
95

Static Control-Flow Analysis for Reverse Engineering of
UML Sequence Diagrams

Atanas Rountev
Ohio State University

rountev@cse.ohio-state.edu

Olga Volgin
University of Michigan

onv@eecs.umich.edu

Miriam Reddoch
Hewlett Packard

miriam.reddoch@hp.com

ABSTRACT
UML sequence diagrams are commonly used to represent
the interactions among collaborating objects. Reverse-
engineered sequence diagrams are constructed from exist-
ing code, and have a variety of uses in software devel-
opment, maintenance, and testing. In static analysis for
such reverse engineering, an open question is how to rep-
resent the intraprocedural flow of control from the code
using the control-flow primitives of UML 2.0. We pro-
pose simple UML extensions that are necessary to cap-
ture general flow of control. The paper describes an al-
gorithm for mapping a reducible exception-free intrapro-
cedural control-flow graph to UML, using the proposed
extensions. We also investigate the inherent tradeoffs of
different problem solutions, and discuss their implications
for reverse-engineering tools. This work is a substantial
step towards providing high-quality tool support for ef-
fective and efficient reverse engineering of UML sequence
diagrams.

1. INTRODUCTION
The Unified Modeling Language (UML) has become a

de facto standard for modeling of different aspects of soft-
ware structure and behavior. Sequence diagrams are key
UML artifacts for representing the behavior of a software
system [9]. A sequence diagram shows a set of interacting
objects and the sequence of messages exchanged among
them. The diagram may also contain additional informa-
tion about the flow of control during the interaction, such
as if-then conditions (“if c send message m”) and iteration
(“send message m multiple times”) [9]. An example of a
sequence diagram is shown in Figure 1b.

1.1 Reverse-Engineered Sequence Diagrams
Various software tools provide support for reverse en-

gineering, often based on UML design models. In UML
tools, reverse engineering through static code analysis is
typically restricted to class diagrams. The reverse engi-
neering of sequence diagrams through static analysis is the
next logical step for these tools. The need to generate se-
quence diagrams from program code is important enough
that a request to UML tool vendors to provide such ad-

Permissionto make digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists, requiresprior specific
permissionand/ora fee.
PASTE ’05 Lisbon,Portugal
Copyright 2005ACM 1-59593-239-9/05/0009...$5.00.

vanced functionality is included in one popular book on
modern software development [6]. Some commercial mod-
eling tools already incorporate reverse engineering of se-
quence diagrams (e.g., Together ControlCenter by Bor-
land and EclipseUML by Omondo).

Reverse-engineered sequence diagrams can play a role
in the maintenance of complex object-oriented systems.
System evolution is often problematic in the absence of
the original designers and developers due to incomplete or
non-existent design information. Reverse-engineered dia-
grams provide essential insights for software understand-

ing of such systems. Sequence diagrams are also the basis
of several approaches for testing of object-oriented soft-

ware [1]. These approaches test the interactions among
collaborating objects, and sequence diagrams can be used
to identify the interactions that must be covered. A cov-
erage tool can employ static analysis to extract sequence
diagrams from the tested code, and then use them to per-
form run-time coverage analysis during the execution of
the given tests [13].

1.2 Using UML Control-Flow Primitives
Despite the significant practical importance of reverse-

engineered sequence diagrams, there is a limited body of
work on static analyses for constructing such diagrams.
The work in this paper is part of the ongoing effort to
build the Red tool for reverse engineering of sequence
diagrams1. The goal of the tool is to provide comprehen-
sive, effective, and efficient reverse engineering of UML
sequence diagrams through static analysis of Java code.

The effort to build this tool revealed many challenging
static analysis problems, and led to the definition and im-
plementation of several analyses such as call chain analysis
[12] and object naming analysis [11]. One of the key issues
we had to address early in this project was the following:

How should the intraprocedural flow of control

in the code be represented in the reverse-engineered

sequence diagrams?

Intraprocedural behavioral features (e.g., conditional and
iterative behavior) presented some challenging problems
for the tool. Attempts to use first-generation UML (ver-
sions 1.x) showed that the UML control-flow primitives
do not provide enough expressive power to represent cor-
rectly the full generality of intraprocedural flow of control.

