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Abstract 

The increasing complexity and size of data have made it evident that data holds significant 

value since the 1960s. Exploratory Data Analysis (EDA) is a procedure used by data 

scientists to analyze and summarize data sets, enabling them to discover patterns, 

identify anomalies, and test hypotheses. However, the lack of automation in EDA poses 

challenges and hinders the objective of extracting valuable insights from data. To address 

this issue, Pythia, a Java application that utilizes the Apache Spark engine, was developed 

to facilitate automated EDA. The general idea of the system is that it accepts a dataset as 

input and automatically produces valuable insights about it. In the context of this thesis, 

Pythia is extended to automatically identify highlight patterns in the input dataset. The 

data set passes by a set of highlight extractor modules which check for both holistic 

highlights that concern an entire area of the dataspace and point-based highlights which 

only concern an individual point in the dataspace. Specifically, Pythia is extended to 

identify dominance and outlier highlights. Dominance is a holistic highlight pattern that 

allows analysts to identify partial or total dominance occurrence for coordinates of the 

input dataset over a selected measurement. Outlier is a point-based highlight pattern that 

allows analysts to detect numerical data points whose value is notably different from the 

others in the input dataset. The identified highlight patterns are recorded on main 

memory and exported as part of the generated reports. Pythia is also augmented with the 

ability to allow for selection of the data analysis techniques that should be executed for 

each input dataset. Lastly, the contributed extensions to the system are thoroughly tested 

and extensively experimented. Following the conventions of the existing project, the 

contributed code is written in Java using Apache Spark for fast analytics computations. 

The code is also easily scalable with additional highlight patterns. 

 

Keywords: Data Science, Dataset Profiler, Exploratory Data Analysis, Data Patterns, Java, 

Apache Spark 
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Περίληψη 

Από τις αρχές της δεκαετίας του 1960, έχει γίνει σαφές ότι τα δεδομένα έχουν σημαντική 

αξία. Στις σύγχρονες μέρες, όλοι μας παράγουμε και συλλέγουμε δεδομένα με κάποιο 

τρόπο και αυτό έχει ως αποτέλεσμα τα δεδομένα να γίνονται όλο και πιο κολοσσιαία σε 

μέγεθος και πολύπλοκα σε δομή. Η Διερευνητική Ανάλυση Δεδομένων (Exploratory Data 

Analysis - EDA) είναι μία διαδικασία που χρησιμοποιείται από επιστήμονες δεδομένων 

για την ανάλυση και κατανόηση συνόλων δεδομένων. Περιλαμβάνει διάφορες μεθόδους 

ανάλυσης, όπως οι ομαδοποιήσεις, οι οπτικοποιήσεις δεδομένων και οι στατιστικές 

αναλύσεις, επιτρέποντας την ανακάλυψη προτύπων και την ανίχνευση ανωμαλιών. 

Ωστόσο, η έλλειψη αυτοματοποίησης στην Διερευνητική Ανάλυση Δεδομένων μπορεί να 

την κάνει ιδιαίτερα κουραστική, εμποδίζοντας την εξαγωγή πολύτιμων ερευνητικών 

αποτελεσμάτων και αποθαρρύνοντας τη συνέχιση της ανάλυσης. 

Για να αντιμετωπιστεί αυτή η πρόκληση, αναπτύχθηκε το Pythia, ένα πρόγραμμα σε Java 

που χρησιμοποιεί την μηχανή Apache Spark για να επεξεργαστεί γρήγορα σύνολα 

δεδομένων μεγάλου όγκου. Το Pythia αποδέχεται ένα σύνολο δεδομένων ως είσοδο, το 

επεξεργάζεται, και παράγει αυτόματα πολύτιμες πληροφορίες για αυτό. Το σύστημα 

Pythia έχει τη δυνατότητα να αξιολογεί την ποιότητα των δεδομένων, να υπολογίζει 

στατιστικά, ακόμα και να παράγει δένδρα αποφάσεων. Όλα αυτά γίνονται αυτόματα και 

τα αποτελέσματα παρουσιάζονται στον αναλυτή μέσω μιας λεπτομερούς αναφοράς. 

Στο πλαίσιο αυτής της διατριβής, το Pythia επεκτείνεται ώστε να εξετάζει το σύνολο 

δεδομένων για την ύπαρξη μοτίβων. Ο πυρήνας της αυτόματης ανάλυσης δεδομένων του 

συστήματος εμπλουτίζεται με μονάδες εξαγωγής μοτίβων, οι οποίες εξετάζουν το σύνολο 

δεδομένων και αναγνωρίζουν τόσο ολικά όσο και σημειακά μοτίβα. Τα ολικά μοτίβα 

αφορούν μεγάλες περιοχές στο χώρο δεδομένων του συνόλου, ενώ τα σημειακά μοτίβα 

αφορούν συγκεκριμένα σημεία. Συγκεκριμένα, το Pythia επεκτείνεται για να αναγνωρίζει 

μοτίβα κυριαρχίας και μοτίβα ακραίων σημείων. Τα μοτίβα κυριαρχίας είναι ολικά 

μοτίβα, τα οποία επιτρέπουν στους αναλυτές να εντοπίζουν μερική ή απόλυτη εμφάνιση 

κυριαρχίας σε συντεταγμένες του συνόλου δεδομένων για μία επιλεγμένη μετρική. 

Αντίθετα, τα μοτίβα ακραίων σημείων είναι σημειακά μοτίβα, τα οποία επιτρέπουν στους 

αναλυτές να ανιχνεύουν αριθμητικά σημεία δεδομένων των οποίων η τιμή διαφέρει 

σημαντικά από τα άλλα σημεία στο σύνολο δεδομένων. Τα εντοπισμένα μοτίβα 

καταγράφονται στην κύρια μνήμη ως αντικείμενα Java και παρουσιάζονται ως μέρος της 

δημιουργηθείσας αναφοράς ευρημάτων.  
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Το σύστημα επίσης επαυξάνεται με τη δυνατότητα καθορισμού των τεχνικών ανάλυσης 

δεδομένων που εκτελούνται για κάθε σύνολο δεδομένων. Τέλος, οι προαναφερόμενες 

επεκτάσεις στο σύστημα δοκιμάζονται με διεξοδικούς ελέγχους και αξιολογούνται με 

εκτενείς πειράματα. Σύμφωνα με τη σύμβαση του υπάρχοντος έργου, ο συνεισφερόμενος 

κώδικας γράφεται σε Java και είναι εύκολα επεκτάσιμος και κλιμακούμενος με επιπλέον 

μονάδες εξαγωγής μοτίβων. 

 

Λέξεις Κλειδιά: Επιστήμη Δεδομένων, Δημιουργία Προφίλ για Σύνολα Δεδομένων, 

Διερευνητική Ανάλυση Δεδομένων, Μοτίβα Δεδομένων, Java, Apache Spark 
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Chapter 1. Introduction 

This chapter presents a brief overview of the subject and the general field of study of the 

thesis, as well as an overview of the structure of the following sections of the thesis paper. 

1.1 Thesis subject 

Since the early 1960s, it has become clear that data holds significant value. Nowadays, 

everybody is collecting and producing data in some way and as a result data is getting 

increasingly complex, interconnected, and colossal in size. Naturally, some sets of data 

might hold more value than others. The selection of a suitable data set for a certain 

purpose can be a challenge of its own. But, even if we were to obtain an incredibly valuable 

set of data, having possession of the data alone is not synonymous with acquiring the 

value it contains. Data must be broken down and analyzed in order to summarize its 

characteristics, assess its quality, and determine whether it contains valuable 

information. This procedure is known as Exploratory Data Analysis (EDA) [Agga15]. 

Essentially, EDA is a procedure used by data scientists to analyze data sets and summarize 

their characteristics and it helps determine how to manipulate data to get the insights one 

might need, such as discovering patterns, spotting anomalies, or testing hypotheses. 

Scientists can identify obvious errors, better understand patterns within the data and find 

interesting relations among the variables of the data set [IBMC20].  

EDA usually involves various analysis methods such as clustering, data visualization and 

statistical analysis. For instance, an analyst might want to detect and exclude outliers from 

a data set to decrease its variability. Data visualization is also a very common method, as 

it transforms data into a form that is easy to understand, thus allowing analysts to quickly 

gain insights into large amounts of data. There are numerous tools that provide the above-

mentioned analysis methods. However, such analysis methods are typically conducted in 

an interactive manner, i.e., the analyst has to specify the desired analysis method along 

with any required parameters and perform any potential data preprocessing in order to 

extract the desired insights. Afterwards, the analysis results which are produced can be 

evaluated, reviewed, and used for follow-up analysis, repeating the above process. 

Lack of automation in the context of data exploration is a severe issue for several reasons. 

Data exploration can be a tiresome task, especially for larger data sets as the extracted 

data is highly likely to lack structure and organization. Therefore, lack of automation 
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hinders the main objective of EDA, which is to gain valuable insights from the data while 

it also discourages any potential follow-up analysis [PRSD21]. In an attempt to solve this 

issue, a system called Pythia [Alex22] was developed. The main objective of the system is 

to facilitate automated EDA, accepting a data set as input which is processed and a 

valuable insights overview about it is automatically generated. Pythia is a Java application 

which utilizes the Apache Spark engine to process the data set and generate the results in 

an automated manner. Apache Spark [Apac21] is an optimized and unified engine for 

executing data engineering and analytics on large scale data. It is widely used in the 

general field of data science as it is capable of rapidly processing vast amounts of data. 

In its state prior to this thesis, Pythia was relatively limited to assessing the quality of the 

given data set. In essence, the system was still in an early stage of development. More 

specifically, it was capable of accepting a data set as input and generating a detailed 

statistics profile about it including automated correlation calculation. The system was 

also capable of generating decision trees for labeled fields of the data set in a simplistic 

manner. All of the above is done automatically, and the results are presented to the analyst 

in a detailed report [Alex22].  

In the context of this thesis, Pythia is extended to not only assess the quality of the input 

dataset but also produce valuable insights about it in an automated manner. The system 

is extended with highlight extractor modules that examine the dataset and identify both 

holistic highlights and point-based highlights. Holistic highlights concern an entire area 

of the dataspace and point-based highlights only concern a specific point in the input data. 

Each highlight extractor module consists of data preparation procedures such as querying 

the dataset and a highlight identification algorithm which actually checks for the existence 

or absence of the highlight pattern at hand. Identification results are generated and stored 

in concrete result objects on main memory. In the end, once all the automated data 

analysis procedures of the system have finished and the result objects have been 

generated, the highlight identification results are exported to report files, that contain 

insightful information. 

In further detail, Pythia is extended to identify dominance and outlier highlights. 

Dominance is a holistic highlight pattern that allows analysts to identify partial or total 

dominance occurrences for specific coordinates of the input dataset w.r.t. a selected 

measurement. For instance, an analyst might obtain insights such as which occupation 

has worked the most or least hours per week among different countries. Another example 

would be a highlight such as which car model had the highest or lowest price among 

different years. Pythia is also augmented with the ability to accept input parameters that 
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determine whether the selection of dominance measurement and coordinate columns 

should be performed automatically or manually by the data analyst. On the other hand, 

outlier is a point-based highlight pattern that allows analysts to detect numerical data 

points whose value is notably different from the others in the input dataset. 

Overall, Pythia is extended with the ability to identify highlight patterns such that valuable 

insights about the input dataset are produced in an automated manner. The development 

of the newly added features is done in a flexible way such that the system can be easily 

extended with more highlight extractor modules. Lastly, in order to improve the 

scalability and usability of the system, Pythia is also augmented with the ability to accept 

parameters regarding which parts of the automated data analysis pipeline should be 

executed, such that certain data analysis parts can be excluded or executed individually. 

1.2 Thesis structure 

The following chapters showcase the contributions that are implemented in the context 

of this diploma thesis in great detail. 

More specifically, chapter 2 describes the thesis objective and presents the scientific 

background that is required to properly comprehend the thesis, describing data science 

terms and techniques as well as technologies used in the system, such as Apache Spark. 

The state of the Pythia system prior to this thesis is also described.  

Chapter 3 presents a higher-level overview of the software architecture and execution 

flow of the Pythia dataset profiling system as well as an in-depth description of the 

software design and implementation regarding the automated highlight identification 

problem. Details regarding software testing, installation and execution are also provided, 

along with information about maintenance and scalability of the software.  

Chapter 4 describes the methodologies used for the experimental evaluation of the 

system which involved measurement of execution times for three (3) different levels of 

abstraction. It also presents the results of the experimental evaluation in detail, in the 

form of tables and bar charts. 

Lastly, Chapter 5 contains a synopsis of the contributions of this thesis and presents a list 

of suggestions with future extensions for the system. In the end of the document, there 

are references to all bibliography and all web links that were visited during conduction of 

the thesis. 
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Chapter 2. Subject Description 

2.1 Thesis objective 

The objective of this thesis is to contribute to and extend the Pythia system. The main 

objective of the Pythia system is to allow an analyst to obtain valuable insights of a data 

set in an automated manner. The system accepts a data set as input and generates a 

detailed statistical profile with insights of the data set. The contribution revolved around 

the enrichment of the generated statistical profile.  

In detail, the added requirements to the system are organized as follows: 

- After a data set has been successfully loaded into the system, the system should 

be able to check for patterns among the fields of the data set and identify 

interesting subsets of the data set that pertain to these patterns. The term 

“highlights” is used to refer to these patterns that actually exist in the data set. The 

highlight extractor modules must be easily extendable to allow for pattern 

additions without any significant maintenance of the pattern manager class. 

Patterns can be of different types: 

● Two-dimensional highlight-related patterns. This pattern type 

consists of a measurement column M and a regulator column X. We are 

looking for properties such as which values of X produce the top-K values 

of M, outliers, or trend change patterns in cases where X describes a time 

attribute.  

● Two-dimensional global property patterns. This pattern type also 

consists of a measurement column M and a coordinate column X. 

However, it does not concern specific values of X but rather, general 

properties such as whether M follows a distribution in relation to the 

values of X, or whether a timeseries trend exists in cases where X 

describes a time attribute. 

● Three-dimensional highlight-related patterns. This pattern type 

consists of a measurement column M and two regulator columns X and Y 

respectively. The behavior of M is examined in relation to how the values 

of X and Y change. We are looking for top-K values of M, outliers and X or 

Y values that dominate a result. 
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- The system should be able to retain all the results of the evaluated patterns the 

data set was checked against as objects during runtime, using the respective 

classes. 

Note that since some of the added operations are performed internally within the system, 

as part of the data set processing, the analyst can not interact with them directly. 

2.2 Background 

In this section, the background required to comprehend the thesis is presented in greater 

detail. The state of the Pythia system prior to this thesis is also described. 

2.2.1 Data sets & multi-dimensional data 

Data refers to information that comes from observations or measurements which are 

recorded and represented as text or numbers [Wiki22]. A data set is a structured 

collection of information which can be manipulated by a computer. This information may 

originate from various sources of measurement and understanding it is essential in order 

to use it and extract value from it.  

