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Abstract—In medical imaging, constructing an atlas and
bringing an image set in a single common reference frame
may easily lead the analysis to erroneous conclusions, especially
when the population under study is heterogeneous. In this
paper, we propose a framework based on spectral clustering
that is capable of partitioning an image population into sets
that require a separate atlas, and identifying the most suitable
templates to be used as coordinate reference frames. The
spectral analysis step relies on pairwise distances that express
anatomical differences between subjects as a function of the
diffeomorphic warp required to match the one subject onto the
other, plus residual information. The methodology is validated
numerically on artificial and medical imaging data.

I. INTRODUCTION

In medical image analysis an atlas, in its simplest form, is

the image of the average subject out of a given training popu-

lation. Atlas construction dates back to early attempts which

were based on one, or at best a few, medical images [1], [2].

In the more elaborate sense of the term, atlas may refer to

models of the image population, aiming to describe intensity,

structural, vascular and functional variability. Information

conveyed by the atlas can be used for various purposes,

including normalization to the atlas coordinate frame using

the atlas as a registration template, segmentation of certain

tissues of interest, studying and identifying pathologies and

structural anomalies in new patients [3], [4], [5].

In order to infer useful information out of a set of images,

the first step is to bring them into correspondence in a

common coordinate frame. This is typically performed by

choosing a single template from the training population,

and have the rest of the data registered one-by-one onto the

frame of this subject. However, if the choice of the template

subject is done poorly, the resulting atlas will be biased

toward the template. This problem has been addressed by

searching for the least-biased template [3] or by groupwise

registration to a common coordinate frame [4], [6], that does

not require any template choice. However, these approaches

work under the hypothesis, explicitly stated or not, that the

examined population is unimodal. Such a hypothesis may

be damaging for the population analysis if in fact there

exist multiple modes in the data, like for example a group
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of control subjects mixed with neurodegenerative disease-

suffering patients.

Identification of multiple modes has been explored in [7],

where the population is clustered using the mean shift algo-

rithm. The subjects are brought pairwise into correspondence

using a registration algorithm then inter-subject distances -

using data representations in image space- are calculated

to infer the data neighborhoods required by mean shift.

The registration step has to be repeated for every iteration

of mean shift, resulting in a heavy computational load for

large data sets. In [8], a generative model was proposed

that corresponds each population mode to a kernel of a

Gaussian mixture model (GMM). The model is then solved

using an EM-based algorithm, simultaneously registering

the training subjects to their respective calculated templates.

While this model is clearly more sophisticated than a simple

GMM, say over subject intensities, it is well-known that

the obtained result in mixture models is highly sensitive

to initialization, especially in high-dimensionality problems

such as the problem at hand. Thus, the analysis could easily

be biased towards false modes.

In the current work, we propose a method to infer

multiple atlases out of a population of images, that does

not require choosing any initial template estimates and does

not assume any single common reference frame prior to the

final result. The presented algorithm is based on spectral

clustering [9]. Spectral clustering treats data as an undirected

weighted graph, constructed by means of their intersubject

distances; it has been used successfully in a wide variety of

applications [10], [11]. In [12], spectral clustering was used

to classify MR images using feature vectors based on atlas-

based constructed segmentations of various brain structures.

In the proposed method, subject distances are calculated

using directly the result of trigonometric-kernel based non-

rigid pairwise registration [13]. We argue that such distances

can be used in a meaningful manner and finally evaluate the

entire framework numerically.

The proposed scheme was tested on an artificial image

set as well as on real brain MR images with simulated

deformations, yielding promising results.
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II. GENERALITIES AND SPECTRAL CLUSTERING

Let us assume a training set X of N images

{x1, x2, ..., xN}. Our goal is to effectively cluster the set

into K groups, assigning a separate representative image -

the atlases - to each of these clusters. Given the number

K of required atlases / clusters and a notion of similarity

between the training data, spectral clustering can give us

a partition of the data that maximizes intra-cluster while

minimizing inter-cluster image similarity. This is done by

exploiting some useful properties of the graph Laplacian

matrix L [9]. Using the eigenstructure of L, every datum

is represented as a K-variate vector, and k-means is used

to finally cluster the resulting K-dimensional set. Spectral

clustering can solve complex setups of the training data, even

when the data clusters do not form strictly convex sets.

In this work, we calculate all inter-subject distances and

thus construct first a distance matrix. This matrix is subse-

quently transformed to give the similarity matrix required to

compute the Laplacian. The choice of this transformation

is not a trivial task [9]; we choose to use a k-nearest

neighbor graph, which produces a sparse similarity matrix

and depends on a practically intuitive parameter. Graph-

theoretical results [9] suggest a value of around k = log(N)
as a good first approximation, which worked well in our

experiments.