This experience motivated the work described in this
paper. We use second-generation UML (version 2.0), which
defines a richer set of control-flow primitives for sequence
diagrams [9]. The following questions are considered:

• Theoretically, is it possible to use UML 2.0 to rep-

resent general intraprocedural flow of control? Even

1Details are available at presto.cse.ohio-state.edu/red

96

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1108768.1108816&domain=pdf&date_stamp=2005-09-05

96

with the new features in version 2.0, the answer to
this question is still negative.

• What minimal extensions to UML 2.0 could be intro-

duced to allow handling of general flow of control?

We identify two simple UML extensions such that
it becomes possible to represent the flow of control
in an arbitrary reducible exception-free control-flow
graph (CFG).

• How should a CFG be mapped to UML? Using the
proposed extensions, we define a novel control-flow
analysis for mapping a control-flow graph to UML.
To the best of our knowledge, this is the first time
an analysis for this problem has been presented.

The analysis algorithm has two important properties.
First, it is general : the approach handles any reducible
exception-free CFG. Second, it is precise: the produced
diagrams represent precisely the control-flow semantics of
the code. This paper outlines the basic ideas of the algo-
rithm; a detailed description is available elsewhere [14].

We consider this algorithm to be a first step in solving
the problem of representing intraprocedural behavior in
reverse-engineered sequence diagrams. Future work can
easily leverage our approach. For example, if a tool de-
signer decides that some control-flow details should be
omitted for the sake of easier diagram comprehension,
she can augment our technique with filtering mechanisms
for these particular details, while ensuring that all of the
remaining flow of control is still represented in the final
diagram.

The work on the algorithm highlighted the following
tradeoff for Red: in the general case, either the tool can
use standard UML control-flow primitives, or it can rep-
resent precisely the flow of control in the code, but not
both. Another important issue is that the same CFG
node may have to be represented multiple times in the
diagram. Thus, a tool can either represent precisely the
flow of control, or it can create a diagram in which CFG
nodes are not replicated, but not both. In addition to a
discussion of these two tradeoffs, we present experimental
results to determine how often the need for such tradeoffs
occurs in practice. These results provide new insights for
the creators of reverse-engineering tools for UML sequence
diagrams.

1.3 Contributions

• UML extensions: We identify two simple and in-
tuitive UML extensions that are sufficient to capture
general flow of control.

• Analysis algorithm: The paper outlines an al-
gorithm for precisely mapping intraprocedural flow
of control to UML, using the proposed extensions.
Experimental results indicate that the analysis has
practical cost.

• Investigation of tradeoffs: We describe two in-
herent tradeoffs of the problem, and discuss their
implications for reverse-engineering tools. Our ex-
periments indicate that these tradeoffs could have
significant impact for realistic Java software.

2. BACKGROUND
Given a set of Java classes, a Red user can choose a

method m from these classes and can generate a sequence
diagram that represents the interactions triggered by an

invocation of m. For each method that is shown in the di-
agram, the control flow analysis examines the CFG of the
method and creates a method-level data structure that en-
codes relevant aspects of the method’s control-flow behav-
ior. Subsequent display of the reverse-engineered diagram
(implemented in a prototype visualization tool [15]) uses
the data structures created for the individual methods.
The tool interface allows a user to explore the diagram
interactively—e.g., fragments can be collapsed, expanded,
and filtered out on demand.

Note that the separate method-level data structures are
simply building blocks for the entire multi-method dia-
gram. This paper discusses only the problem of construct-
ing the data structure for an individual method; related
problems (e.g., inter-method control flow) are described in
[11, 12]. The results of all static analyses (including the
control-flow analysis) are combined in a single diagram
which contains the appropriate messages, objects, object
lifelines, control-flow information, etc.

By analyzing a method’s CFG, we define a general ap-
proach that is independent of the peculiarities of any spe-
cific programming language. Thus, it would be trivial to
use our algorithm in tools for languages other than Java,
since CFG construction is simple to design and imple-
ment. Our approach could be used even in the absence of
source code, as long as the object code can be analyzed
to construct CFGs.

