function.

Language Model: Finally, the implicit Language Model variation requires training only
the auto-encoder path using word strings, drawn from a corpus. To this end, after each
iteration of the main system and backpropagation of the aforementioned multitask loss, we
separately train the auto-encoder path with an extra forward-backward pass. We use 128
randomly drawn words at each extra iteration and a lower learning rate (10−4) in order to
train them. The lower learning rate was selected in order to apply small "correction" steps
to the encoder/decoder submodules towards learning an implicit LM without affecting the
performance of the proposed pipeline.

A.3 Inference Details

In this section we explore the details of the evaluation processes, such as force alignment
and binarization.

Force-Alignment: Keyword Spotting is performed on the encoding space of word em-
beddings by straightforwardly comparing words (either images or strings) using the cosine
distance. The force-alignment variant follows a rather different rationale since it employs
the decoder during evaluation in order to compare the predicted characters against the ex-
pected characters of a specific query string. This process can be viewed as employing the
training loss in teacher forcing mode in order to compute the score of the query string
st = c′0c′1 . . .c

′
K−1 against the predicted. Formally, following the decoder definition, the
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query-constrained scoring can be efficiently performed as the following equations suggest:

c′0 = SP & h0 = xenc

hi = gd(c′i−1,hi−1), i = 1, . . . ,K−1

score =
K−1

∑
j=1

LCE(Wphi,c′i) (7)

Specifically, we assume that the input of the decoder is the requested query st = c′0c′1 . . .c
′
K−1

and thus it is straightforward to predict the next character, given the previous one and the
hidden vector computed this far. Consequently, the score is the average cross entropy loss of
the predictions and thus if the score is low, the given query was in line with the word repre-
sentation xenc. This forced-alignment approach can be considerably more compact compared
to the typical CTC-based case due to the length of output sequences.

However, a decoder forward pass is required at each step of a character-per-character
comparison with respect to the query, which adds additional on-the-fly computational over-
head. In other words, implementation-wise, performing a forced alignment as described
above is time consuming and cannot be parallelized in order to fully utilize accelerators. We
can however overcome the computational cost by organizing multiple queries into a character
trie: given a single intermediate feature, we decode over the character trie in a breadth-first
traversal manner, making use of multiple nodes for a parallelized, fast implementation on
the GPU. Note that we did not implement such an optimal evaluation strategy in this work.

Binarization: The proposed binarization scheme relies on training well-performing bi-
narized embeddings with the use of STE. The binarization is effectively performed by a sign
operation, which can be straightforwardly translated to a binary representation. Here, we
describe implementation-related issues and how such binary embeddings can significantly
reduce both storage and time requirements.

The storage reduction of binary descriptos is evident: a float can be replaced by a binary
value and thus storage requirements are reduced by a factor of 32. For example, if we have
a collection comprised of 1,000 words (assuming perfect word segmentation), the proposed
representation has a dimensionality of 512 with floating-point values, which amounts to
512× 4 bytes and overall almost 2.5 GB for the whole collection. On the other hand, by
assuming a binary 512-dimensional representation, the overall storage requirements are only
64MB, namely 32× less storage.

The proposed binarization variation has the exact network inference time with the ini-
tial framework, since the same modules are used. Note that all the signed vectors have the
same magnitude and therefore, since we care about comparing an image representation with
a reference one, the cosine similarity can be efficiently computed by XNOR and bincount
operations (effectively computing a Hamming distance). In other words, using binary em-
beddings and operations can accelerate the comparison step of the KWS pipeline. However,
this speed-up has not been evaluated in this work, since it requires low-level operations which
were not available in Python.

A.4 Further Enhancements
The proposed system consists of several sub-modules crafted to address weaknesses of the
main sequence-to-sequence pipeline. For example, CTC branch assists convergence, char-
acter encoder enables QbS, while the autoencoder path (consisted of the String Encoder and
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the Seq2Seq Decoder) can be trained using lexicon words to further enhance the learnt im-
plicit language model. Nonetheless we can further assist our system, with the following two
approaches:

1) Adding an extra loss term which ensures that different words have representations
that differ significantly (e.g. [11]). This could be implemented by using triplets of words:
two of the exact same transcription and one of a neighboring transcription, which could be
potentially confused. The required triplet loss function tries to bring together the embedding
of images with the same text, while driving away - to the greatest extent possible - images
that correspond to different texts.

