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ABSTRACT

In the context of image segmentation, Markov random
fields (MRF) are extensively used. However solution of
MRF-based models is heavily dependent on how succes-
fully the MRF energy minimization is performed. In this
light two methodologies, complementary to each other, are
proposed for optimization of the special class of models
comprising of a random field imposed on label priors. This
class of segmentation models poses a special optimization
problem, as the variables constituting the MRF in this case
are continuous and are subject to probability constraints (pos-
itivity, sum-to-unity). The proposed methods are evaluated
numerically in terms of objective function value and seg-
mentation performance, and compare favorably to existing
corresponding optimization schemes.

1. INTRODUCTION

Markov random fields have been successfully incorporated
in various applications in the field of image processing, as
image segmentation [1, 2], image restoration [3] or super-
resolution [4]. The foremost reason for their popularity is
that they can elegantly and formally model the spatial co-
herence trait of images.

In this paper we are interested in Markov random fields
in the context of image segmentation,i.e. clustering a given
image inJ non-overlappingmeaningfulregions. A mesh
of J-variate zero-one vectors is typically assumed (Z) that
serves to relate each image pixel to a unique cluster. Thus
effectively, meshZ conveys all information necessary about
the assumed segmentation. Observed feature vectors are
thence assumed to by generated independently given knowl-
edge of the cluster they belong to. Inference of the segmen-
tation is thence performed by estimating the posterior ofZ
conditioned on the observed image.

According to the way MRF constraints are implemented
and based on the previously described general generative
model correspond two distinct generative model types. The
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first model type involves assuming a Markov random field
directly on class labels. However, inference of the poste-
rior field distribution is typically intractable and estimation
algorithms such as the computationally expensive family of
the Markov chain Monte Carlo techniques [5] have to be
employed. Other inference methodologies propose conve-
nient approximations for the posterior random field, such
as the pseudo-likelihood [6] or the simulated-field approxi-
mation [2]. Imposing a discrete MRF on the pixel labels is
successfully used in [7], [8], [9] among others.

An alternative to avoid the computational cost of the
pixel label MRF estimation is to model thecontextual mix-
ing proportions, that is probabilities of the pixel labels (or
the mixing proportion vector for each distinct pixel), as a
Markov random field [10, 11, 12, 13, 14]. In such mod-
els, MAP estimation of the contextual mixing proportions
is possible, and the computational cost is transformed from
a hard posterior inference problem, as in the discreteMRF-
on-labelsmodel family, to a difficult constrained optimiza-
tion problem. In that case, the constraint is that the con-
textual mixing proportions corresponding to a pixel must
always sum up to unity as they must be probability vec-
tors. However, as conjectured and experimentally observed
in [15], an advantage for the second model would be a less
sharply peaked likelihood function.

The resulting estimated segmentation, for whichever of
the aforementioned MRF schemes, relies heavily on para-
meter initialization and optimization [16]. There exist pow-
erful optimization schemes suitable for discrete MRFs, as
graph cuts [8] or loopy belief propagation [17]. However
such schemes are not applicable in the case where the MRF
is imposed implicitly on the pixel label priors, as in the sec-
ond model described in the preceding paragraph. The added
difficulty is that the quantities to be optimized are probabil-
ities, which means that the search space is continuous, and
secondly that each probability vector must always sum to
unity.

In this paper, we propose and evalute two distinct meth-
ods on optimization of the Markov random field for segmen-
tation probabilistic models that lie in the MRF-on-contextual



mixing proportions family. An outline of the model consid-
ered is described in section 2. The first method proposed,
described in section 3, introduces a novel strategy in updat-
ing field sites, as opposed to the standard sequential raster
scan of MRF sites. In section 4, we propose a method to
deal with the sum-to-unity constraint posed in every site to
be updated. Note that the proposed methods are comple-
mentary to each other, and may thus be used in tandem.