2.1 Running Example
Consider some method m in a class X, and suppose that

the CFG of m is as shown in Figure 1a. The structure of
this CFG is loosely based on methods from the standard
library package java.text. For brevity, the CFGs for the
methods called by m are not shown. The shaded nodes
5, 6, and 13 represent statements that are irrelevant to
sequence diagrams (e.g., i = 5;). Typically, in real code
most CFG nodes are irrelevant to the diagram.

Suppose that the tool user wants a sequence diagram
that represents the interactions triggered by a call to m.
Figure 1b shows an example of such a diagram. For the
sake of the example, assume that the calls to p1, . . . , p5

are made by methods m2 through m7, and no other calls
exist in any of the CFGs for any of the methods. The loop,
opt, break, and alt elements represent the flow of control
during the interactions, as described shortly. These ele-
ments are based on the data structure produced by our
CFG analysis.

2.2 UML Control-Flow Primitives
A sequence diagram contains objects and messages ex-

changed among them. UML 2.0 also defines interaction

fragments as diagram entities that represent various as-
pects of the interaction [9]. For the purposes of this work,
four kinds of interaction fragments are of particular impor-
tance: opt, alt, loop, and break fragments. They provide
the fundamental control-flow primitives that are used in
the reverse-engineered sequence diagrams. Examples of
these fragments are shown in Figure 1.

An opt/loop/break fragment encloses an ordered se-
quence of other fragments. A sequence of fragments repre-
sents one or more sequences (traces) of run-time events [9].
An opt fragment describes optional behavior guarded by
some condition. The sub-trace represented by the frag-
ments inside an opt fragment is executed if the condition
is true and skipped if the condition is false. For example,
the opt fragment in Figure 1 is guarded by the condition
!c2 corresponding to CFG edge (4, 7).

97

97

Figure 1: (a) Control-flow graph for a method m (b) Reverse-engineered sequence diagram for m

An alt fragment describes two or more mutually-exclusive
alternatives in behavior. Each alternative is represented
by a separate ordered sequence of fragments and is guarded
by some condition. The set of traces defined by an alt
fragment is the union of the sets of traces for the alterna-
tives. For example, the alt fragment in Figure 1 has two
alternatives, the first one guarded by c7 and the second
one by !c7. An alternative inside an alt fragment could
be empty: for example, when the corresponding behavior
does not result in any messages being sent. If only one
alternative is non-empty, the alt fragment is equivalent to
an opt fragment.

The sequence enclosed in a loop fragment is repeated
until the guard condition becomes false. For the outer
loop in Figure 1, the sequence of fragments enclosed in
the loop is repeated until c1 becomes false. The loop can
also exit through two break fragments. A break fragment
represents a “breaking” scenario: first the fragment se-
quence inside the break fragment is executed, and then
the execution of the fragment enclosing the break com-
pletes immediately.

2.3 Generalized Break Fragments
A break fragment, as defined by UML 2.0, breaks out

of the immediately surrounding fragment. This definition
makes it impossible to express the semantics of real-world
code, in which control can “jump” over several levels of
nesting. We propose a generalized break fragment that
allows breaking out of multiple enclosing fragments. The
fragment specifies the enclosing fragment out of which it
is breaking. For example, if a break fragment F3 is en-
closed in F2 which in turn is enclosed in F1, F3 could be
of the form “break out of F1”. The UML notation can be
easily augmented to represent this extension by labeling
the corresponding enclosing fragment; Figure 1 illustrates
this approach.

2.4 Multiple CFG Exits
A CFG could have multiple exit nodes, where each exit

node is guarded by a condition. For example, “if (c)

{ a.m(); return; }” should be mapped to a fragment
similar to a break fragment, with a guarding condition c

and with the message m inside it. However, in this case
the flow of control breaks out of the entire method and re-
turns back to the caller. UML 2.0 does not define explicit
notation for this situation. We define a return fragment

which is similar to a break fragment. All “premature”
CFG exits are represented by return fragments.

