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Abstract

Preference management in databases is handled via profiles that
allow the ranking of the tuples of a query’s answer. A profile is a set
of expressions, typically over the attributes of a relation. Preference
management and profiles typically come in two flavors: (a) quantita-
tive preferences, that assign a score to a profile’s expressions and sub-
sequently to each tuple that satisfies an expression, and (b) qualitative
preferences which state a precedence relationship between two expres-
sions and subsequently result in expressing when a tuple is preferred
over another. Related literature has elaborated each of the above cat-
egories in isolation only. In this paper, we present a method to map
quantitative to qualitative preferences and vice versa. We map profiles
of both kinds to graphs called preference networks that formally cap-
ture the precedence relationship of a profile’s expressions for both of
the above categories. To fully support the management of preferences
via preference networks we introduce weighted qualitative preferences
that annotate the precedence relationship with a degree of preference
(i.e., be able to say ’I prefer IM to JP a lot ’). We provide methods
to map qualitative to quantitative profiles as well as different ways to
consolidate two profiles in one.

1 Introduction

A preference-based querying system receives the query of a user over a re-
lation R and returns the results of the query ranked on the basis of a set
of preferences that have previously been expressed by the user. This set
of preferences is also referred to as the profile of the user. The research
community so far has followed two paths in the research of preference-based
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querying systems. The first class of approaches is based on quantitative
preferences, in the context of which a user annotates an item with a score
that characterizes the degree of a preference. Qualitative preferences, on the
other hand, are the basis for the second class of approaches; qualitative pref-
erences are expressed via the comparison of items. Assume a relation where
songs composed by different bands are stored. In a quantitative preference
setting, a user might for example declare in his profile ’I like songs composed
by Saxon with a score of 0.7’. Comparison of items with respect to a user’s
profile of preferences is done via the scores. For example, if the user also
declares ’I like Savatage with a score of 0.8’, then the system will rank all
songs composed by Savatage higher than the ones composed by Saxon. In
the context of a qualitative setting, the user might, for example, declare ’I
prefer Iron Maiden to Metallica’ and then, all songs composed by Iron

Maiden will be scored higher than the ones composed by Metallica.
Related work in database querying has pursued both paths for the man-

agement of preferences. On the one hand, there are efforts like [Cho03],
[KK02], [Kie02], [GKC+08] who base their approach on qualitative relation-
ships. On the other hand, there are efforts like [KI05b], [KI05a],[SPV07]
who follow a quantitative approach. Still, to the best of our knowledge,
there is no work that combines both worlds in a clear way.

Clearly, it is very interesting to come up with a way to combine both
methods. First, this can give us a generic way to abstract both quanti-
tative and qualitative preferences in a common formalism. Second, this
allows the expression of more complicated profiles, where both qualitative
and quantitative preferences coexist. Third, this allows the integration of
heterogeneous profiles (possibly from different systems). Finally, more com-
plicated operations can also be supported: for example, when a person rates
an album that could be a quantitative mode, whereas when she clicks on
some search results that could be translated in a qualitative way.

In this paper, we present a method to map quantitative to qualitative
preferences and vice versa as well as the means to consolidate two profiles
in one. We map profiles of both kinds to graphs called preference networks
that formally capture the precedence relationship of a profile’s expressions
for both of the above categories. To fully support the management of pref-
erences via preference networks we introduce weighted qualitative prefer-
ences that annotate the precedence relationship with a degree of preference.
So, instead of expressing preferences of the form ’I prefer Iron Maiden to
Metallica’, we are interested in expressing preferences of the form ’I pre-
fer Iron Maiden to Metallica a lot’, or, ’I prefer Savatage to Accept

slightly’. In this paper, we build upon this kind of preferences and provide
the following results.

• We identify the different domains that can exist for scores and prefer-
ence weights. Different types of score allow different ranges of actions,
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like for example difference or division of scores. Having clearly set the
foundations for the nature of the domain equips us with the knowledge
of the potential of the specified profiles.

• We formalize the definition of profiles and map profiles to graphs,
which we call preference networks. This graph representation is essen-
tial for the management of preferences in the sequel.

• We formalize weighted qualitative preferences and explore their prop-
erties. As already mentioned, weighted qualitative preferences capture
not only preferences, but degrees of preference, too. A weight anno-
tates a preference expression and allows us to infer further proper-
ties of the interrelationships between the preferences within a profile.
We explore properties and possible operations for weighted qualitative
preferences and spend significant attention to the case of transitive
derivation of such interrelationships.