In the majority of cases, data sets hold multi-dimensional data, which are typically 

organized in tabular format, where each row corresponds to a record and each column is 

an attribute. The data set lists values for each of the attributes. For instance, height and 

width of an object, for each row of the data set. In general, attributes on columns can be 

distinguished between two different types: dimensions and measures. Dimensions can be 

categorical (e.g., “Country”) or temporal (e.g., “Month”) and they can be used to group 

records. As an example, one could select only the records (rows) of a given data set whose 

“Month” attribute has the value of “July”. On the other hand, measures are numerical 

columns (e.g., “Temperature”) on which certain aggregate functions can be performed 

such as mean, median or sum [PRSD21]. 

The rows and columns of an entire data set with multi-dimensional data define a space 

which we will call dataspace. However, on many occasions, we do not need to examine 

the entire dataspace but only a small fraction of it. Based on that, the data space can be 

divided into subspaces. Subspaces can be as small as a single data point, meaning a single 

attribute on a single row. On the other hand, a subspace may consist of one or more rows 

and one or more attribute columns. 

Data sets are typically stored and maintained in databases. However, they can be 

individually exported for specific analysis such as in the case of a data set profiler. A 
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common format in which data sets can be exported is a plain text file, where each line is a 

record with its attributes, which are separated using a delimiter such as a tab or a comma. 

2.2.2 Pythia prior to this thesis  

As it was mentioned above, the Pythia1 system, in its state prior to this thesis, is relatively 

limited to assessing the quality of the given data set. The end goal of the system is to 

facilitate fast automated EDA, by generating a valuable insights overview about a given 

data set. The system can be easily imported as a dependency into other Java projects as it 

is developed in Java too and is distributed in a JAR package. Pythia utilizes the Apache 

Spark engine to quickly process the data set. Apache Spark is an optimized and unified 

engine for executing data engineering and analytics on large scale data. 

The capabilities of the system prior to this thesis are described in further detail below 

[Alex22]: 

- Data set loading: The system is capable of accepting a data set via programming 

to declare the fields of the data set and their type respectively (integer, double, 

Boolean, etc.). 

- Descriptive statistics: Any data set can be summarized using descriptive 

statistics and that is usually the first step towards analysis. Pythia is capable of 

automatically calculating mean, median, standard deviation, min, max and 

multitude of values for all columns, even for non-numerical data. 

- All pairs correlation: Another important metric in data sets is the correlation 

between columns, as it can be useful in cases where predictive algorithms are 

applied. Pythia is capable of calculating the correlation between all columns of the 

given data set.  

- Labeling & decision trees: Pythia allows for optional labeling rules to be applied 

to any desired columns. If the analyst specifies any labeling rules for a column, 

Pythia automatically labels its values and creates a new column with the labeled 

values. Subsequently, a simple decision tree is also generated in an automated 

manner based on the labeled column with the help of Apache Spark. 

- Reporting: After all the data processing is complete, the analyst can export the 

results in plain text or JSON format. JSON (JavaScript Object Notation) is an easy-

 
1 The system was named Pythia after the generic title of the high priestesses of the Temple of Apollo at Delphi, 

known as the Oracle of Delphi. The Pythia were renowned for their oracular capabilities, as they delivered 

enigmatic prophecies in a frenzied state induced by vapors rising from a chasm in the rock. 
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to-understand format to transfer and display data [Orac22]. It is widely used in 

many fields of computer science and especially in web technologies.  

2.2.3 Highlight patterns 

In general, the term highlight is used to describe an interesting property that is identified 

in a subspace of a data set. In essence, identifying a highlight is a way of extracting 

valuable insights from data. There are numerous types of highlights, heavily depending 

on what one might consider interesting. However, in the context of this thesis, we are 

examining highlights in the form of patterns within the data. The term “highlight 

patterns”, or simply “highlights”, is used to refer to these patterns that actually exist in the 

analyzed data set. Highlight patterns can be classified between two categories based on 

the spatial context they are identified at: holistic and point based. 

- Holistic highlight patterns. This pattern refers to a property that corresponds to 

the entire subspace under examination. The dataspace is either true or false w.r.t. 

the highlight’s occurrence.  

- Point-based highlight patterns. This pattern refers to a highlight property that 

corresponds to a specific point in the subspace under examination. This data point 

is characterized by one or more coordinates which induce a property to the 

measurement. 

In both cases, the subspace consists of a measurement column M and one or more 

coordinate columns. In general, a subspace of a data set can have multiple coordinate (or 

regulator) columns that make the highlight predicate true, depending on the nature of the 

highlight itself. In the context of this thesis, we examine holistic cases of one coordinate 

column X and point-based cases of one coordinate column X or two coordinate columns X 

and Y respectively. The coordinate column(s) induce a property to the measurement 

column. 

According to the terminology and taxonomical clarification of MetaInsight [PRSD21], 

highlight patterns can be further classified. In case of holistic highlights, patterns can be 

distinguished between the following types: 

- Statistical highlight patterns. In statistical highlight patterns, the data subspace 

is examined for general properties such as whether M follows a distribution in 

relation to the values of X. 

- Trend highlight patterns. Trend is a time series highlight pattern, which means 

that the regulator column X describes a time attribute. This pattern describes a 

continuous increase or decrease over time of the measurement column M. On a 
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graph, the pattern usually resembles a straight line, although, special cases of 

trends exist, such as exponential trends.  

- Seasonality highlight patterns. Seasonality is also a time series highlight 

pattern, meaning that the regulator column X describes a time attribute. The 

highlight presents a repeated pattern in a time series. One can identify a 

seasonality highlight pattern when fluctuations repeat over a relatively fixed 

period of time. 

In case of point-based highlights, patterns can be further distinguished between the 

following types [PRSD21]: 

- Coordinate highlight patterns. In coordinate highlights the behavior of the 

measurement column is examined in relation to how the values of the coordinate 

column(s) change. We are looking to identify properties such as outliers or which 

values of X produce the top-K values of M. 

- Change point highlight pattern. Change point is a time series highlight pattern, 

which means that the regulator column X describes a time attribute. The highlight 

refers to a point of interest in the data subspace where a change on the 

measurement column M occurs. In further detail, the mean value of M before and 

after the highlight changes significantly. 

- Unimodality highlight pattern. Unimodality is also a time series highlight 

pattern, which means that the regulator column X describes a time attribute. This 

highlight refers to a point of maximum or minimum value in a time series that has 

a peak shape or a U-shape. 

2.2.4 Outliers 

An outlier is a data point or observation whose value is notably different from the others 

in the analyzed data set [Agga15][Bosl12]. This is sometimes described as a data point 

that seems to come from a different source or is outside the typical pattern of the other 

data points. In the case of numerical data, an outlier refers to a value that is either much 

smaller or much larger than most of the other values of the data set. For instance, suppose 

we are examining the sales of different departments across different cities for a specific 

time period. All departments have made sales between the values of 5.000 and 6.000, with 

the exception of two departments that made 3.000 and 8.500 sales respectively. The last 

two cases are most likely considered outliers as their values are far from the other data 

in the sample.  
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Identification of outliers is important in many types of data analysis because the presence 

of just a few outliers can completely distort the value of some simple statistics, such as the 

mean. It is also important to identify outliers because sometimes they represent data 

entry errors in the measuring process. Once identified, it is possible to remove cases with 

outliers from the data before any further analysis is performed, but the acceptability of 

such practices varies. Alternatively, in cases where it is not possible or acceptable to 

remove outliers, the very knowledge of their presence can have a significant impact on 

the methods used for further analysis [Bosl12]. 

2.2.5 Clustering analysis 

Clustering analysis involves a set of techniques that allow data to be grouped together 

into clusters in such a way that data belonging to the same cluster are more similar to 

each other than data belonging to another cluster [Bosl12]. Clustering analysis is 

performed based on the value of one or more attributes of the data set. Clustering is 

commonly used in various fields of computer science and very often in Exploratory Data 

Analysis. It is worth noting that clustering analysis itself does not refer to one specific 

algorithm but rather, the general task to be solved.  

There are several clustering algorithms and choosing the right one for each occasion 

depends heavily on whether the expected number of clusters is known or not. For 

instance, in cases where we know the number of expected clusters, we can pass this 

number to the algorithm and let it take care of the allocation, such as in the case of the k-

means algorithm. On the other hand, if the number of expected clusters is unknown, we 

may have to use a different algorithm to estimate how many clusters there are.  

Clustering works by taking an input vector V with n cases and p attributes, iterating over 

the cases, and allocating them to one cluster based on the similarity of the case with the 

cluster. The criterion for assessing similarity varies among different clustering algorithms 

and each specific use case. A very common approach for numerical data is to measure 

their distance using a formula such as the Euclidean distance. Euclidean distance is the 

geometric distance between two points in a multidimensional space. As the algorithm 

execution carries on, cases are moved between clusters to minimize within-cluster 

variability and maximize between-cluster variability. The process continues until it 

converges according to some predefined criterion [Bosl12]. 

Clustering analysis is relatively empirical, and its outcome highly depends on the quality 

of the given data set. Note that in most algorithms, some randomness is introduced due 

to the initial assignment of the clusters. As a result of that, results are highly likely to vary 
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even when the selected clustering algorithm, the data set and any other predefined 

parameter remain the same. Therefore, if results are not satisfactory, the process of 

clustering may be repeated. 

2.2.6 Statistical data distributions 

The process of statistical analysis often involves examining the way data is distributed. 

The values of each column of a data set will form a distribution. Mathematically, this 

distribution is often described in the form of a parameterized function that can be used to 

calculate the probability for any individual observation in the sample subspace. This 

function describes the density of the observations and is known as the probability density 

function [Bosl12] [Mach19]. There are numerous types of distributions, with the most 

common one being the Gaussian distribution, often called the Normal distribution. Some 

common types of data distributions are described in further detail, below [Bosl12]: 

- Gaussian distribution. The Gaussian distribution is arguably the most commonly 

used in statistics, mainly because it provides a reasonable description regarding 

how data is distributed in reality; hence, it is also known as the Normal 

distribution. There is an infinite number of normal distributions, all of which have 

the same basic shape and are described by the same two parameters: mean (μ) 

and standard deviation (σ). 

- Flat distribution. The flat distribution, also known as uniform distribution, is a 

probability distribution where all outcomes or values within a given range are 

equally likely  to occur. In other words, the flat distribution has a constant 

probability density function across its entire range. Visually, a flat distribution 

appears as a rectangle when represented on a graph, where the height of the 

rectangle corresponds to the constant probability density. 

2.2.7 Data visualization 

While all the data set analysis methods described above are very important, their output 

usually comes in numerical or tabular format, which can be tiresome for humans to go 

through. Presenting analysis results in a way that is meaningful, quick, and easy to 

understand is very important too. The most common method to achieve this – widely used 

in EDA – is data visualization. Data visualization is the graphical representation of 

information and data. It provides a quick and effective way to communicate information 

in a universal manner. The main goal of data visualization is to make it easier for the 

human brain to identify properties of the data such as patterns, trends, and outliers, 
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especially in larger data sets. In essence, it provides a quick and valuable insight that 

allows an analyst to better understand the data. 

Data visualization is usually performed using some type of chart. Some of the most 

commonly used charts are presented in greater detail, below [Bosl12]: 

- Line chart. Line charts or line graphs are used to display the relationship between 

two attributes, with one attribute depicted on the x-axis and the other on the y-

axis, accordingly. The main purpose of line charts is to demonstrate the effect of 

the x-axis attribute on the y-axis attribute as the first one increases. One 

requirement for a line chart is that there can only be one x-value for each y-value. 

These two values make up a point in the space of the chart. Points can be 

connected with lines, as suggested by the name of the chart. Oftentimes, the x-axis 

is used to depict a time attribute and line charts are typically used to visualize 

trends or temporal data, such as a timeseries.  

- Bar chart. Bar charts are particularly appropriate for displaying discrete data 

with only a few categories, using bars whose height and width are analogous to 

the attribute values they represent. The main purpose of bar charts is to allow for 

easy comparisons across discrete data. Bars are separated from each other, so 

they do not suggest continuity even if the represented attribute is continuous. 

Bars can be drawn horizontally or vertically. One axis is used to depict the 

categories being compared and the other depicts the measured value of the 

attribute. Bar charts can also be combined into grouped bar charts. A grouped bar 

chart extends the bar chart by plotting bars for the values of two or more 

categorical attributes instead of one. However, note that it is not a good practice 

to depict more than two or three categorical attributes in a grouped bar chart, as 

the resulting chart will end up being overcharged with the attribute data. 

- Scatter plot. Scatter plots are used to display the relationship between pairs of 

attributes. A scatter plot is a graph of two continuous attributes. Similarly to line 

charts, one attribute value is graphed on the x-axis and the other on the y-axis. 

These two values make up a point in the graph, described by the x and y cartesian 

coordinates. Scatter plots can be useful in depicting the overall relationship 

between two attributes, with properties such as direction (positive or negative), 

and shape (linear, quadratic, etc.). On top of that, scatter plots are a good way to 

get the general sense of the range of data and identify any potential outliers. 

- Histogram. Histograms are visually similar to bar charts. However, in a histogram 

the bars - which are also called bins in histograms - are used to depict the 

distribution of data. In other words, the range of attribute values is divided into 
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groups. Each group is depicted as a bar. The height of the bar is proportionate to 

the amount of attribute values it contains. The width of the bars is usually identical 

and contrary to bar charts, bars in histograms touch each other. 

2.2.8 Apache spark 

Apache Spark [Amaz23] [Apac21] is an optimized and unified engine and a set of libraries 

for executing distributed data engineering and analytics on large scale data. It was 

developed at the University of California, Berkeley, and is currently maintained by the 

Apache Software Foundation. Spark is one of the most actively developed open-source 

engines for complex large-scale data analytics and is widely used in the general field of 

data science as it is capable of rapidly processing vast amounts of data. Apache Spark is 

efficient due to the fact that it utilizes in-memory caching, it has optimized query 

execution for fast queries against data of any size, and it can also distribute data 

processing tasks across multiple computers. 

Spark Core is the foundation of the engine and the respective libraries. It has multiple 

responsibilities such as memory management, fault recovery, task distribution, 

monitoring, and storage system interactions. It integrates libraries for interactive queries 

(Spark SQL), machine learning algorithms (MLlib), real-time streaming analytics (Spark 

Streaming) and distributed graph processing (GraphX). Spark Core is exposed in the form 

of an application programming interface (API) for the following programming languages: 

Java, Scala, Python and R. This API hides the complexity of the engine’s internal tasks and 

provides high-level operators, making it easy to execute complex distributed data 

engineering and analytics with few lines of code. 

 

 

Figure 1. Spark Core integrated libraries and the provided APIs. [Amaz23] 
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Some of the libraries and classes of Apache Spark which are particularly used in the 

Pythia system are described in further detail below: 

- Spark SQL. Apache Spark SQL is a library in the Apache Spark engine that 

provides a programming interface for working with structured and semi-

structured data using SQL-like syntax. It allows users to read, write and load data 

from a wide range of sources including data files of various formats (such as CSV, 

TSV and JSON), external relational database management systems as well as 

streaming data sources. With Spark SQL, users can perform SQL queries via 

programming in order to filter, aggregate and transform data. Overall, it is a 

powerful library for analyzing and manipulating large-scale data in a distributed 

computing environment. 