Strictly speaking, in some cases this effect could be
achieved without return fragments; instead, artificial alt
fragments could be used. For the example from above, it
may be possible to have an alt fragment in which one al-
ternative corresponds to a.m() and the other alternative
corresponds to the remaining part of the CFG. In our ex-
perience, this approach produces deeply nested fragments
that are very unnatural and hard to comprehend. Thus,
we believe that the use of return fragments is essential for
multi-exit CFGs.

2.5 Precision vs. Interoperability
A reverse-engineering tool can either use standard UML

control-flow primitives, or it can represent precisely the
flow of control in the code, but not both. Furthermore,
the extent of non-standard UML additions determines the
level of imprecision in the mapping to UML. Our decision
was to use the UML extensions described earlier in order
to obtain precise mappings from CFGs, since these ex-
tensions were conceptually simple and easy to visualize.
However, if the results of Red need to be exported to other
UML tools in the future (e.g., using tool-independent for-
mats such as XMI), we will need to introduce precision-
losing mappings back to standard UML 2.0. The creators
of any similar reverse-engineering tool will also be faced

98

98

with this issue, and will have to consider this precision-
vs-interoperability tradeoff.

3. CONTROL-FLOW ANALYSIS
The two simple UML extensions described above are

both necessary and sufficient to capture the full complex-
ity of an arbitrary reducible exception-free CFG. Given
the CFG, our analysis produces a set of interaction frag-
ments that precisely represents the control-flow behavior
which affects the messages being sent by this method.
These fragments encode all and only sequences of call
statements that occur along all CFG control-flow paths.
This section provides a high-level overview of the analysis;
more details are available in [14].

The analysis computes branch successors and loop suc-

cessors for certain CFG nodes. This computation is based
on the well-known notion of post-dominance. CFG node
n2 post-dominates n1 if every path from n1 to an exit
node contains n2. Node n2 immediately post-dominates

n1 if n2 post-dominates n1 and any other post-dominator
of n1 is also a post-dominator of n2. The immediate post-
dominance relation can be represented by a tree in which
each parent node is the immediate post-dominator of its
children.

3.1 Branches and Branch Successors
A CFG node is a branch node if it has at least two out-

going edges. For some of these nodes the analysis creates
alt fragments. In this case it is necessary to determine
which CFG nodes should be considered when building the
contents of this new fragment. Intuitively, we need to de-
termine where the fragment “stops”; this stopping point
is the start of the fragment that will follow the new alt
fragment. For example, for node 4 in Figure 1, the anal-
ysis will create an alt fragment.2 The fragment following
the alt in the loop’s fragment sequence will be constructed
starting from node 8, which is the “merge point” of the
branches coming out of 4.

Consider a branch node n with outgoing edges (n, ni).
The branch successor of n is defined to be the lowest com-
mon ancestor of all ni in the post-dominance tree for the
CFG. A common ancestor represents a merge point for
all branches coming out of n. The lowest such ancestor
is the merge point that is the “closest” to n. The paths
from n to this node define the CFG nodes that should be
considered when building the contents of the alt fragment
created for n.

If n is inside a loop, the notion of a branch successor
must be restricted to the flow of control that stays within
the loop. For this, we define the notion of post-dominance

inside a loop. Consider nodes n1 and n2 in some loop L.
Node n2 post-dominates n1 inside L if n2 belongs to every
loop-only path from n1 to the loop header. This means
that if n1 is reached during some iteration of L and sub-
sequently the iteration completes successfully—i.e., the
header of L is eventually reached—then n2 is reached af-
ter n1 as part of that same iteration. If a node n has
more than two successors ni in its enclosing loop L, the
branch successor of n is the lowest common ancestor of all
such ni in the post-dominance tree for L. For example,
for node 14 in Figure 1, the branch successor is node 16.
This definition can be generalized in a natural manner for
nested loops.

2As shown in Figure 1, this fragment can later be transformed
into an opt fragment, because one of its alternatives does not
contain.

3.2 Loops and Loop Successors
The notion of a reducible CFG is standard in program

analysis research. A loop in a reducible CFG is a strongly-
connected subgraph L such that exactly one node n ∈ L

has a predecessor that is not in the loop. Node n is the
header node of L. The control-flow features of Java ensure
that the CFG of a method is reducible. UML 2.0 cannot
represent precisely the semantics of code with irreducible
CFGs, because a loop fragment has only one entry point.