• We provide methods to map qualitative to quantitative profiles and
vice versa and explore the properties and consistency requirements for
this kind of transformations.

• We provide different types of profile consolidation between a quali-
tative and quantitative profile. We introduce naive consolidation to
allow us to set the basis for the subsequent discussion and define con-
sistency checks and well-formedness properties for profiles that will be
consolidated. We also provide shallow consolidation that practically
extends a profile with information from the other profile. Finally, we
present deep consolidation during which the two profiles are intermin-
gled into a new one.

• Due to the indefinite nature of some types of weight domains, it is pos-
sible to introduce some degree of uncertainty in the reasoning about
the interrelationship of two preferences (typically, when this is derived
via some transitivity rule). As a side-effect of the main effort of this
paper, we introduce range-belief preferences and explore their proper-
ties, too.

The roadmap for the rest of the paper is as follows. In section 2 we
introduce the various kinds of domains that can be used for scores and
weights. In section 3 we formalize profile definition and give some reference
examples; also, we introduce preference networks. In section 4 we introduce
quantitative preferences and in section 5 we introduce weighted qualitative
preferences; moreover we discuss transitivity and range-belief preferences. In
section 6 we explore operations for these kinds of preferences. In section 7
we present a first method to consolidate qualitative and quantitative profiles
and discuss properties and consistency considerations for the consolidated

3



profiles. In section 8 we map quantitative to qualitative domains and vice
versa. In section 9 we present a shallow method of consolidating profiles that
respects the individual nature of the original profiles. Finally, in section 10
we explore the deep consolidation of quantitative and qualitative profiles.
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2 Domains and characteristics for degrees of pref-
erences

As already mentioned in the introduction, quantitative preference expres-
sions are annotated with a degree of preference, which we call score. We
also plan to use degrees of preference when we introduce weighted qualitative
preferences later in this paper. Before proceeding with the formal definition
of such preferences, we need to take a deeper look to the fundamental nature
of the characteristics of these degrees of preferences; this is the topic of this
section.

Measurement theory typically divides measurement domains on the basis
of the operations they support. Specifically, the following domains are valid
in measurement theory [FP97]:

1. Nominal scale domains. These domains simply list constants that
convey a certain meaning without any sense of order or applicable
operations on them. For example, such a domain concerning software
faults [FP97] could be {design fault, specification fault, code fault}.
We can only test the members of nominal scale domains for equality
or not(=, 6=).

2. Ordinal scale domains. These domains support a notion of ordering for
their members, but no other applicable operations on them. For exam-
ple, such a domain concerning temperatures could be {cold,mild, hot}:
there is a strict order of these values, but we cannot define distances
or arithmetic operations to them. We can test the members of ordinal
scale domains for (i) equality (=, 6=), and (ii) higher position in the
domain’s order (<,>,≤,≥).

3. Interval scale domains. These domains order the constants that are
members of the domain and capture information for the distances
among them. Therefore, addition and subtraction can be defined for
them (although multiplication and division cannot). For example, a
Celsius scale for temperature is an interval scale: we can say that two
temperatures, say 10C and 20C, have a distance of 10 degrees, but not
that the latter is twice as hot as the former. We can, however, say
that the distance of 10C to 5C is half the distance of 10C to 20C. We
can test the members of interval scale domains for (i) equality (=, 6=),
(ii) higher position in the domain’s order (<,>,≤,≥), (iii) division of
their intervals (but not of their values per se).

4. Ratio scale domains. These domains are characterized by an order-
ing of their members, the intervals among them, and, ratios among
them. Moreover, they have a zero element (meaning absolute absence
of the measured quality) which is the first member of the domain. The
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domain increases at regular intervals (a.k.a. units) and supports all
arithmetic operations. For example, Lines of Code constitute a mea-
surement domain in the ratio scale. We can test the members of ratio
scale domains for (i) equality (=, 6=), (ii) higher position in the do-
main’s order (<,>,≤,≥), (iii) division of their intervals, (iv) division
of their values per se.

5. Absolute scale domains. These domains are characterized by the fact
that the only possible members of the domain are countings of elements
of a set under measurement (e.g., ’how many times a bug was inspected
in module X’). Any arithmetic operations to the results of the counting
is applicable.

