
J Math Imaging Vis
DOI 10.1007/s10851-009-0174-x

Spatially Varying Mixtures Incorporating Line Processes
for Image Segmentation

Giorgos Sfikas · Christophoros Nikou ·
Nikolaos Galatsanos · Christian Heinrich

© Springer Science+Business Media, LLC 2009

Abstract Spatially varying mixture models are character-
ized by the dependence of their mixing proportions on lo-
cation (contextual mixing proportions) and they have been
widely used in image segmentation. In this work, Gauss-
Markov random field (MRF) priors are employed along with
spatially varying mixture models to ensure the preservation
of region boundaries in image segmentation. To preserve re-
gion boundaries, two distinct models for a line process in-
volved in the MRF prior are proposed. The first model con-
siders edge preservation by imposing a Bernoulli prior on
the normally distributed local differences of the contextual
mixing proportions. It is a discrete line process model whose
parameters are computed by variational inference. The sec-
ond model imposes Gamma prior on the Student’s-t distrib-
uted local differences of the contextual mixing proportions.
It is a continuous line process whose parameters are also
automatically estimated by the Expectation-Maximization
(EM) algorithm. The proposed models are numerically eval-
uated and two important issues in image segmentation by
mixture models are also investigated and discussed: the con-
straints to be imposed on the contextual mixing proportions
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rithm.
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1 Introduction

Image segmentation methods relying on clustering arrange
data into groups having common characteristics [1]. One
of the main research directions in the relevant literature is
focused on mixture models. Modeling the probability den-
sity function (PDF) of pixel attributes (e.g. intensity, tex-
ture) with finite mixture models (FMM) [2] is a natural way
to cluster data because it automatically provides a group-
ing. The parameters of the FMM model with Gaussian
components can be estimated very efficiently through max-
imum likelihood (ML) estimation using the Expectation-
Maximization (EM) algorithm [3]. Furthermore, it can be
shown that Gaussian components allow efficient represen-
tation of a large variety of PDFs. Thus, Gaussian mixture
models (GMM) are commonly employed in image segmen-
tation tasks.

In the context of image segmentation, a drawback of this
approach is the difficulty to capture spatial coherence in-
formation, due to the over-simplifying, yet useful in terms
of model tractability, hypothesis of independent data distri-
bution. While methods to ameliorate this shortcoming have
been proposed, for example by incorporating spatial coor-
dinates in the feature vector [4], a more elegant idea is to
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model the data labels as a Markov random field [5–7]. MRFs
are a powerful modeling tool, also employed, for instance, in
image restoration [8], image super-resolution [9] and edge-
preserving filtering [10].

However, inference of the posterior field distribution
is typically intractable and estimation algorithms such as
the computationally expensive family of the Markov chain
Monte Carlo techniques [2] have to be employed. Other
inference methodologies propose convenient approxima-
tions for the posterior random field, such as the pseudo-
likelihood [7] or the simulated-field approximation [11]. Es-
timation of discrete class labeling in an MRF mesh has
been successfully handled with graph theoretic approaches
[12, 13], most notably graph cuts [14, 15].

An alternative to avoid the computational cost of the pixel
label MRF estimation is to model the contextual mixing pro-
portions, that is probabilities of the pixel labels (or the mix-
ing proportion vector for each distinct pixel), as a Markov
random field [16–21]. In such models, MAP estimation of
the contextual mixing proportions is possible, and the com-
putational cost is transformed from a hard posterior infer-
ence problem, as in the discrete MRF-on-labels model fam-
ily, to a difficult constrained optimization problem. In that
case, the constraint is that the contextual mixing proportions
corresponding to a pixel must always sum up to unity as
they must be probability vectors. However, as conjectured
and experimentally observed in [22], an advantage for the
second model would, in general, be a less sharply peaked
likelihood function, leading in turn to easier model infer-
ence in terms of optimization efficiency and dependency on
initialization.

Another drawback of standard MRF priors used in image
recovery and segmentation is that, in general, they do not
preserve boundaries between image segments as they have
the tendency of smoothing neighboring pixels. In the rele-
vant literature, line processes [5, 23] have been proposed.
They model the presence of a boundary by a binary variable
which is accordingly switched on and off. In place of this
explicit line process, implemented effectively with a binary
variable mesh, dual of the label/mixing proportions MRF
mesh, a form of an implicit line process may be consid-
ered. Robust clique potentials can be thus used for an edge-
preserving effect. The relationship between explicit & im-
plicit line processes has been thoroughly discussed in [24].

In this work, we follow the second family of MRF meth-
ods and propose models imposing MRF smoothness priors
on the contextual mixing proportions of a spatially vary-
ing Gaussian mixture model. Moreover, in order to account
for the preservation of boundaries between image segments,
we choose appropriate priors that take the form of a line
process. More specifically, we propose two distinct models.

In the first model, the local differences between the con-
textual mixing proportions are normally distributed and the

line processes are considered as binary Bernoulli distrib-
uted, with Beta conjugate hyperpriors imposed on their pa-
rameters. This model is shown to be tractable using vari-
ational inference methodology [2]. In the second model,
we propose a continuous approach to the line process,
where we use Student’s-t clique functions to model the lo-
cal differences between contextual mixing proportions. The
Student’s-t distribution is well-known as a robust alterna-
tive to the Gaussian distribution [25] and in this context
serves as an implicit line process. However, we shall show
that this setting is equivalent with an explicit line process
with Gaussian-distributed cliques and Gamma-distributed
line process variables. A short version of the continuous line
process model has been presented in [26] and an applica-
tion of the binary line process model to brain image seg-
mentation has been presented in [27]. In this study, along
with the comparison of the proposed models, we also pro-
pose solutions for two important issues in image segmenta-
tion by spatially varying mixture models. Firstly, we address
the constraint that the contextual mixing proportions must be
probability vectors. This issue is generally handled by a pro-
jection of the estimated contextual mixing proportions onto
the simplex hyperplane at each step of the EM algorithm
[17, 18]. In this paper, we propose a projection method re-
lying on a quadratic approximation of the function involv-
ing the unknown contextual mixing proportions. The new
approach provides more accurate results and higher values
for the likelihood of the observations in the EM framework.
Secondly, a new strategy for the optimization of the MRF
on the image pixels is proposed. The proposed mechanism
involves a multiresolution technique with overlapping pixels
at each resolution level.

The main contribution of this work is the integration of a
line process (continuous or discrete) with spatially varying
mixtures for image segmentation and modeling, where the
line process parameters are automatically computed from
the data.

The remainder of the article is organized as follows.
In Sect. 2 we present the background in spatially varying
Gaussian mixture models. In Sect. 3 we present the edge
preserving MRF priors incorporating a discrete and a con-
tinuous line process mechanism. Model inference is also
described using Bayesian methodology. The issue of con-
straining the contextual mixing proportions to be probabil-
ity vectors is addressed in Sect. 4 along with a new pro-
jection methodology. The new optimization strategy of the
MRF sites is discussed and evaluated in Sect. 5. Experimen-
tal results in natural image segmentation are presented in
Sect. 6 and conclusions are drawn in Sect. 7.
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2 Background on Spatially Varying Gaussian Mixture
Models

Let X = {xn}Nn=1 be the set of pixel intensities, or in gen-
eral pixel feature vectors, corresponding to a single image.
Viewing the required segmentation as a clustering problem
on X, we can assume that the xn are independent, identically
distributed and that they are generated by a finite mixture
model [28]:

p(xn) =
J∑

j=1

πjφ(xn; θj )

where � = {πj }Jj=1 are parameters expressing the prior
probability of a pixel membership on class j , and evidently
being constrained to be positive and summing to unity. The
{θj }Jj=1 is a set of deterministic parameters controlling the
shape of the “kernel” functions φ. Thus, there is a natural
correspondence between pixel class-membership and ker-
nels, and we can classify the pixels according to posterior
class memberships (in the sense of being conditioned on
the observed data X). A standard and well-known choice
of kernel function is the Gaussian distribution [2, 28], with
other choices for example including the Student’s-t [25] or
the Gamma distribution [29]. From now on we make the as-
sumption that our data are generated by a Gaussian mixture
model, and subsequently build on this by choosing appro-
priate prior distributions on πj .