- MLlib. Apache Spark MLlib is also a library that is part of the Apache Spark system. 

It provides a scalable and distributed interface for implementing machine 

learning algorithms on large amounts of data. MLlib includes numerous 

algorithms for common machine learning tasks, such as regression, classification, 

clustering, and pattern mining. These algorithms are designed to work seamlessly 

with Spark’s distributed computing, making them very efficient at large-scale data 

processing. Some of the algorithms available in MLlib include linear regression, 

logistic regression, decision trees and k-means clustering. Additionally, MLlib also 

includes tools for data preprocessing, feature extraction, and model evaluation. 

- Spark Session. The SparkSession class is a top-level interface which provides a 

unified entry point to Apache Spark’s features and functionalities, including Spark 

Streaming, MLlib and Spark SQL. It is the starting point for any Spark application 

and provides a way to configure Spark settings and access resources. 

SparkSession is designed to support top-level operations on structured data and 

is the recommended way to work with Apache Spark in most cases, as it 

encapsulates other high-level classes such as SparkContext and SQLContext. 

- Resilient Distributed Dataset. The Apache Spark Resilient Distributed Dataset 

(RDD) class is the fundamental data abstraction in Spark. It represents a 

distributed collection of objects that can be processed in parallel across a cluster 

of machines. RDDs can be created by reading data from a file system or a 

distributed storage system. They can also be created as a result of data 

manipulation operations such as map, filter and reduce. RDDs are fault tolerant, 

meaning that if a node in the cluster fails, Spark can recover the lost data and 

proceed with data processing. Moreover, RDDs are designed to be stored in main 
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memory and their operations are evaluated lazily, meaning that Spark will not 

execute any computation until it is necessary. 

- Spark DataFrame. The Apache Spark DataFrame class is used to describe a 

distributed collection of data into named columns, similar to a table in a relational 

database schema. It is a higher-level abstraction from RDDs. Each column has a 

specific data type such as integer, string, double, boolean, timestamp, etc. This 

structured data representation allows the DataFrame class to provide a rich set of 

functions, including filtering, aggregating, joining, and transforming operations. 

DataFrames are optimized for performance and integrate seamlessly with other 

Spark libraries and components, making it easy to build data processing pipelines.  

- Spark Dataset. The Apache Spark Dataset class is the latest class which describes 

a strongly typed distributed collection of data, starting from Spark 1.6, integrating 

the benefits of RDDs, such as lambda functions. Contrary to the DataFrame class, 

a Dataset is a collection of strongly typed JVM objects, which provides type safety 

at compile time and allows for fewer runtime errors. As a result, Datasets are 

supported only in Java and Scala which are type safe programming languages. 

Operations of the Dataset class can be distinguished between actions and 

transformations. Actions refer to operations such as count, show and write, while 

transformations are operations such as select, map and aggregate and they 

produce new Datasets. Dataset is the class used to represent data collections in 

the Pythia system. Lastly, it should be noted that Spark provides functions to 

easily switch between Datasets, DataFrames and RDDs. 

- Spark Column. The Apache Spark Column class is a representation of a column of 

data in a Spark DataFrame. It provides a set of functions that can be used to 

manipulate and transform data in a column, such as selecting a subset of rows, 

computing aggregate functions or user-defined functions. 

- Spark Row. The Apache Spark Row class is responsible for describing a row of 

data in a Spark DataFrame. It is a general object, containing one or more Spark 

Column objects, in an array-like syntax and allows for each Column to have a 

different data type. Similarly to Spark Column, the Row class can be used to 

perform operations like filtering and mapping on individual rows. 
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2.2.9 Git & GitHub 

Git [ChSt22] is version control system (VCS) that allows multiple developers to easily 

collaborate in parallel on a project and track changes to the source code. It was created 

by Linus Torvalds in 2005 and has become one of the most popular VCS used nowadays. 

Git tracks changes to a project by creating snapshots of the source code which are called 

commits. Each commit records changes made to the code since the previous commit, 

including any file additions, file modifications or file deletions. Git also allows developers 

to create branches, which are independent copies of the source code, that can be worked 

on independently without affecting the main branch. Branches can be merged back into 

the main source code once changes have been reviewed. 

All this information is stored in a repository by Git. A repository is simply a directory that 

contains the source code, the commits, the branches, and various other metadata. 

Repositories can be stored on remote cloud servers such as GitHub and GitLab, allowing 

developers to easily collaborate regardless of their physical location. 

Git and GitHub, as well as the above procedures and methodologies were heavily used in 

the development of Pythia. The above information may not be required in order to 

comprehend the features of the system, but it would be extremely important for those 

interested in the development process.  
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Chapter 3. Design & Implementation 

This chapter presents a higher-level overview of the overall software architecture and 

execution flow of the Pythia dataset profiling system as well as an in-depth description of 

the software design and implementation regarding the automated highlight identification 

problem. All of the above is accompanied by UML class and package diagrams in order to 

assist with comprehension of the software. Details regarding software testing, installation 

and execution are also provided. The last section provides information about 

maintenance and scalability of the software.  

3.1 Problem definition & resolution 

As mentioned in previous chapters, lack of automation in EDA is a severe issue because it 

makes the process tiresome and time-consuming, and therefore hinders the main 

objective of data analysis, which is to extract valuable insights from data. Prior to the 

contributions of this thesis, the Pythia system was still in an early stage of development, 

limited to automatically assessing the quality of the given data set by generating 

descriptive statistics, correlations, and decision trees for columns of the dataset. In 

essence, the Pythia system set the foundation for a highly extendable system that 

facilitates automated EDA, producing valuable insights about input datasets. 

This thesis aims to extend the functionality of Pythia beyond simply assessing the quality 

of a given data set by enriching the generated statistical profile with valuable insights. To 

accomplish this, Pythia is augmented with highlight extractor modules which examine the 

data set for both holistic and point-based highlights.  

Each highlight extractor module has its own dedicated sub-package in the software 

architecture of the system and consists of the following: 

1. Data preparation. Data preparation is an optional step which takes place before 

the identification algorithm. It refers to procedures such as querying the data set 

and selecting valid and interesting columns for passing against an identification 

algorithm. 

2. Highlight identification algorithm. Once data preparation is complete, the 

selected data is passed by the highlight identification algorithm which processes 

the data and generates results regarding the existence or absence of highlight 

patterns for the algorithm at hand. Some algorithms may have multiple variations, 
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in which case all the different variations are executed and produce respective 

results. It should be noted that in many cases the size of the results is highly likely 

to exceed what one might expect to be easy-to-read and therefore, some 

algorithms implement mechanisms such as Top-K filtering, in order to limit the 

number of results, keeping only the most important ones. 

3. Highlight identification result object(s). For each algorithm execution, 

respective highlight identification results are saved in a separate concrete result 

object. Apart from the existence or absence of a highlight, result objects may also 

contain information such as the location of the highlight in the data set, scoring 

for the involved data, which variation of the algorithm was executed, and which 

measurement and coordinate columns were involved. Highlight identification 

algorithms greatly vary from one another and therefore each algorithm has its 

own result class. 

4. Reporting mechanisms. In the end, once all involved data has passed by the 

previous phases and the respective result objects have been generated, the 

highlight identification results are exported to report files, which contain all the 

information saved in the result objects, as well as natural language descriptions 

about the identified highlights. 

All of the above is performed automatically by Pythia, as part of the data analysis pipeline.  

Furthermore, in order to improve the usability, extensibility and scalability of the system, 

Pythia is augmented with the ability to accept input parameters. After loading a data set 

into the system, analysts can declare parameters to specify which parts of the automated 

data analysis pipeline should be executed, as well as specify points of interest, such as 

columns of the data set, that should be involved specifically in highlight pattern 

identifications. 

Overall, this thesis aims to extend Pythia and enhance its ability to provide valuable 

insights to analysts by setting the foundation for highlights identification in an automated 

manner. The developed highlight extractor modules implement the parameterized 

Factory [Knoe01] software design pattern, making them easily extendable and allowing 

for additional modules to be developed without any significant maintenance of the 

pattern manager class. Following the conventions of the existing project, the contributed 

code is developed in Java and utilizes the Apache Spark engine for rapid data processing. 

The Pythia system can be easily imported into other Java projects, as it is distributed in a 

JAR package. 

In essence, the contributed code builds upon the following user story:  
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- As a data analyst, the system must provide me with the ability to automatically 

calculate the statistical profile for a data set such that I can easily extract its 

statistical properties [Alex22]. 

Prior to describing the software design and architecture in detail, the contributed features 

to the system are listed below in the form of user stories: 

- [US1] As a data analyst, the system must provide me with the ability to declare 

parameters regarding which parts of the overall automated data analysis pipeline 

should be executed such that I can exclude or include each part of the data analysis 

pipeline individually. 

-  [US2] As a data analyst, the system must provide me with the ability to 

automatically examine the data set for high and low dominance highlights, using 

a measurement column and one or two coordinate columns, such that I can easily 

gain insights regarding which attribute values dominate the other values on the 

given measurement column. 

- [US3] As a data analyst, the system must provide me with the ability to choose 

among different modes regarding the automatic selection of columns of the data 

set that will be involved in dominance examination such that I can control the 

extensiveness of the dominance examination to be performed.  

- [US4] As a data analyst, the system must provide me with the ability to manually 

declare specific measurement and coordinate columns of the data set that should 

be involved in dominance examination such that I can ensure that dominance 

examination will be performed for the manually declared columns. 

- [US5] As a data analyst, the system must provide me with the ability to 

automatically examine the numerical columns of the data set and detect outliers 

such that I can easily obtain an overview regarding outlier existence or absence. 

It should be noted that some of the added features are performed internally within the 

system, as part of the data set analysis, and thus, it is not feasible for the analyst to interact 

with them directly. These features are performed automatically once a data set has been 

loaded and its profile is requested, provided that highlight patterns analysis is included 

in the overall data analysis pipeline. 

3.2 Software design & architecture 

As mentioned in the previous sections, Pythia aims to establish the foundation for a highly 

extendable system that facilitates automated EDA, producing significant insights for given 

data sets. In order to provide a better understanding of the software architecture, this 
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section provides a short overview of the overall architecture of the system, before 

specifically describing the components involved in the automated highlight identification 

which were developed in the context of this thesis. 

3.2.1 Overall architecture overview 

The different features of the Pythia system are developed in respective classes, which are 

organized into separate packages. In most of the packages, a parameterized Factory 

[Knoe01] software design pattern is implemented. The parameterized Factory is a 

creational design pattern where object creation is performed based on parameters by a 

separate factory class. Furthermore, the parameterized Factory pattern is used in 

combination with an interface which is implemented by all the different classes that get 

instantiated by the factory class. In essence, the factory class creates objects based on one 

input parameter and returns them as an interface type. The interface defines a set of 

methods that can be used to interact with the created objects in a consistent manner, 

regardless of the internal logic in each specific implementation. This provides a flexible 

approach to creating objects, improving the overall maintainability and extensibility of 

the system as the code can be easily modified or extended with additional classes 

implementing the interface. 

 

Figure 2. UML diagram with a demonstrative implementation of a parameterized Factory pattern in 
combination with an interface where expected behavior is defined 

Figure 2 provides a complete example of an implementation of the parameterized Factory 

pattern in combination with an interface. Suppose we have a program that needs to read 

data from multiple sources, such as a file or a database. We want to abstract away the 

details of reading from each data source and provide a unified way of reading data from 

any source. To achieve this we can use a parameterized factory in combination with an 

interface. 
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In the example above, the IDataReader interface defines a method for reading data. The 

DataReaderFactory is the concrete factory class which creates and returns objects of type 

IDataReader. The “type” parameter determines which specific implementation will be 

instantiated. The DatabaseReader and FileReader classes implement the IDataReader 

interface and contain a specific implementation for reading data from their respective 

sources. In this way, if the program needs to read data from a different source in the 

future, the code can be easily extended by developing an additional reader class 

implementing the IDataReader interface.  

 

 

Figure 3. UML diagram with the main packages of Pythia. 

A brief overview for each of the different packages of Pythia is provided below [Alex22]: 

- Engine package. This package contains the classes responsible for the basic 

functionalities of the software. It is highest level package that defines and exposes 

the operations of the system in the form of an application programming interface 

(API). In essence, it provides the central control module for coordinating and 

managing the execution flow of the system. In the context of this thesis, this 

package is augmented with the capability to accept input parameters regarding 

which parts of the data analysis pipeline should be executed. The engine package 

is described in further detail in a separate sub-section below. 

- Config package. This package contains a single class (SparkConfig) which is 

responsible for configuring the Apache Spark parameters required for 
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instantiating a Spark Session. These parameters are stored in a properties file 

under the src/main/resources directory.  

- Correlations package. The correlations package has the classes responsible for 

the correlation calculation among all the columns of the input dataset. It 

implements the parameterized Factory pattern that was described above, and the 

main interface of the package is named ICorrelationsCalculator. 

- Labeling package. This package contains classes responsible for creating labeled 

columns based on a user defined rule. The Rule class is responsible for creating a 

single rule for an existing column of the dataset while the RuleSet class is 

responsible for the creation of a complete expression based on which a new 

labeled column is generated. 

- Model package. The model package contains the domain classes required for 

storing data that is used or produced by the system. The top-level domain class is 

called DatasetProfile which encapsulates various other domain classes of the 

package that correspond to the different data analysis parts. In the context of this 

thesis, this package is augmented with the PatternsProfile class which is 

responsible for storing all the data regarding highlight patterns identification. 

- Reader package. This package contains the classes responsible for reading the 

input datasets and loading them into the system. There is a central interface 

named IDatasetReader which is implemented by different concrete classes such 

that multiple file types are supported for loading. Currently, the system is capable 

of loading datasets in JSON, CSV and TSV formats. 

- Report package. This package contains the classes responsible for the creation 

of the report containing all the analysis results, such as descriptive statistics, 

decision trees and highlight patterns. In the context of this thesis, this package 

was modified such that each highlight pattern result is exported to a different 

report file. All report files are exported under the same directory. 

- Util package. The util package has classes containing utility-methods which are 

required and used in different parts of the software. 

- Writer package. The writer package contains classes responsible for exporting 

the loaded dataset back to the disk, in cases where the analyst wants to save a 

modified dataset for future use. The package has a main interface called 

IDatasetWriter which is implemented by the following two concrete classes. The 

NaiveDatasetWriter class which is a simplistic line-by-line writer approach that 

can be used for smaller data sets and the HadoopDatasetWriter class which is 
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powerful writer utilizing Hadoop Distributed File System (HDFS), capable of 

rapidly exporting large datasets to disk. 