In the sequel we will provide the formal foundation for degrees of pref-
erences for any kind of degrees (be it quantitative scores, or weights for
weighed qualitative preferences), on the basis of the aforementioned taxon-
omy. Formally, assume a domain of degrees of preference W∗. Unless oth-
erwise specified, in the rest of our deliberations we will by default assume
that (a) W∗ is infinitely countable and (b) W∗ is at least in the ordinal
scale and, therefore, its members respect a strict total order (i.e., ∀ x, y, one
of the three holds x > y, y > x, x = y). In special occasions where specific
assumptions must be made for the scale type of W∗, these will be explicitly
listed.

For the special cases when W∗ is finite, it is clear that due to the strict
partial order of its members there are two special values: (a) the one with
the smallest rank, denoted as ⊥ (i.e., ∀ w ∈ W∗, w > ⊥) and (b) the one
with the highest rank, denoted as > (i.e., ∀ w ∈ W∗, w < >).

We also assume a ”zero-knowledge element”, w0. In the context of
weighted qualitative preferences, this element has the semantics of ”I prefer
t1 to t2, but I do not know the weight of my preference”. We will use the
term W to denote W∗ ⋃ {w0}. A very important discussion concerns the
place of w0 in the total order of W. We do not include w0 in the total order
of W∗. This requires the redefinition of several properties concerning the
operators {=, 6=, <,>,≤,≥} since, given a weight w, the result of comparing
it to w0 is unknown. We require the following:

• All comparisons and binary arithmetic operations among two members
of W∗ retain their value in W

• Assuming w ∈ W the comparisons w ϑ w0, ϑ ∈ {=, 6=, <,>,≤,≥},
result in the special value UNKNOWN.Observe that w could be w0, too.

• Assuming w ∈W the comparisons w ϕ w0, ϕ ∈ {+,−, ∗, /}, also result
in the special value UNKNOWN. Observe that w could be w0, too.

6



Practically, we treat the value w0 as the unk value of [GZ88].

Clearly, if all preferences in a preference relation are defined with w0 as
the employed weight we fall back to the traditional models of qualitative
preferences [Cho03], [Kie02].

3 User profiles

A user’s profile is a finite set of preferences. In this section, we discuss a
simple formalism for expressing user preferences. Then, we move on to for-
mally define profiles and then we map them to preference networks. Finally,
we cover issues of tuple ranking with respect to a profile.

Several proposals for the specification of user profiles exist in the liter-
ature.In [KK02], Kießling and Köstler introduce Preference SQL, an SQL
extension aimed towards supporting the expression of user preferences in
conjunction with regular SQL queries. Preference SQL supports the user in
expressing simple preferences that prioritize tuples that satisfy one of the
following conditions: an attribute is around a certain value, or between two
values, or has the highest/lowest value in the relation. Moreover, the user
can declare his positive or negative preference for specific values of an at-
tributes. Finally, Preference SQL supports the user in expressing composite
preferences via (a) Pareto composition (which treats all simple preferences
as equal), or, (b) cascading composition (which means that the preference
expressions are ordered, each having a decreasing priority, and the order of
the tuples returned to the user reflects this order of preferences). The work
of Chomicki [Cho03], assumes that preferences are expressed as first order
formulae; a formula f is in disjunctive normal form, quantifier-free, closed
under negation and uses only built-ins.

In our case, we do not assume a particular way via which user preferences
are collected (e.g., submitted by the users via a GUI, or collected from a
reasoner that deduces there preferences from user transactions), nor do we
intend to introduce a specific language for that purpose. Our main concern
in this section is to present a formalism for simple expressions that allows
formulae to be evaluated on the tuples of an underlying relation R in o(1)
(i.e., we determine whether a preference is relevant for a tuple in isolation
with reference only to the attribute values of the tuple).

3.1 Preference formulation

We will start with the introduction of general purpose (i.e, applicable in both
the qualitative and the quantitative context) preference expressions over the
tuples of a relation. Then, we will see how quantitative and qualitative
preferences can be expressed via preference expressions.
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In the sequel, we will assume an infinite domain of names and a sin-
gle relation R whose schema R.S comprises attributes A1, . . . An. Each
attribute Ai is related to a domain dom(Ai) which is isomorphic to the in-
tegers. All expressions are defined over R; that said we avoid repeating the
term ’over R’ in every definition. We assume a domain Ws for the scores
of quantitative preferences and a domain Ww for the weights of qualitative
preferences.

