
A PHOC Decoder for Lexicon-free Handwritten
Word Recognition

Giorgos Sfikas, George Retsinas and Basilis Gatos

Computational Intelligence Laboratory, Institute of Informatics and Telecommunications
National Center for Scientific Research ”Demokritos“, GR-15310 Agia Paraskevi, Athens, Greece

{sfikas, georgeretsi, bgat}@iit.demokritos.gr

Abstract—In this paper, we propose a novel probabilistic model
for lexicon-free handwriting recognition. Model inputs are word
images encoded as Pyramidal Histogram Of Character (PHOC)
vectors. PHOC vectors have been used as efficient attribute-
based, multi-resolution representations of either text strings or
word image contents. The proposed model formulates PHOC
decoding as the problem of finding the most probable sequence
of characters corresponding to the given PHOC. We model PHOC
layers as Beta-distributed observations, linked to hidden states
that correspond to character estimates. Characters are in turn
linked to one another along a Markov chain, encoding language
model information. The sequence of characters is estimated using
the max-sum algorithm in a process that is akin to Viterbi
decoding. Numerical experiments on the well-known George
Washington database show competitive recognition results.

I. INTRODUCTION

Two main families of methods dominate the field of uncon-
strained offline handwriting recognition: Hidden Markov [1],
[2] and, more recently, Neural Network-based models [3], [4].
After preprocessing of the scanned input document image, the
document is typically segmented into text areas up to the level
of text line or word [5]. As a rule, methods of either family
require large amounts of annotated training data, i.e. manually
transcripted text lines and/or word images, in order to obtain
an acceptable recognition rate.

Recently, Almazán et al. [6] have proposed a learning-based
model that is suitable for the task of word spotting [7], as
well as word recognition. An important merit of this model
is that it requires only a (comparatively) moderate amount of
training data [6]. The model encodes word images, as well
as transcription strings, as fixed-length vectors that represent
a set of attributes of the word. The encoding method has
been named Pyramidal Histogram Of Characters (PHOC). The
PHOC vector is a fixed-length, attribute-based representation
[8] of a word. Each variate of the PHOC vector is related to a
specific letter (unigram) or bigram and its relative position in
the word. For example, the related attributes can be answers to
questions like “does the word contain the letter ’d’ ”? or “does
the word contain the bigram ’in’ on its second half”? After
estimating the PHOC vector for the word to be recognized,
PHOC vectors are computed for all words in a pre-existing
lexicon. The correct transcription is assigned after comparing
functions of the PHOC vectors of the unknown word versus

the representations of the lexicon words. Hence, a lexicon of
possible words is necessary to perform recognition.

In this work, we propose a model that can decode PHOC
vectors and produce an estimate of the true transcription
without requiring a lexicon. The implication of this is that
the word to be recognized is neither required to be part of
the training set, nor part of a preset vocabulary of possible
words. Therefore, with the proposed decoding model we can
take advantage of the efficiency of recent methods that produce
PHOC representations of word images [6], [9], [10] and use
them to perform lexicon-free recognition.

PHOC generation is formulated as a hierarchical probabilis-
tic model [11]. The observed PHOC estimate is modelled
as the instance of a Beta-based probability density function
that depends on the unobserved word transcription. Hence,
decoding the input PHOC vector is formulated as finding the
most probable word transcription given the observed PHOC.
We propose and employ a suitable reparametrization and
decomposition of the Beta-based emission model, so that it
becomes tractable. The overall model is solved with a novel
procedure that is based on the max-sum algorithm and is
akin to Viterbi decoding [11]. Numerical results show that
the proposed model has competitive recognition performance.

The remainder of this paper is organized as follows. In
Section II we provide a brief overview of the structure of
PHOC vectors and their use in the related literature. In Section
III we present the proposed model and we show how to use it
for word recognition in Section IV. In Section V we evaluate
our model with numerical experiments and we conclude with
a brief discussion of the paper’s contribution and perspectives
of future work in Section VI.