- Descriptive statistics package. This package contains the classes responsible for 

the calculation of descriptive statistics. The main interface is called 

IDescriptiveStatistics and supports automated calculation for mean, median, 

standard deviation, min, max and multitude of values for all columns of the 

dataset, even for non-numerical data. 

- Decision tree package. This package encapsulates the classes and sub-packages 

responsible for the extraction and the visualization of decision trees. The top-level 

manager class is called DecisionTreeManager and there are classes regarding 

input parameters, data preparation as well as generation and visualization of 

decision trees. The package is described in great detail in the “Automated 

Extraction of Decision Trees in a Data Profiling System” [Char23] thesis. 

- Histograms package. This package contains all classes responsible for the 

calculation of histograms for the numerical columns of the data set. The top-level 

manager class is called HistogramManager. This package is also described in great 

detail in the “Automated Extraction of Decision Trees in a Data Profiling System” 

[Char23] thesis. 

- Patterns package. This package encapsulates the classes responsible for the 

highlight patterns identification. It also implements the parameterized Factory 

design pattern and has a main engine interface named IPatternManager. This is 

the main package that was developed in the context of this thesis and is 

thoroughly described in a separate subsection below. 
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Figure 4. UML diagram with the main interfaces of Pythia. 

3.2.2 Execution flow 

The operations of Pythia are exposed as methods in the IDatasetProfiler interface of the 

engine package. In general, the basic way of working with the Pythia system to analyze a 

dataset and obtain statistics and other valuable insights is as follows: 

1. Register Dataset. The analyst must programmatically provide the file path of the 

dataset, the names of each column along with its data type such that the dataset is 

loaded into the system. 

2. Add labeled column. Then, the analyst must specify a column name and a rule 

set based on which a new labeled column is generated. Labeled columns are used 

later on in the execution flow for analysis mechanisms such as decision trees 

generation. This step can be repeated multiple times.  

3. Declare dominance parameters. Next, the analyst must specify the mode, based 

on which columns involved in dominance examination will be automatically 

selected and/or manually specify the names of coordinate and measurement 

columns involved in dominance examination. This step is optional; however, it is 

a prerequisite for highlight patterns identification. It should be noted that the 

order of this step is interchangeable with that of step 2. 
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4. Compute dataset profile. Once the previous steps are complete, the analysis of 

the loaded dataset can be performed. In the current state of the system, this step 

integrates the following sub-steps, executed internally as part of the automated 

data analysis procedure. In the context of this thesis, the analyst can pass 

parameters to select which of the analysis sub-steps will be executed. 

a. Calculate descriptive statistics. This step refers to the calculation of 

mean, median, standard deviation, min, max and multitude of values for 

all columns of the dataset, including columns with non-numerical data 

type. 

b. Calculate all histograms. In this step, the system calculates histograms 

for all the columns of the dataset with a numerical data type. This step is 

described in great detail in [Char23]. 

c. Calculate all pairs correlations. During this step, Pythia calculates 

correlations among all the columns of the dataset.  

d. Extract decision trees. This step refers to the extraction of decision trees 

based on labeled columns. More specifically, for each labeled column that 

was specified in step 2, the system generates a respective decision tree. 

This step is described in great detail in [Char23]. 

e. Identify highlight patterns. In this step, Pythia examines the dataset for 

highlight patterns. For each implemented pattern type, the system 

determines whether the whole dataspace or a subspace of the dataset will 

be involved and afterwards, the selected data is passed by the respective 

highlight identification algorithms.  

5. Generate report. Finally, once all the sub-steps involved in the data analysis are 

finished, the system is capable of generating a report for each of the analysis sub-

steps respectively. Each generated report consists of multiple files and is 

organized in a separate dedicated directory, named after the dataset name, along 

with a timestamp of the specific execution time. 

6. Write dataset to disk. This step is optional. It refers to the capability of writing a 

modified dataset (e.g. a registered dataset with labeled columns added to it) back 

to the disk, such that it can be used for future analysis. 

3.2.3 Engine package 

As described above, the engine package is the highest-level package of the system with 

classes responsible for the basic functionalities of the software. It provides the central 

control module for coordinating and managing the execution flow of the system, ensuring 
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that the internal tasks are executed in a well-defined order. The package implements the 

parameterized Factory pattern in combination with an interface. The central interface is 

called IDatasetProfiler. It defines the operations of the system and exposes them in the 

form of an application programming interface (API) such that they can be invoked from 

other projects where Pythia is imported.  

In the context of this thesis, this package is augmented with the 

DatasetProfilerParameters class which is responsible for holding input parameters 

regarding which parts of the data analysis pipeline should be executed. The class has an 

additional parameter that defines the auxiliary data output directory. Auxiliary data 

refers to any data that is generated during analysis of the data set, e.g. images of decision 

trees. The computeProfileOfDataset method of the DatasetProfile class is the main 

method that automatically executes the data analysis pipeline. The method is modified to 

accept a DatasetProfilerParameters object. It should be noted that computation of 

descriptive statistics is a prerequisite for highlight pattern identification. Therefore, while 

it is practically feasible to include descriptive statistics and exclude highlight patterns 

from the overall analysis pipeline, if such a scenario is encountered, descriptive statistics 

are calculated nevertheless before the execution proceeds with highlight patterns 

identification. 

 

Figure 5. UML diagram with the classes of the engine package. 
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3.2.4 Patterns package 

As mentioned above, this package encapsulates the classes responsible for the 

implementation of the highlight patterns identification features. The package itself is 

internally organized, distributing most of its classes to sub-packages, thus, forming its 

own internal architecture. This is the main package developed in the context of this thesis. 

 

Figure 6. UML diagram with the sub-packages in the patterns package. 
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Figure 7. UML diagram with the interfaces and abstract classes within the patterns package. 

The patterns package contains the central control and management interface called 

IPatternManager which is developed using the Factory design pattern. Currently, there is 

only one class implementing the interface, named PatternManager. The pattern manager 

interface is responsible for handling the overall highlight pattern identification procedure 
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at a higher level and includes information such as which pattern types are supported by 

the system.  

The identifyHighlightPatterns method is the main method regarding highlight pattern 

identification in Pythia. Internally, the method calls a dedicated method for each 

supported pattern, where data preparation, such as measurement and coordinate column 

selection, might be performed. Depending on the pattern, the selected data or the entire 

dataset is then passed by the respective highlight identification algorithms.  

 

Figure 8. UML diagram with the classes directly under the patterns package. 

Each pattern featured in Pythia is organized in a dedicated sub-package. Implementation 

of the parameterized Factory pattern that was described above is decided separately for 

each pattern depending on its requirements and specific features. Each sub-package 
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contains all classes that make up a highlight extractor module, including pattern 

identification algorithms, a result object, and any classes regarding parameters and data 

preparation, such as coordinate and measurement column selection. Some algorithm 

implementations may contain variations (e.g. dominance pattern algorithm) and 

therefore, might be implemented using multiple classes. 

Each featured pattern has a respective result class that is responsible for describing 

highlight identification results. An algorithm execution may generate one or multiple 

result objects depending on the specific pattern. Result objects contain information 

regarding the existence or absence of highlights and additional details such as which 

variation of the algorithm was executed, the location of any identified highlight within the 

data, which  columns were involved and any scoring for the algorithm at hand. The pattern 

manager class is responsible for adding all the generated results to respective lists of 

result objects in the PatternsProfile model class. In this manner, results of all pattern 

identifications are stored in the PatternsProfile class. 

3.2.5 The dominance pattern 

The dominance pattern is the first pattern that was developed for Pythia. In the context 

of this thesis, the dominance algorithms are developed under the homonymous 

dominance sub-package and implement four separate variants:  

a) High dominance with one (1) coordinate. 

b) Low dominance with one (1) coordinate. 

c) High dominance with two (2) coordinates. 

d) Low dominance with two (2) coordinates. 

It should be noted that all variants involve one measurement column. In essence, a 

dominance highlight identification allows analysts to identify partial or total dominance 

occurrences for specific coordinate value(s) against the other coordinate values w.r.t. the 

given measurement column.  
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Figure 9. UML diagram with the classes of the dominance sub-package. 

Suppose we have registered a dataset into the system which contains information 

regarding the prices of different used cars. Among the columns of the dataset there is a 

numerical measurement column named “price”, a coordinate column named “car model” 

and a second coordinate column named “year”. A dominance highlight with one 

coordinate may generate insights such as:  

- Car model “A” has an aggregate (sum) value of 2865320 (price) and a partial high 

dominance of 87.5% over the aggregate values of the other car models.  

In a similar manner, a dominance highlight with two coordinates may generate insights 

such as:  

- Car model “A” presents a total high dominance on the price measurement over the 

car models “B”, “C” and “D”. In detail, the aggregate values of “A” dominate the car 

models: “B” on the year(s): 2014, 2015 and 2016. “C” on the year(s): 2014 and 
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2015. “D” on the year(s): 2016, 2017 and 2019. Overall, “A” has a dominance 

percentage score of 100%. 

The first step in dominance highlights identification is the selection of measurement and 

coordinate columns to be involved. For this purpose, the IDatasetProfiler interface (refer 

to Figure 5) is augmented with the ability to accept parameters regarding dominance 

identification. In cases where dominance parameters are not specified, highlight patterns 

identification is not initiated even if requested. The DominanceParameters class is 

responsible for storing the parameters and the DominanceColumnSelector is responsible 

for examining the columns of the dataset regarding their validity as measurement or 

coordinate columns based on the specified parameters. In detail, the analyst can choose 

among the following column selection modes: 

- Exhaustive mode. In this mode columns are automatically examined and selected 

solely based on their data type. This is the mode that selects the most columns for 

dominance examination and therefore produces the highest volume of results. 

- Smart mode. In this mode columns are automatically examined and selected 

based on descriptive statistics and correlations. Columns that qualify as 

measurements based on their data type but are highly correlated are pruned, such 

that only one of the two columns is selected for dominance check. Coordinate 

columns with more than 20 distinct values are also pruned. The number 20 was 

selected as a threshold for coordinate distinct values in an empirical manner, due 

to the fact that dominance identification results appeared to be rather 

complicated and cluttered with coordinate with more than 20 distinct values. 

- User specified only mode. In this mode the names of columns that should be 

involved in dominance identification are manually declared by the analyst in the 

form of input dominance parameters. 

It should be noted that the analyst has the ability to manually declare the names of 

columns involved in dominance examination regardless of the chosen column selection 

mode. For all manually declared columns, the analyst is responsible for ensuring that the 

declared columns are of a valid data type. 

Dominance column selection produces a list of measurement columns and a list of 

coordinate columns respectively. Afterwards, all combinations of measurement and 

coordinate(s) are passed by the four dominance algorithm variations. A query is executed 

which aggregates based on the measurement column and groups by the coordinate 

columns. And finally, the query results are examined for dominance existence or absence 

depending on the specific dominance algorithm variation. It should be noted that missing 
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values on the input datasets may result in missing values in the query results respectively. 

Such missing values are simply ignored by the algorithms.  

As mentioned above dominance highlight identification refers to the identification of total 

or partial dominance occurrences for specific coordinate value(s) against the other 

coordinate values w.r.t. the given measurement column. As the name suggests, a total 

dominance occurrence corresponds to a case where a coordinate value dominates all the 

other (100%) coordinate values of the column at hand. On the other hand, partial 

dominance refers to a case where a coordinate value dominates only some of the other 

coordinate values. Suppose we define partial dominance A, where A∈(0.5 … 1.0]. During 

the development of this thesis, A was set to 0.75 (75%) as a rational middle point for 

partial dominance. 

The dominance algorithm check, with one coordinate, for both low and high dominance 

is described below: 

1. For each measurement aggregate value M of a coordinate value X: 

a. Check whether M is higher (or lower) than the measurement aggregate 

values of the other coordinate values. 

b. Calculate the dominance percentage score of the coordinate value X 

against the other coordinate values. A dominance score of 100% indicates 

a total dominance highlight of X. A dominance score that is equal to or 

greater than 75% indicates a partial dominance highlight of X. 

Similarly, the dominance algorithm check, with two coordinates, for both low and high 

dominance is described below: 

1. For each first coordinate value X1: 

a. For each first coordinate value X2 (X1 ≠ X2): 

i. If X1 has a higher (or lower) measurement aggregate value than X2 

for all second coordinate values, then X1 appears to have an upper 

(or lower) dominance over X2. 

b. Calculate the dominance percentage score of coordinate value X1 against 

the other coordinate values. A dominance score of 100% indicates a total 

dominance highlight of X1. A dominance score that is equal to or greater 

than 75% indicates a partial dominance highlight of X1. 

With a quick examination of the algorithms it is easy to observe that low and high 

algorithms are greatly alike. Specifically, the only difference is the check for a lower 

aggregate value on low dominance or a higher aggregate value on high dominance. For 

this reason, the classes responsible for the dominance algorithm variants are 
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implemented using the Template Method [Refa23] software design pattern. The Template 

Method is a behavioral pattern that defines the overall structure of an algorithm in a base 

abstract class, allowing concrete subclasses to override specific steps of the algorithm. 

The overall algorithm structures for both dominance with one coordinate and dominance 

with two coordinates is defined in the DominanceAlgo abstract class while the 

HighDominanceAlgo and LowDominanceAlgo concrete subclasses are used to override 

the “isDominant” method which checks for high or low dominance respectively. 

Moreover, due to the fact that large datasets can produce a big volume of results, the 

algorithms also perform Top-K filtering on the results. To this end, instead of keeping the 

dominance identification results of all coordinates, the algorithms filter the identification 

results such that results are retained for only the six (6) highest scoring coordinates.  

Each algorithm execution generates a respective dominance result object with all the 

information regarding the specific dominance identification. The DominanceResult class 

is located under the homonymous dominance sub-package and is responsible for 

describing a dominance result. The class contains information regarding the involved 

columns, the number of coordinates, the aggregation method, dominance score and 

highlight existence or absence for each coordinate. 

Lastly, a complete demonstration of a high dominance pattern identification with one and 

two coordinate columns is described in detail below. Suppose the data set depicted in 

Figure 10. 

Car Model Year Price 

A 2016 20000 
A 2017 15000 
B 2016 2000 
B 2016 500 
B 2017 500 
C 2016 5000 
C 2017 8000 
D 2016 3000 
D 2017 500 
E 2016 4000 

Figure 10. Table with a demonstrative data set containing the prices of various car models for multiple 
years. 

The data set is registered into Pythia and is ready for analysis. A single-coordinate high-

dominance pattern identification, with the “price” column as a measurement and the “car  

model” column as coordinate, would produce the results shown in Figure 11. 
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Car Model Price (Sum) Dominance 
score (%) 

Is highlight? Highlight 
Type 

A 35000.0 100.0 true total high 
C 13000.0 75.0 true partial high 
E 4000.0 50.0 false - 
D 3500.0 25.0 false - 
B 3000.0 0.0 false - 

Figure 11. Table with demonstrative results of a single-coordinate high-dominance identification. 

As described above, the “Price (Sum)” column presents the result of the group by-

aggregate query that was executed on the data set. The dominance score shows the 

percentage of measurement values (car models) that are dominated by each individual 

measurement value. A dominance score of 100% indicates a total high highlight, while a 

dominance score that is equal to or greater than 75% indicates a partial high highlight. 