The J-kernel spatially varying GMM (SVGMM) [16, 18]
differs from the standard GMM [2] in the definition of the
mixing proportions. More precisely, in the SVGMM, each
pixel xn, n = 1, . . . ,N has a distinct vector of mixing pro-
portions denoted by πn

j , j = 1, . . . , J , with J being the
number of Gaussian kernels. We call these parameters con-
textual mixing proportions to distinguish them from the mix-
ing proportions of a standard GMM. Hence, the probability
of a distinct pixel is expressed by:

f (xn;π,μ,�) =
J∑

j=1

πn
j N (xn;μj ,�j ) (1)

where 0 ≤ πn
j ≤ 1,

∑J
j=1 πn

j = 1 for j = 1,2, . . . , J and
n = 1,2, . . . ,N , μj are the Gaussian kernel means and �j

are the Gaussian kernel covariance matrices.
We assume that, conditioned on a hidden variable Z,

pixels X = {x1, x2, . . . , xN } are independent and Gaussian-
distributed:

p(X|Z;μ,�) =
J∏

j=1

N∏

n=1

N (xn;μj ,�j )
zn
j (2)

where the set of N ×J latent variables Z = {zn
j }n=1..N,j=1..J

is introduced to make inference tractable for the model. The
hidden variables Z are distributed multinomially:

p(Z|�) =
J∏

j=1

N∏

n=1

(πn
j )

zn
j (3)

where each zn is a binary vector, with zn
j = 1 if datum n is

generated by the j-th kernel and zn
j = 0 otherwise. It is easy

to see that assumptions (2) and (3) combined lead to (1).
Considering the set of contextual mixing proportions �

as random variables and assuming a proper prior, we can in-
corporate the intuitive fact that neighboring pixels are more
likely to share the same class label. We assume a Markov
random field on �, which equivalently means that � is gov-
erned by a Gibbs distribution [5], generally expressed by:

p(�) ∝
∏

C

e−ψc(�) (4)

where ψc is a function on clique c, called clique potential
function in the literature, and the product is over all minimal
cliques of the Markov random field.

An appropriate clique distribution choice would be to as-
sume that the local differences of contextual mixing propor-
tions follow a Gaussian distribution:

πn
j − πk

j ∼ N (0, β2
jd), ∀n, j, d, ∀k ∈ γd(n) (5)

and the joint distribution on � is given by:

p(�;β) =
D∏

d=1

J∏

j=1

N∏

n=1

∏

k∈γd (n)

N (πn
j ;πk

j ,β2
jd). (6)

This distribution1 treats implicitly the variates in each
weight vector πn = [πn

1 πn
2 · · ·πn

J ] as independent to one
another, while this is not all the case as sum-to-unity prob-
ability constraints have to be always met. In other words,
(6) assigns probability mass to � configurations that are
actually impossible; such configurations are suppressed us-
ing a constrained optimization step during model learning
(see Sect. 4). Similar in spirit choices of modeling the prior
of a probability vector set have already been proposed in
[16, 17, 19, 20]

Treatment of the constrained set � in this indirect man-
ner may seem inelegant, however there are reasons that
deem such an approach legitimate in the current context.

1Note that relations (5) and (6) imply that each clique is counted twice
in the product of Gaussians (6), once as a difference between sites n

and k and once between k and n, for given j and d . This is equivalent to
counting each clique only once. We use the current convention simply
for reasons of notation brevity.
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Fig. 1 First-order neighborhood cliques in the � contextual mix-
ing proportions mesh, used in the present algorithm implementation.
(a) Each MRF site is associated with a probability scalar value πn

j , and
is dependent on 4 neighbors. The MRF layers for different class values
j are independent to one another, reflecting (5) and (6); the sum-to-

unity constraint is forced implicitly (see text). (b) Set of horizontal
neighbors, γ1(n), is highlighted. (c) Set of vertical neighbors, γ2(n), is
highlighted. Numbers next to links between sites in (b) and (c) corre-
spond to φ function (see Sect. 3.1) values

Firstly, prior (6) rewards MRF configurations with neighbor-
ing prior weights close to one other, serving as a smoothing
prior. Out of the set of admissible � realizations, still the
smoothest are given the highest probability. Secondly, the
simplicity of choosing our prior to be a product of Gaussian
distributions is translated later on as simple derivations of
the �-related parameters (namely β and U ) on the model
training phase (Sect. 3). Thirdly, absence of any straight-
forward choice of a distribution that would simultaneously
impose smoothness of the MRF cliques and rule out inad-
missible � realizations automatically [16, 17, 19, 20].

The J × D different Gaussian distributions we have in-
troduced in (5) amount to an equal number of parameter
sets {βjd}j=1..J,d=1..D . In (5), D stands for the number of
a pixel’s neighborhood adjacency types and γd(n) is the
set of neighbors of pixel indexed n, with respect to the
d th adjacency type. In our model, we assume 4 neighbors
for each pixel (first-order neighborhood), and partition the
corresponding adjacency types into horizontal and vertical,
thus, setting D = 2 (see Fig. 1 for a detailed illustration).
This variability of parameter sets aims to capture the fact
that smoothness statistics may vary along clusters and spa-
tial directions [18].

3 Edge-Preserving MRF Priors

In the current work we employ a smoothing prior for the
local contextual mixing proportion differences. We also as-
sume that the local differences depend on a set of hidden ran-
dom variables U called in the literature line process [5, 23].
This configuration enables to switch on and off the smooth-
ing property of the prior depending on whether there exists

an edge or not between neighboring pixels. The general form
of the model is presented in Fig. 2. The dependency between
U and � will be described analytically in the descriptions of
the proposed models and for the moment it is not explicitly
defined.

In any case, our goal is to find Maximum a posteriori es-
timates for � and the deterministic parameters 
 (the latter
including here μ and �) that maximize the model likeli-
hood. Thence, it is straightforward to assign each pixel to
one of the J kernels which essentially will yield the desired
segmentation.

We shall construct our MAP parameter estimation al-
gorithms by making use of two powerful inference tools,
namely Expectation-Maximization (EM) [3] and Variational
inference (see [2]). Both of them are comprised of two anal-
ogous steps. On the first step, an estimate of the posterior
distribution of the hidden variables (these include sets Z,
U of Fig. 2) given the observations and current parameter
estimates is computed; on the second step, new parameter
estimates (these include sets �, 
 of Fig. 2) given the pos-
terior of the hidden variables are computed. Typically these
two steps are reiterated until convergence.

In what follows, we discuss two alternatives for defining
and incorporating the line process and describe in detail how
to infer the model parameters in each case.

3.1 Binary, Bernoulli Distributed Line Process Model

The clique potential functions, set by (5) and (6) for the non-
edge preserving model, are now defined to be distributed as

πn
j − πk

j |unk
j = 1 ∼ N (0, β2

jd), ∀n, j, d, ∀k ∈ γd(n) (7)



J Math Imaging Vis

Fig. 2 General form of the graphical model for our edge preserv-
ing models. Superscript n ∈ [1,N] denotes pixel index, subscript
j ∈ [1, J ] denotes kernel (segment) index

where we assume a line process set of binary random vari-
ables U = {unk

j }k=1..γd (n),n=1..N,j=1..J,d=1..D . Analytically,
the distribution, conditioned on the line process, is expressed
by:

p(�|U ;β) =
D∏

d=1

J∏

j=1

N∏

n=1

∏

k∈γd (n)

N (πn
j ;πk

j ,β2
jd)

unk
j . (8)

This configuration assigns lower energy (higher probabil-
ity) on local differences which are close to zero only when
there is not an edge between them, that is when unk

j = 1.

Otherwise, if unk
j = 0, the corresponding Gaussian is zeroed

and therefore makes no contribution to the total MRF en-
ergy. Thus, differences are encouraged to be tightened only
between pixels not separated by a boundary. We consider
the line process binary variables unk

j to be iid Bernoulli
distributed random variables, governed by a parameter set
ξ = {ξ1, ξ2, . . . , ξ�}:

p(U |ξ) =
D∏

d=1

N∏

n=1

∏

k∈γd (n)

p(unk
j |ξ l)

=
D∏

d=1

N∏

n=1

∏

k∈γd (n)

ξ lu
nk
j (1 − ξ l)

(1−unk
j )

, (9)

where in the third product with respect to k, we have
l = φ(n, k). Function φ(n, k) is defined on site indices n

and k; necessarily k ∈ γd(n) for some d ∈ [1,D] or φ is
undefined. Function φ(n, k) is equal to an index value in
the range [1,�]. For fixed n, φ defines a one-to-one cor-
respondence between site index k and an index l ∈ [1,�].
There are thus � ξl scalar variables, equal to the num-
ber of possible neighbors of any given MRF site. Qualita-
tively, this means that the Bernoulli prior is spatially invari-
ant and only dependent to the direction to the given neigh-
bor.