Definition 1 (Atoms). An atomic expression, or atom, is an expression of
the form A θ v, with A being an attribute of R, v being a value in dom(A)
and θ is an operator in the set (<,>,≤,≥,=, 6=).

Definition 2 (Expressions). An expression in conjunctive normal form
(CNF) involves the conjunctions of a finite set of atoms over R.

In our setting, we define quantitative preferences as formulae in con-
junctive normal form that are annotated with a strength and qualitative
preference expressions as pairs of formulae in conjunctive normal form that
are connected with a preference weight. Observe that we use a different term
for the degrees of preference, depending on their quantitative or qualitative
nature: this is done for reasons of clarity of the context. The respective
profiles are defined as finite sets of preferences.

Definition 3 (Quantitative Preference expression). A quantitative prefer-
ence expression is a pair ps(φ, s), with φ being an expression and s ∈ Ws.

Definition 4 (Qualitative Preference expression). A qualitative preference
expression is a triplet pw(φ1,φ2, w), with φ1 and φ2 being expressions and
w ∈ Ww.

Definition 5 (Profile). A profile P is a finite set of qualitative and quan-
titative preference expressions expressed over the same relation R.

In other words, a profile is a finite set of expressions of the following two
kinds:

1. (qualitative)
∧
i ∈ 1... N (Ai θi vi) �w

∧
j ∈ 1... M (Aj θj vj),

2. (quantitative)
∧
i ∈ 1... N (Ai θi vi) with strength s, for a finite N

with N ,M denoting positive integers, A denoting attributes of relation R, θ
∈ (<,>,≤,≥,=, 6=) and v denoting a value in dom(A).

We will call the former part of the profile as its qualitative part and
the latter as its quantitative part. A profile consisting only of qualitative
part is called a qualitative profile; similarly, a profile consisting only of a
quantitative part is called a quantitative profile.
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It is possible to extend the representation of formulae (both quantitative
and qualitative) and include disjunctions in the same expression. In other
words, we could also consider preferences in disjunctive normal form. Still,
we opt for a simpler class of expressions, bearing in mind that if a user wishes
to express a preference that comprises a disjunction, the disjunction appears
as two different preferences, with the rest of the preference expression intact;
this can be recursively generalized for arbitrary disjunctions.

The problems that we have to deal with now are (a) the precise definition
of the semantics of the above language constructs (and their implications)
and (b) the combination of quantitative and qualitative preferences in a
unique ’construct’ that will allow us to order the tuples of the relation R
in a unique way. So, in the next two sections we discuss quantitative and
qualitative preferences in isolation and then, in section 5 we move on to
unify profiles that comprise preferences of both kinds.

3.2 Reference Example

We will employ an exemplary database of music albums with data taken
from Wikipedia. Each album is characterized by the band that produced it,
its date of release, its duration and the musical genre to which its belongs.
All the preferences and profiles that will be introduced later in this section
and throughout this paper refer to this reference relation of albums.

Figure 1: A database of heavy metal albums
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3.3 Preference Networks

In this section, we will map qualitative and quantitative profiles to directed
graphs which we call preference networks. We will discuss the notion of the
covers relationship for both cases. The proposed graphs are practically the
Hasse diagrams of the profiles at the intentional level.

Assume a relation R whose schema R.S comprises attributes A1, . . . An.
All preference expressions for all the profiles we will discuss are defined over
R. Assume a domain Ws for the scores of quantitative preferences and a
domain Ww for the weights of qualitative preferences.

Definition 6 (Qualitative Preference Network). An intentional qualitative
preference network LwI of a qualitative profile P over a relation R is a graph
G(V,E) constructed as follows:

1. Each expression participating in any kind of preference is mapped to
a node v ∈ V . If an expression appears more than once, exactly one
node is used.

2. Given two expressions φ1 and φ2, a directed edge (φ2 → φ1) connects
the nodes of the two expressions with a weight w if φ1 covers φ2. The
covers relationship is defined as follows:

• Assuming two qualitative preference expressions φ1 and φ2, φ1
covers φ2 if and only if φ1 �w φ2 and @ expression φ3 such that
φ1 � φ3 � φ2. In this case, a directed edge (φ2, φ1) is added to
the graph and it is annotated with w.