The above dominance pattern identification will also generate natural language 

descriptions for the identified highlights as follows: 

- Coordinate: A (car model) has an aggregate (sum) value of 35000 (price) and a 

total high dominance of 100% over the aggregate values of the other car models. 

- Coordinate: C (car model) has an aggregate (sum) value of 13000 (price) and a 

partial high dominance of 75% over the aggregate values of the other car models. 

In a similar manner, a double-coordinate high-dominance pattern identification, with the 

“price” column as a measurement and the “car model” and “year” columns as first and 

second coordinates respectively, would produce the results shown in Figure 12. 

Car 
Model 

Dominates 
the car 

model(s) 

Dominance 
score (%) 

Is 
highlight? 

Highlight 
Type 

Aggregate 
Marginal 

Sum 
(Price) 

A B, C, D, E 100.0 true total high 35000.0 
C B, D, E 75.0 true partial high 13000.0 
E B, D 50.0 false - 4000.0 
B - 0.0 false - 3000.0 
D - 0.0 false - 3500.0 
Figure 12. Table with demonstrative results of a double-coordinate high-dominance identification. 

Double coordinate dominance checks produce a list of dominated measurement values 

(car models) for each measurement value of the data set under the column named as 

“Dominates the car model(s)”. The dominance score is calculated as described above for 

the single coordinate dominance pattern identification. The generated columns “Is 

highlight?” and “Highlight Type” also follow the same principles as described above. 

Furthermore, the last column of the results contains the aggregate marginal sum of each 

measurement value for both coordinates. In essence, the aggregate marginal sum is the 
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same as the result of the group-by aggregate query executed on single coordinate 

dominance. 

Lastly, the high dominance pattern identification with two coordinates, will also generate 

natural language descriptions for the identified highlights as follows: 

- Coordinate “A” (car model) presents a total high dominance over the car models: 

“B”, “C”, ”D”, ”E”. In detail, the aggregate values of “A” dominate the car models: 

• ”B”, ”C”, ”D” on the year(s): 2016, 2017. 

• ”E” on the year(s): 2016. 

Overall, ”A” has a dominance percentage score of 100% and an aggregate marginal 

sum of 35000 (price). 

- Coordinate “C” (car model) presents a partial high dominance over the car models: 

”B”, ”D”, ”E”. In detail, the aggregate values of ”C” dominate the car models: 

• ”B”, ”D” on the year(s): 2016, 2017. 

• ”E” on the year(s): 2016. 

Overall, ”C” has a dominance percentage score of 75% and an aggregate marginal 

sum of 13000 (price). 

3.2.6 The outlier pattern 

The outlier pattern is the second pattern that was developed for Pythia. It is developed 

under the homonymous outlier sub-package. Due to the fact that there are numerous 

outlier detection algorithms, the package implements the parameterized Factory pattern 

along with an interface, such that additional outlier algorithms can be easily added into 

the system. The main interface is called IOutlierAlgo that defines a single method 

responsible for outlier detection, as well as a simple method that returns the type of the 

concrete algorithm class implementing the interface. Any data preparation, such as 

examination of the columns regarding their validity for outlier detection is performed 

separately -within the detection method- for each specific outlier algorithm 

implementation. 
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Figure 13. UML diagram with the classes of the outlier sub-package. 

In the context of this thesis, the implemented algorithm utilizes the Z-Score outlier 

detection method [Bosl12]. The Z-Score method is a statistical approach for detecting 

outliers in the numerical columns of a data set. It works by calculating the Z-Score for each 

data point, which measures how many standard deviations a data point is from the mean 

of the column at hand of the data set. A Z-Score equal to or higher than 3 (or equal to or 

lower than -3 respectively) indicates that a given data point is an outlier. The Z-score 

method is a simple, yet effective way to detect outliers in a data set. However, it assumes 

that the data follow the Gaussian distribution and is highly likely to not be as effective for 

data with non-Gaussian distributions. The formula for Z-Score calculation is presented 

below in Figure 14. 
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𝑍 =
𝑥 − 𝜇

𝜎
 

Where x refers to the value of a data point, μ refers to the mean of the specific column of 

the data set, and σ is the standard deviation of the specific column of the data set. 

Figure 14. Formula for Z-Score calculation [Bosl12]. 

Z-Score outlier detection in Pythia is performed in the ZScoreOutlierAlgo class and is 

executed as follows. Initially, the columns of the data set are examined regarding their 

data type. Numerical columns are selected for outlier examination. The Z-Score is 

calculated for each value of the selected columns, using the mean and standard deviation, 

that was already calculated in the descriptive statistics data analysis step (hence, 

descriptive statistics computation is a prerequisite for highlight patterns identification, 

as described above). Values with an absolute Z-Score that is equal to or higher than 3 are 

stored as identified outliers. 

An object of the OutlierResult class is created for each identified outlier. The result object 

contains information such as the Z-Score, the value of the data point, the position of the 

data point in the column, and the column it was detected in. Once outlier examination is 

complete for all selected columns, a list of all the results with identified outliers is 

returned to the pattern manager. 

3.2.7 Highlight patterns reporting 

As mentioned above, each pattern featured in Pythia has a respective result class that is 

responsible for storing the highlight identification results. Depending on the pattern at 

hand, an algorithm execution may generate one or multiple result objects. More 

specifically, regarding the patterns developed during this thesis, the DominanceResult 

class is responsible for describing the result of a dominance identification and the 

OutlierResult class is responsible for storing information about identified outliers. 

Generally, result objects contain information regarding the existence or absence of 

highlights and additional details such as the location of any identified highlight within the 

dataset. During highlights identification, the generated results are returned to the 

PatternManager class which is responsible for adding them to respective lists of result 

objects in the PatternsProfile model class. In this manner, results of all pattern 

identifications are stored in the PatternsProfile class. 

Once the procedure of highlights identification has completed for all patterns, Pythia is 

capable of generating reports with all the information of the performed identifications. 

Report generation is performed in the homonymous report package. In its current state, 
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the system supports reporting in plain text and markdown format. As far as dominance 

results are concerned, the two report types have been separated due to the large volume 

of dominance results. The report types haven been separated into: 

a. An extensive txt report. 

b. A concise markdown report. 

The concise markdown report only contains results that have been identified as actual 

dominance highlights, along with scoring, metadata, and a natural language description 

for each highlight. The extensive txt report contains all the above but might also contain 

results that have not been identified as highlights. However, the number of results is 

limited by the top-K filtering threshold. The extensive txt report also contains the results 

of the query that was executed on the dataset for dominance identification, although, that 

is mainly for debugging purposes. On the contrary, outlier identification reports contain 

the same information in both txt and markdown, regarding outlier existence or absence 

in each column of the input dataset. 

The reports are generated by the MdReportGenerator and TxtReportGenerator classes 

respectively as shown in the UML diagram in Figure 15. The two report classes are 

implementations of the IReportGenerator interface, which is the interface that describes 

report generation. The classes are responsible for acquiring the related result data from 

the result objects via the PatternsProfile class. The main method responsible for the 

generation of all reports is produceReport, which internally calls a dedicated method for 

the generation of the overall statistical report and another method for the generation of 

highlight pattern related reports. 
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Figure 15. UML diagram with the classes involved in highlights report generation. 

3.3 Software tests design & results 

Prior to this thesis, Pythia was already equipped with test cases that covered the entirety 

of the functionalities of the system. To test the newly contributed features to Pythia, the 

existing conventions and methodologies for the development of the system were used. 

Namely, testing was achieved by developing unit tests that utilize the black box testing 

method [Alex22]. 
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Black box testing is a software testing method that focuses on testing the functionality of 

a system without knowledge of its internal implementation details. In the context of unit 

testing, black box testing involves creating test cases that only consider the inputs and 

outputs of a unit of code -oftentimes a method- and do not take into account how the code 

is implemented. Input is entered into the code unit under test and the system is expected 

to generate a specific predefined output. If the system generates the expected output, then 

the test is successful, otherwise the test is a failure. In this process, the system itself is 

treated as a “black box”.  

Following the existing dependencies of the system, tests were developed using the JUnit 

4 framework [JUni21]. JUnit is an open-source programmer-oriented testing framework 

for Java. It is designed to help developers with writing and running unit tests. It is based 

on Java annotations, which are special markers added before test methods, that provide 

numerous features, including test preparation, test runners and output assertion. 

Regarding testing of the features that were contributed to the system during this thesis, 

the developed test cases are described below throughout Figures 15-31. 

Test Case Correct execution test for single-coordinate high 
dominance identification. 

Involved user story US2 
Method(s) under test identifyDominanceWithOneCoordinate 

Class under test HighDominanceAlgo 
Prerequisite condition A data set successfully loaded into the system and 

measurement and coordinate columns are selected. 
Input The loaded data set, a measurement column name, and a 

coordinate column name. 
Output A DominanceResult object with the identification results. 

Assert that The generated DominanceResult object is equal with the 
expected DominanceResult object. 

Figure 16. Description of the unit test regarding correct execution of single-coordinate high dominance 
identification. 

Test Case Correct execution test for single-coordinate low 
dominance identification. 

Involved user story US2 
Method(s) under test identifyDominanceWithOneCoordinate 

Class under test LowDominanceAlgo 
Prerequisite condition A data set successfully loaded into the system and 

measurement and coordinate columns are selected. 
Input The loaded data set, a measurement column name, and a 

coordinate column name. 
Output A DominanceResult object with the identification results. 

Assert that The generated DominanceResult object is equal with the 
expected DominanceResult object. 

Figure 17. Description of the unit test regarding correct execution of single-coordinate low dominance 
identification. 
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Test Case Correct execution test for double-coordinate high 
dominance identification. 

Involved user story US2 
Method(s) under test identifyDominanceWithTwoCoordinates 

Class under test HighDominanceAlgo 
Prerequisite condition A data set successfully loaded into the system and 

measurement and coordinate columns are selected. 
Input The loaded data set, a measurement column name, and two 

coordinate column names. 
Output A DominanceResult object with the identification results. 

Assert that The generated DominanceResult object is equal with the 
expected DominanceResult object. 

Figure 18. Description of the unit test regarding correct execution of double-coordinate high dominance 
identification. 

Test Case Correct execution test for double-coordinate low 
dominance identification. 

Involved user story US2 
Method(s) under test identifyDominanceWithTwoCoordinates 

Class under test LowDominanceAlgo 
Prerequisite condition A data set successfully loaded into the system and 

measurement and coordinate columns are selected. 
Input The loaded data set, a measurement column name, and two 

coordinate column names. 
Output A DominanceResult object with the identification results. 

Assert that The generated DominanceResult object is equal with the 
expected DominanceResult object. 

Figure 19. Description of the unit test regarding correct execution of double-coordinate low dominance 
identification. 

Test Case Invalid coordinate exception test for single-coordinate 
low & high dominance identification. 

Involved user story US2 
Method(s) under test identifyDominanceWithOneCoordinate 

Class under test HighDominanceAlgo, LowDominanceAlgo 
Prerequisite condition A data set successfully loaded into the system and 

measurement and coordinate columns are selected. 
Input The loaded data set, a measurement column name, and a 

coordinate column name that does not belong to the loaded 
data set. 

Output - 
Assert that AnalysisException is thrown. 

Figure 20. Description of the unit test regarding invalid coordinate exception in single-coordinate low & 
high dominance identification. 
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Test Case Invalid coordinate exception test for double-
coordinate low & high dominance identification. 

Involved user story US2 
Method(s) under test identifyDominanceWithTwoCoordinates 

Class under test HighDominanceAlgo, LowDominanceAlgo 
Prerequisite condition A data set successfully loaded into the system and 

measurement and coordinate columns are selected. 
Input The loaded data set, a measurement column name, a 

coordinate column name, and a second coordinate column 
name that does not belong to the loaded data set. 

Output - 
Assert that AnalysisException is thrown. 

Figure 21. Description of the unit test regarding invalid coordinate exception in double-coordinate low & 
high dominance identification. 

Test Case Invalid measurement exception test for double-
coordinate low & high dominance identification. 

Involved user story US2 
Method(s) under test identifyDominanceWithTwoCoordinates 

Class under test HighDominanceAlgo, LowDominanceAlgo 
Prerequisite condition A data set successfully loaded into the system and 

measurement and coordinate columns are selected. 
Input The loaded data set, a measurement column name that does 

not belong to the loaded data set, and two coordinate 
column names. 

Output - 
Assert that AnalysisException is thrown. 

Figure 22. Description of the unit test regarding invalid measurement exception in double-coordinate low & 
high dominance identification. 

Test Case Correct execution test for dominance column selection 
with exhaustive mode. 

Involved user story US3, US4 
Method(s) under test selectMeasurementColumns, selectCoordinateColumns 

Class under test DominanceColumnSelector 
Prerequisite condition A data set successfully loaded into the system. 

Input The DatasetProfile object of the data set that is loaded into 
the system, an enum value corresponding to the exhaustive 
mode, an empty list of measurement column names,  and an  
empty list of coordinate column names. 

Output A list with the selected measurement column names, and a 
list with the selected coordinate column names. 

Assert that The selected measurement column names are equal with 
the expected measurement column names and the selected 
coordinate column names are equal with the expected 
coordinate column names. 

Figure 23. Description of the unit test regarding correct execution of dominance column selection with 
exhaustive mode. 
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Test Case Correct execution test for dominance column selection 
with smart mode. 

Involved user story US3, US4 
Method(s) under test selectMeasurementColumns, selectCoordinateColumns 

Class under test DominanceColumnSelector 
Prerequisite condition A data set successfully loaded into the system. 

Input The DatasetProfile object of the data set that is loaded into 
the system, an enum value corresponding to the smart 
mode, an empty list of measurement column names,  and an  
empty list of coordinate column names. 

Output A list with the selected measurement column names, and a 
list with the selected coordinate column names. 

Assert that The selected measurement column names are equal with 
the expected measurement column names and the selected 
coordinate column names are equal with the expected 
coordinate column names. 

Figure 24. Description of the unit test regarding correct execution of dominance column selection with 
smart mode. 

Test Case Correct execution test for dominance column selection 
with user specified only mode. 

Involved user story US3, US4 
Method(s) under test selectMeasurementColumns, selectCoordinateColumns 

Class under test DominanceColumnSelector 
Prerequisite condition A data set successfully loaded into the system. 

Input The DatasetProfile object of the data set that is loaded into 
the system, an enum value corresponding to the user 
specified only mode, a list of measurement column names, 
and a list of coordinate columns names. 

Output A list with the selected measurement column names, and a 
list with the selected coordinate column names. 

Assert that The selected measurement column names are equal with 
the expected (input) measurement column names and the 
selected coordinate column names are equal with the 
expected (input) coordinate column names. 

Figure 25. Description of the unit test regarding correct execution of dominance column selection with user 
specified only mode. 
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Test Case Correct execution test for dominance column selection 
with user specified only mode and no columns 
specified. 

