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ABSTRACT

Deep features, defined as the activations of hidden layers of a
neural network, have given promising results applied to var-
ious vision tasks. In this paper, we explore the usefulness
and transferability of deep features, applied in the context of
the problem of keyword spotting (KWS). We use a state-of-
the-art deep convolutional network to extract deep features.
The optimal parameters concerning their application are sub-
sequently studied: the impact of the choice of hidden layer,
the impact of applying dimensionality reduction with a mani-
fold learning technique, as well as the choice of dissimilarity
measure used to retrieve relevant word images. Extensive nu-
merical results show that deep features lead to state-of-the-art
KWS performance, even when the test and training set come
from different document collections.

Index Terms— Deep Features, Keyword Spotting, Man-
ifold Learning, Transferable Features

1. INTRODUCTION AND RELATED WORK

Keyword spotting (KWS) is essentially the problem of
image retrieval, cast on the context of collections of docu-
ment, line and word images [1]. Depending on whether the
scanned document is pre-segmented, either manually or au-
tomatically, into line or word tokens, an important taxonomy
of KWS methods is in (line or word) segmentation-based and
segmentation-free methods. Not surprisingly, learning-based
methods are in general better performing than learning-free
KWS methods [1]. The vast majority of recently proposed
learning-based methods includes deep learning-based meth-
ods, which seem to have dominated this field as well [1, 2, 3].

In the context of KWS, the typical use of deep neural net-
works involves first training the model on pairs of segmented
word or line images and annotations. Subsequently, using a
feed-forward pass given an input word image, a descriptor is
produced on the network output layer. The descriptor is then
compared to descriptors of other words to give a sorted rele-
vance list. It has however been noted that layers other than the
output layer can be used to produce features. These features,
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corresponding to one (or more) hidden layers of the network,
have been commonly known as deep features [4] in the liter-
ature (or hypercolumns [5, 3], when more than one layer ac-
tivations are combined). In other machine vision tasks, deep
features have often led to superior results compared to the
standard use of the network [4]. This is due to their being able
to capture more abstract traits of the input [6]. This obser-
vation has inspired Zoning-Aggregated Hypercolumn (ZAH)
features, proposed in [3], where deep features are extracted,
processed and applied on a KWS task.

In this work, we use PHOCnet [2] as our model of ref-
erence. PHOCnet is a Deep Convolutional Network that has
recently been proposed for KWS. We use PHOCnet to pro-
duce network outputs, i.e. using it as was originally intended,
as well as to extract deep features suitable for the KWS task.
With extensive numerical experiments, we validate the use-
fulness of deep features on various different setups for KWS.
Furthermore, we show that deep features are much more
transferable compared to simply using the network output.
Even when the model seems to overfit on a particular training
collection (an aspect that seems to have been overlooked on
various recent works that nevertheless report very high per-
formance figures [1]), deep features by comparison exhibit
much better generality, in the sense of being applicable to a
test set that comes from a different collection than the training
set.

Another parameter that we explore is the value of com-
bining manifold learning with the extracted features [7, 8].
The intuition behind manifold learning methods is that data
empirically lie on low-dimensional manifolds that span a rel-
atively low volume of the original space. This hypothesis,
commonly known as manifold hypothesis, has led to a series
of methods that attempt to estimate the characteristic of the
data manifold. We use the recently proposed t-SNE mani-
fold learning method in this work. t-SNE has shown to be
successful and enjoys a number of benefits — for example,
it has shown to be robust to the so-called crowding problem
(embedding coordinates crowding around zero) [7]. We show
that using manifold learning to reduce the dimensionality of
our features leads to increased KWS performance.

Furthermore, the question of which dissimilarity measure
is more suitable for descriptor comparison is explored. As
an alternative to the Euclidean distance, the Bray-Curtis dis-
similarity (BC) has recently been employed in the context



of keyword spotting [9, 2]. We compare BC with the Eu-
clidean distance, with and without applying L2-normalization
before evaluation. Numerical experiments show that the L2-
normalized Euclidean distance gives the best KWS results.

The remainder of this paper is organized as follows. In
section 2 we describe the employed pipeline to produce trans-
ferable deep features. In section 3 we present numerical re-
sults comparing various setups of the proposed pipeline on
KWS trials. We close the paper with section 4 where we sum-
marize our conclusions.