III. DEFORMABLE REGISTRATION MODEL AND

PROPOSED METHOD

In order to construct the distance matrix and subsequently

the graph Laplacian matrix, we quantify anatomical differ-

ences between each image pair using deformable non-rigid

registration. In this work we have used the non-rigid diffeo-

morphic registration model proposed in [13], which employs

grid-based trigonometric kernel interpolating warps. In this

model, by constraining the offset of the control points to

lie within a certain bound, the calculated deformation is

easily guaranteed to be diffeomorphic. Diffeomorphism is

a desirable trait in the medical imaging and computational

anatomy context [6], as it guarantees invertibility and no

folding or tearing.

The registration can be easily described by a finite set of

parameters. Matching image xi to image xj will yield a warp

parameter vector dij , of dimensionality equal to the number

of the warp degrees of freedom, which are analogous to the

number of control point displacements. This representation

offers us the advantage that any convex combination of such

vectors corresponds to a valid diffeomorphic deformation,

given that the original vectors correspond to known dif-

feomorphisms themselves [13]. Any interpolating straight

line in the parameter space between known diffeomorphisms

comprises of valid diffeomorphisms, describing a continuous

displacement of the control points. Under the hypothesis

that traveling along this interpolating line may also have an

intuitive meaning, in this work we consider the Euclidean

norm of the warp vector dij as the anatomical distance

between two images xi and xj .

However, warping xi according to dij is not guaranteed

to give back xj exactly. Large differences between images

are hard to be well represented by a diffeomorphism, and

in practice we will have a residual between the warped and

target image not captured by the transformation [14]. We

account for this by concatenating the residual norm as a

separate variate to the warp vector dij
1, weighted so that

it is commensurate with the control point displacements. In

order to calculate the proper weight, we compute the residual

between a source random-intensity image and a warp on

the same random image. The ratio between the magnitude

of the computed residual and the weight of the used warp

(if not unitary) gives the required weight. This weighting

is similar-in-spirit with the weighting between warps of

different multiresolution levels used [13]; also the computed

weight value empirically has shown to be relatively robust

to the realization of the random image used, as well as the

warp choice.

Figure 1. Template and synthesized sketches from the toy set.
Left: The original drawing, with coordinate grids shown. Center:
Deformation is applied as described in text; a blue circle marks the
displaced control points. Right: Registration result of the original
to the deformed image.

Note that we have not defined any vector representation

in some common reference space for all the training data.

Vectors dij are only meaningful as describing the distance

between only the given subjects xi, xj . Having a common

reference space for the deformations would be equivalent

to finding and using a single template subject, which is in

itself not a straightforward task and would bias the analysis

towards the used atlas [3], [6]. On the other hand, this would

refute our primary hypothesis that multiple atlases exist

and represent the data. Avoiding a common feature vector

representation altogether fits well with spectral clustering,

where all that is required is a way to define the inter-datum

distances.

Once all inter-subject distances ‖dij‖ are computed, we

calculate2 the similarity matrix and cluster X as described

in the previous section. Finally, we choose as representative

atlas of each cluster their respective medoids, as they min-

1From this point onward, dij will refer to this augmented vector that
comprises the residual.

2Since in general the registration result xi to xj will not be the same as
xj to xi, ‖dij‖ 6= ‖dji‖. Hence, we work with the symmetric component
of the similarity matrix.
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imize inter-subject distance in their respective clusters and

can be easily computed using the distance matrix.

IV. EXPERIMENTS

We have tested the proposed scheme on a toy data set, as

well as on a synthetic data set based on real MR images.

The toy data set consists of 40 128×128 grey-level images,

each being a deformed version of a cartoon-like drawing

(fig. 1). Note that these deformations were created using

bilinear interpolation to calculate warps for points not in the

control point grid, while the registration model as already

discussed uses trigonometric kernels. Half of the toy set

depicts the cartoon wearing the hat straight (’hat straight’),

while the other half of the set shows the hat not worn

straight, in varying positions (’hat oblique’) (fig.2) . In all

cases a random facial expression deformation was applied.

The control point coordinates deformation on the left side

of the hat πl and the deformation on the right side πr are

constrained to satisfy π2

l + π2

r = const.. At the same time

πl, πr are dependent on the displacement of the bottom

control point (see fig.1), thereby producing a helix-like

structure for the ’hat oblique’ data.

Figure 2. Samples from the toy image set. The cartoons on the
top row (class 1) have their hat straight, while the cartoons on the
bottom have their hat oblique (class 2).