Involved user story US3, US4 
Method(s) under test selectMeasurementColumns, selectCoordinateColumns 

Class under test DominanceColumnSelector 
Prerequisite condition A data set successfully loaded into the system. 

Input The DatasetProfile object of the data set that is loaded into 
the system, an enum value corresponding to the user 
specified only mode, an empty list of measurement column 
names,  and an  empty list of coordinate column names. 

Output A list with the selected measurement column names, and a 
list with the selected coordinate column names. 

Assert that The list of selected measurement column names is empty, 
and the list of selected coordinate column names is empty. 

Figure 26. Description of the unit test regarding correct execution of dominance column selection with user 
specified only mode and no columns specified. 

Test Case Correct execution test for dominance column selection 
with exhaustive mode and partial user input. 

Involved user story US3, US4 
Method(s) under test selectMeasurementColumns, selectCoordinateColumns 

Class under test DominanceColumnSelector 
Prerequisite condition A data set successfully loaded into the system. 

Input The DatasetProfile object of the data set that is loaded into 
the system, an enum value corresponding to the exhaustive 
mode, a list of measurement column names,  and a list of 
coordinate column names. 

Output A list with the selected measurement column names, and a 
list with the selected coordinate column names. 

Assert that The selected measurement column names are equal with 
the expected measurement column names and the selected 
coordinate column names are equal with the expected 
coordinate column names. 

Figure 27. Description of the unit test regarding correct execution of dominance column selection with 
exhaustive mode and partial user input. 

Test Case Invalid column data type exception test for dominance 
column selection. 

Involved user story US3, US4 
Method(s) under test selectMeasurementColumns, selectCoordinateColumns 

Class under test DominanceColumnSelector 
Prerequisite condition A data set successfully loaded into the system. 

Input The DatasetProfile object of the data set that is loaded into 
the system, an enum value corresponding to the user 
specified only mode, a list of measurement column names 
that includes column names with an invalid data type,  and 
a list of coordinate column names that includes column 
names with an invalid data type. 

Output - 
Assert that IllegalArgumentException is thrown. 

Figure 28. Description of the unit test regarding invalid column data type exception in dominance column 
selection. 
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Test Case Invalid column names exception test for dominance 
column selection. 

Involved user story US3, US4 
Method(s) under test selectMeasurementColumns, selectCoordinateColumns 

Class under test DominanceColumnSelector 
Prerequisite condition A data set successfully loaded into the system. 

Input The DatasetProfile object of the data set that is loaded into 
the system, an enum value corresponding to the user 
specified only mode, a list of measurement column names 
that includes column names that do not belong to the 
loaded data set,  and a list of coordinate column names that 
includes column names that do not belong to the loaded 
data set. 

Output - 
Assert that IllegalArgumentException is thrown. 

Figure 29. Description of the unit test regarding invalid column names exception in dominance column 
selection. 

Test Case Null column names lists safety test for dominance 
column selection. 

Involved user story US3, US4 
Method(s) under test selectMeasurementColumns, selectCoordinateColumns 

Class under test DominanceColumnSelector 
Prerequisite condition A data set successfully loaded into the system. 

Input The DatasetProfile object of the data set that is loaded into 
the system, an enum value corresponding to the exhaustive 
mode, a null value instead of a list of measurement column 
names,  and a null value instead of a list of coordinate 
column names. 

Output A list with the selected measurement column names, and a 
list with the selected coordinate column names. 

Assert that The selected measurement column names are equal with 
the expected measurement column names and the selected 
coordinate column names are equal with the expected 
coordinate column names. 

Figure 30. Description of the unit test regarding null safety for null column names lists in dominance column 
selection. 
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Test Case Null safety test for dominance column selection. 

Involved user story US3, US4 
Method(s) under test selectMeasurementColumns, selectCoordinateColumns 

Class under test DominanceColumnSelector 
Prerequisite condition A data set successfully loaded into the system. 

Input The DatasetProfile object of the data set that is loaded into 
the system, a null value instead of an enum value that 
corresponds to the column selection mode, a null value 
instead of a list of measurement column names,  and a null 
value instead of a list of coordinate column names. 

Output A list with the selected measurement column names, and a 
list with the selected coordinate column names. 

Assert that The selected measurement column names are equal with 
the expected measurement column names and the selected 
coordinate column names are equal with the expected 
coordinate column names. 

Figure 31. Description of the unit test regarding overall null safety in dominance column selection. 

Test Case Correct  execution test for Z-Score outlier 
identification. 

Involved user story US5 
Method(s) under test identifyOutliers 

Class under test ZScoreOutlierAlgo 
Prerequisite condition A data set successfully loaded into the system. 

Input The DatasetProfile and Dataset objects of the data set that 
is loaded into the system. 

Output An OutlierResult object with the identification results. 
Assert that The generated OutlierResult object is equal with the 

expected OutlierResult object. 
Figure 32. Description of the unit test regarding correct execution of Z-Score outlier identification. 

 

3.4 Installation & implementation details 

This section provides information about the specifications of Pythia, such as the 

development tools and technologies that were used, as well as installation instructions 

for setting up the system as a developer. 

A brief overview for each of the different technologies used in the development of Pythia  

is provided below: 

- Git & GitHub. As described above, the system was developed using Git [ChSt22] 

and GitHub for version control. The system is open-source, and the source code 

can be found at the GitHub repository link referenced at [DAIN23]. Additional 

information regarding Git and GitHub can be found under section 2.2.9. 

- Java. Pythia was developed using Java 8 as a programming language. Java is a 

popular and widely used programming language that allows developers to build 
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a wide range of systems and applications. It is a general-purpose, object-oriented, 

and platform-independent programming language, meaning that Java code can be 

run on any platform that has a Java Virtual Machine (JVM) installed. 

- Eclipse. Eclipse is an open-source integrated development environment (IDE) 

that was used for the development of Pythia. It is a powerful and widely used IDE 

for Java development that offers numerous features such as syntax highlighting, 

refactoring automations, code completion, code navigation, testing and debugging 

assistance tools and version control integration. However, it should be noted that 

Pythia is capable of running on any IDE that supports Java, such as IntelliJ or Visual 

Studio Code.  

- Maven. Maven is an open-source build automation tool for Java applications that 

is used to simplify the build process of Pythia as well as to manage the external 

dependencies of the system. It uses a declarative Extensible Markup 

Language (XML) file called Project Object Model (POM) to describe specifications 

of the application such as project structure, dependencies and build processes. 

- Apache Spark. As described above, Pythia utilizes the Apache Spark [Apac21] 

engine to quickly process large data sets. Apache Spark is an optimized and 

unified engine for executing data engineering and analytics on large scale data. It 

is described in further detail under section 2.2.8. 

Installation instructions for setting up Pythia as a developer in a new machine are 

provided below [Alex22]: 

1. Download and install Java 8 on the new machine. Once installation is complete, it 

is important to edit the path of the JAVA_HOME environment variable such that it 

points to the newly installed Java directory. 

2. Download and install an Integrated Development Environment for Java 

applications, such as Eclipse or IntelliJ. 

3. (Optional, but recommended) Download and install Git and create an account on 

GitHub. Afterwards, set a global git username and email and perform any other 

required first-time configurations such that cloning repositories from GitHub to 

the local machine is possible. 

4. Clone the Pythia source code from the repository referenced at [DAIN23] to the 

local machine. Alternatively, it is also feasible to simply download the source code 

in the form of a compressed zip file without the usage of Git. 

5. That source code includes a Maven Wrapper which integrates an installation of 

Maven into the system and therefore, no action is required regarding Maven 

installation. 
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6. Download and install Apache Hadoop 3.2.2 from the official Hadoop website. 

Hadoop installation is performed by extracting the downloaded tar.gz 

compressed file and editing the path of the HADOOP_HOME environment variable 

such that it points to the newly extracted directory. 

6.1. If the new machine has a Windows operating system, installation of 

WinUtils for Hadoop 3.2.2 is required. Installation is done by downloading the 

binary files found at the repository referenced at [WinU21] and placing them 

within the bin directory of the newly installed Hadoop. 

7. Once the above is complete, open the source code using the installed IDE.  

Maven should automatically fetch the external dependencies of the system and build the 

application such that it is ready for execution within the IDE. Most IDEs provide features 

that allow developers to easily build and run the application, as well as its tests. However, 

for the sake of complete instructions, important terminal commands for building and 

running the Pythia system are provided below. Note that any of the following commands 

should be executed after navigating to the root directory of the system. The root directory 

contains the mvnw.cmd and mvnw executable files for Windows and Unix based 

operating systems respectively. 

- Build on Windows: > ./mvnw.cmd clean install 

- Build on Unix systems: > ./mvnw clean install 

- Run tests on Windows: > ./mvnw.cmd test 

- Run tests on Unix systems: > ./mvnw test 

The build command produces two Java archive (JAR) files named “Pythia-x.y.z-all-

deps.jar” and “Pythia-x.y.z.jar”. Either of the JAR files can be imported into other Java 

applications in the form of an external library. The first JAR (all-deps) has precompiled 

and integrated all the external dependencies of Pythia along with the executable source 

code of Pythia itself such that it can be easily imported into other applications regardless 

of the dependencies of the other application. On the contrary, the second JAR only 

contains the executable source code of Pythia, without the external dependencies of the 

system. Importing this JAR in other Java applications means that the external 

dependencies of Pythia are required to be imported into the other application in order for 

Pythia to function. Usage of the second JAR is recommended in applications that already 

contain the external dependencies of Pythia in order to save disk space. 
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3.5 Software scalability 

The software architecture of Pythia is designed and developed using methodologies that 

allow for easy maintenance and scalability of the system.  

As described above, each of the different features of Pythia is developed and organized 

into a separate package. The parameterized Factory [Knoe01] software design pattern is 

implemented in most of the packages, combined with an interface which is implemented 

by all the classes that get instantiated by the factory class. The factory class is responsible 

for creating objects based on an input parameter and the interface is responsible for 

defining a set of methods such that created objects can interact in a consistent manner 

regardless of the internal logic of each implementation. Therefore, if the need arises, the 

software can be easily extended with additional logic simply by creating a new class 

implementing the interface, along with the parameter that separates it from the other 

implementations. No further refactoring is required. 

As far as highlight patterns identification is concerned, the patterns package forms its own 

internal architecture. The top-level pattern manager is placed directly under the patterns 

package and is responsible for the overall patterns identification execution flow. The 

pattern manager implements the parameterized Factory software design pattern design 

in the previous paragraph, and thus, can be easily extended as described above. The 

general convention of the patterns package is that the details of each pattern featured in 

Pythia are organized in a separate sub-package. Additional patterns can be easily 

contributed to the system by creating a new dedicated sub-package along with a new 

high-level method in the pattern manager class that is responsible for calling the newly 

added pattern in the overall highlight patterns identification procedure. An extra 

modification required for new pattern additions would be updating of the PatternsProfile 

model class, as well as the classes responsible for reporting such that they include the 

newly added pattern. 

The dominance pattern is placed under the homonymous dominance sub-package and is 

developed using the Template Method software design pattern to avoid code duplication 

among the high and low dominance algorithm variations. Contributions to the dominance 

algorithms are not predicted or expected since -as described above- Pythia already 

features four (4) variations of the algorithm. However, the dominance column selection 

procedure could be easily extended with additional logic by adding a new enum value 

corresponding to the new column selection mode and two additional methods in the 

DominanceColumnSelector class with the added logic for measurement and coordinate 

column selection respectively. 
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Lastly, in a similar manner, the outlier pattern is placed under the homonymous outlier 

sub-package. The parameterized Factory pattern in combination with an interface is also 

implemented to support multiple algorithms for outlier detection. It should be noted that 

Pythia currently features only Z-Score outlier detection and is hard-coded to select this 

outlier detection algorithm. Additional outlier detection algorithms can be added to the 

system by creating a new class implementing the IOutlierAlgo interface along with an 

enum value parameter dedicated to the new algorithm. However, in this case, the analyst 

should be able to declare the desired outlier detection algorithm. 
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Chapter 4. Experimental Evaluation 

This chapter presents an in-depth description of the experimental evaluation of the newly 

contributed features to Pythia. The first section provides details regarding the 

methodologies of the experiments, the selected input dataset, and the environment the 

experiments were conducted in. The second section presents the results of the 

experimental evaluation in great detail, in the form of tables and bar charts. 

4.1 Experiments methodology  

The conducted experiments involved measurement of the execution time for all steps of 

the data analysis procedure that are related to highlight patterns identification, including 

dataset registration and report generation. The measured execution times are divided 

into the following three (3) levels of abstraction, aiming to provide an in-depth overview 

of the execution times of the different parts of the data analysis procedure: 

1. IDatasetProfiler. This is the top level of abstraction. As described in the previous 

chapter, IDatasetProfiler is the central control unit of Pythia. In this level, 

execution time is measured for core features of the system such as computation 

of descriptive statistics and identification of highlight patterns. For the sake of 

simplicity, total execution time is also included in this level. More specifically, 

execution time was measured for the following IDatasetProfiler operations: 

• Register dataset. 

• Compute descriptive statistics. 

• Compute all pairs correlations. 

• Identify highlight patterns. 

• Generate report in txt format. 

• Generate report in markdown format. 

2. PatternManager. This is the middle level of abstraction. The PatternManager 

class is responsible for all operations involved in highlight patterns identification. 

The operations of this level are included as part of the overall identify highlight 

patterns operation of the IDatasetProfiler level. Execution time was measured for 

the following operations: 

• Identify outliers. 
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• Select measurement and coordinate columns involved in dominance 

highlights identification. 

• Identify dominance highlights with one coordinate column. 

• Identify dominance highlights with two coordinate columns. 

3. DominanceAlgo. This is the lowest level of abstraction. The DominanceAlgo class 

is responsible for all operations regarding single-coordinate and double-

coordinate dominance identification. Time measurements were taken separately 

for operations that are integrated into both high and low dominance. Namely, 

execution time was measured for the following operations: 

• Execute get distinct values query. (This operation is only performed in 

double-coordinate dominance identification.) 

• Execute aggregate query. 

• Execute high dominance algorithm check. 

• Execute low dominance algorithm check. 

• Execute top-K filtering on the identification results. 

It should be noted that execution time for the identify outliers operation of the 

PatternManager abstraction level appears to be sufficient for the experimental evaluation 

of the outlier pattern due to the simplicity of the outlier detection algorithm. 

The goal of the experimental evaluation was to observe the performance and the 

efficiency of the system in realistic scenarios where Pythia is expected to compute 

statistics and insights for large-scale datasets. To achieve this, the performance of the 

system was measured with both input datasets of different record sizes as well as input 

datasets with different number of column distinct values. For this purpose, the input 

dataset was transformed into five (5) equally distanced sizes regarding the number of 

records. Moreover, the dataset was also transformed into three (3) equally distanced sizes 

regarding the number of distinct values of a column for a fixed record size, to specifically 

examine how execution time is affected by a column’s domain. Execution times were 

measured separately for each variation of the dataset and are organized into tables and 

charts in order to provide a better overview of the capabilities of the system. 