Example. Ingo has the qualitative profile depicted in Figure 2. Ingo
is a sophisticated person with a complicated profile: in summary, Ingo likes
Gamma Ray more than any other band and then his preferences are divided
to the band Helloween and the genre speed metal that both follow Gamma

Ray with a difference little. In terms of genres, Ingo prefers speedmetal to
heavy and speed, which in turn, is preferred to heavy metal with a weight
little. At the same time, Helloween is preferred a lot to both thrash metal
and very long albums with duration more than 45 minutes. Thrash metal
is also preferred to thrash and speed which in turn is preferred a lot to old
songs with date < 1980. The latter are also surpassed by the preference
on long albums by little. Old albums are little preferred to any albums of
genre heavy metal.

Ingo’s preferences can be formally stated as follows:

• Band = Gamma Ray �little Genre = speed � Genre = heavy&speed
�little Genre = heavy

• Band = Gamma Ray �little Band = Helloween �a lot duration > 45
�little Date < 1980 �little Genre = heavy

10



Figure 2: Ingo’s profile

• Band = Helloween �a lot Genre = thrash � Genre = thrash&speed
�a lot Date < 1980

Definition 7 (Quantitative Preference Network). An intentional quantita-
tive preference network LsI of a quantitative profile P over a relation R is a
graph G(V,E) constructed as follows:

1. Each expression participating in any kind of preference is mapped to
a node v ∈ V . If an expression appears more than once, exactly one
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node is used.

2. The strength of a quantitative preference annotates the node of the
respective expression.

3. Given two expressions φ1 and φ2, a directed edge (φ2 → φ1) con-
nects the nodes of the two expressions if φ1 covers φ2. The covers
relationship is defined as follows:

• Assuming two quantitative preference expressions (φ1,s1) and (φ2,s2),
φ1 covers φ2 if and only if s1> s2 and @ expression φ3, s3, such
that s1 ≥ s3 > s2.In this case, a directed edge (φ2, φ1) is added
to the graph.

Example. Assume John has a quantitative profile defined over the
albums relation of the reference example with the domain of scores having
the following 10 values with the obvious semantics Ws = {0.1, . . . , 1.0}.
John’s preferences are: 1

• John likes albums with Date ≥ 1990 and Date ≤ 2000 with a score
of 0.6

• John likes albums with Date < 1990 with a score of 0.7

• John likes albums with Date > 2000 with a score of 0.7

Figure 3: John’s profile

3.4 Tuple classification over a profile

How are the tuples of a relation R related to the preferences of a profile
P? It is possible that more than one preferences are related to a single
tuple. The relationship of tuples to preferences is covered by the following
definition:

1We intentionally restrict preferences over the Date attribute. This is not a limitation
of the model but a choice to have an example where each tuple can be related to a single
preference expression; as we shall see in the sequel, this is not always the case with profiles.
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Definition 8 (Extent of a preference) Each expression (also: node of a
network) is related to a (possibly empty) subset of relation R (which we
call the extent of the preference) that consists of the tuples that satisfy the
expression. We denote the extent of a preference p with Ext(p).

We consider two types for the classification of tuples to preference ex-
tents:

• A monothetic tuple classification scheme assigns each tuple to at most
one preference extent

• A polythetic tuple classification scheme allows a tuple to be related to
more than one preference extents

A quantitative profile is intentionally monothetic (or simply, monothetic)
with R if a single score (no score included) is assigned to each tuple of the
relation R, independently of the instance of R. If this property holds but it
is subject to the current instance of R, then P is extensionally monothetic
with R. The intuition behind this separation has to do with the ability to
determine a-priori whether there is a possibility for a tuple to be related
with more than one preferences. In the case of intentional monothecy, the
profile guarantees this property independently of the underlying extent of R
(for example, the profile involves exactly one attribute and the ranges of the
preference expressions are disjoint). Still, it is quite easy to have situations
where no consistency can be attained.

4 Quantitative Preferences

In this section we will discuss quantitative preferences in isolation and in-
vestigate their properties.

4.1 Intentional level

As already mentioned, quantitative preferences express do not assess differ-
ent tuples with respect to which is most preferred over the other, but rather
they express the user’s preference over a single tuple. Scores indicate the
degree of preference (for example ”I like Iron Maiden very much”. Observe
the usage of the verb (predicate) ”like” as opposed to the previously used
verb ”prefer”.