Aiming at making the line process model fully Bayesian,
a Beta distribution, which is the conjugate to the Bernoulli
distribution, is imposed on the ξ parameters:

Fig. 3 Graphical model for the binary line process edge preserv-
ing model. Superscripts n, k ∈ [1,N] denotes pixel index, subscript
j ∈ [1, J ] denotes kernel (segment) index, d ∈ [1,D] describes the
neighborhood direction type and l ∈ [1,�] denotes neighbor index

p(ξ ;αξ0,�ξ0)

=
�∏

l=1

�(αξl0 + �ξl0)

�(αξl0)�(�ξl0)
(ξ l)

(αξl0−1)
(1 − ξ l)(�ξl0−1), (10)

with αξ0 = {αξl0}�l=1, �ξ0 = {�ξl0}�l=1. In order to preserve
model clique symmetry, we demand that αξl0 have the same
value for all l corresponding to the same adjacency type d ;
likewise for �ξl0. In practice, if � = 4, as it is the case in
Fig. 1, there are four components in vector ξ but they have
two distinct values, one for the horizontal and one for the
vertical direction (ξ1 = ξ3, and ξ2 = ξ4).

The graphical model showing the dependencies between
variables for this model is presented in Fig. 3.

To perform model inference, the likelihood with respect
to the model parameters 
 and the contextual mixing pro-
portions � has to be optimized:

lnp(X|�;
) + lnp(�;
) = lnp(X,�;
) (11)

where the deterministic parameters are 
 = {μ,�,β}. The
contextual mixing probabilities �, although being random
variables, are treated as parameters and are to be optimized
during inference. Thus effectively p(�), defined in (8), acts
as a penalty term; in this sense, the proposed inference meth-
ods in this section are Maximum a posteriori (MAP) algo-
rithms [2].

Calculation of (11) is however intractable and we have
to resort to an estimation scheme to perform inference. In
our case, the suitable framework is provided by Variational
inference [2]. This involves finding approximations of the
posterior distribution of the hidden variables, denoted by
q(Z), q(U), q(ξ), then using them to find � and 
 esti-
mates that maximize the Variational lower bound (see 33).
Details on the computation of the variational lower bound
and its connection with the maximization of the model like-
lihood can be found in the Appendix. As it is shown in [2],
optimization of the Variational lower bound L(q,
,�)
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boils down to updating each lnq(·) to the expectation of
〈lnp(X,�,Z,U, ξ ;μ,�,β)〉, taken with respect to all la-
tent variables except the one in question. In our case, this
means that updates for Z, U , ξ are given by

lnq(Z) = lnp(X,Z;μ,�) + lnp(Z,�) + const.,

lnq(U) = lnp(�|U ;β) + 〈lnp(U |ξ)〉ξ + const.,

lnq(ξ) = 〈lnp(U |ξ)〉U + lnp(ξ) + const.

After some manipulation, we obtain the update equations
for the model parameters which maximize over q(Z), q(U),
q(ξ) and over � and the deterministic parameters 
 = {μ,
�, β}. The form of all q approximating-to-the-posterior
functions will remain the same as the corresponding prior,
as we have used conjugate priors; namely q(Z), q(U),
q(ξ) which approximate p(Z|X,�;
), p(U |X,�;
),
p(ξ |X,�;
) will follow the multinomial, Bernoulli and
Beta distributions respectively. Also, let us note that for the
q functional updates on Z and U we just provide the ex-
pected values, which are sufficient to define the distribution.
The expectations—updates for q(Z) and q(U) along with
the Beta hyperparameters are as follows:

〈zn
j 〉(t+1) = π

n(t)
j N (xn;μ(t)

j ,�
(t)
j )

∑J
l=1 π

n(t)
l N (xn;μ(t)

l ,�
(t)
l )

,

〈unk
j 〉(t+1) = sig

(
ln N (π

k(t)
j ;πn(t)

j , β
2(t)
jd ) + 〈ln ξ l〉(t)

− 〈ln(1 − ξ l)〉(t)),
〈ln ξ l〉(t+1) = ψ(α

(t)
ξ l ) − ψ(α

(t)
ξ l + �

(t)
ξ l ),

〈ln(1 − ξ l)〉(t+1) = ψ(�
(t)
ξ l ) − ψ(α

(t)
ξ l + �

(t)
ξ l ),

α
(t)
ξ l = αξl0 +

J∑

j=1

N∑

n=1

〈unk
j 〉(t),

�
(t)
ξ l = �ξl0 +

J∑

j=1

N∑

n=1

〈1 − unk
j 〉(t),

∀n, j, d, ∀k ∈ γd(n), l = φ(n, k),

(12)

where ψ(·) is the digamma function and sig(x) = (1 +
e−x)−1.

In order to learn the model for the contextual mixing pro-
portions (�), as we are using a MAP methodology, we opti-
mize the lower bound (33) with respect to �, always taking
account of the prior (8). So setting the derivative of (33), or
lnp(Z|�) + lnp(�|U ;β) + const. (defined in (3) and (8))
with respect to πn

j to zero, we come up with πn
j computed

as the roots of the quadratic equation

an
j

(
π

n(t+1)
j

)2 + bn
j

(
π

n(t+1)
j

)
+ c

n(t+1)
j = 0, (13)

with coefficients:

an
j = −

D∑

d=1

{
β

−2(t)
jd

∑

k∈γd (n)

〈unk
j 〉(t)

}
,

bn
j =

D∑

d=1

{
β

−2(t)
jd

∑

k∈γd (n)

〈unk
j 〉(t)πk(t)

j

}
,

cn
j = 1

2
〈zn

j 〉(t).

The form of the coefficients guarantees that there is al-
ways a non negative solution [30]. However, the solutions
of (13) for a given pixel indexed by n, will not, in general,
satisfy the constraints

∑J
j=1 πn

j = 1, πn
j ≥ 0,∀j ∈ [1..J ].

Hence we have to perform a projection onto the constraints
space. We discuss this step in more detail in Sect. 4.

Furthermore, the deterministic parameters of the model
are also obtained in closed form:

μ
(t+1)
j =

∑N
n=1〈zn

j 〉(t)xn

∑N
n=1〈zn

j 〉(t)
,

�
(t+1)
j =

∑N
n=1〈zn

j 〉(t)(xn − μ
(t)
j )(xn − μ

(t)
j )T

∑N
n=1〈zn

j 〉(t)

(14)

β
2(t+1)
jd =

∑N
n=1

∑
k∈γd (n)〈unk

j 〉(t)(πn(t)
j − π

k(t)
j )2

∑N
n=1

∑
k∈γd (n)〈unk

j 〉(t) . (15)

The above updates form an iterative scheme, where we
have progressively better estimates q(t), 
(t) and �(t) at it-
eration t , starting from an initial estimate q(0),
(0),�(0)

and reiterating until Variational lower bound (33) conver-
gence.

3.2 Continuous, Gamma Distributed Line Process Model

In this model, the local differences of contextual mixing pro-
portions are considered to follow a univariate Student’s t-
distribution (one is referred to the appendix for its definition
and other details). The clique potential functions are prop-
erly defined in order to impose:

πn
j − πk

j ∼ St (0, β2
jd , νjd), ∀n, j, d, ∀k ∈ γd(n), (16)

and the joint distribution on � is given by:

p(�;β, ν) =
D∏

d=1

J∏

j=1

N∏

n=1

∏

k∈γd (n)

St (πn
j ;πk

j ,β2
jd , νjd). (17)

The distribution of the differences of local contextual mixing
proportions thus becomes:

πn
j − πk

j ∼ N (0, β2
jd/unk

j ),

unk
j ∼ G(νjd/2, νjd/2), ∀n, j, d, ∀k ∈ γd(n).