2. METHOD AND MODEL PARAMETERS

We assume a Query-by-Example (QbE) segmentation-based
KWS scenario and the Mean Average Precision (MAP) eval-
uation metric [1]. This means that all data -both training and
test- are segmented word images, and queries are word im-
ages as well. The core of the proposed method consists of us-
ing a CNN as a feature extractor. We have used PHOCnet [2],
a CNN architecture recently proposed for segmentation-based
KWS. PHOCnet was the best performing model on the recent
ICFHR 2016 KWS competition (unpenalized MAP scenario)
[1]. After having trained the CNN, the extracted Deep Fea-
tures are defined simply as the activations of a hidden model
layer, when a specific word image input is provided. Given
all word images, plus the query, we thus create descriptors
—one for each word image— based on deep features. These de-
scriptors are typically of high dimensionality, with the exact
number of the latter depending on the number of neurons per
hidden layer '. Hence, a dimensionality reduction method can
be applied to reduce the dimensionality of the descriptor. The
final descriptors can then be compared using some measure
of dissimilarity, in order to provide the retrieved query list.
In the following subsections we explain these steps in more
detail.

2.1. Neural Network Architecture and Deep Features

PHOCnet is a standard feed-forward neural network. The
word image to be processed is fed to the network input, with
information flowing first through a number of alternating
standard convolutional and max pooling layers. The size
of all these layers depends on the size of the input image.
The last convolutional layer is then fed to a spatial pyramid
max pooling layer (SPP) [10]. The SPP layer (referred to
as spp5) produces a fixed-size output given a variable-size
input, as it processes input from the previous layer after par-
titioning it into a hierarchy of grids of variable resolution
(4 x 4,2 x2,1x 1). The SPP property of producing a fixed-
size output regardless of the input, is in a way inherited by
the whole model. In this manner, there is no need either to
scale the input image to a fixed size or perform some manual

For example, the dimensionality of the features generated from layer
sppb (the closest to network input) is 10, 752.

zoning step afterwards, as done in [3] for example. The out-
put of the SPP is fed to two fully connected layers, coupled
with ReLLU non-linearities (referred to as relu6, relu7). The
final layer is structured in a manner to reflect the structure
of a Pyramidal Histogram of Character (PHOC) vector [11].
PHOC variates capture information about the word, in the
form of a set of word attributes. Each output neuron is cou-
pled with sigmoid nonlinearities, producing an output vector
with values ranging between 0 and 1. Regarding further de-
tails on the network architecture, as well as details on how
training is performed (parameters, number of iterations, use
of dropout, etc.), the reader is referred to the original publica-
tion [2]. All layers between the input layer and the SPP layer
are of variable size, as they depend on the input word image
size. Deep features extracted using activations of these layers
would hence be not directly comparable to one another, as
each one would lie on a space of different dimensionality.
For that reason, we cannot extract useful deep features from
these layers (at least without applying some postprocessing
scheme to make them comparable, a question which we shall
not explore in this paper). Therefore, we use spp5, relu6 and
relu7 to extract deep features.

2.2. Manifold learning

We use t-SNE as our non-linear manifold learning technique
of choice [7]. In t-SNE, the goal is to minimize the di-
vergence between pairwise similarity distributions of input
points and the low-dimensional embedded points. The N
input points are denoted as {z;}¥; and their corresponding
embeddings are denoted as {y;};. The joint probabil-
ity p;; that measures the pairwise similarity between two
points z; and z; is defined as p;; = (2N) ' (p;i + pijj)s
with pj;; o exp(—d(x;,2;)%/207). A typical choice for
d(-,-) would be the Euclidean distance. In this work, we
experiment with other distances as well. The standard de-
viation o; is computed according to a predefined perplexity
which can be considered as the effective number of neigh-
bors for each point x;. The pairwise similarities in the
embedding space are modeled by a normalized Student’s-t
distribution with a single degree of freedom. The embed-
ding similarity between two points y; and y; is defined as:
gij = (L4 v = yill) 7/ 200 e (U + llye = wl*) 7"
The target embedding is finally calculated by minimizing the
Kullback-Leibler (KL) divergence »; >, pijlog(pij/dij)-
As this objective does not have an analytical solution, gradi-
ent descent is used to solve it [7]. The result of this optimiza-
tion are the embedding coordinates that correspond to each
input word image. These are subsequently used as the finally
employed word image descriptors.