Assume a relation R (over which preferences will be expressed) and a
domain Ws (which will serve as the domain of preference scores) as de-
scribed in section 2. Remember that Ws is infinitely countable (frequently,
finite) and at least in the ordinal scale. Assume a profile P comprising only
quantitative preferences, too.
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A set of quantitative preferences defined over the relation R divides the
extent of R to subsets of tuples annotated by the scores of the preferences.

Assume a finite set of quantitative preferences p1, p2, . . ., pm all defined
over R. Each preference is of the form pi(φi, si), involving an expression
φi and a score si. The scores of the preferences impose an ordering to the
preferences, i.e., assuming two preferences pi and pj , pi 6= pj ,

pi � pj ⇔ wi > wj
Example. Let us come back to the example depicted in Figure 3. Ob-

serve that there is partial order of John’s preferences (and consequently of
their extents). Observe also that the fact that all preferences are defined
over the same attribute combined with the fact that the ranges of values for
the preferences are disjoint guarantees that each tuple of the relation will
fall in exactly one preference extent.

4.2 Consistency considerations

What happens, if we cannot guarantee any kind of monothetic classification
for a quantitative profile over a relation? For example, assume that a user
submits the following preferences:

• I like traditional metal albums (Genre=′Heavy′) with score 0.8

• I like albums of the early 80’s (Date ≤ 1985) with score 0.9

Clearly, since the two preferences are orthogonal to each other (i.e., ex-
pressed over different attributes) it is quite possible that an album satisfies
both of them – in fact, the album Piece of Mind (first line of Figure 1)
satisfies both criteria. There are various reactions to this situation, out of
which we retain the two most practical:

Preference prioritization. The first possible reaction is to prioritize
preferences in a total order. In this case, if a tuple falls in the ex-
tent of more than one preferences, it will assume the score of the one
with the highest priority. This is what qualitative preferences do with
lexicographic composition of preferences [Cho03] (also referred to as
prioritized composition [Kie02]).

Score combination. The second possible reaction is to combine the scores
of the individual preferences which are related to a tuple into a single
score via a function (see for example, [SPV07]); examples include a
weighted sum, or the maximum value of all the scores.

4.3 Extensional level

The mapping of a quantitative expression over a relation R to a quantitative
relationship is straightforward. Assume a quantitative preference p(φ, s)
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over R, involving an expression φ and a score s2. Then, for all tuples t ∈
R, if φ(t) then t in Ext(p). We say that the score of a tuple t, score(t),
belonging to the extent of a preference p(φ, s) is s.

The real problem now is whether the preference extents are disjoint,
i.e., we should be able to guarantee that a profile assigns each tuple to the
extent of a single preference. If such a property is obtained, then the profile
produces equivalence classes, determined on the basis of the user preferences,
that provide a unique ordering of the tuples of a relation R.

Proposition 4.1 A quantitative profile that is not accompanied by a conflict
resolution mechanism does not guarantee equivalence classes for the tuples
of the relation over which the profile is defined.

An example for the above proposition is mentioned in the previous subsec-
tion.

Theoretically speaking, a solution that alleviates the problem is to com-
pute all the 2n combinations of the different preferences (possibly excluding
the ones that naturally result in false) as well as the appropriate score
for each of the combinations. Assume a finite set of atomic preferences
p1, p2, . . . , pn. Without loss of generality assume also the composite pref-
erence p = p1 ∧ p2. A tuple t belongs in the extent of p if both p1(t)
and p2(t) hold, and at the same time, pi(t) does not hold for every other
i 6= 1, 2. In this case it is clear that every tuple belongs to exactly one of
these composite preferences and the extended profile that comprises the 2n

combinations produces an equivalence relation over the tuples.

Definition 9 Given a profile P over a relation R comprising a finite set of
quantitative preferences, P={p1, p2, . . . , pn}, a composite preference p is a
combination of a subset of the preferences of the profile P . A tuple t belongs
to the extent of p if and only if (i) all the expressions of the preferences of p
hold for this tuple and (ii) there is no preference in P - p for which t satisfies
its expression. The score for the new composite quantitative preference is a
function of the scores of the atomic preferences that belong to p.