(18)
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This generative model (Fig. 4), apart from being tractable
using the EM algorithm, allows better insight in our assump-
tion of Student-t cliques. As a robust-to-outliers distribution,
Student’s-t cliques exhibit edge-preserving behavior [24].
Following the definition of the t-distribution in (36) and (37)
the latent variables U = {unk

j }n=1..N,j=1..J,d=1..D,∀k∈γd(n),
may be interpreted equivalently as a continuous line process.
Since unk

j depends on datum indexed by n, each weight dif-
ference in the MRF can be described by a different instance
of a Gaussian distribution. Therefore, as unk

j → +∞ the
distribution tightens around zero, and enforces neighboring
contextual mixing proportions to be smooth. On the other
hand, when unk

j → 0 the distribution tends to be uninforma-
tive, and enforces no smoothness. Thus, the spatially vary-
ing hidden variables U = {unk

j }n=1..N,j=1..J,d=1..D,∀k∈γd(n)

are continuous line processes and may be considered as the
continuous equivalent of the binary line process presented
in Sect. 3.1. Consequently, in both models, the variables U

provide a very detailed description of the boundary structure
of the image.

Model inference is obtained by MAP estimation and un-
der the EM algorithm framework. The incomplete data like-
lihood is provided by (11) while the complete data log-
likelihood is expressed by:

lnp(X,�,Z,U ;
). (19)

Let us notice that the observed data augmented by the
hidden variables Z is still incomplete as the covariance ma-
trices of the t-distributions depend also on the degrees of
freedom. Therefore, the complete data vector additionally
includes the missing data U . Also, like in Sect. 3.1, quanti-
ties � are maximized in the MAP sense, and are not treated
as hidden.

The conditional expectation of the complete data log-
likelihood is an important quantity in the EM methodology.
In this model, it is defined as:

EZ,U |X,�(t)

{
lnp(X,�(t),Z,U ;
(t))

}
. (20)

By optimizing the above expectation with respect to 
 and
�, given the observed variables and some initial estimate

(0), �(0), we can iteratively update the estimates converg-
ing to a local optimum.

The E-step consists in computing the joint expectation of
the hidden variables Z and U , with respect to the current
parameters �(t),
(t) at iteration t . Observing the graphical
model in Fig. 4, it can be seen, that, given X and �, Z and
U are conditionally independent; therefore EZ,U |X,�(·) =

Fig. 4 Graphical model for the continuous line-process edge preserv-
ing model. Superscripts n, k ∈ [1,N] denotes pixel index, subscript
j ∈ [1, J ] denotes kernel (segment) index, d ∈ [1,D] describes the
neighborhood direction type. � equals the maximum number of possi-
ble neighbors

EZ|X,�{EU |X,�(·)} and we can compute these expectations
separately. The updates then become ∀n, j, d,∀k ∈ γd(n):

〈zn
j 〉(t) = π

n(t)
j N (xn;μ(t)

j ,�
(t)
j )

∑J
l=1 π

n(t)
l N (xn;μ(t)

l ,�
(t)
l )

,

〈unk
j 〉(t) = ζ

nk(t)
j /η

nk(t)
j ,

〈lnunk
j 〉(t) = ψ(ζ

nk(t)
j ) − lnη

nk(t)
j ,

(21)

where ψ(·) stands for the digamma function, and parameters
ζ, η being:

ζ
nk(t)
j = 1

2

(
ν

(t)
jd + 1

)
,

η
nk(t)
j = 1

2

(
ν

(t)
jd + (π

n(t)
j − π

k(t)
j )2

β
2(t)
jd

)
.

Maximization of the current complete data log-likelihood
(20) must be driven with respect to the model parameters 


and �. With some manipulation, (20) may be split into the
following terms:

EZ|X,�{lnp(X|Z;μ,�)} + EZ|X,�{lnp(Z|�)}
+ EU |�{lnp(�|U ;β)} + EU |�{lnp(U ;ν)}.
In this form, parameter optimization is straightforward.

The resulting update equation for the class variances is:

β
2(t+1)
jd =

∑N
n=1

∑
k∈γd (n)〈unk

j 〉(t)(πn(t)
j − π

k(t)
j )2

∑N
n=1 |γd(n)| , (22)

where |γd(n)| denotes the cardinality of the set γd(n), ∀n.
The updates for the Gaussian mean and covariances remain
the same as in (14). The contextual mixing proportions πn

j

are also computed as the roots of a quadratic equation (13).
Like in the Bernoulli prior model, we also have to perform
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Fig. 5 U -variable maps: The image on the top is the original image.
The segmented images for J = 3 clusters are presented in the second
row, the continuous line process segmentation is on the left and the
binary line process segmentation on the right. The rows below show
U -variable maps (expected values of unk

j variables) inferred for both
models. The two columns on the left correspond to the continuous line

process model, and the two columns on the right correspond to the bi-
nary line process model. Brighter values represent lower values of u.
In each row, the U -variable maps for kernel indexed by j = 1 (sky),
j = 2 (roof and shadows) and j = 3 (building), are shown respectively.
In each model, the left column corresponds to u values computed for
horizontal adjacencies, and the right column for vertical adjacencies

a projection step to constrain the contextual mixing propor-
tions to be probability vectors.

Finally, setting the derivative of (20) with respect to the
degrees of freedom of the Student’s-t distributions equal to
zero we obtain ν

(t+1)
jd as the solutions of the equation:

ln(ν
(t+1)
jd /2) − ψ(ν

(t+1)
jd /2)

+
[∑N

n=1
∑

k∈γd (n)(〈lnunk
j 〉(t) − 〈unk

j 〉(t))
∑N

n=1 |γd(n)|
]

+ 1 = 0

with ψ(·) being again the digamma function.

3.3 Insight

The inference updates computed in this section reveal a cer-
tain relation in the behavior of the two models; observe for
example the similarity in the updates for β and � in either
case, see (15), (22) and (13). Let us also note that although
the model based on the binary line process is solved using
variational inference, this is not due to the binary nature
of the line process. One could easily omit the Beta hyper-
prior on the Bernoulli parameters ξ and the model could
also be solved by the EM algorithm. The difficulty in this

model is introduced by the hyperprior that makes the com-
putation of the expectations with respect to p(U, ξ |X,�)

intractable. However, the introduction of the hyperprior per-
mits the model to elegantly adjust the smoothness between
pixels. A similar hyperprior is not straightforward to be im-
posed on the continuous line process model, due to the de-
grees of freedom parameter ν in the Student’s-t prior which
does not lead to a convenient form for a conjugate prior.

In both edge-preserving models, parameters U play a
very important role in the preservation of the boundaries
between image regions. The U -variable maps for the j th
kernel represent the edges that separate the j th segment of
the image from the remaining segments. To demonstrate this
point, we show an example in Fig. 5. In this example, a color
image is segmented into J = 3 segments and therefore there
are 6 U -variable maps (all possible pairs of the 3 segments
for the horizontal and vertical directions). The first two rows
of this figure show the original and the segmented images for
the continuous and binary line process priors. Moving from
top to bottom, the U -variable maps for the three image seg-
ments, namely sky, roof and shadows, building are shown,
respectively. The left column highlights vertical edges and
the right column underpins horizontal edges. Notice that in
the second row of the U-maps, where the U -variable maps
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for segment sky are shown, the edges between the segment
sky and the rest (roof and shadows, building) are mainly
highlighted. The edges between the other segments, (roof
and shadows and building) are mainly highlighted in the re-
maining two maps. Similarly, the edges between the seg-
ments sky and building are not highlighted in the third row
of images as the U -variable maps for roof and shadows are
underpinned.

In [18] the segmentation model of [17] is extended us-
ing a class-dependent smoothness intensity parameter. This
has been proven to capture variations in smoothness along
classes. In the same spirit, in this work, we chose to give the
line process parameters a higher flexibility. Let us further-
more note that the appearance of an edge between two pixels
with a true label of class 1 and class 2 respectively, means
that we need π1 and π2 to be discontinuous close to these
points. For πj for j other than 1 or 2, we do not need nec-
essarily smoothness or non-smoothness imposed. The cur-
rent model complies with this situation, while a single line
process layer for classes would not. This is a difference with
respect to other MRF based models which consider the edge
structures in a class-invariant sense [21].

Let us finally note that the U -variable maps carry in-
formation about the edge structure, important in itself, that
comes as a byproduct of the presented segmentation al-
gorithms. Such information would otherwise be inacces-
sible if we were to use an implicit approach to edge-
preservation [24] as in [17, 20]. The continuous line process
model in particular can be seen as an implicit line process
model, since we define it by Student’s-t robust clique poten-
tials. However due to its inference by the EM algorithm, the
line process appears explicitly as a hidden EM variable and
computed during model learning.

