
A tool for the reverse
engineering of Java object-
oriented source code into
UML diagrams
Dimitris Anyfantakis

Computer Science and Engineering

University of Ioannina

Overview

▪Aim of the Thesis

▪Design & Implementation

▪System Validation

▪Conclusion

▪Future Work

Aim of the Thesis

Development of a tool that produces UML
diagrams by reverse engineering a Java
object-oriented project.

▪Parse source code using Eclipse’s Java Development Tools (JDT) Abstract Syntax Tree API

▪Create a tree representing the project

▪Convert the tree to a diagram

▪Visualize the diagram using JavaFX

▪Export the diagram in GraphML format to visualize it via yEd , text and image

Overview
of the tool

Loading a project

Creating a diagram

Exporting a diagram

Visualizing the
exported diagram in yEd

Design & Implementation

Model

▪Tree-structured software architecture to interpret the Java project

▪Packages represented by nodes

▪Classes & Interfaces represented by leaves

▪Relationships represented by branches

Parser

▪Visit project’s files using DFS

▪Create nodes for every file and folder

▪Create the AST of every Java source file

▪Populate our tree using the information from the AST, i.e., fields’ names, types and methods’
names, parameters, return types

▪Identify relationships among tree’s leaves

Diagram

▪Convert the tree to a diagram

▪Create a node collection for the nodes that will populate the diagram

▪Create an edge collection for all relationships among the nodes

▪Convert the node and edge collection into a diagram

▪Map <Starting Node, Map< Ending Node, Type of relationship>>

Choosing a graph visualization library

▪Extended the JavaFXSmartGraph library

➢Implemented closed, open and “diamond” arrows by extracting the Arrow superclass and created the
closedArrow, openArrow and diamondArrow classes that extend it

➢Added dashed edges for dependencies and implementations

➢Node class now extends JavaFX’s Rectangle class instead of Circle

Visualizing the diagram using JavaFX

▪Create a directed graph of the library

▪Insert the diagram’s nodes in a graph

▪Insert the diagram’s edges in the graph

▪Draw the graph in a JavaFX Pane Node

▪Apply the layout algorithm to the graph

Exporting the diagram to GraphML
format

▪Create a Jung graph and populate it with our diagram’s nodes and edges

▪Arrange the graph using Jung’s SpringLayout algorithm

▪Convert the nodes and the edges of our collections using GraphML syntax

▪Write the result to disk file

Package diagram

Class diagram

System Validation

Tests
▪SourceFolderParsingTest
➢Parsing of the project

▪TreeStructureArchitectureTest
➢Tree structure validation

▪CollectionsDiagramConverterTest
➢Convert tree to diagram

▪GraphMLConverterTest
➢Export diagram to GraphML

▪JavaFXExporterTest
▪ Exporting and loading of the diagram using text format

▪ClassDiagramManagerTest
➢Functionalities of the diagram manager

Diagram comparison using ObjectAid

Missing arrow
▪Dependency arrow that starts from Database and ends at ErrorClass class

▪Instantiation of the ErrorClass without using a field

▪JDT’s AST API limitation to provide information for local fields

Additional arrows
▪Aggregation relationships

➢Table class has a Collection of Attribute objects

➢Similar tools like ObjectAid do not provide aggregation arrows

▪Dependency relationships

➢Table depends upon the Attribute class

➢Method that returns object of Attribute

Conclusion

What does our tool offer to the designer
▪Load a project and view its folder hierarchy

▪Choose classes/interfaces or packages that will be included in the diagram

▪Create a class or package diagram respectively

▪Visualize the created diagram in our tool’s canvas

▪Export the diagram in GraphML, text and image formats

▪Choose different files of the same project to create a new diagram

Future Work

Parser
▪Change the parsing method to improve:

➢performance

➢validity of the produced diagrams

▪Use the Tree-sitter

➢Very fast parser tool

➢Parses any programming language

Visualization library

▪Create visualization library that supports:

➢UML components

➢Drag and drop canvas

➢Editable canvas, i.e., deletable and moveable nodes & edges

➢Implement layout algorithm

Exported diagrams

▪Improve exported GraphML diagrams clarity

➢Implement an orthogonal layout algorithm

➢Use bend minimization to minimize the number of bends on the edges in the diagram.

PlantUML

▪Open-source tool that uses textual descriptions to draw UML diagrams

➢Export to text file

➢Use the text file to create the image of the diagram

➢Visualize it within our tool

➢Save it as an image

Repository