Whenever the analysis encounters the header node of a
loop, it creates a loop fragment. In this case, the analysis
needs to decide which nodes should be considered when
building the contents of this loop fragment. For example,
for node 3 in Figure 1, the analysis will create a loop frag-
ment. Node 18 is the merge point for the three different
possible ways to exit the loop, and thus the analysis needs
to consider all nodes occurring on paths from 3 to 18.

For each loop L we determine a loop successor. In the
case of an outermost loop, the loop successor is the low-
est common ancestor for all targets of loop exit edges in
the method-level post-dominance tree. For example, for
the outer loop in Figure 1, these targets are nodes 12,
17, and 18, and the loop successor is 18. This is the ear-
liest common point for all possible executions after the
loop terminates. The generalization for nested loops is
presented in [14].

3.3 Multiple CFG Exits
The algorithm becomes more complicated in the pres-

ence of multiple CFG exits. In particular, it becomes
necessary to compute and use information about control
dependencies [3] between branch nodes and exit nodes,
and to create return fragments for CFG subgraphs which
lead to exit nodes. The general treatment of multiple exit
nodes is described in [19]; our implementation fully han-
dles this general case.

3.4 Exceptions
The handling of exceptional flow of control depends

on the language mechanisms for creating such flow. In
Java, exceptions may be synchronous (occurring at well
defined program points) or asynchronous (occurring non-
deterministically). Synchronous exceptions can be raised
explicitly with a throw statement, or implicitly as the re-
sult of an expression evaluation, a linking/loading error,
or a resource error. Asynchronous exceptions occur as the
result of an error in the virtual machine. Synchronous
exceptions may be checked or unchecked. Unchecked ex-
ceptions are instances of java.lang.RuntimeException,
java.lang.Error, or any of their subclasses; a typical ex-
ample is NullPointerException. All other exceptions are
considered to be checked exceptions.

Our algorithm essentially ignores exceptional flow of
control in Java. First, implicitly-thrown exceptions (i.e.,
without explicit throw) are not considered. Since such
exceptions could occur implicitly at a large number of
program points, their representation in a diagram will
produce significant visual clutter without providing any
useful information. Thus, we believe that only explicitly-
thrown exceptions should be considered for reverse-engi-
neered diagrams. Second, we do not try to identify pairs
of CFG nodes (n1, n2) such that n1 explicitly throws an
exception using throw, and n2 is a catch clause that may
catch that exception. In most cases, n1 and n2 will be-
long to two different methods, and exception-flow analysis
must be an interprocedural analysis (e.g., [16]). At present
we do not employ such an analysis; as a result, our im-

99

99

Figure 2: Message m3 is replicated.

plementation ignores all catch clauses. Furthermore, it is
unclear what UML notation should be used to represent
the exceptional flow of control from n1 to n2.

In the case of a throw statement, the algorithm treats
this statement as a CFG exit node and applies the same
techniques we use for return statements, as described in
Section 3.3. The resulting fragment is similar to a return
fragment, but instead of leading to a method exit it should
lead to a catch clause. In our future work we will inves-
tigate how this throw fragment can be associated with
the corresponding catch, and how this association can be
visualized in the diagram.

3.5 Fragment Construction
After computing branch/loop successors, the analysis

traverses the CFG and creates the corresponding frag-
ments. As nodes are encountered during the traversal, the
current fragment sequence is “populated”. New interac-
tion fragments are created as necessary, and branch/loop
successors are used to decide when to exit the current frag-
ment. This approach is guaranteed to produce fragments
that encode precisely all and only sequences of calls in the
CFG [14].

4. MAPPING WITHOUT REPLICATION
Consider the following code fragment:

if (a.m1() || b.m2()) { a.m3(); } b.m4();

Figure 2 shows the corresponding CFG subgraph and the
interaction fragments produced by the analysis. Clearly,
in this mapping from the CFG to UML, CFG node 5 is
represented in the diagram two times, once in each of the
alternatives of the alt fragment. We will say that node
5 is replicated by the mapping. It is easy to show that
for this CFG, there does not exist a no-replication map-
ping which represents precisely the sequence of run-time
events encoded by the CFG. There are several possible no-
replication mappings that are not precise: two examples
are given in Figure 3.