2.3. Dissimilarity Measures

We perform comparisons on all extracted features using three
different dissimilarity measures: The Euclidean distance
(L2), the Bray-Curtis dissimilarity (BC), and the normalized



Euclidean distance (L2-normal). As we employ manifold
learning (see previous subsection) to reduce feature dimen-
sionality, we use the chosen measure to learn the manifold
by plugging it into the related similarity equation for p;; (see
previous subsection). Comparisons on the reduced space are
always performed using the Euclidean space. BC is defined
asdpc(a,b) = % It has originally been proposed as
a measure of distance between histograms [12]. In practice,
it can be used with any nonnegative-valued pairs of vectors 2.

The normalized L2 distance (L2-normal) is the Euclidean
distance computed over L2-normalized versions of the orig-
inal vectors. This is tantamount to what is referred to in the
literature as cosine or dot-product distance. In other words,
the angle between vectors is measured, regardless of the mag-
nitudes of the compared vectors. Given normalized vectors,
this distance is easy to compute, as it only involves computing
a dot product. That is the reason why numerous authors seem
to prefer it over the Euclidean distance (e.g. [11]), however
as we shall see in section 3 its use can also lead to slightly
improved performance.

3. NUMERICAL RESULTS

For our experiments we have used a variaty of well-known
collections of handwritten documents [1]. These are namely
the GW20, IAM, Bentham14 and Modern14 sets [1]. GW20
is a collection of 20 historical manuscripts. It has been written
by G.Washington and his associates, but is characterized by
quite limited variability in style. The IAM collection is rightly
considered to be much more challenging, as well as much
more diverse than GW20, as it contains material written by
657 writers. IAM and GW20 are used in separate trials to
train our neural network, as described in [2]. Bentham14 and
Modern14 have been introduced originally in the context of
the ICFHR 2014 HKWS competition [1].

‘We have first trained our model on the IAM database, and
run tests over itself (cross-validated folds) as well as GW20,
Bentham14, Modern14. The parameters of the test were (a)
extracting deep features from different network layers (we
compare sppb, relub, relu7) (b) applying t-SNE to produce
low-dimensional embeddings or not (c) using different dis-
similarity measures (we compare BC, L2, L2-normal). Prior
to applying t-SNE, we first compute projections with PCA.
As BC is suitable for use only with nonnegative vectors 3, we
do not apply PCA in that case. The PCA projection and the
t-SNE embedding dimension was fixed in all cases to 400 and
4 respectively.

A number of observations can be made on these results,
presented in table 1. First, embedding with t-SNE gives in

2We must note that BC is not a distance metric in the strict mathematical
sense, as it does not adhere to the triangle inequality [12]. However, for all
practical intent, at least in the scope of the current application, this is not a
problem.

3Preliminary tests of the BC on real-valued vectors have shown that per-
formance deteriorates severely.

GW20
BC L2 L2-normal
sppS> | (76.3)80.4 (74.9)78.4  (77.6)81.4
relu6 | (82.1)84.1 (75.6)81.8 (79.0)84.4
relu7 | (80.2)82.4 (74.7)79.5 (78.3)81.9
output | (76.0)78.4 (72.7)73.4  (74.9)75.9
IAM
BC L2 L2-normal
sppS | (59.5)63.6 (62.0)67.0 (68.4)72.8
relu6 | (74.6)79.4 (70.0)75.6 (78.2)81.5
relu7 | (75.5)80.0 (69.4)74.2 (78.03)81.2
output | (76.1)79.5 (73.5)74.4  (76.7)77.6

Table 1. MAP results of KWS trials over different test sets, differ-
ent layers to extract deep features, and different dissimilarity mea-
sures. PHOCnet trained on IAM was used in all cases. Figures are
results obtained without using t-SNE embeddings.

most cases a slight up to considerable boost. Concerning
the best layer choice, deep features consistently outperform
the “output” of the NN. Regarding the choice of dissimilarity
measure, L2 gives the worst results. Both L2-normal and BC
achieve improved results.

In figure 1, we show a comparison of results using dif-
ferent layers to extract features. The L2-normal distance is
used in all cases. In table 2 we present a list of the best per-
forming deep features, and a comparison of their performance
against extracting descriptors from the output layer. Note that
in almost every case, deep features give the best performing
descriptors. The difference between best layer and output in
terms of MAP, can reach more than 17% (table 2, train on
TIAM/test on Modernl4). A gain of 5 — 10% performance on
average seems to be the norm. We report only results over
t-SNE embedded features, which have shown slightly better
performance as we have seen on the previous results; how-
ever they are strongly correlated to the results obtained with-
out applying t-SNE. Only the output of the GW 20-trained
net seems to perform better than deep features, with a neg-
ative difference (—1.3%). This can be explained due to the
limited style variability of GW 20, which leads to overfitted
high results on itself and low results on other datasets. Ben-
tham14 seems to be an exception, at least to a certain extent.
This can be attributed to the similar style of these two datasets
(for example, [11] had trained a model on GW20 and tested it
on Bentham14 with considerable success [13]).