2. MRF FORMAL DESCRIPTION

LetZ be a mesh of zero-oneJx1 vectors,{zn}N
n=1, control-

ling to which of theJ classes of the image, the correspond-
ing pixel indexedn belongs to. ThusZ defines a segmen-
tation on the observed image. We define the vector mesh
Π = {πn}N

n=1 of contextual mixing proportions according
to p(zn

j = 1) = πn
j ; in other words the prior probability of

pixel n belonging to class indexedj is πn
j .

We assume an MRF on the mesh of the class priorsΠ.
Consequently [18],Π must be Gibbs-distributed:

p(Π) ∝
∏

C

e−ψc(Π) (1)

whereψc is a function on cliquec, calledclique potential
function in the literature, and the product is over all minimal
cliques of the Markov random field.

In the present work, we shall also assume that local
differences in contextual mixing proportion values are nor-
mally distributed:

πn
j − πk

j ∼ N (0, 1/σnk
j ), ∀n, j, ∀k ∈ γ(n)

whereγ(n) stands for the set of neighbouring pixels of pixel
indexedn. Parameterσnk

j controls Gaussian distribution
tightness; consequently as it tends to+∞, contextual mix-
ing proportion smoothness is forced and vice versa. Note
that with indicesj, n, k on σnk

j we imply that this smooth-
ness factor may be dependent on class (j) as well as po-
sition on the MRF mesh (n and k). In this manner, the
MRF model presented here can represent models where the
smoothness parameter is class-dependent [12] or not [11],
or models where an edge-preserving line process is intro-
duced [13, 14].

In this context, segmentation involvesMAP estima-
tion of the likelihood functionp(X, Π;Ψ), with X com-
prising of the observed image feature vectors andΨ in-
cluding deterministic model parameters, includingσ. As-
suming that the posteriorp(Z|Π, X) is tractable, this prob-
lem is transformed to optimization of the expectation with
regard toZ|X, Π of the surrogate functionp(X, Z, Π,Ψ)
[19]. Rewriting this latter in a more convenient manner, our
objective function with regard to the MRF-governed con-
textual mixing parametersΠ is

<ln p(Z|Π)> + ln p(Π|σ) + const. (2)

where<·> denotes expectation with regard toZ|X, Π.

3. OPTIMIZATION OF THE MRF MESH

A simple and straightforward implementation for optimiza-
tion of (2) with regard toΠ would be to perform a raster
scan for each pixeln ∈ [1..N ] in order to update the sites
sequentially; this involves solvingJ quadratic equations for
each site and then projecting the resultingπn

j vector onto

the constraints
∑J

j=1 πj = 1 andπj > 0 [11]. This scheme
would typically lead to a local maximum.

However, in practice, this local maximum is often far
from the desirable segmentation result both quantitatively
and visually (a related work with a detailed discussion on
this issue is presented in [16]). This is due to the fact that
the values ofΠ have a direct impact on the segmentation as
the hidden variablesZ depend on them.

In order to illustrate the importance ofΠ and its opti-
mization, we have have performed segmentations on a test
image [1] using the Expectation Maximization -derived al-
gorithm in [14], by applying two different initialization schemes.
At first, we have used a standardk-means algorithm which
is common in initializing mixture models. The second ap-
proach consisted in using as initial condition the ground
truth of the image. Although it is impossible to perform the
latter initialization in a real segmentation scenario, we ap-
plied it in the sense of the best initialization a segmentation
method could potentially attain.

A raster scan was applied to both initialization approaches
in order to sequentially optimize the parametersΠ for each
pixel. The results in table 1 and figure 1 validate that the
ground truth is indeed a local optimum for our edge-preserving
algorithm. However,k-means initialization and standard
raster scan MRF optimization lead to a solution that is opti-
mal neither in terms of likelihood nor visually.

Let us consider now the Markov random field example
in fig. 2. Each site represents a vector ofcontextual mixing
proportionsfor a certain pixel location. Consider the white
sites having mixing proportion vectors equal toπn = zn =
[0.5+ ε, 0.5− ε]T , with 0 < ε < 0.5 and the gray sites have
πn = zn = [0.5− ε, 0.5 + ε]T .