2) Adding a DNN head of fully connected layers, which transforms the encoded represen-
tation, generated by Seq2Seq module, to PHOC embeddings. This extra flow of information
can be seen as a complementary way to enforce a well-behaved word representation. The
binary cross entropy loss, appropriate for PHOC training, would be added as an extra term to
the multitask loss of Eq. 1. This way, we expect that the generated word representation can
be efficiently decoded to either a PHOC representation or fully decoded to a target string. In
the context of this work, the PHOC DNN estimator would be omitted at inference. It only
acts as a assistive training module, akin to CTC branch.

These extensions were not evaluated in this paper in order to keep the reasoning of each
module as simple as possible and avoid overloading the proposed pipeline.

B Experimental Setup

B.1 Training Protocol
We train the proposed architecture using the Adam optimizer for 80 epochs along with a
cosine annealing scheduler restarted every 20 epochs [8]. The initial learning rate after each
restart is set to 10−3.

The entire training procedure is repeated 5 times (with random seed) and the mean values
are reported. Note that we report the performance of the network at the end of its training
procedure and no validation set is used in order to selecting the best performing network
(with respect to the validation set) across different epochs or repetitions. In fact, we observed
that the system may have slightly better performance few epochs before the end of training
or in a previous state, before a scheduler restarting step.

B.2 Keyword Spotting Protocol
As in previous word spotting works, we follow the setting of Almazan et al. [1], therefore
we consider queries that include only digits and lowercase letters. We do not distinguish
between lowercase and uppercase characters, i.e. ’AND’ and ’and’ correspond to a single
word.

For ICFHR2016 datasets, Botany and Konzilsprotokole [10], the queries and their cor-
responding matches are provided as groundtruth both for QbS and QbE scenarios.

For GW and IAM datasets, we follow a specific rationale (as in [1]) for selecting the
queries: • Omit words consisted of single characters • Consider only words with more than
one occurrence in the test set. • Any word that contains punctuation cannot be considered as
query. • IAM only: ignore stop-words as defined in [1]. All omitted words are retained in
the test set and act as "distraction" words.
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B.3 Word Recognition Protocol

Word-level recognition protocol, with respect to the character set used, is not clearly stated in
the majority of the existing literature. Many approaches [4, 7] seem to follow the paradigm
of [1] and compare to it. Specifically, the authors of [1] used a a "workaround" for perform-
ing recognition by comparing predicted PHOC embeddings to lexicon word embeddings and
thus only a subset of possible characters were considered: digits and lowercase letters, fol-
lowing the keyword spotting setting. Even though we do not focus on the recognition task in
this work, it plays a crucial role to the proposed pipeline. Therefore, we shall describe both
the training and evaluation protocols that we use in our work.

Since the proposed recognition system is used to train word embeddings, ideal for spot-
ting, we also follow similar settings to keyword spotting. Apart from digits and lowercase
characters (after transforming any uppercase to its lowercase counterpart), we also include:

• the space character SP, which denotes the start or the end of a word and is required
for Seq2Seq training. The SP character is added before and after every transcription
in the train set. During evaluation, all spaces are removed.

• the blank character ‘_‘, used for CTC training according to [5].

• a wildcard character ‘?‘, which denotes any other character not considered so far
(punctuation). We consider that such a wildcard is useful for training, since the sys-
tem should learn the existence of any character, even though it may be ignored during
evaluation.

Evaluation of recognition task is performed as follows. First, we ignore words that con-
tain any wildcard character. Then, blank and space characters are omitted both from the
groundtruth and the predicted strings. Note that, following the aforementioned protocol, the
wildcard character can appear in the predicted strings. Obviously, if a wildcard character
appears in any prediction it would count as an error.

C Additional Experimental Results

C.1 KL Divergence between Representations

The efficiency of the proposed word representations is also evaluated with an alternative
method, trying to understand how faithfully they can represent the manifold corresponding
to the original word strings. We have computed statistics over the edit distance between
words in our corpus (taken from IAM test set) and the corresponding statistics when using
cosine distance on either the proposed binary representation or the PHOC representations
(level5 unigrams). We used the Kullback-Leibler divergence (KL) to express the statistics’
correlation between the reference edit distance and the considered representations, and found
the two divergences to be 0.0224 (proposed) and 0.0417 (PHOC). Hence, the proposed bi-
nary representation is closer to the desirable statistics, as expressed by edit distances between
corpus words, compared to the state-of-the-art PHOC descriptor.
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