The dataset that was selected for usage in the experimental evaluation of the system is a 

variation of the “Adult” dataset [BeKo96]. The “Adult” dataset has been commonly used 

for educational and research purposes, notably for predicting whether a person’s yearly 

income exceeds 50 thousand dollars. It includes information such as age, work class, 

education, occupation, race, gender, and work hours per week. The original dataset 

consists of 48.842 instances with 14 attributes, most of which are of categorical type. The 
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large number of categorical attributes of the “Adult” dataset make it ideal for dominance 

highlights identification. The modified variation of the dataset that was used for the 

experiments on Pythia was cleaned up of duplicate records in [Pila10] and was artificially 

modified to consist of a total of 10 million records.  

All of the experiments were conducted with the same input parameters on Pythia. The 

parts of the automated data analysis procedure that were executed in the context of the 

experiments are: descriptive statistics computation, all-pairs correlations computation, 

and of course, highlight patterns identification. Decision trees generation and histogram 

computation were omitted from execution due to the fact that these operations are totally 

uninvolved in highlight patterns identification, which is the main emphasis of this thesis. 

As far as dominance highlights identification is concerned, the column selection mode was 

set to user specified only mode. The declared measurement column was “work hours per 

week” and the declared coordinate columns were “native country”, “occupation”, and 

“gender”. It should be noted that dominance identification is performed separately for all 

possible combinations of measurement and coordinate columns.   

For the conduction of the experimental evaluation, Apache Spark was configured to utilize 

the maximum processing capacity (CPU cores) of the physical machine and 75% of the 

available RAM. The hardware specifications of the machine where the experiments were 

conducted are presented below: 

• Operating System: Microsoft Windows 10 Home Version 10.0.19045 Build 

19045. 

• CPU: AMD Ryzen 5 2600X Six-Core Processor, 3600 MHz, 6 Cores, 12 Logical 

Processors. 

• RAM: G. Skill Ripjaws V 16GB (2x8GB) DDR4 RAM 3200 MHz 

• SSD: Samsung 970 Evo Plus SSD 500GB M.2 NVMe PCI Express 3.0. Sequential 

reads speed up to 3500 MB/s. Sequential writes speed up to 3300 MB/s. 

4.2 Detailed results presentation 

As mentioned above, the measurement of execution times is divided into three (3) levels 

of abstraction. This section provides a detailed presentation of the measurement results 

for each level of abstraction separately. The presentation begins from the top level with 

measurements of total execution time of Pythia and ends on the lowest level with 

measurements of specific operations of the dominance pattern. 
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4.2.1 The IDatasetProfiler level 

This subsection presents the results of the highest level of abstraction of the experimental 

evaluation of Pythia. The following Figures present the total execution time of Pythia over 

a variable number of records on the input dataset. More specifically, Figure 33 contains a 

table with the measured total execution times and Figure 34 presents the same 

information in the form of a bar chart. In both Figures, it is fairly obvious to observe a 

steady increase of the total execution time as the number of records on the input dataset 

increases. 

Total execution time over number of records 

Number of records 
(millions) 

2 4 6 8 10 

Total execution 
time (milliseconds) 

132357 222636 305330 402054 487535 

Figure 33. Table of measured total execution time of Pythia over number of records. 

 

Figure 34. Bar chart of measured total execution time of Pythia over number of records. 

The next Figures present a break-down of the total execution time into the different core 

operations of the IDatasetProfiler class that were performed during execution. Figure 35 

contains a table with the measured execution times over the number of records of the 

input dataset for the core methods of the IDatasetProfiler. Figure 36 contains the same 

information in the form of a bar chart, which is rather insightful as it showcases how time 

consuming each of the different operations is. It should be noted that the descriptive 

statistics calculation and the highlight patterns identification methods appear to be 
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significantly more time consuming than the other methods. Computation of all-pairs 

correlations seems to be much less time consuming, which is most likely due to the fact 

that the “Adult” dataset has mostly categorical attributes. The measurements showcase a 

steady increase of execution time for descriptive statistics calculation and highlight 

patterns identification as the number of records on the input dataset increases. On the 

contrary, the number of records does not seem to have any significant impact on the 

dataset registration and the report generation methods. 

Execution time over number of records for methods of the IDatasetProfiler class 

Number of records 
(millions) 

2 4 6 8 10 

registerDataset 
(milliseconds) 

1887 1854 2530 2103 1879 

computeDescriptiveStats 
(milliseconds) 

72899 139753 201537 271421 338976 

computeAllPairsCorrelations 
(milliseconds) 

3770 6258 8062 11576 12545 

identifyHighlightPatterns 
(milliseconds) 

47526 68533 86583 110374 127839 

generateReport - txt 
(milliseconds) 

29 35 33 60 37 

generateReport - markdown 
(milliseconds) 

16 17 16 83 16 

Figure 35. Table of measured execution times over number of records for methods of the IDatasetProfiler 
class. 
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Figure 36. Bar chart of measured execution times over number of records for methods of the 
IDatasetProfiler class. 

In a similar manner, the following Figures present the measurements of execution times 

over a variable number of column distinct values for a fixed number of records. In detail, 

Figure 37 contains a table with the measured total execution times and Figure 38 presents 

the same information in the form of a bar chart. In both Figures, it is observed that the 

increase of a column’s domain appears to slightly increase the total execution time. 

However, as it is expected, the total execution time increase is not as significant as that of 

the experiments with a variable number of records.  

Total execution time over number of column distinct values 

Number of distinct values of 
the ‘native_country’ column 

10 25 40 

Total execution time 
(milliseconds) 

126511 131908 132279 

Figure 37. Table of measured total execution time of Pythia over number of column distinct values. 
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Figure 38. Bar chart of measured total execution time of Pythia over number of column distinct values. 

Similarly, the following Figures present a break-down of the total execution time into the 

different core operations of the IDatasetProfiler. Figure 39 contains a table with the 

measured execution times over the number of distinct values of the ‘native_country’ 

column. Figure 40 contains the same information in the form of a bar chart, which is rather 

insightful as it showcases the duration of each operation. Similarly to the above 

experiments, the descriptive statistics calculation and the highlight patterns identification 

methods appear to be significantly more time consuming than the other methods. 

Computation of all-pairs correlations seems to be much less time consuming, which is 

most likely due to the fact that the “Adult” dataset has mostly categorical attributes. It 

should be noted that the variable number of column distinct values does not seem to affect 

any operation other than the identification of highlight patterns. An increase of column 

distinct values appears to slightly increase the duration of the identify highlight patterns 

method. However, as it is expected, the execution time increase is not as significant as that 

of the experiments with a variable number of records. 
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Execution time over number of column distinct values for methods of the 
IDatasetProfiler class 

Number of distinct values 
of the ‘native_country’ 
column 

10 25 40 

registerDataset 
(milliseconds) 

1874 1874 1889 

computeDescriptiveStats 
(milliseconds) 

73491 71220 70591 

computeAllPairsCorrelations 
(milliseconds) 

4224 4086 4152 

identifyHighlightPatterns 
(milliseconds) 

40704 48242 49442 

generateReport - txt 
(milliseconds) 

24 251 32 

generateReport - markdown 
(milliseconds) 

13 15 13 

Figure 39. Table of measured execution times over number of column distinct values for methods of the 
IDatasetProfiler class. 

 

 

Figure 40. Bar chart of measured execution times over number of column distinct values for methods of the 
IDatasetProfiler class. 

 



  

 67 

  

4.2.2 The PatternManager level 

This subsection presents the results of the middle level of abstraction of the experimental 

evaluation of Pythia. The next Figures present a break-down of the identify highlight 

patterns method execution time into the different operations of the PatternManager class. 

Figure 41 contains a table with the measured execution times over the number of records 

of the input dataset and Figure 42 presents the same information in the form of a bar 

chart. In both Figures it is fairly obvious to observe that the double-coordinate dominance 

identification method seems to be significantly more time consuming than the other 

methods. An increase of the number of records on the input dataset appears to steadily 

increase the duration of all operations with the exception of the selection of columns for 

dominance identification. However, the increase is much more significant in the double-

coordinate dominance identification method. 

Execution time over number of records for methods of the PatternManager 
class 

Number of records (millions) 2 4 6 8 10 
identifyOutliers (milliseconds) 2883 5942 9000 12051 14973 

select dominance columns 
(milliseconds) 1 0 1 8 1 

identifyDominanceWithOneCoordinate 
(milliseconds) 4956 7381 9451 12662 14490 

identifyDominanceWithTwoCoordinates 
(milliseconds) 39679 55205 68126 85587 98369 
Figure 41. Table of measured execution times over number of records for methods of the PatternManager 

class. 
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Figure 42. Bar chart of measured execution times over number of records for methods of the 
PatternManager class. 

In a similar manner, the next Figures also present a break-down of the identify highlight 

patterns method execution time into the different operations of the PatternManager class. 

The Figures present the measurements of execution times over a variable number of 

column distinct values for a fixed number of records. Figure 43 contains a table with the 

measured execution times and Figure 44 presents the same information in the form of a 

bar chart. In both Figures, it is observed that the increase of a column’s domain appears 

to only increase the duration of the double-coordinate dominance identification method. 

The number of column distinct values is expected to affect the double-coordinate 

dominance identification, since the algorithm internally executes a get distinct values 

query against the input dataset. The other methods of the PatternManager class appear 

to be unaffected by the variable number of column distinct values. 
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Execution time over number of column distinct values for methods of the 
PatternManager class 

Number of distinct values of the 
‘native_country’ column 

10 25 40 

identifyOutliers (milliseconds) 3248 3118 3042 

select dominance columns 
(milliseconds) 0 1 1 

identifyDominanceWithOneCoordinate 
(milliseconds) 4520 5100 5019 

identifyDominanceWithTwoCoordinates 
(milliseconds) 32930 40018 41376 
Figure 43. Table of measured execution times over number of column distinct values for methods of the 

PatternManager class. 

 

Figure 44. Bar chart of measured execution times over number of column distinct values for methods of the 
PatternManager class. 

4.2.3 The DominanceAlgo level 

This subsection presents the results of the lowest level of abstraction of the experimental 

evaluation of Pythia, with operations specifically related to the dominance pattern. The 

operations of this level are a break-down of the single and double coordinate dominance 

identification methods of the PatternManager level. Due to the fact that dominance 

identification is generally performed for all possible combinations of the declared (or 

selected) measurement and coordinate columns, the presented results only concern 

dominance identification with the ‘hours_per_week’ measurement column, the 

‘native_country’ as a first coordinate column and the ‘occupation’ as a second coordinate 

column. As expected, the results of high and low dominance methods bear great similarity 

to each other in both single and double coordinate checks and are therefore grouped 

together w.r.t the two different experiment types that were conducted. 
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Figures 45 and 46 present the measured execution times for single-coordinate high and 

low dominance identification respectively, over a variable number of records on the input 

dataset. Figure 47 presents the same information in the form of two bar charts. The bar 

charts are grouped to ease comparison as the measured times appear to be rather similar. 

In all Figures, it is easy to observe that the duration of the data aggregation query is 

magnitudes higher than the rest of the dominance identification related operations. An 

increase of the number of records appears to slightly but steadily increase the execution 

time of the aggregation query. The number of records does not seem to affect the duration 

of the other operations which is expected since the data used by the other dominance 

related operations is the prepared data of the aggregation query. It should be noted that 

the difference between the durations of the top-K filtering operations between low and 

high dominance is due to the fact that top-K filtering is performed on identified 

dominance highlights. In cases where no dominance highlights were identified, it is 

expected that the duration of top-K filtering is minimum and negligible. 

Execution time over number of records for single-coordinate dominance 
methods of the HighDominanceAlgo class 

Number of records (millions) 2 4 6 8 10 
runAggregateQuery (milliseconds) 1491 1822 2151 2757 3147 

high dominance algorithm check 
(milliseconds) 1 2 3 2 4 

top-K filtering (milliseconds) 9 3 7 6 6 
Figure 45. Table of measured execution times over number of records for single-coordinate dominance 

methods of the HighDominanceAlgo class for measurement ‘hours_per_week’ and coordinate 
‘native_country’. 

Execution time over number of records for single-coordinate dominance 
methods of the LowDominanceAlgo class 

Number of records (millions) 2 4 6 8 10 

runAggregateQuery (milliseconds) 881 1264 1609 2245 2491 

low dominance algorithm check 
(milliseconds) 3 2 2 2 2 

top-K filtering (milliseconds) 1 0 1 1 0 
Figure 46. Table of measured execution times over number of records for single-coordinate dominance 

methods of the LowDominanceAlgo class for measurement ‘hours_per_week’ and coordinate 
‘native_country’. 
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Figure 47. Bar charts of measured execution times over number of records for single-coordinate dominance 
methods of the HighDominanceAlgo class (left) and the LowDominanceAlgo (right) for measurement 

‘hours_per_week’ and coordinate ‘native_country’. 

Figures 48 and 49 present the measured execution times for single-coordinate high and 

low dominance identification, over a variable number of column distinct values. As 

mentioned above, the ‘native_country’ was selected to be the coordinate column with a 

variable number of distinct values due to the fact that it had the most distinct values 

compared to the other columns of the “Adult” dataset. Figure 50 presents the same 

information in the form of two bar charts, for high and low dominance respectively. The 

observations are rather similar to the experiments with a variable number of records. The 

duration of the data aggregation query appears to be orders of magnitude higher than the 

duration of the other dominance related operations. An increase of a columns distinct 

values appears to slightly increase the execution time of the aggregation query. However, 

the increase in execution time is less significant than that of the experiments with a 

variable number of records. Furthermore, the number of column distinct values does not 

seem to affect the duration of the other operations. 

Execution time over number of column distinct values for single-coordinate 
dominance methods of the HighDominanceAlgo class 

Number of distinct values of the 
‘native_country’ column 

10 25 40 

runAggregateQuery (milliseconds) 1067 1279 1338 

high dominance algorithm check 
(milliseconds) 1 3 3 

top-K filtering (milliseconds) 1 3 4 
Figure 48. Table of measured execution times over number of column distinct values for single-coordinate 
dominance methods of the HighDominanceAlgo class for measurement ‘hours_per_week’ and coordinate 

‘native_country’. 
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Execution time over number of column distinct values for single-coordinate 
dominance methods of the HighDominanceAlgo class 

Number of distinct values of the 
‘native_country’ column 

10 25 40 

runAggregateQuery (milliseconds) 696 865 897 

high dominance algorithm check 
(milliseconds) 0 1 1 

top-K filtering (milliseconds) 1 2 0 
Figure 49. Table of measured execution times over number of column distinct values for single-coordinate 
dominance methods of the LowDominanceAlgo class for measurement ‘hours_per_week’ and coordinate 

‘native_country’. 

 

Figure 50. Bar charts of measured execution times over number of column distinct values for single-
coordinate dominance methods of the HighDominanceAlgo class (left) and the LowDominanceAlgo (right) 

for measurement ‘hours_per_week’ and coordinate ‘native_country’. 