In the general case there will be CFGs for which a
no-replication mapping does not exist. The next section
presents experimental evidence that such CFGs do occur
in real-world Java code. Intuitively, in these cases the
“sequentiality” of the control-flow primitives makes the
diagrams less expressive than the arbitrary flow of con-
trol in a CFG, and full generality can be achieved only
through replication of CFG nodes.

Depending on the intended uses of reverse-engineered
diagrams, tool designers have to decide on a particular
tradeoff between size and precision. For example, for pro-
gram understanding purposes it may be desirable to avoid

Figure 3: Possible imprecise mappings.

replication altogether, even if this means that the dia-
grams represent only a subset of the possible run-time
event sequences. ControlCenter and EclipseUML seem
to have taken this approach. On the other hand, if the
diagrams are used as the basis for test coverage measure-
ments, precision may be more important than diagram
size: e.g., if testing attempts to cover all possible se-
quences of messages [1, 13].

The full-precision choice and the no-replication choice
define the two ends of the design spectrum. Tool builders
could decide that a particular point somewhere in the
middle of this spectrum is the appropriate choice. Tools
could even implement multiple choices, and allow the user
to adjust the tradeoff. This is the approach we plan to
take in Red. The current implementation of Red allows
mappings that have replication, in order to achieve full
precision. We are investigating a set of precision-losing
transformations that would allow systematic exploration
of the spectrum of possibilities for this tradeoff. Further-
more, we will augment this work with effective visualiza-
tion techniques that allow a tool user to investigate the
diagrams. Our prototype provides highly-interactive di-
agram visualization and exploration [15], and it will be
easy to incorporate user-defined tradeoff adjustments.

Another possibility is to introduce additional UML ex-
tensions (i.e., new control-flow primitives) for increased
expressive power. A disadvantage of this approach is the
“drift” from the standard, which will create problems for
the interoperability with other UML tools. This is an-
other decision that tool designers have to face: if interop-
erability is not a concern, it may be justifiable to add tool-
specific UML extensions. We do plan to integrate our tool
with other UML tools (including commercial ones), and
we decided against using additional UML enhancements
beyond the minimal extensions described in Section 2.

5. EMPIRICAL STUDY
This section summarizes some of the experimental re-

sults from our evaluation of the analysis; additional re-
sults are available in [14, 19]. The 20 subject components
used in the study are listed in Table 1. The second col-
umn shows the number of non-abstract methods in each
component.

First we considered the cost of the analysis. The third
column in Table 1 shows the analysis running times, in
seconds. This is the total time to run the analysis for all
methods in a component, on a 900 MHz Sun Fire 280-R
machine. The results strongly suggest that the analysis
cost is practical.

For each method m with a non-trivial body, we ran the
control-flow analysis and used its output to answer the
following questions:

• Is it necessary to use return fragments in order to
obtain a precise mapping for m?

100

100

Component Meth Time (s) (a) (b) (c)
collator 157 4.84 44.9% 4.3% 5.8%
date 136 5.43 54.2% 16.7% 41.7%
decimal 136 0.77 60.0% 16.0% 32.0%
message 176 1.33 45.0% 12.5% 32.5%
boundaries 74 0.54 71.4% 0% 0%
gzip 41 0.21 23.1% 0% 0%
zip 118 0.54 42.2% 3.0% 0%
math 241 0.96 89.9% 1.7% 8.4%
pdf 344 0.74 40.3% 0% 2.7%
mindbright 488 2.08 36.4% 4.0% 4.0%
sql 350 0.53 31.8% 9.1% 13.6%
html 298 1.42 51.8% 1.8% 6.3%
jess 627 2.83 39.2% 3.2% 11.1%
io 86 0.34 68.2% 0% 4.5%
jflex 313 14.65 59.5% 1.4% 2.7%
bytecode 625 6.65 41.4% 0% 7.6%
checked 15 0.12 33.3% 0% 0%
bigdecimal 33 0.25 100% 0% 0%
vector 38 0.19 53.3% 0% 0%
pushback 20 0.12 80% 0% 0%

Table 1: Subject components.