II. PHOC VECTOR STRUCTURE

The PHOC vector representation was introduced by Al-
mazán et al. [6]. A PHOC vector is a fixed-length vector
representation of a word. PHOCs can be computed exactly
as binary histograms given a text string, or estimated as non-
binary histograms given a word image [6], [9]. 1 We shall first

1In [6], the representation given a word image is referred to as an attribute
vector and in [9] the same vector is referred to as a PHOC estimate. In the
current work, we shall refer to representations given either a word image or
a string as a PHOC vector or PHOC estimate.

examine the former case, as it is somewhat simpler.
A PHOC vector is defined as the concatenation of a smaller

set of histograms of attributes, to which we shall refer to as
T . Each of the histograms of T relates to either encoding
information about unigrams or bigrams, respectively forming
sets Tu and Tb (hence T = Tu ∪ Tb). Also, each histogram in
T encodes information about a specific part of the word, at a
specific scale. In this respect, histograms in T can be grouped
in layers. All histograms in layer x refer to the same scale and
all together span the whole word in x same-length horizontal
zones. For example, there are 3 histograms in layer 3, with
each one encoding a different third of the word. In this work
we represent histograms as φXa.b , where X ∈ {U,B} and
a, b ∈ N. X corresponds to whether the histogram encodes
information about unigrams or bigrams, located in space and
scale in layer a, zone b. For example, φU5.3 is a histogram
that encodes information about unigrams found in layer 5,
horizontal zone 3, or more simply the third fifth of the word.
All unigram or bigram histograms have the same length Du

or Db, respectively. These histograms encode the presence or
absence of all possible unigrams or bigrams.

As each variate of the PHOC vector is related to the
presence or absence of a token, given an input text string each
variate takes a binary value. An estimate can be computed
given a word image, instead of a text string, as input. This
vector differs to the PHOC representation given a text string,
only to the domain of the vector variates. The representation
vector variates are related to the same semantic information
(i.e. existence of a unigram or bigram at a specific zone in
the word). In that case, PHOC variates will in general be non-
binary, as they are each directly or indirectly outputs of soft
binary classifiers.

In this work, we shall assume the existence of a mechanism
that can produce fixed-length PHOC vectors of dimensionality
D, given either text strings or word images. The PHOC vector
given a text string is assumed to be φ ∈ {0, 1}D, while the
PHOC vector given a word image is assumed to be φ ∈ [0, 1]D.
In the two following Sections we examine the proposed model
and method to decode PHOCs, in order to produce the most
likely word that generated them.

III. PROPOSED MODEL

A. Overview

Given the PHOC vector estimate of an input word image,
our goal is to use it to infer the related word text string. We
formulate the process of PHOC generation as an hierarchical
probabilistic graphical model [11]. The model defines two
random processes, dependent one on the other. These are
the word transcription to be estimated, denoted as γ, and
the PHOC vector, denoted as φ. The PHOC vector φ is an
observed variable, while the transcription is a latent variable
(cf. fig. 1).

The word transcription γ is made up of an ordered set of
M letters, and we can write γ = {γ1, · · · , γM}. We use a
one-hot encoding to represent each letter γi. Specifically, for
all i ∈ [1,M], all variates of vector γi are zero except variate

φ

γ

Fig. 1. A generic view of the proposed graphical model. γ stands for the
word transcription to be estimated and φ stands for the observed PHOC vector.
We aim to find the most probable transcription γ for the given encoding φ.

k, which is equal to one if γi represents the kth letter in the
alphabet of possible unigrams.

The PHOC vector φ consists of |T | = |Tu| + |Tb| layers,
where |Tu| encode information about unigrams in the word
and |Tb| encode information about bigrams. Formally, φ is
a concatenation of layer histograms {φτ |τ ∈ T}. Model
evidence can be written as

p(φ, γ) = p(φ|γ)p(γ) (1)

Under this formulation, we aim to compute

arg max
γ

p(γ|φ) = arg max
γ

p(φ|γ)p(γ) (2)

The function to be optimized is hence decomposable in two
terms, namely the emission likelihood p(φ|γ) and the prior
p(γ) on possible transcriptions.