4 Projection on Constraints Hyperplane Step

The quadratic equation (13), whose non-negative solution
are the contextual mixing proportions πn

j is derived by max-
imizing the objective function:

lnp(Z|�) + lnp(�|U ;β) + const.

= lnπn
j

N∑

n=1

〈zn
j 〉 +

D∑

d=1

N∑

n=1

∑

k∈γd (n)

{
−unk

j

β2
dj

(πn
j − πk

j )2
}

+ const. (23)

corresponding to the variational lower bound or the com-
plete data log-likelihood, depending on the model (continu-
ous or binary prior). It can be easily seen, that, for a particu-
lar site n, (23) has the form:

xT Ax + xT b + c lnx + d (24)

where we have denoted [πn
1 πn

2 · · ·πn
J ] as x for convenience.

Also, note that the above function is concave and the J × J

matrix A is diagonal and negative definite.
We have already discussed that we need a maximizer for

(23) also satisfying the constraints:

J∑

j=1

πn
j = 1, πn

j ≥ 0, ∀j ∈ [1..J ], ∀n ∈ [1..N ].

In the general case, the solution of (13) does not satisfy the
above constraints, that is, the computed contextual mixing
proportion πn

j , j = 1, . . . , J for a given pixel n are not the
components of a probability vector. However, there is no
straightforward way to give an exact solution to the con-
strained maximization of (24). This is a well-known prob-
lem, treated originally in [16] using gradient projection [31];
a projection-based solution was again given in [17], superior
to [16].

Here we give a theoretical foundation to our approach—
building on and generalizing the solution proposed in [17]—
basing our methodology on the hypothesis that one of the
terms in (23) is negligible compared to the others. An ap-
proximation of the objective function (23) is obtained by
dropping the term involving the logarithm:

D∑

d=1

N∑

n=1

∑

k∈γd (n)

{
−unk

j

β2
dj

(πn
j − πk

j )2
}

+ const. (25)

In view of the fact that the objective (23) is a sum of
the form fit-to-data term + smoothing term + const., our
hypothesis will be valid in areas were intense smoothing is
desirable, for which the smoothing term lnp(�|U ;β) will
be more important than the fit-to-data term lnp(Z|�). The
reason smoothing priors are used in the first place is based
on the exact same assumption that smoothing is desirable for
the most part of an image (excluding edges et cetera). Thus
we conclude that our hypothesis is reasonable, at least for
the vast majority of the input image area.

Let us stress that by hypothesizing that the smoothing
term is dominant to the data term we do not mean that we ig-
nore the data term completely. If the data term did not exist,
the optimum for (23) would be an homogeneous � field, and
πn

j = K−1, ∀j,n. The purpose of the proposed hypothesis
is that, given the unconstrained solution a� for each site in
� (by solving the second-order equation (13) to improve a�

to be as close as possible to the constrained true optimum.
Let y� be the desired constrained maximizer of the ob-

jective function (25), and t a point on the constraints plane
other than y�; let α� be the unconstrained maximizer as
computed by solving (13). It can be shown that y� will have
to satisfy (y� − α�)T A(t − y�) = 0 for any plane point t .
This can be expressed otherwise, as looking for y such that
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the projection of α′ ≡ A
1
2 α� on the transformed plane de-

fined by t ′ ≡ A
1
2 t will be y′ ≡ A

1
2 y. Thus, formally, we have

the following quadratic programming problem to solve:

arg min
y′ ‖α′ − y′‖,

∑

j

yj = 1, yj ≥ 0, j = 1, . . . , J.

We now employ an active set type method as suggested
in [17], allowing to derive closed form expressions for the
Lagrange multipliers. The associated Lagrange function is
given by:

L(y,λ0, λ) = 1

2

J∑

j=1

(bj yj − bjαj )
2 − λ0

( J∑

j=1

yj − 1

)

−
J∑

j=1

b2
j λj yj

where λ0 is the multiplier for the equality, and λj , j =
1, . . . , J are the multipliers for the inequality constraints.
We also used the representation of y�, α� as [y1y2 · · ·yJ ]
and [α1α2 · · ·αJ ] respectively. Parameters bj are the diago-
nal elements of the Hessian matrix A:

bj =

√√√√√
D∑

d=1

∑

k∈γd (n)

uk
jβ

−2
dj

where we have omitted the n data index from b and u for
convenience. First-order necessary conditions imply:

yj = αj + λ0

b2
j

+ λj (26)

and injecting it into the equality constraint yields:

λ0 = 1
∑

j b−2
j

−
∑

j αj
∑

j b−2
j

−
∑

j λj
∑

j b−2
j

. (27)

Finally, by combining (26) and (27) we obtain:

yj = αj − cj + cj

J∑

l=1

αl + cj

J∑

l=1

λl + λj (28)

where cj ≡ − b−2
j∑J

l=1 b−2
l

.

Let us notice that the vector αj − cj + cj

∑J
l=1 αl is the

projection of α on the constraints hyperplane
∑J

j=1 yj = 1.
The set of Lagrange multipliers λj , j = 1, . . . , J must sat-
isfy the inequality constraints. Karush-Kuhn-Tucker condi-
tions [31] state that at the minimizer y� we must have λj ≥ 0
and λj > 0 if y�

j = 0 which is the active constraint.

Fig. 6 Example projection to the constraints plane, in the
two-dimensional case J = 2. Ellipses represent contours of the
quadratic approximation to the objective function; the line joining
the x1 and x2 axes is the linear constraints plane, here x1 + x2 = 1,
x1, x2 ≥ 0. The unconstrained maximizer is a�, the constrained maxi-
mizer is y� and t is a point on the constraints plane. Point ξ shows the
location of the solution proposed in [17]

Comparing our proposed optimizing projection with [17],
we can point out that we have constructed our reasoning
based on the sole hypothesis that the logarithm in (24) is
a negligible quantity with respect to the other terms; this
provided, our method will necessarily give the correct con-
strained optimum. On the contrary the projection in [17] is
presented as a rather ad hoc solution to the problem, based
on no underlying justification for this specific projection
choice. Note also that this latter method could be seen as
a subcase of our own proposal, for b1 = b2 = · · ·bJ .

To evaluate the proposed algorithm we have compared it
to the algorithm in [17]. We have segmented the color im-
age in Fig. 5 with the proposed model with the continuous
line process prior. The resulting comparison revealed that
the new algorithm provides consistently higher values for
the data likelihood (Fig. 7).

5 MRF Optimization Strategy

In both models considered in this paper, we have to maxi-
mize a quantity with respect to the contextual mixing propor-
tions �. In the case of the discrete prior it is the variational
lower bound and in the case of the continuous line process
prior it is the complete data log-likelihood in the frame-
work of the EM algorithm. A simple and straightforward
implementation would be to perform a raster scan for each
pixel n ∈ [1..N ] in order to update the sites sequentially;
this involves solving J quadratic equations for each site and
then projecting the resulting πn

j vector onto the constraints
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Fig. 7 Comparison of data likelihood values for the projection method
in [17] and the algorithm proposed in this section: The test image in
Fig. 5 was segmented into three classes using the proposed continuous
line process prior algorithm as described in Sect. 3.2. The solid curve
shows our results using the proposed projection against the results
using the projection proposed in [17], shown by the dashed curve. For

each configuration, we ran the segmentation 10 times using k-means
initialization perturbed by additive white Gaussian noise of 0.2 units
standard deviation. Likelihood values (averaged over number of pixels
N and over the 10 different initializations) are shown for the first 100
EM iterations

Algorithm 1 Projection on constraints hyperplane
1 Let y denote the vector at the current iteration. Initially,

we set yj ← bj ,∀j = 1,2, . . . , J . In the general case,
there exist m negative components yj . The corresponding
set of indices S = {j, with yj < 0} constitutes the active
set of constraints for the current vector y.

2 ∀j /∈ S, set λj ← 0.
3 ∀j ∈ S, set yj = y�

j ← 0 and we compute the corre-
sponding λj by solving an m × m linear system that
forces the inequalities to be satisfied as equalities, namely
yj + λj + cj

∑J
l=1 λj = 0, written in matrix form as

(I + 1cT )λ = y. The Sherman-Morisson formula [31]
gives:

λj ← yj +
∑

l∈S clyl∑
l /∈S cl

.