Observe, that each gray site is surrounded by exactly
two gray and two white neighbors and that all white sites
have at most one gray neighbor each. Hence, given appro-
priate values forσ1, σ2 andε the gray sites may have their
π parameters updated to values closer to the values of the
white sites. On the contrary, this will not be the case ifσnk

j

are such that the MRF smoothing effect is tight enough. In
that case, each individual update for the gray sites will nat-
urally leave their weights unaffected. Therefore, if the gray
sites are optimized jointly higher values for the data like-
lihood could be obtained. Intuitively, this can be achieved
by optimizing groups of pixels with the constraint of being



Table 1. The RAND index [20] for the segmentations of the degraded versions of the 3-class artifical image of [1] along
different iterations of the EM algorithm are presented. Method names followed by ”Π” refer to the hypothetical segmentations
computed usingΠ instead of the hidden variablesZ to classify pixels. The average data log-likelihood at the1000th iteration
is also shown.

Initialization 2 5 10 20 200 500 1000 Av.Lhood

k-means .70 .64 .62 .62 .62 .62 .62 59.0
k-means (Π) .70 .73 .75 .76 .77 .77 .77
Ground truth .99 .99 .99 .99 .99 .99 .99 129.0
Ground truth (Π) .99 .99 .99 .99 .99 .99 .99

Z-map Π-map
k-means GT k-means GT

Fig. 1. Segmentation results of the 3-class synthetic image of [1] degraded by2 dB additive white Gaussian noise after 1000 iterations. On
the left are shown the segmentations computed using the labels distributionZ to classify the pixels. On the right are shown the hypothetical
segmentations computed using the contextual mixing proportionsΠ instead ofZ for classification.

Fig. 2. An example of Markov random field of 6x6 sites. The
color of each site corresponds to the image class the pixel is more
likely to belong.

all set to the same value. In view of this conjecture, we ex-
tend the standard raster scan procedure to a newgrid scan
strategy which is described in Algorithm 1.

The update equations in step5 of the proposed algo-
rithm are justified as follows. In each update step of a single
grid S, we need to optimize (2):

<ln p(Z|Π)> + ln p(Π|σ) + const. =

J∑

j=1

{
ln πj

∑

n∈S

(<zn
j >)+

+
∑

n∈S

∑

k∈γ(n),k/∈S

(
−σnk

j (πj − πk
j )2

)}
+ const. (4)

(a) (b) (c)

Fig. 3. Grid-scan updates on an example lattice with 8x8 ele-
ments and1st order neighborhoods. Black color shows the ele-
ments whose contextual mixing proportions need to be updated.
Gray color shows their neighboring pixels. (a) Single element to
be optimized and its neighbors. (b) Elements to be co-optimized
by a step of grid scan and their neighbors. (c) The same elements
to be co-optimized redrawn as one.

with respect toπj ,∀j ∈ [1..J ]. We can easily conclude that
the resulting second-order equation

an
j

(
π

n(t+1)
j

)2

+ βn
j

(
π

n(t+1)
j

)
+ c

n(t+1)
j = 0 (5)

to be solved has coefficients given by:

an
j = −

{∑

n∈S

∑

k∈γ(n),k/∈S

σ
nk(t)
j

}
,

βn
j =

{∑

n∈S

∑

k∈γ(n),k/∈S

σ
nk(t)
j π

k(t)
j

}
,



Algorithm 1 Grid scan

1 Calculate the initial grid size,maxLevel. This is empir-
ically set to

maxLevel ← max(xlog2max(dimX, dimY )y−3, 3)
(3)

2 For eachL← maxLevelto 1 iterate:

3 Let subsetLength ← 2L. Let G denote the set of sites,
with |G| = dimX × dimY .

4 Partition thedimX×dimY sites intoL subsets{Si}L
i=1.

Also we require∪L
i=1Si = G andSi ∪ Sj = ∅, ∀i 6=

j.