• Is it necessary to use a generalized break fragment
(crossing multiple levels of fragment nesting) to ob-
tain a precise mapping for m?

• Is it impossible to have a precise no-replication map-
ping for m, using only UML 2.0 and the extensions
from Section 2?

Column (a) in Table 1 shows the percentage of meth-
ods for which a return fragment was a necessity in order
to obtain a precise mapping. The results indicate that the
number of such methods is substantial, and therefore the
handling of multiple method exits is an important issue
for reverse-engineered sequence diagrams. If return frag-
ments (or some equivalent notation) are not used, the loss
of information is likely to be substantial.

Column (b) shows the percentage of methods for which
a precise mapping was possible only if we used a general-
ized break fragment that “jumps” out of multiple enclos-
ing fragments. The results suggest that the handling of
this situation is not as important as for return fragments.
Nevertheless, CFGs that require such handling do occur in
the subject components. In this situation a tool designer
has two obvious choices. One possibility is to introduce
the generalized break fragments described in Section 2.
The second option is to use only “regular” UML 2.0 break
fragments, and to ignore the flow of control that requires
the generalized version. The control-flow analysis can be
easily modified to support this second option: intuitively,
whenever a CFG edge “jumps too far out”, the edge can
be simply ignored.

Column (c) contains the percentage of methods for which
a precise no-replication mapping was not possible. For
some components, this tradeoff is clearly not an issue.
However, the overall conclusion from these experiments
is that this tradeoff occurs frequently enough to justify
careful future studies. To gain further insights, we exam-
ined the three components with the highest percentages.
These components are from the standard Java package
java.text and they contain highly-complex code for pars-
ing and formatting of data. For code with complicated
internal logic, we believe that the practical solution is to
sacrifice some precision for the sake of reduced diagram
complexity. As discussed in Section 4, we plan to define
precision-losing transformations and to make them avail-
able for interactive user-defined tradeoff adjustments.

6. RELATED WORK
Several techniques employ dynamic analysis of run-time

program behavior to perform reverse engineering of se-
quence diagrams or similar representations [17, 10, 4, 8,
2]. An advantage of these approaches is that they create
diagrams that represent the actual behavior of the soft-
ware. However, in many cases input data for run-time
execution is not available, especially for incomplete sys-
tems (e.g., reusable modules) that cannot be executed in
stand-alone manner. Furthermore, it is not known how
well the execution covers all possible interactions. For ex-
ample, it is not possible to have high confidence in the
consistency between design and code, if this consistency
is judged from sequence diagrams that were constructed
from execution traces. As another example, sequence di-
agrams produced only with dynamic analysis cannot be
used for evaluating the adequacy of testing. Some dy-
namic reverse-engineering analyses take into account con-
ditions and iterations [17, 2], but the quality of the results
depends on pattern matching heuristics that identify cer-
tain sequences of run-time events and attempt to extract
from them control-flow primitives.

Reverse engineering of sequence diagrams through static
analysis avoids these problems. The ControlCenter and
EclipseUML modeling tools include such functionality as
an advanced feature for support of round-trip engineering.
These tools do not appear to handle correctly more com-
plicated flow of control (e.g., due to break statements).
Kollman and Gogolla [5] define a static analysis for re-
verse engineering of collaboration diagrams (similar to se-
quence diagrams), but do not discuss the representation
of conditional and iterative behavior. Tonella and Potrich
[18] present a static analysis for reverse engineering of se-
quence diagrams and collaboration diagrams from C++
code, but do not perform analysis of intraprocedural flow
of control.

The Dava decompiler [7] uses a static analysis that maps
CFGs to the control-flow constructs of Java. Our work has
a similar goal, but the target are UML control-flow prim-
itives, which are simpler and less expressive than those in
Java. There are some significant technical differences be-
tween the two approaches. For example, in [7] the body
of a conditional statement is determined by considering
the nodes dominated by a branch node, while our ap-
proach considers post-dominance relationships to deter-
mine a branch successor and the scope of an alt fragment.
Our algorithm traverses the hierarchical structure of the
CFG in order. The technique in Dava uses a sequence
of stages where each stage attempts to identify particular
constructs (e.g., only loops).