4 Compute the updated yj values for j /∈ S by (28), using
the new vector λ.

5 Return to step 2 until convergence.

∑J
j=1 πj = 1 and πj ≥ 0 using the quadratic programmatic

method presented Sect. 4. This scheme would typically lead
to a local maximum.

However, in practice, this local maximum is often far
from the desirable segmentation result both quantitatively
and visually (a related work with a detailed discussion on
this issue is presented in [32]). This is due to the fact that
the values of � have a direct impact on the segmentation as
the hidden variables Z depend on them. These latter vari-
ables are updated (see (21) or (12)) by:

Fig. 8 A synthetic 3-class
piecewise constant gray-level
image, produced using a
Gibbs-sampler [33]. The gray
levels for each segment are 30,
125 and 220

zn
j ∝ πn

j N (xn;μj ,�j ), ∀n ∈ [1..N ], ∀j ∈ [1..J ]
In order to illustrate the importance of � and its opti-

mization, we have performed segmentations on a test im-
age (Fig. 8) by applying two different initialization schemes.
At first, we have used a standard k-means algorithm which
is common in initializing mixture models. The second ap-
proach consisted in using as initial condition the ground
truth of the image. Although it is impossible to perform the
latter initialization in a real segmentation scenario, we ap-
plied it in the sense of the best initialization a segmentation
method could potentially attain.

A raster scan was applied to both initialization ap-
proaches in order to sequentially optimize the parameters
� for each pixel. The results in Table 1 and Fig. 9 vali-
date that the ground truth is indeed a local optimum for our
edge-preserving algorithm. However, k-means initialization
and standard raster scan MRF optimization lead to a solution
that is optimal neither in terms of likelihood nor visually.

Let us consider now the Markov random field example
in Fig. 10. Each site represents a vector of contextual mix-
ing proportions for a certain pixel location. Consider also
a step in the EM update algorithm during which the white
sites have mixing proportion vectors equal to πn = zn =
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Table 1 The RAND index [34]
for the segmentations of the
degraded versions of the image
in Fig. 8 along different
iterations of the EM algorithm
are presented. Method names
followed by “�” refer to the
hypothetical segmentations
computed using � instead of the
hidden variables Z to classify
pixels. The average data
log-likelihood at the 1000th
iteration is also shown

Initialization Method 2 5 10 20 200 500 1000 Av.Lhood

k-means [18] 0.70 0.64 0.63 0.63 0.62 0.62 0.62 29.4

[18] (�) 0.69 0.74 0.78 0.81 0.68 0.59 0.58

Ground truth [18] 0.99 0.97 0.97 0.96 0.89 0.84 0.78 28.4

[18] (�) 0.99 0.98 0.98 0.97 0.92 0.86 0.78

k-means Continuous LP 0.70 0.64 0.62 0.62 0.62 0.62 0.62 59.0

Continuous LP (�) 0.70 0.73 0.75 0.76 0.77 0.77 0.77

Ground truth Continuous LP 0.99 0.99 0.99 0.99 0.99 0.99 0.99 129.0

Continuous LP (�) 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Fig. 9 Segmentation results of
the 3-class synthetic image of
Fig. 8 degraded by 2 dB additive
white Gaussian noise after 1000
iterations. The top row shows
the segmentations computed
using the labels distribution Z to
classify the pixels. The bottom
row shows the hypothetical
segmentations computed using
the contextual mixing
proportions � instead of Z for
classification

Fig. 10 An example of Markov
random field of 6 × 6 sites. The
color of each site corresponds to
the image class the pixel is more
likely to belong to

[0.5 + ε,0.5 − ε]T , with 0 < ε < 0.5 and the gray sites have
πn = zn = [0.5 − ε,0.5 + ε]T . Consider also that we are
just before updating these contextual mixing proportions us-
ing (13). Moreover, we make the hypothesis that the line
process unk

j is constant ∀j,n, k ∈ γ (n), in order not to influ-
ence the parameter updates.

Observe, that each gray site is surrounded by exactly two
gray and two white neighbors and that all white sites have at
most one gray neighbor each. Hence, there is a high proba-
bility that given appropriate values for β2

1 , β2
2 and ε the gray

sites have their π parameters updated to values closer to the
values of the white sites. This will not be the case if β2

j are2

such that the MRF smoothing effect is tight enough. In that
case, each individual update for the gray sites will naturally

2In this example we omit the ‘d’ indice for clarity, assuming D = 1.

leave their weights unaffected. Therefore, if the gray sites
are optimized jointly higher values for the data likelihood
could be obtained. Intuitively, this can be achieved by opti-
mizing groups of pixels with the constraint of being all set
to the same value.

Having in mind the continuous line process model, we
extend the standard raster scan procedure to a new grid scan
strategy which is described in Algorithm 2.

The update (30) and (31) in step 5 of the proposed algo-
rithm are justified as follows. In each update step of a single
grid S, we need to optimize:

lnp(X|Z) + lnp(Z|�) + const.

=
J∑

j=1

{
lnπj

∑

n∈S

(〈zn
j 〉)

+
D∑

d=1

∑

n∈S

∑

k∈γd (n),k /∈S

(
−unk

j

β2
dj

(πj − πk
j )2

)}

+ const.

with respect to πj ,∀j ∈ [1..J ]. We can easily conclude that
the second-order equation to be solved (13) has coefficients



J Math Imaging Vis

Fig. 11 Grid-scan updates on an example lattice with 8 × 8 elements
and 1st order neighborhoods. Black color shows the elements whose
contextual mixing proportions need to be updated. Gray color shows
their neighboring pixels. (a) Single element to be optimized and its

neighbors. (b) Elements to be co-optimized by a step of grid scan and
their neighbors. (c) The same elements to be co-optimized redrawn
as one

Algorithm 2 Grid scan
1 Calculate the initial grid size, maxLevel. This is empiri-

cally set to

maxLevel ← max(�log2 max(dimX,dimY )� − 3,3) (29)

2 For each L ← maxLevel to 1 iterate:
3 Let subsetLength ← 2L. Let G denote the set of sites,

with |G| = dimX × dimY .
4 Partition the dimX × dimY sites into L subsets {Si}Li=1.

Also we require
⋃L

i=1 Si = G and Si ∪ Sj = ∅, ∀i �= j .
5 For each site subset Si , i = 1, . . . ,L, repeat steps 5.1,

5.2.
5.1 For each neighborhood direction d = 1, . . . ,D do

5.1.1 Define a set of sites γ̃d (Si) as

γ̃d (Si) �
{⋃

s∈Si

γd(s)

}∖
Si

5.2 Optimize the sites in Si by solving the quadratic
equation (13) where 〈zn

j 〉 and γd(n) are replaced by

〈z̃j 〉 ←
∑

n∈Si

〈zn
j 〉 (30)

γd ← γ̃d (Si) (31)

6 End.

given by:

an
j = −

D∑

d=1

{
β

−2(t)
jd

∑

n∈S

∑

k∈γd (n),k /∈S

〈unk
j 〉(t)

}
,

bn
j =

D∑

d=1

{
β

−2(t)
jd

∑

n∈S

∑

k∈γd (n),k /∈S

〈unk
j 〉(t)πk(t)

j

}
,

Table 2 Comparison in terms of likelihood and misclassification ratio
(MCR) for the continuous line process model, between raster-scan and
grid-scan optimization methods

σ Raster-scan Grid-scan

Av.Likelihood MCR Av.Likelihood MCR

25 43.9 0.1% 51.9 0.13%

28 40.5 0.17% 47.5 0.18%

47 27.8 0.5% 34.6 0.5%

52 28.3 0.8% 33.5 0.6%

95 28.9 3.7% 31.5 3.2%

cn
j = 1

2

∑

n∈S

〈zn
j 〉(t),

which makes the derivation of (30) and (31) straightforward.
To evaluate the proposed MRF optimization strategy, we

computed a number of segmentations using the grid-scan
versus the raster-scan optimization method. All tests were
performed on noisy versions of the synthetic 3-class im-
age (Fig. 8) using always the continuous line process prior
(Sect. 3.2). In Table 2 we present a comparison of raster-
scan and grid-scan algorithms in terms of model likelihood
and ratio of misclassified pixels (MCR). Likelihood scores
are consistently better for grid-scan for all tested noise lev-
els. Visual result as represented with the segmentation MCR
however worsens with grid-scan optimization on low-noise
levels. This is justified since as the noise level decreases, the
need for smoothing decreases as well and higher probabil-
ity model states may well be corresponding to undesirable
smoothing in the resulting segmentation. However, this is
an issue of a MRF prior in general.