B. Emission likelihood

We model the emission likelihood p(φ|γ) as independent,
identically distributed (i.i.d.) observations following the Beta
probability distribution function (pdf). The Beta distribution,
defined over [0, 1], is often used to model binary events [11].
Formally the emission likelihood is written as

p(φ|γ) =
∏
τ∈T

∏
d∈τ

β(φτd|{γdi |i ∈ λ(τ)}), (3)

where φτd denotes the dth variate of the PHOC layer his-
togram φτ , and β(.) stands for the Beta distribution [11]. γdi
denotes the dth binary variate of the one-hot representation
of letter i. The function λ maps a layer histogram to the
letter positions it relates to. For example, assuming a 6-letter
word, layer histogram φU3.2

would encode information about
the second third of the word, hence λ(φU3.2) = {3, 4} (see
also fig.2). In order to cover cases where layer zone limits
“fall between” letters, we have used the convention of [6],
assigning letters according to their letter-region area overlap.

If φτ is a histogram over unigrams, we have φτ ∈ [0, 1]Du .
If it is a histogram over bigrams, φτ ∈ [0, 1]Db . The domain of
the Beta distribution is over [0, 1], and its parameters control
the number of effective prior observations [11]. For more
details on the Beta distribution and the parametrization used
here, see the Appendix.

φU1 φU2.1 φU2.2

γ1 γ2

φU1 φU2.1 φU2.2 φU3.1 φU3.2
φU3.3

γ1 γ2 γ1 γ2 γ3 γ4 γ5 γ6

Fig. 2. An analytical view of two example use-cases of the proposed graphical model. PHOC size and word length size fixed to values suitable for the
illustration of the model mechanism. (a) On the example on the left, the word length is fixed to a specific value (α = 2, i.e. a word of two letters) and the
observed PHOC vector only comprises 3 layers (T = {φU1

, φU2.1
, φU2.2

}). Note that PHOC layer φU1
encodes information about the whole word (both

letters), hence its value is conditioned on both letters γ1, γ2. Layers φU2.1
, φU2.2

encode information each on a different half of the word (one letter each),
hence they are conditioned respectively to letters γ1, γ2. (b) On the example on the right, we assume a larger word length (α = 6) and PHOC size (|T | = 6).

We further decompose the Beta distribution terms into
simpler terms (again, see the Appendix for details) that are
conditioned only over single binary observations as

β(φτd|{γdi |i ∈ λ(τ)}) = Ẑ({γdi |i ∈ λ(τ)})
∏

i∈λ(τ)

β(φτd|γdi),

(4)
where the Ẑ(·) function is defined in the Appendix. After

combining eqs. (3) and (4) and dropping the normalization
terms Ẑ, we get

p̂(φ|γ) =
∏
τ∈T

∏
d∈τ

∏
i∈λ(τ)

β(φτd|γdi). (5)

In eq. (4), the normalization term Ẑ depends only on the
number of non-zero elements of the set {γdi |i ∈ λ(τ)} and
the set cardinal number, and not on the exact values of the
set members per se. We shall assume that we can ignore
the normalization term for the decoding step of the method,
and use eq. (5) to approximate the emission likelihood during
model solution. This choice comes with the benefit that the
emission likelihood decouples in terms that depend only to one
letter at a time. In terms of model optimization, this translates
to a tractable and comparatively simple and fast decoding
mechanism.

C. Prior on possible transcriptions

The prior on possible transcriptions p(γ) is defined as a
first-order Markov chain [11]. Formally this is written as a
product of unigram and bigram state transition probabilities:

p(γ) = p(γ1)

M∏
i=2

p(γi|γi−1) (6)

Chain states represent possible letters for each letter position
i. Hence, p(γ) is in effect a language model prior. Unigram
and bigram probabilities are computed offline on a suitable
corpus and remain fixed throughout decoding.