Interestingly, deep features give improved performance
even in cases when using the model output would give almost
zero MAP (for example, table 2, train on GW/test on [AM
or Modernl14). The case of training on GW20 is indeed par-
ticularly noteworthy: the same model gives figures close to
100% when tested and trained on different folds of the same
database, but results become very inadequate when tested on
input coming from a different database. This is evidently a
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Fig. 1. Performance comparison (MAP%) using different network layers to extract deep features, versus using the network output. Results
using models trained on GW20 (top row) and IAM (bottom row) and tested on GW20, IAM, Bentham14, Modern14 (from left to right
column) are shown. The colour of the bars correspond to using (blue) versus not using (yellow) t-SNE embeddings. Note that, especially
when the training and test folds come from different collections, using deep features leads to clearly much better performance.

Deep features | PHOCNet output | Boost

GW20 84.4(relub) 75.9 +8.5

IAM 81.5(relub) 77.6 +3.9

Bentham14 | 87.8(relub) 79.8 +8

Modern14 | 91.1(relu6) 74.0 +17.1
(a)

Deep features | PHOCNet output | Boost

GW20 95.3(relu’) 96.6 —-1.3

IAM 15.0(sppb) 2.8 +12.2

Bentham14 | 72.0(relu7) 64.5 +7.5

Modern14 16.4(sppb) 8.4 +8.0
(b)

Table 2. Performance comparison (MAP%) of deep feature per-
formance vs standard NN output. Results using models trained on
IAM (a) and GW20 (b) are presented. The layers related to the best
deep features are indicated, along with the boost compared to per-
formance using standard NN output.

] Method | Bentham14 | Modern14
Kovalchuk et al. [14] 52.4 33.8
Almazan et al. [11] 51.3 52.3

Howe [15] 46.2 27.8
Retsinas et al. [16] 57.7 35.5
Sfikas et al. [3] 53.6 32.1
PHOCNet output 79.8 74.0
Deep Features 87.8 91.1

Table 3. Comparison versus state-of-the-art KWS methods. Re-
sults using the IAM-trained PHOCnet model are used to extract deep
features.

case of overfitting. In our opinion, this result is quite alarm-
ing, as many recent works have focused on obtaining the best
figure with training and testing on the same database [1], ne-
glecting to report how the same model would fare if tested on
a different set.

On the other hand, deep features comparatively show bet-
ter performance, even when using a model that has overfit on
a specific set. This validates the point that deep features are
transferable and lead to less specific, more general features
compared to the network output.

Another interesting point is that features obtained from
the NN trained on IAM are considerably transferable. We
attribute this fact to the rich variability of the IAM dataset,
which contains data coming from hundreds of writers, com-
pared to the much smaller and less variable GW20 set. Fur-
thermore, in this case, the t-SNE embedding achieves a note-
worthy gain, regardless the layer or the dataset used. Deep
features extracted using the NN trained on IAM, outperform
all other methods in the literature compared on the sets of
ICFHR’ 14 by a significant margin (table 3).

4. CONCLUSION

In this work, we validate the usefulness of hidden layer acti-
vations for extracting deep features and use them to perform
keyword spotting. With extensive numerical experiments, we
have shown that these features are transferable; that is in the
sense that their performance is by comparison more robust
to being applied to different styles and sets. Such features
achieve results significantly better compared to features ob-
tained through the “standard” NN use, i.e. using its output.

We have also used different dissimilarity measures for de-
scriptor comparison. Our results suggest that a form of nor-
malization is beneficial for the task, regardless of the type of
features. Concerning the Bray-Curtis dissimilarity in particu-
lar, we show that even if the motivation for its use was orig-
inally to compare histograms, it clearly works even for deep
features, which do not have any such significance.

Also, the application of manifold learning led consistently
to better results according to our experimental results. Com-
pared with state-of-the-art methods applied on datasets of a
recent KWS competition (Bentham14, Modern14) the pro-
posed features lead to significantly superior numerical results,
even though using a model trained on a different set (IAM).
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