6 Natural Image Segmentation Results

In our implementation, we have used a 4-dimensional fea-
ture vector to describe the image data. It is comprised by the
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Fig. 12 Top row: A synthetic
3-class image degraded by white
Gaussian noise, with varying
standard deviations
σ = {28,47,52,95}. Bottom
row: Corresponding
segmentations using the
proposed continuous line
process model of Sect. 3.2 and
grid-scan optimization as in
Sect. 5

Lab color space features and the Blobworld contrast texture
descriptor as described in [4]. Prior to segmentation, each
variate has been separately normalized in order not to have
dominating features. We also note that in the binary line
process model, we let the hyperparameter values αξ0, βξ0

of the Beta prior distribution fixed to αξk0 = βξk0 = 1, ∀k.
This value makes the prior effectively uninformative as the
data size N � 1.

Let us also note that our algorithm requires only the de-
termination of the number of segments J as input (which is
an open issue in the machine learning community). We con-
sider this issue as an advantage in comparison with state-
of-the-art methods like the normalized cut (ncut) [14] and
the mean-shift [35] algorithms which depend on more pa-
rameters to be defined by the user. For instance, the ncut
algorithm strongly depends on the size of the kernel, the
variance of the kernel, involved in the computation of the
affinity matrix, and the number of segments. Also the mean-
shift algorithm highly depends on the variance of the kernel,
the size of the kernel and the termination criterion. For a
given image these parameters have to be defined by the user,
making straightforward comparison prone to trial-and-error
procedure.

We illustrate the above considerations in Fig. 13, where
we compare the continuous line process model proposed in
this work with the ncut algorithm with varying parameter
settings. Settings ncut-1, ncut-2 and ncut-3 correspond to
affinity matrix kernels set to influence a progressively larger
pixel area, with corresponding areas of influence 5×5, 10×
10, 15 × 15. In the same figure we also compare the two
methods on noise-degraded images. The result presents the
advantages of our method, which due to its smoothing prior
exhibits higher robustness to noise. For both the degraded
and non-degraded image cases, the result for the ncut clearly
depends heavily on the parameters used. In all, for parameter
sets ncut-1 and ncut-3, our method visually and numerically
outperforms the ncut result in the church image case as well
as most of the images in the boat image case.

Moreover, in the same figure, we present some cases
where although the Rand index is slightly superior for the

ncut methods, visual examination reveals that there are er-
roneously merged regions. More specifically, the noisy boat
image segmentations for the ncut-2 and ncut-3 methods as
well as the noise-free boat image for the ncut-2 method pro-
vide better Rand indices with respect to our continuous line
process algorithm. However, visual inspection depicts that,
for instance, the beach and the sea are merged in the noise
free boat image segmentation for ncut-2.

The results given by ncut-1 (small affinity kernel scale)
and ncut-3 (large affinity kernel scale) suggest that the best
parameter choice should correspond to a scale between the
two. Indeed, ncut-2 with kernel scale size between that
of cases ncut-1 and ncut-3 gives the best results for ncut.
However, choosing a priori such a configuration for any
image is by no means obvious and the best parameters
must be consequently found by trial-and-error determina-
tion.

We have evaluated the proposed continuous line-process
and binary line-process segmentation schemes on the 300
images of the Berkeley image database [36]. We have ap-
plied our algorithm with different values for the num-
ber of segments J = {3,5,7,10,15,20}. For comparison
purposes, we have also experimented with the standard
GMM [2] and the GMM based segmentation with “stan-
dard” smoothness constraints [18] with the same number of
components.

The obtained segmentations were quantitatively eval-
uated with two performance measures: the Rand index
(RI) [34] and the boundary displacement error (BDE) [37].
The RI measures the consistency between the ground truth
and the computed segmentation map while the BDE mea-
sures error in terms of boundary displacement with respect
to the ground truth. The statistics for these measures are
presented in Tables 3 and 4.

Based on the theoretical properties of the edge-
preservation models one might have expected that they
would introduce erroneous boundaries that did not agree
with human segmentation. Therefore that would provide a
worse RI as compared to the “classical” non preserving al-
gorithm (SVGMM) [18]. However, as observed in the sta-



J Math Imaging Vis

Fig. 13 Comparison of the
proposed continuous line
process method (3.2) with
normalized cuts (ncut) [14]. We
have tested the two algorithms
on two Berkeley database
images [36], as well as on
noise-degraded versions of the
same images. We fixed the
number of classes to J = 3 for
the Church image, and J = 7 for
the Boat image for both
algorithms. ncut-1 stands for the
normalized cut algorithm with
region of affinity kernel support
and kernel variance parameters
set to influence a 5 × 5 region.
ncut-2 stands for the normalized
cut algorithm with region of
affinity kernel support and
kernel variance parameters set
to influence a 10 × 10 region.
ncut-3 stands for the normalized
cut algorithm with region of
affinity kernel support and
kernel variance parameters set
to influence a 15 × 15 region

Table 3 Statistics on the Rand Index (RI) over the 300 images of the Berkeley image data base for the compared methods. Higher values represent
better segmentations

J GMM SVGMM Continuous LP Binary LP

Mean Median St. dev. Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

3 0.675 0.680 0.085 0.686 0.690 0.085 0.690 0.693 0.087 0.690 0.693 0.087

5 0.710 0.735 0.102 0.717 0.745 0.107 0.720 0.7462 0.108 0.720 0.746 0.107

7 0.717 0.753 0.119 0.723 0.759 0.121 0.724 0.758 0.121 0.724 0.757 0.121

10 0.717 0.759 0.133 0.721 0.760 0.135 0.721 0.759 0.136 0.721 0.759 0.136

15 0.712 0.754 0.143 0.716 0.758 0.146 0.716 0.757 0.147 0.717 0.757 0.146

20 0.709 0.749 0.147 0.706 0.7452 0.153 0.712 0.754 0.152 0.712 0.753 0.152

Table 4 Statistics on boundary displacement error (BDE) over the 300 images of the Berkeley image data base for the compared methods. Lower
values represent better segmentations

J GMM SVGMM Continuous LP Binary LP

Mean Median St. dev. Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

3 4.789 4.164 2.386 4.787 4.206 2.397 4.612 4.043 2.302 4.591 4.055 2.287

5 4.386 3.757 2.173 4.394 3.814 2.174 4.258 3.668 2.147 4.255 3.692 2.150

7 4.244 3.708 2.095 4.212 3.683 2.055 4.125 3.594 2.053 4.120 3.586 2.055

10 4.137 3.602 2.009 4.096 3.504 1.986 4.028 3.495 1.999 4.040 3.492 2.011

15 4.010 3.635 1.976 4.034 3.504 1.940 3.959 3.431 1.954 3.955 3.408 1.967

20 4.128 3.678 2.011 4.191 3.655 1.908 3.923 3.393 1.924 3.921 3.425 1.934

tistics of the RI (Table 3), both edge preservation schemes
outperform the standard GMM in all cases and the SVGMM
in the overwhelming majority of the different number of
components.

Also, in terms of correct region boundary estimation, ex-
pressed by the BDE (Table 4), the edge-preservation models
outperform the SVGMM, as theoretically expected. How-
ever, they also outperform standard GMM and the difference
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in performance increases with the number of segments. The
explanation for this behavior is that since the standard GMM
does not integrate a smoothing step it generally computes
correctly the boundaries between segments (it also outper-
forms the SVGMM in the same median values). However,
as the number of segments increases, the complexity of the
image cannot be captured by a simple GMM and smooth-
ness constraints that model the image edge structure become
increasingly beneficial.

Comparing the proposed edge-preserving priors, their
performance scores are in general close. The continuous
line process prior seems to give better results for the RI,
while the binary line process prior gives better results for the
BDE. The difference in performance is however too slight to
draw a safe conclusion about the behavior of the one prior
compared to the other. To illustrate this, one can observe
that on RI and BDE the mean scores differ respectively by
8 × 10−5 and 8 × 10−3 (on average over the number of ker-
nels J ) between the two models. This is only a fraction of
the improvement the proposed schemes exhibit over the non-
edgepreserving scheme SVGMM, namely 4% and 6% for
each case. Overall, the proposed schemes not only preserve
region boundaries but also improve the correct classification
rates with respect to the standard methods. Some representa-
tive segmentation examples for the two proposed models are
shown in Figs. 14 (continuous line process model), and 15
(binary line process model).