5 For each site subsetSi, i = 1, . . . , L, repeat steps5.1,
5.2.

5.1 Define a set of sites̃γ(Si) as

γ̃(Si) , {∪s∈Si
γ(s)} \ Si

5.2 Optimize the sites inSi by solving the quadratic equa-
tion (5), as if we had used raster-scan, with<zn

j > and
γ(n) being replaced by

<z̃j>←
∑

n∈Si

<zn
j >

γ ← γ̃(Si)

6 End.

cn
j =

1
2

∑

n∈S

<zn
j >(t) .

which makes the derivation of algorithm step5 straightfor-
ward.

To evaluate the proposed MRF optimization strategy, we
computed a number of segmentations using the grid-scan
versus the raster-scan optimization method. All tests were
performed on noisy versions of a synthetic3-class image [1]
using the MRF model of [14]. In table 2 we present a com-
parison of raster-scan and grid-scan algorithms in terms of
model likelihood and ratio of misclassified pixels (MCR).
Likelihood scores are consistently better for grid-scan for
all tested noise levels. Visual result as represented with the
segmentation MCR however worsens with grid-scan opti-
mization on low-noise levels. This is justified since as the
noise level decreases, the need for smoothing decreases as
well and higher probability model states may well be corre-
sponding to undesirable smoothing in the resulting segmen-
tation. However, this is an issue of a MRF prior in general.

σ = 28 σ = 52 σ = 95

Fig. 4. Top row: A synthetic 3-class image degraded by
white Gaussian noise, with varying standard deviationsσ =
{28, 52, 95}. Bottom row: Corresponding segmentations using
the proposed optimization schemes.

Table 2. Comparison in terms of likelihood and misclassification
ratio (MCR) for the continuous line process model, between raster-
scan and grid-scan optimization methods.

Raster-scan Grid-scan
σ Av.Likelihood MCR Av.Likelihood MCR
25 43.9 .1% 51.9 .13%
28 40.5 .17% 47.5 .18%
47 27.8 .5% 34.6 .5%
52 28.3 .8% 33.5 .6%
95 28.9 3.7% 31.5 3.2%

4. PROJECTION ON CONSTRAINTS
HYPERPLANE

We have already discussed that we need a maximizer for (4)
also satisfying the constraints:

J∑

j=1

πn
j = 1, πn

j >= 0, ∀j ∈ [1..J ], ∀n ∈ [1..N ].

In the general case, the solution of (5) does not satisfy the
above constraints, that is, the computed contextual mixing
proportionπn

j , j = 1, ..., J for a given pixeln are not the
components of a probability vector.

It can be easily seen, that, for a particular siten, eq. (4)
has the form:

xT Ax + xT b + c ln x + d (6)

where we have denoted[πn
1 πn

2 · · ·πn
J ] asx for convenience.

Also, note that the above function is concave and theJ × J
matrixA is diagonal and negative definite.

An approximation of the objective function (4) is ob-



tained by dropping the term involving the logarithm:

N∑
n=1

∑

k∈γ(n)

{
−σnk

j (πn
j − πk

j )2
}

+ const. (7)

Let y? be the constrained maximizer of the objective
function (7), andt a point on the constraints plane other
thany?. It can be shown thaty? will have to satisfy(y? −
α)T A(t − y?) = 0 for any plane pointt. This can be ex-
pressed otherwise, as looking fory such that the projection
of α′ ≡ A

1
2 α on the transformed plane defined byt′ ≡ A

1
2 t

will be y′ ≡ A
1
2 y. Thus, formally, we have the following

quadratic programming problem to solve:

arg min
y′

‖ α′ − y′ ‖,
∑

j

yj = 1, yj > 0, j = 1, ..., J.

We now employ an active set type method as suggested
in [11], allowing to derive closed form expressions for the
Lagrange multipliers. The associated Lagrange function is
given by:

L(y, λ0, λ) =

1
2

J∑

j=1

(bjyj − bjαj)2 − λ0

( J∑

j=1

yj − 1
)
−

J∑

j=1

b2
jλjyj

whereλ0 is the multiplier for the equality, andλj , j =
1 · · · J are the multipliers for the inequality constraints. Pa-
rametersbj are the diagonal elements of the Hessian matrix
A:

bj =
√ ∑

k∈γ(n)

σnk
j

where we have omitted then data index fromb andu for
convenience. First-order necessary conditions imply:

yj = αj +
λ0

b2
j

+ λj (8)

and injecting it into the equality constraint yields:

λ0 =
1∑

j b−2
j

−
∑

j αj∑
j b−2

j

−
∑

j λj∑
j b−2

j

(9)

Finally, by combining (8) and (9) we obtain:

yj = αj − cj + cj

J∑

l=1

αl + cj

J∑

l=1

λl + λj (10)

wherecj ≡ − b−2
jPJ

l=1 b−2
l

.