7. CONCLUSIONS AND FUTURE WORK
This work describes a novel algorithm for mapping re-

ducible exception-free control-flow graphs to UML inter-
action fragments. As part of Red, the analysis solves one
important problem for reverse engineering of sequence di-
agrams. We plan to perform additional investigations of
the tradeoffs discussed earlier, in order to find the right
balance between precision and practicality for different
uses of the analysis results—for example, for program un-
derstanding, for software testing, etc.

Acknowledgments. We would like to thank the PASTE
reviewers for their helpful comments and suggestions.

101

101

8. REFERENCES
[1] R. Binder. Testing Object-Oriented Systems:

Models, Patterns, and Tools. Addison-Wesley, 1999.

[2] L. Briand, Y. Labiche, and Y. Miao. Towards the
reverse engineering of UML sequence diagrams. In
Working Conference on Reverse Engineering, pages
57–66, 2003.

[3] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and

Systems, 13(4):451–490, Oct. 1991.

[4] W. DePauw, E. Jensen, N. Mitchell, G. Sevitsky,
J. Vlissides, and J. Yang. Visualizing the execution
of Java programs. In Software Visualization, LNCS
2269, pages 151–162, 2002.

[5] R. Kollman and M. Gogolla. Capturing dynamic
program behavior with UML collaboration
diagrams. In European Conference on Software

Maintenance and Reengineering, pages 58–67, 2001.

[6] C. Larman. Applying UML and Patterns. Prentice
Hall, 2nd edition, 2002.

[7] J. Miecznikowski and L. Hendren. Decompiling Java
using staged encapsulation. In Working Conference

on Reverse Engineering, pages 368–374, 2001.

[8] R. Oechsle and T. Schmitt. JAVAVIS: Automatic
program visualization with object and sequence
diagrams using the Java Debug Interface (JDI). In
Software Visualization, LNCS 2269, pages 176–190,
2002.

[9] OMG. UML 2.0 Infrastructure Specification. Object
Management Group, www.omg.org, Sept. 2003.

[10] T. Richner and S. Ducasse. Using dynamic
information for the iterative recovery of
collaborations and roles. In International Conference

on Software Maintenance, pages 34–43, 2002.

[11] A. Rountev and B. H. Connell. Object naming
analysis for reverse-engineered sequence diagrams.
In International Conference on Software

Engineering, pages 254–263, 2005.

[12] A. Rountev, S. Kagan, and M. Gibas. Static and
dynamic analysis of call chains in Java. In
International Symposium on Software Testing and

Analysis, pages 1–11, July 2004.

[13] A. Rountev, S. Kagan, and J. Sawin. Coverage
criteria for testing of object interactions in sequence
diagrams. In Fundamental Approaches to Software

Engineering, LNCS 3442, pages 282–297, 2005.

[14] A. Rountev, O. Volgin, and M. Reddoch. Control
flow analysis for reverse engineering of sequence
diagrams. Technical Report
OSU-CISRC-3/04-TR12, Ohio State University,
Mar. 2004.

[15] R. Sharp and A. Rountev. Interactive exploration of
UML sequence diagrams. In IEEE Workshop on

Visualizing Software for Understanding and

Analysis, 2005.

[16] S. Sinha and M. J. Harrold. Analysis and testing of
programs with exception handling constructs. IEEE

Transactions on Software Engineering,
26(9):849–871, Sept. 2000.

[17] T. Systä, K. Koskimies, and H. Muller. Shimba—an
environment for reverse engineering Java software
systems. Software–Practice and Experience,
31(4):371–394, Apr. 2001.

[18] P. Tonella and A. Potrich. Reverse engineering of
the interaction diagrams from C++ code. In
International Conference on Software Maintenance,
pages 159–168, 2003.

[19] O. Volgin. Control flow analysis for reverse
engineering of sequence diagrams. Master’s thesis,
Ohio State University, June 2004.

102