The toy set images were processed with the proposed

scheme, and the two clusters / population modes were

identified successfully. For purposes of comparison, we have

performed the same test with other well-known clustering

algorithms, namely k-means, a Gaussian mixture model and

mean shift, the latter used in [7] in the same context as in the

present work. As the algorithms used for comparison require

a data vector representation to work, we have warped all

training data to a fixed template and calculated the resulting

warp vectors. In practice, an unsuitable template could result

in problematic warp vectors, inhibiting performance; this is

a strong point for the proposed method, which skips this

step.

The results are presented in table I, where we show correct

classification ratio (ratio of subjects classified correctly,

CCR) mean values for 1000 random algorithm initializations.

For the proposed method, there is no result variation due

to initialization (though it is possible in general that the k-

means used in the spectral analysis final step will not lead

to the same single solution always). For mean shift, we

show results for neighborhood bandwidth h = 0.1, which

Table I
CORRECT CLASSIFICATION RATIO (CCR) RESULTS FOR TOY

SET (HAT STRAIGHT/HAT OBLIQUE) TRIALS.

Method CCR

Proposed 80.0% ± 0.0

mean shift 62.6% ± 0.4

k-means 60.2% ± 7.0

GMM 60.1% ± 10.0

calculated the actual number of classes (2). For h < 0.093
mean shift clusters the data in more than 2 classes and in

general overclusters arbitrarily the data, with the number of

classes rapidly increasing as the bandwidth decreases. For

h > 0.12 on the other hand, the data form a single cluster.

Note that using a k-nearest neighbor neighborhood definition

for mean shift, resulted in collapsing all data to a single

mode for any value of k.

While it is clear that the scenario may be overly simple

and artificial, the point we want to make here is that there

may exist clusters of deformations -corresponding to the

warp vector distance introduced- with a complex, non-

convex structure. At the same time these can correspond

to an intuitively simple training set partition, like the hat

straight/hat oblique scenario presented. Spectral clustering

can capture such structures, whereas more conventional

clustering methods fail.
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Figure 3. Correct classification ratio (CCR) results for the OASIS
brain MRI dataset with respect to the number of clusters K.

In order to test the proposed scheme on medical imaging

data, we synthesized a brain image dataset based on a

number of 208 × 176 MR axial brain slices obtained from

the OASIS brain repository [15]. The images were taken

from corresponding slices of affinely-registered, gain-field

corrected whole brain MRIs. Each image was created by

randomly deforming a multiresolution grid of 2×2, 4×4 and

8 × 8 control points (see fig. 4). Therefore, the synthesized

images for a given real image should ideally belong to

the same cluster, i.e. should be assigned to the same atlas.

We used 6 original images, and synthesized 4 images for

each original image; hence we had 30 subjects in total,

corresponding to 6 real templates. The correct classification

ratio results are summarized in fig. 3, where we also show

corresponding results for subsets of the original set. Each of

these subsets comprises K = 2...5 original MRIs along with
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the corresponding synthesized subjects. In all, we remark

that for all values of K the average CCR is close to 1,

exhibiting little variance. For the 2-template set in partic-

ular, subjects are clustered perfectly. Also, as K increases

the problem difficulty also increases, however there is no

noticeable decay on the classification result.

Figure 4. Medical imaging data. Left: Brain MR axial slice taken
from the OASIS dataset. Center: Synthesized deformed slice. Right:
Derived template, corresponding to the medoid of the respective
computed cluster.

V. CONCLUSION AND FUTURE WORK

In view of the fact that a single common template or

reference frame is not suitable for heterogenous image

populations, we have proposed a framework capable of

identifying such clusters requiring a separate atlas. In using

spectral clustering, we avoid a common reference frame

representation for our training set; only a one-time inter-

subject distances computation is required. Another novelty

of our approach is the distance metric proposed, resulting

naturally from the diffeomorphism framework of [13] which

guarantees convex combinations of valid warps to be also

valid. Our distance incorporates residual information, albeit

in an ad hoc manner; discovering more elaborate distance

metrics can be a future research perspective. Another di-

rection of research would be to estimate the number of

population classes, which is required beforehand in spectral

analysis. There is related work based on Laplacian matrix

eigenvalue-based heuristics [9], [10].

Concluding, we showed by numerical evaluation that the

proposed method can capture difficult anatomical differences

and work well in both the non-medical and medical imaging

context. Let us point out that our framework is straight-

forwardly extensible towards handling three-dimensional

images and deformations - this will allow us to have the

proposed method tested on 3D image training sets fully-

comprising of real medical images.
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