7 Conclusion and Future Work

In this paper we have presented an image segmentation al-
gorithm having the property of taking into account spatial
relationships to classify image pixels. We have explored two
alternative ways to make the model edge-preserving, which
is the main contribution of the paper. We have also noted the
importance of properly optimizing the Markov random field
energy in the current model, and we have proposed improve-
ments over the field optimization methods used for simi-
lar models like [16, 18]. The corresponding edge-preserving
prior choices, the binary and the continuous line process pri-
ors, lead to model solutions feasible with variational infer-
ence and Expectation-Maximization respectively. We have
seen that the binary line process model includes a set of fixed
hyperparameters (αξ0,�ξ0) that can affect the model’s sen-
sitivity to what is regarded as an edge; the continuous line
process model is, on the other hand, computationally and
conceptually simpler. The automatic estimation of model
parameters from the data is crucial, as many state-of-the-art
segmentation algorithms rely on empirical parameter selec-
tion. An important perspective of this study is to automati-
cally estimate the number of components. To this end, crite-
ria appropriate to constrained mixtures could be conceived.

Appendix A: Variational Lower Bound Derivation

The model likelihood (11) may be written as

∑

Z,U

∫

ξ

q(Z,U, ξ) log
p(X,�,Z,U, ξ ;
)

q(Z,U, ξ)
dξ

−
∑

Z,U

∫

ξ

q(Z,U, ξ) log
p(Z,U, ξ |X,�;
)

q(Z,U, ξ)
dξ. (32)

The first term is called variational lower bound in the re-
lated literature [2], while the second is the Kullback-Leibler
divergence between the posterior distribution of the latent
variables conditioned on the observations and �, and a dis-
tribution q(·) which represents an estimate of the posterior.
It is well-known that any Kullback-Leibler divergence has
a minimum at zero, and that minimum is achieved when
the comparing distributions are identical. This means that
(a) the first term in (32) is a lower bound of the likelihood,
and (b) this bound is maximized with respect to q if and only
if q(Z,U, ξ) = p(Z,U, ξ |X,�;
). So instead of working
with the likelihood, which here involves an intractable mar-
ginalization over Z,U, ξ , in variational inference, the idea is
to find estimates that maximize the variational lower bound:
the variational lower bound L is given by (33):

L(q,
,�)

�
∑

Z,U

∫

ξ

q(Z,U, ξ) log
p(X,�,Z,U, ξ ;
)

q(Z,U, ξ)
dξ

= Eq(Z,U,ξ)

(
ln

p(X,�,Z,U, ξ ;
)

q(Z,U, ξ)

)

= 〈lnp(X,�,Z,U, ξ ;μ,�,β)〉 − 〈lnq(Z,U, ξ)〉. (33)

To proceed with the computation of optimal q on L, we
must introduce here the mean field approximation which
stems from statistical physics [2]:

q(Z,U, ξ) = q(Z)q(U)q(ξ). (34)

Note that in the proposed model, we only need to assume
q(U, ξ) = q(U)q(ξ), as q(Z,U, ξ) = q(Z)q(U, ξ) is in-
duced from the model structure. We can thus rewrite (33)
as

L(q,
,�) = 〈lnp(X|Z;μ,�)〉 + 〈lnp(Z|�)〉
+ 〈lnp(�|U ;β)〉 + 〈lnp(U |ξ)〉 + 〈lnp(ξ)〉
− 〈lnq(Z)〉 − 〈lnq(U)〉 − 〈lnq(ξ)〉.

The expectations in (33), over the estimate posterior dis-
tribution q are given by:
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Fig. 14 Segmentation examples
using the proposed continuous
line process spatially variant
mixture for varying number of
classes J . From left to right, the
columns show: the original
image, segmentation with
J = 5, J = 10 and J = 15

Fig. 15 Segmentation examples
using the proposed binary line
process spatially variant mixture
for varying number of classes J .
From left to right, the columns
show: the original image,
segmentation with J = 5,
J = 10 and J = 15

〈lnp(X|Z;μ,�)〉 =
N∑

n=1

J∑

j=1

〈zn
j 〉N (xn;μj ,�j ),

〈lnp(Z|�)〉 =
N∑

n=1

J∑

j=1

〈zn
j 〉 lnπn

j ,

〈lnp(�|U ;β)〉

=
N∑

n=1

J∑

j=1

D∑

d=1

∑

k∈γd (n)

〈unk
j 〉 ln N (πn

j − πk
j |β2

jd),

〈lnp(U |ξ)〉

=
D∑

d=1

N∑

n=1

∑

k∈γd (n)

(〈unk
j 〉〈ln ξk〉 + (1 − 〈unk

j 〉)〈ln(1 − ξk)〉),

〈lnp(ξ ;αξ0, βξ0)〉

=
�∑

k=1

(
�(αξk0 + βξk0)

�(αξk0)�(βξk0)
+ (αξk0 − 1)〈ln ξk〉

+ (βξk0 − 1)〈ln(1 − ξk)〉
)

,

〈lnq(Z)〉 =
N∑

n=1

J∑

j=1

〈zn
j 〉 ln〈zn

j 〉,

〈lnq(U)〉 =
D∑

d=1

N∑

n=1

∑

k∈γd (n)

(
〈unk

j 〉 ln〈unk
j 〉

+ (1 − 〈unk
j 〉) ln(1 − 〈unk

j 〉)
)

,
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〈lnq(ξ)〉 =
�∑

k=1

(
�(αξk + βξk)

�(αξk)�(βξk)
+ (αξk − 1)〈ln ξk〉

+ (βξk − 1)〈ln(1 − ξk)〉
)

.

The quantities 〈unk
j 〉, 〈ln ξ l〉, 〈ln(1 − ξ l)〉, 〈zn

j 〉 and the
hyperparameters αξl , βξl are given in (12) .

In order to maximize L over 
 and �, after dropping
constant terms we can observe that we only need to maxi-
mize the expectation:

L(q,
,�) = Eq(Z,U,ξ){p(X,�,Z,U, ξ ;
)}+const. (35)

where the index denotes that the expectation is computed
over q . This optimization is made tractable due to the ap-
proximation (34).

Appendix B: The Student’s-t Distribution

A d-dimensional random variable X follows a multivariate
t-distribution, X ∼ St (μ,�,ν), with mean μ, positive defi-
nite, symmetric and real d × d covariance matrix � and has
ν ∈ [0,∞) degrees of freedom when [2], given the weight u,
the variable X has the multivariate normal distribution with
mean μ and covariance �/u:

X|μ,�,u ∼ N (μ,�/u), (36)

and the weight u follows a Gamma distribution parameter-
ized by ν:

u ∼ G(ν/2, ν/2). (37)

Integrating out the weights from the joint density leads to
the density function of the marginal distribution:

p(x;μ,�,ν) = �(ν+d
2 )|�|− 1

2

(πν)
d
2 �(ν

2 )[1 + ν−1δ(x,μ;�)] ν+d
2

(38)

where δ(x,μ;�) = (x − μ)T �−1(x − μ) is the Maha-
lanobis squared distance and � is the Gamma function [2].
It can be shown that for ν → ∞ the Student’s t-distribution
tends to a Gaussian distribution with covariance �. Also,
if ν > 1, μ is the mean of X and if ν > 2, ν(ν − 2)−1�

is the covariance matrix of X. Therefore, the family of t-
distributions provides a heavy-tailed alternative to the nor-
mal family with mean μ and covariance matrix that is
equal to a scalar multiple of �, if ν > 2 (Fig. 16) [2]. The
Student’s-t has been used successfully as a robust alterna-
tive to the Gaussian distribution in maximum likelihood fit-
ting to data that contain outliers [25, 38, 39]. In the context

Fig. 16 The Student’s t -distribution for various degrees of freedom.
As ν → ∞ the distribution tends to a Gaussian. For small values of ν

the distribution has heavier tails than a Gaussian

of the edge-preservation prior, the differences between pix-
els at an edge can be perceived as outliers, which in effect
means that the fitting process will not take them into account
when estimating the model parameters. Consequently, the
fitting process will not smooth out such mixing proportion
differences.
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