Similarly, the following Figures present the measurement results of double-coordinate 

dominance operations over a variable number of records. Figures 51 and 52 present the 

measurement in the form of tables, while Figure 53 presents the same information in the 

form of two bar charts, for high and low dominance respectively. Note that, in double-

coordinate dominance identification, an additional query is executed against the 

registered dataset which fetches the distinct values of the coordinate columns. As with 

single-coordinate dominance, the measurements showcase that the duration of the two 

queries is orders of magnitude  higher than the duration of the other operations. An 

increase of the number of records on the input dataset appears to steadily increase the 

execution time of both queries. The number of records does not seem to have an impact 

on the execution time of the other operations. 
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Execution time over number of records for double-coordinate dominance 
methods of the HighDominanceAlgo class 

Number of records (millions) 2 4 6 8 10 

runGetDistinctValuesQuery 
(milliseconds) 1688 2435 3172 4144 4677 

runAggregateQuery (milliseconds) 3970 4511 4813 5542 5616 

high dominance algorithm check 
(milliseconds) 56 68 63 68 70 

top-K filtering (milliseconds) 0 0 1 1 0 
Figure 51. Table of measured execution times over number of records for double-coordinate dominance 

methods of the HighDominanceAlgo class for measurement ‘hours_per_week’ and coordinates 
‘native_country’ and ‘occupation’. 

Execution time over number of records for double-coordinate dominance 
methods of the LowDominanceAlgo class 

Number of records (millions) 2 4 6 8 10 

runGetDistinctValuesQuery 
(milliseconds) 1446 2316 3102 4016 4532 

runAggregateQuery (milliseconds) 3538 3946 4392 5206 5255 

low dominance algorithm check 
(milliseconds) 12 13 14 14 13 

top-K filtering (milliseconds) 1 1 0 1 1 
Figure 52. Table of measured execution times over number of records for double-coordinate dominance 

methods of the LowDominanceAlgo class for measurement ‘hours_per_week’ and coordinates 
‘native_country’ and ‘occupation’. 

 

Figure 53. Bar charts of measured execution times over number of records for double-coordinate 
dominance methods of the HighDominanceAlgo class (left) and the LowDominanceAlgo (right) for 

measurement ‘hours_per_week’ and coordinates ‘native_country’ and ‘occupation’. 

The measurement results for double-coordinate dominance operations with a variable 

number of column distinct values are rather similar. Figures 54 and 55 present the results 

in the form of tables, while Figure 56 present the same information in the form of two bar 

charts. As with experiments with a variable number of records, the results here showcase 

that the execution time of the two queries is orders of magnitude higher than the duration 

of the other dominance related operations. An increase of column distinct values appears 

to slightly increase the duration of the two queries. However, the duration increase is less 
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significant than that of the experiments with a variable number of records. It should be 

noted that the execution time did not increase between 25 and 40 column distinct values 

in Figure 52, and that is most likely due to the fact that the duration increase of the query 

that fetches distinct values is rather small. Furthermore, an increase of column distinct 

values appears to also increase the duration of the dominance check. However, the 

duration of the dominance check is still negligible compared to the duration of the two 

queries. 

Execution time over number of column distinct values for double-coordinate 
dominance methods of the HighDominanceAlgo class 

Number of distinct values of the 
‘native_country’ column 

10 25 40 

runGetDistinctValuesQuery 
(milliseconds) 1501 1741 1741 

runAggregateQuery (milliseconds) 2725 3904 3984 

high dominance algorithm check 
(milliseconds) 4 16 53 

top-K filtering (milliseconds) 0 0 0 
Figure 54. Table of measured execution times over number of column distinct values for double-coordinate 
dominance methods of the HighDominanceAlgo class for measurement ‘hours_per_week’ and coordinates 

‘native_country’ and ‘occupation’. 

Execution time over number of column distinct values for double-coordinate 
dominance methods of the LowDominanceAlgo class 

Number of distinct values of the 
‘native_country’ column 

10 25 40 

runGetDistinctValuesQuery 
(milliseconds) 1415 1496 1537 

runAggregateQuery (milliseconds) 2149 3431 3576 

high dominance algorithm check 
(milliseconds) 2 14 16 

top-K filtering (milliseconds) 0 0 0 
Figure 55. Table of measured execution times over number of column distinct values for double-coordinate 
dominance methods of the LowDominanceAlgo class for measurement ‘hours_per_week’ and coordinates 

‘native_country’ and ‘occupation’. 
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Figure 56. Bar charts of measured execution times over number of column distinct values for double-
coordinate dominance methods of the HighDominanceAlgo class (left) and the LowDominanceAlgo (right) 

for measurement ‘hours_per_week’ and coordinates ‘native_country’ and ‘occupation’. 

Overall, the experiments on the DominanceAlgo level showcase how the duration of any 

query against the dataset is orders of magnitude higher than the duration of any other 

dominance operation. The methods of single-coordinate dominance identification are less 

time consuming than those of double-coordinate dominance identification, which is 

expected due to the fact that a second coordinate increases the complexity of both the 

aggregate query and the identification algorithm. Also, in double-coordinate dominance 

identification, an additional query is executed that fetches distinct values of coordinates. 

The additional query is of equal overload with the aggregate query, which has a significant 

impact on the increase of the overall execution time of double-coordinate dominance. 

Moreover, the number of records appears to have a greater impact on the increase of 

execution time compared to the number of column distinct values. Naturally, an even 

greater (or extreme) number of column distinct values would be expected to also greatly 

increase execution time of the queries. However, an extreme number of column distinct 

values would not be suitable in the context of dominance identification as it would clutter 

the identification results with too much information and most likely make them 

incomprehensible for the data analyst. 
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Chapter 5. Epilogue 

5.1 Synopsis and conclusions 

Exploratory Data Analysis (EDA) is a procedure used by data scientists to analyze complex 

data sets and obtain insights such as patterns and anomalies. However, the lack of 

automation in EDA hinders the acquisition of such insights, due to the fact that analysts 

have to manually execute the desired analysis methods and perform any potential data 

preprocessing. To address this challenge, a system called Pythia [Alex22] was developed 

with the aim to facilitate automated EDA. The general idea of Pythia is that the system 

accepts a dataset as input, processes it, and a valuable insights overview about it is 

automatically generated. Pythia is a Java application which utilizes the Apache Spark 

engine to rapidly process large datasets. 

Prior to this thesis, Pythia was in its early stages of development and had certain 

limitations in its functionalities. Pythia was capable of accepting a data set as input and 

generating a detailed statistics profile about it including automated correlation 

calculation. The system was also capable of generating decision trees for labeled fields of 

the data set in a simplistic manner. Essentially, the system was primarily focusing on 

evaluating the quality of the input dataset. 

In the context of this thesis, Pythia was extended to not only evaluate the quality of the 

input dataset but also to produce valuable insights about it in an automated manner. The 

system was extended with highlight extractor modules that actively search for and 

identify both holistic highlights and point-based highlights in the input data. Holistic 

highlights concern an entire area of the dataspace and point-based highlights only 

concern a specific point in the input data. Each highlight extractor module was equipped 

with the following procedures:  

1. Data preparation. Data preparation refers to any procedures, such as queries, 

that prepare or select the data for identification of the highlight pattern at hand. 

2. Highlight identification algorithm. The selected data is passed by the highlight 

identification algorithm which processes it and generates results regarding the 

existence or absence of highlight patterns. 

3. Highlight identification result object(s). Each identification algorithm 

produces respective results that are stored in separate concrete result objects.  
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4. Reporting mechanisms. In the end, once all data analysis procedures of Pythia 

have finished and the respective result objects have been generated, the highlight 

identification results are exported to report files, which contain all the insightful 

information saved in the result objects. 

In further detail, Pythia was extended to identify dominance and outlier highlights. 

Dominance is a holistic highlight pattern that allows analysts to identify partial or total 

dominance occurrences for specific coordinates of the input dataset w.r.t. a selected 

measurement. For instance, an analyst might obtain insights such as which occupation 

has worked the most or the least hours per week among different countries or which car 

model had the highest or lowest price among different years. Pythia was also augmented 

with the ability to accept input parameters that determine whether the selection of 

dominance measurement and coordinate columns should be performed automatically or 

manually by the data analyst. On the other hand, outlier is a point-based highlight pattern 

that allows analysts to detect numerical data points whose value is notably different from 

the others in the input dataset. Outlier identification was achieved using the Z-Score 

algorithm. 

Overall, Pythia was extended with the ability to identify highlight patterns such that 

valuable insights about the input dataset are produced in an automated manner. The 

development of the newly added features was done in a flexible way such that the system 

can be easily extended with more highlight extractor modules. Lastly, in order to improve 

the scalability and usability of the system, Pythia was also augmented with the ability to 

accept parameters regarding which parts of the automated data analysis pipeline should 

be executed, such that certain data analysis parts can be excluded or executed 

individually. 

5.2 Future extensions 

Finally, this section presents a list of suggestions with potential extensions that would 

benefit Pythia: 

- Additional highlight patterns. In the context of this thesis, the most obvious 

contribution to Pythia would be the contribution of additional highlights patterns. 

As mentioned above, the highlight extractor modules were developed in a manner 

that supports software scalability and extensibility. Pythia could be extended with 

additional algorithms for outlier detection or entirely new algorithms that search 

for and identify highlight patterns, such as statistical highlights, trends, or 

seasonality highlight patterns. 
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- Clustering analysis. The data analysis pipeline of Pythia could be extended with 

additional analysis techniques, such as clustering. Clustering analysis could be 

performed based on values of the attributes of the input dataset, such that the 

attribute values of the input dataset are grouped into clusters and an additional 

statistical insight is automatically generated by Pythia. 

- A front-end interface. The implementation of a front-end interface for Pythia 

would be a rather significant contribution to the project. It would greatly improve 

the usability of the system, especially for analysts that are unfamiliar with Java or 

programming in general. In its current state, the system can only be used as a Java 

application or as a JAR dependency into other Java projects. A front-end interface 

could be a terminal-only application, a Desktop application where the analyst 

would be able to use Pythia via a user interface, or even a web application that 

uses Pythia as a back-end. In theory, a front-end application could also extend the 

capabilities of Pythia by visualizing data in charts, in cases where it is applicable. 

- Evaluation of the highlight results and improvement of the generated 

reports. Currently, the system generates multiple reports due to the large volume 

of generated results from the identification of highlight patterns. A significant and 

rather necessary contribution would be the evaluation of the generated results 

such that a more concise report is generated with results of all data analysis 

techniques as well as the highlight pattern results that are evaluated as 

interesting. 

- Optimization of the dominance pattern. As shown in the experiments in 

chapter 4, the most time-consuming operation during dominance identification is 

the execution of data preparation queries. Queries for low and high dominance 

respectively are identical and could therefore be executed only once. In theory, 

such an optimization would roughly reduce the execution time of dominance 

identification to half. Moreover, the get distinct values query for the coordinates 

in double-coordinate dominance identification, could be avoided, such that 

distinct values are fetched from the results of the aggregate query. Another 

optimization would be a smarter selection of dominance measurement and 

coordinate columns, such that columns that do not make logical sense are not 

selected for dominance identification as such operations practically take up 

execution time for results that are most likely not interesting. 



  

 79 

  

References 

[Agga15] Charu C. Aggarwal. Data Mining: The Textbook. Springer, 2015.  

[Alex22] 

 

Alexandros Alexiou. Automated Generation of Statistical Profiles for 

Data Sets (Diploma Thesis). Department of Computer Science & 

Engineering, University of Ioannina, Greece. March 2022.  

[Amaz23] Amazon Web Services. Introduction to Apache Spark. Available at 

https://aws.amazon.com/big-data/what-is-spark/, January 2023. 

[Apac21] Apache Spark – Unified engine for large-scale data analytics. Apache 

Spark 3.2.0 Documentation. Available at 

https://spark.apache.org/docs/3.2.0, October 2021. 

[BeKo96] Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning 

Repository. Available at https://doi.org/10.24432/C5XW20, 1996. 

[Bosl12] Sarah Boslaugh. Statistics in a Nutshell, 2nd Edition. O'Reilly Media, 

November 2012.  

[Char23] Alexandros Charisis. Automated Extraction of Decision Trees in a Data 

Profiling System (Diploma Thesis). Department of Computer Science & 

Engineering, University of Ioannina, Greece. March 2023. 

[ChSt22] Scott Chacon, Ben Straub. Pro Git, Everything You Need To Know About 

Git, Second Edition. Apress. Available online at https://git-

scm.com/book/en/v2, February 2022. 

[DAIN23] DAta INTensive Information EcoSystemS Group (DAINTINESS). Pythia 

source code GitHub repository. Department of Computer Science & 

Engineering, University of Ioannina, Greece. Available at 

https://github.com/DAINTINESS-Group/Pythia, June 2023. 

[IBMC20] IBM Cloud Education. Exploratory Data Analysis. Available at 

https://www.ibm.com/cloud/learn/exploratory-data-analysis, August 

2020. 

[JUni21] JUnit. JUnit 4 Project Documentation. Available at 

https://junit.org/junit4/, February 2021. 

[Knoe01] Kirk Knoernschild. Java™ Design: Objects, UML, and Process. Addison 

Wesley, December 2001.  

https://aws.amazon.com/big-data/what-is-spark/
https://spark.apache.org/docs/3.2.0
https://doi.org/10.24432/C5XW20
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://github.com/DAINTINESS-Group/Pythia
https://www.ibm.com/cloud/learn/exploratory-data-analysis
https://junit.org/junit4/


  

 80 

  

[Mach19] Machine Learning Mastery. Statistical Data Distributions. Available at 

https://machinelearningmastery.com/statistical-data-distributions, 

August 2019. 

[Orac22] 

 

Oracle. JSON Defined. Available at 

https://www.oracle.com/database/what-is-json, November 2022.  

[Pila10] Alexandra Pilalidou. Online Negotiation for Privacy Preserving Data 

Publishing (MSc Thesis). Department of Computer Science, University 

of Ioannina, Greece. July 2010. 

[PRSD21] Pingchuan Ma, Rui Ding, Shi Han, Dongmei Zhang. MetaInsight: 

Automatic Discovery of Structured Knowledge for Exploratory Data 

Analysis. SIGMOD ’21, China, June 2021. 

[Refa23] Refactoring Guru. The Catalog of Design Patterns. Available at 

https://refactoring.guru/design-patterns/catalog, March 2023. 

[Wiki22] Wikipedia. Data. Available at https://en.wikipedia.org/wiki/Data, 

November 2022. 

[WinU21] WinUtils GitHub repository with binary files required for Hadoop 3.2.2 

in Windows Operating Systems. Available at 

https://github.com/cdarlint/winutils/tree/master/hadoop-3.2.2/bin, 

September 2021. 

  

 

https://machinelearningmastery.com/statistical-data-distributions
https://www.oracle.com/database/what-is-json
https://refactoring.guru/design-patterns/catalog
https://en.wikipedia.org/wiki/Data
https://github.com/cdarlint/winutils/tree/master/hadoop-3.2.2/bin