Let us notice that the vectorαj − cj + cj

∑J
l=1 αl is the

projection ofα on the constraints hyperplane
∑J

j=1 yj = 1.
The set of Lagrange multipliersλj , j = 1, ..., J must satisfy
the inequality constraints. Karush-Kuhn-Tucker conditions

x

t

y*

α*

x

2

1

ξ

Fig. 5. Example projection to the constraints plane, in the
two-dimensional caseJ = 2. Ellipses represent contours of
the quadratic approximation to the objective function; the line
joining the x1 and x2 axes is the linear constraints plane, here
x1 + x2 = 1, x1, x2 > 0. The unconstrained maximizer isa?,
the constrained maximizer isy? andt is a point on the constraints
plane. Pointξ shows the location of the solution proposed in [11].

[21] state that at the minimizery? we must haveλj > 0 and
λj > 0 if y?

j = 0 which is the active constraint.

Contrary to the projection with [11], we can point out
that in our proposal we have constructed our reasoning based
on the sole hypothesis that the logarithm in eq. (6) is a negli-
gible quantity with respect to the other terms; this provided,
our method will necessarily give the correct constrained op-
timum. Note also that the projection in [11] could be seen
as a subcase of our own proposal, forb1 = b2 = · · · bJ .

To evaluate the proposed algorithm we have compared it
to the projection algorithm in [11]. We have segmented the
color Churchimage (Berkeley database [22], #118035) us-
ing the segmentation model proposed in [14]. The resulting
comparison revealed that the new algorithm provides con-
sistently higher values for the data likelihood (fig. 6).

5. CONCLUSION

While MRF-driven image analysis and in particular image
segmentation can yield excellent results, it is always very
dependent on the manner the field itself is optimized with
regard to the likelihood function. In view of this fact, we
have proposed a strategy for optimizing an MRF mesh, as
well as a novel optimizing projection method, applicable
in cases where the Gibbs clique potentials are Gaussian dis-
tributed. Numerical results show that our proposals work fa-
vorably compared to approaches used for similar-structured
MRF comprising segmentation models.



Algorithm 2 Projection on constraints hyperplane

1 Let y denote the vector at the current iteration. Initially,
we setyj ← bj , ∀j = 1, 2, ..., J . In the general case,
there existm negative componentsyj . The corre-
sponding set of indicesS = {j, with yj < 0} consti-
tutes the active set of constraints for the current vector
y.

2 ∀j /∈ S, setλj ← 0.

3 ∀j ∈ S, setyj = y?
j ← 0 and we compute the cor-

respondingλj by solving anm × m linear system
that forces the inequalities to be satisfied as equalities,
namelyyj + λj + cj

∑J
l=1 λj = 0, written in matrix

form as(I + 1cT )λ = y. The Sherman-Morisson
formula [21] gives:

λj ← yj +
∑

l∈S clyl∑
l/∈S cl

4 Compute the updatedyj values forj /∈ S by (10), using
the new vectorλ.

5 Return to step2 until convergence.
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Fig. 6. Comparison of data likelihood values for the projec-
tion method in [11] and the projection algorithm proposed in this
paper: The test image ([22], see main text) was segmented into
three classes using the model of [14]. The solid curve shows our
results using the proposed projection against the results using the
projection proposed in [11], shown by the dashed curve. For each
configuration, we ran the segmentation10 times usingk-means
initialization perturbed by additive white Gaussian noise of0.2
units standard deviation. Likelihood values (averaged over num-
ber of pixelsN and over the10 different initializations) are shown
for the first100 EM iterations.
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