IV. DECODING USING THE PROPOSED MODEL

A. Decoding given a specific word length

By combining equations 2, 5, 6 and taking logarithms, we
can see that the objective we aim to optimize can be written
as:

γ? = arg max
γ

∑
τ∈T

∑
d∈τ

∑
i∈λ(τ)

lnβ(φτd|γdi)+

+

M∑
i=2

ln p(γi|γi−1) + ln p(γ1), (7)

where we assume that word length M is known a priori (we
shall examine how to estimate the true length M in Subsection
IV-B). We note that all terms in the objective eq. (7) depend
at most on two consecutive letters (this conveniently happens
because we dropped the normalization terms in eq. 5). Hence,
we can use a dynamic programming scheme to estimate γ?. In
the context of graphical models, this can be performed using
the max-sum algorithm [11].

In the max-sum algorithm, messages are passed between
nodes of an extension of the basic graphical model. This
extended graphical model is undirected, and includes all nodes
of the original model as variable nodes plus one node for
each term of the likelihood function, called factor nodes.
The algorithm comprises a phase where messages are passed
between variable and factor nodes. Factor nodes send messages
to variable nodes, and vice versa. An example factor graph can
be examined in fig. 3.

φU1 φU2.1 φU2.2

γ1 γ2

f̂1U1
f̂2U1

f̂1U2.1
f̂2U2.2

f1 f2

Fig. 3. Factor graph corresponding to graphical model presented in fig.2a.

For the proposed model, the messages to be passed can be
computed as follows:

µf1→γ1(γ1) = ln p(γ1) (8)

µf̂id→γi
(γi) = lnβ(φd|γi) = lnβ(φd|γdi) (9)

µγi→fi,i+1
(γi) = µfi−1,i→γi

(γi) +
∑
d

µf̂id→γi
(γi) (10)

µfi−1,i→γi
(γi) = max

γi−1

[ln p(γi|γi−1) + µγi−1→fi−1,i(γi−1)]

(11)

where µa→b stands for message sent from node a to node
b. Factor nodes are denoted by letters f and f̂ . The nodes
denoted by fi,i−1 are the factor nodes that correspond to terms
p(γi|γi−1), and f1 corresponds to term p(γ1) of eq. (7). Nodes
denoted by f̂ id correspond to the β factors of eq.(2). Note that
in the above message-passing formulae we have intentionally
omitted µφd→f̂d(φd). Messages of that type could be modelled
as δ Dirac pdfs centered on the observed values. We have
instead chosen to combine these with µf̂id→γi and present the
combined message only, in order to simplify notation.

Messages are propagated from graph leaves towards the
graph root, in our case the final letter γM . The first letter
node γ1 is the first to receive all incoming messages. After
having done so, messages incoming to the next letter node γ2
can be computed, and so on, until the final letter node γM
is reached. The intuition behind this procedure is that, during
each message passing, nodes propagate their “belief” about
what letter is found at a particular word position. Emission
nodes propagate their belief according to the PHOC obser-
vation; Markov chain nodes propagate their belief according
to the language model. The end-result is a trade-off between
these two factors.

While passing messages from node to node, we keep track
of the maximizing per-node (i.e. per-letter position) value:

φ(γi) = arg max
γi−1

[ln p(γi|γi−1) + µγi−1→fi,i−1
(γi−1)] (12)

After the last letter is reached, the optimal decoding can be
computed. Optimal per-node letter values, starting from the
end (i = M) and moving progressively back to the beginning
(i = 1) can be computed using a back-tracking procedure [11].
First we compute the best value for the last letter as:

γ?M = arg max
γM

[µfM−1,M→γM (γM)+
∑
d

µf̂id→γM
(γM)] (13)

In order to compute best values for the rest of the letters (∀i ∈
[1,M−1]) we use the φ(·) function we defined earlier (eq. 12):

γ?i = φ(γ?i+1) (14)

Therefore, under these considerations the best estimate for the
word transcription is computed as the word γ?1γ

?
2 · · · γ?M .

B. Choosing the word length

In Subsection IV-A we have seen how to produce a word
transcription estimate when the word length M is known. We
propose a two-part score function swl(·) to estimate M for
each word to be recognized. The first function component
gives a coarse estimate sCwl(·) of M , which is refined when
combined with the second function component sFwl(·) .

For the coarse estimate, we use the word image length
in pixels to estimate M . We perform linear regression over
pairs of { word length in pixels, word length in letters } of
the training set. The parameters of the straight line that is
estimated, are used to project pixel word length to a mean
estimate MC . This regression is meant to give a first estimate

that is assumed to be sufficiently close (i.e. up to a margin of
1-2 letters) to the actual word length. We proceed to define:

sCwl(M) =

{
1, if |M − round(MC)| ≤ 2

0, otherwise
(15)

In order to compute the refined word length estimate, we
first decode the word using all non-zero sCwl score candi-
date word lengths. We re-encode these decoded character
sequences, and perform L2-normalization on the resulting
PHOCs. Subsequently we compute Euclidean distances of
the normalized PHOC decodings to the normalized initial
input PHOC estimate. We map these distances to similarity
scores sFwl(·) using a standard Gaussian distribution kernel.
We choose the final estimate M? as

M? = arg max
M

swl(M) , arg max
M

sCwl(M)sFwl(M) (16)

V. NUMERICAL EXPERIMENTS

We have used the GW20 manuscript collection for numer-
ical experiments [12]. The GW20 collection is comprised of
20 pages of text, handwritten by George Washington and his
associates in the 18th century. The manuscripts have been
manually segmented into 4860 word images, fully transcribed.
We have used two-fold and four-fold cross-validation to par-
tition the set in training/validation and testing folds. At each
case, all folds are of equal size, 10 and 5 pages respectively.
Again in both cases, one fold is used as the testing fold
and the rest for training and validation. We have trained the
language model prior on the word transcription over unigrams
and bigrams found in the respective training and validation
folds only.

We have used the original attribute SVM-based model of
Almazán et al. [6] to produce PHOC estimates of the test
word images. As suggested in that work, we use a PHOC
representation with unigram layers of levels 2, 3, 4, 5 and
bigram layers of level 2. After having performed Platts scaling
[6] on the attribute vector, the output vector variates are
∈ [0, 1]. The resulting PHOC vector is of dimensionality
D = 604. Regarding the proposed decoding model, we have
used a likelihood function that is defined over unigram emis-
sions only, as preliminary results have shown that including
messages from bigram emissions results in somewhat worse
performance. We attribute this result to the structure of our
model, which represents the latent process as a series of
unigrams, each linked to emission nodes separately.

In fig. 4, we show decoding results for a number of words
found in the GW20 dataset. We used results from the 2-fold
GW20 setting. All of the selected words were found only in the
test fold. In other words, no example of a same-transcription
word image had been observed during the training phase. Yet,
the proposed decoder succeeds at succesfully coping with such
cases. This model characteristic is due to two factors: the
zero-shot learning trait, related to the attribute-based character
of the PHOC representation, and the fact that the proposed
decoder does not depend on a lexicon of possible words, that
might or might not include the target word.

100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 910 or ro red e re l r y orderly

100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 910 h aph p pe e n happen

100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 910 em ea ec t i t in gn meeting

100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 910 pr r e e e tn t preeett

100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 910 g ig iv i n i gn giving

100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 910 g eg enr e gene

100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 910 pr r er sef s press

100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 910 eb e e e l le beell

100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 910 o fo fe er r s offers
Fig. 4. Example decodings using the proposed model. On each row, from left to right, we see: The input word image, the observed PHOC vector shown
as a signal of fixed length D = 604, the word-length estimator function swl, the most likely letters per sum of incoming messages per letter position, the
decoded word. All depicted values on columns 2,3,4 are shown normalized to a scale [0, 1]. Per-letter position messages are combined with prior language
model information to give the decoded end-result. Note that no same-transcription examples were observed during the training phase, for any of the words
shown in this example.

We have compared our method with an HMM-based model
[2] and a NN-based model [4]. The HMM-based model of
Lavrenko et al. [2] uses a holistic representation to describe
word images. Word transcriptions are modelled as the hidden
states of a Markov chain, and the holistic representations
correspond to the observed process. In the work of Frinken
et al. [4], a neural network based model for handwriting
recognition is employed, and show that the same model can
be adapted for the task of keyword spotting. In both works,
recognition results on GW20 are reported. We can examine the
recognition accuracy of these works versus the accuracy of the
current model in table I. Let us note that the compared HMM-
based model of Lavrenko et al. [2] uses a language model
that had been trained on a corpus of over 4 million words.
The language model of the proposed decoder is trained on
the available training folds only, i.e. in our case in less than
3, 000 words in all cases. Moreover, Lavrenko et al. use a
fixed lexicon of words. The proposed decoder outperforms the
compared methods, albeit being at a disadvantage by having
no information about the search space in the form of a lexicon.

We also show results assuming a perfect word length
estimate. This “cheat” scenario is presented for the purpose
of decoupling the performance of the word decoding and the
word length estimation components of the proposed model.
Correct word length estimation is crucial for our model, as a
wrong length estimate will lead to wrong recognition. Results

show that there is room for improvement for word length
estimation, as about 9% of recognition accuracy is “lost” due
to word length estimation errors.

TABLE I
COMPARISON OF RECOGNITION ACCURACY OF THE PROPOSED DECODER

VERSUS STATE-OF-THE-ART WORKS TESTED ON THE GEORGE
WASHINGTON DATABASE. IN ORDER TO EVALUATE THE PROPOSED WORD
LENGTH ESTIMATION SCHEME, RESULTS ARE ALSO REPORTED FOR THE

HYPOTHETICAL (“CHEAT”) SCENARIO WHERE WORD LENGTH IS KNOWN.

Accuracy
GW - 2 folds

Lavrenko et al. [2] 47.0%
Proposed decoder 49.81%

Proposed decoder + known word length 58.04%
GW - 4 folds

Lavrenko et al. [2] 53.0%
Frinken et al. [4] 52.92%

Proposed decoder 53.44%
Proposed decoder + known word length 61.62%

VI. CONCLUSION AND FUTURE WORK

We have proposed and solved a novel probabilistic model
that can be used for lexicon-free HTR. With the proposed
model, PHOC vectors, that are the direct or indirect product
of a number of recent important models [6], [9], [10], can be
efficiently decoded. The output of the PHOC decoder is an

estimate of the transcription of the input word image. While
PHOCs have been used for word recognition before, this is
the first work where this is done without using a lexicon of
possible words. After modelling observations as following a
Beta-based distribution, we have shown how to reformulate it
properly so that it can be tractable. The proposed decoder is
finally solved with the max-sum algorithm.

In perspective, a straightforward extension to the current
model would be to use PHOCs with a higher number of
layers, instead of the numbers and types used in the work
that introduced the PHOC representation [6]. More PHOC
layers would entail an encoding that is more detailed and
richer in information, hence we can conjecture that this
could lead to better decoding accuracy. Related to this point,
another perspective would be to use more advanced models
for producing PHOCs. The recent models proposed in [9],
[10] for example, compute PHOCs by utilizing deep learning
techniques while retaining the efficiency, in terms of training
set size, of the original attribute-based model [6]. Combining
the PHOC output of either model with the proposed PHOC
decoder would be entirely straightforward. Testing the model
on more challenging datasets, comprising larger collections,
or written using different scripts [9], [13] can be envisaged.

With respect to the model itself, future work may concern
the more suitable integration of bigram information in the
model, as PHOC bigram information is only partially exploited
in the current model. Integration of the model with a word-
level Markov chain can also be envisaged, as well as integrat-
ing a possible knowledge of lexicon words as a model prior.

APPENDIX: DEFINITION, PARAMETRIZATION AND
DECOMPOSITION OF THE BETA DISTRIBUTION

The Beta distribution is defined over a continuous variable
x ∈ [0, 1]. A standard parametrization often used in the
literature [11] is over two parameters a, b > 0, with:

β(x|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1. (17)

where Γ(·) stands from the Gamma function. Parameters a, b
can be interpreted as the effective prior number of observations
at x = 0 and x = 1 respectively [11]. We can reparametrize
eq. (17) as:

β(x|δ) , β(x|δ + 1, 2− δ) = 2xδ−1(1− x)2−δ. (18)

where the new parameter δ is ∈ {0, 1}. We can further
generalize the above reparametrization, again with respect to
the parametrization of eq. (17), as follows:

β(x|∆) , β(x|1 +

M∑
i=1

δi, 1 +M −
M∑
i=1

δi), (19)

where ∆ is a set of M binary variables {δ1, · · · , δM}.
The Beta pdf form of eq. (19) can be decomposed as a

product of Beta pdfs of the form of eq. (18). This can be
proved as follows:

M∏
i=1

β(x|1 + δi, 2− δi) ∝
M∏
i=1

xδi(1− x)1−δi =

= x
∑M
i=1 δi(1− x)M−

∑M
i=1 δi ∝

∝ β(x|1 +

M∑
i=1

δi, 1 +M −
M∑
i=1

δi) = β(x|∆), (20)

or simply β(x|∆) ∝
∏M
i=1 β(x|1 + δi, 2 − δi), which can

be written as β(x|∆) = Ẑ(∆)
∏M
i=1 β(x|δi), where Ẑ(·) is a

factor with a value independent of x. We can compute it by
taking into account the normalizing factors that are implied in
eq. (20). Thus, finally we have

Ẑ(∆) =
M + 1

2M

(
M∑ M
i=1 δi

)
.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union’s Horizon 2020 research and inno-
vation Programme (H2020-EINFRA-2014-2015) under grant
agreement n°674943 (project READ).

REFERENCES

[1] M. Villegas, J. A. Sánchez, and E. Vidal, “Optical modelling and
language modelling trade-off for handwritten text recognition,” in Pro-
ceedings of the 13th International Conference on Document Analysis
and Recognition (ICDAR), 2015, pp. 831–835.

[2] V. Lavrenko, T. M. Rath, and R. Manmatha, “Holistic word recognition
for handwritten historical documents,” in Proceedings of the 1st Inter-
national Workshop on Document Image Analysis for Libraries, 2004,
pp. 278–287.

[3] G. Leifert, T. Strauß, T. Grüning, W. Wustlich, and R. Labahn, “Cells in
multidimensional recurrent neural networks,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 3313–3349, 2016.

[4] V. Frinken, A. Fischer, R. Manmatha, and H. Bunke, “A novel word
spotting method based on recurrent neural networks,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 34, no. 2, pp. 211–
224, 2012.

[5] M. Diem, F. Kleber, and R. Sablatnig, “Text line detection for hetero-
geneous documents,” in 12th International Conference on Document
Analysis and Recognition, 2013, pp. 743–747.

[6] J. Almazán, A. Gordo, A. Fornés, and E. Valveny, “Word spotting and
recognition with embedded attributes,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 12, pp. 2552–2566, Dec
2014.

[7] A. P. Giotis, G. Sfikas, B. Gatos, and C. Nikou, “A survey of document
image word spotting techniques,” Pattern Recognition, vol. 68, pp. 310
– 332, 2017.

[8] C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classifi-
cation for zero-shot visual object categorization,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 36, no. 3, pp. 453–465,
2014.

[9] S. Sudholt and G. A. Fink, “PHOCNet: A deep convolutional neural
network for word spotting in handwritten documents,” in Proceedings
of the 15th International Conference on Frontiers in Handwriting
Recognition (ICFHR), 2016, pp. 277–282.

[10] P. Krishnan, K. Dutta, and C. V. Jawahar, “Deep feature embedding for
accurate recognition and retrieval of handwritten text,” in Proceedings
of the 15th International Conference on Frontiers in Handwriting
Recognition (ICFHR), 2016, pp. 289–294.

[11] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[12] A. Fischer, A. Keller, V. Frinken, and H. Bunke, “Lexicon-free handwrit-

ten word spotting using character HMMs,” Pattern Recognition Letters,
vol. 33, no. 7, pp. 934–942, 2012.

[13] G. Sfikas, A. P. Giotis, G. Louloudis, and B. Gatos, “Using attributes
for word spotting and recognition in polytonic greek documents,” in
Proceedings of the 13th International Conference on Document Analysis
and Recognition (ICDAR), 2015, pp. 686–690.