Definition 10 Given a profile P over a relation R comprising a finite set of
quantitative preferences, P={p1, p2, . . . , pn}, an extended profile P+ is the
set of all the 2n composite preferences of P .

It is clear given a profile composed of a finite set of preferences, an
extended profile can always be built. In this case, even if a tuple would
originally be related to more than one preferences, it will eventually resort
in a single composite preference and obtain the appropriate score given from
the strict prioritization or the score combination of the simple preferences.

2We remind the reader that all the notation and definitions are found in Section
sec:profiles
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Theorem 4.2 Both preference prioritization and score combination guar-
antee that a profile P acts as an equivalence relation for the tuples of a
relation R.

5 Weighted Qualitative Preference Relations

Having defined preliminary concepts concerning the domains of scores and
preference weights, now, we can define weighted preference relations. A
weighted qualitative preference relation states that a tuple t1 is strictly pre-
ferred over another tuple t2 (as opposed to the possibility of being at least
preferred to t2 – see [GKC+08] for an interesting discussion on the topic).
Moreover, this preference has a weight taken from a domain of at least or-
dinal nature and the preference states that t1 is preferred over t2 with an
exact weight w (as opposed to the possibility of at least w, or, between the
range of w1 and w2).

Definition 11 (Weighted Qualitative Preference Relation). A relation P is
a weighted qualitative preference relation over a database relation R if it is
a subset of (dom(A1)× . . .×dom(Ak))× (dom(A1)× . . .×dom(Ak))×Ww,
with all (dom(Ai) being isomorphic to the integers and Ww being of at least
ordinal scale.

For two arbitrary tuples of R, say t1 and t2 and an arbitrary weight w,
if P(t1, t2, w) holds, then we write t1 �wP t2 and read it as ”t1 is strictly
preferred over t2 with a weight of exactly w”.

When the context is clear, we will simplify notation and write t1 �w t2
only. Following Chomicki [Cho03], we say that t1 dominates t2 by w. As
usual, whenever @ w ∈ Ww such that t1 �w t2, we denote it as t1 �w t2.

The example of Figure 2 graphically depicts a qualitative profile as a
preference network.

5.1 Indifference

It is also possible that two items are not comparable at all. For example,
if the only knowledge of my preference profile is that I prefer Deep Purple

more than Led Zeppelin with weight fair, this tells me nothing about the
relationship of these items with Metallica (or any other member of the
domain of the attribute Band).

Definition 12 (Indifference). Formally, two items are indifferent to each
other, denoted as t1 ‖ t2 if neither is preferred over the other:
t1 ‖ t2 ⇔ ∀w ∈Ww, t1 �w t2

∧
t2 �w t1
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5.2 Properties of weighted qualitative preference relations

In this subsection, we will explore properties of weighted preference relations.
Following the structure of [Cho03] in our deliberations, we will discuss pos-
sible properties that can hold for a preference relation. In our deliberations
in this section, we will assume a weighted qualitative preference relation P
defined over a database relation R.

Definition 13 (irreflexivity). For each t ∈ R, t �w t, for every w ∈ Ww

In other words, an item cannot be preferred to itself, for any possible
weights.

Definition 14 (antisymmetry). For each t1,t2 ∈ R, and w1,w2 ∈ Ww the
following holds:

t1 �w1 t2 ⇒ t2 �w2 t1

Observe that this property is defined for any weights w1, w2.

Definition 15 (negative transitivity). For each t1, t2, t3 ∈ R, and, w1,w2

∈ Ww the following holds:

t1 �w1 t2 and t2 �w2 t3 ⇒ @ w in Ww s.t. t1 �w t3

In other words, negative transitivity gives guarantees in the absence of
preference: ’if t1 is not preferred to t2 and t2 not preferred to t3, then how
could t1 be possibly preferred to t3?’ (or, else, if t1 was preferred to t3,
wouldn’t it be reasonable that at least one of the other relations holds?).

Definition 16 (chain). For each t1,t2, exactly one of the following holds:

• t1 �w t2 for some w ∈ Ww, or,

• t2 �w t1 for some w ∈ Ww, or,

• t1 = t2

In other words, when the chain property holds, it is impossible to have two
items t1, t2 that are not comparable with each other (i.e., t1 ‖ t2).

Remember that the above are possible properties and the following com-
binations of properties give characterizations for the preference relation:

• strict partial order: irreflexive and transitive
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• weak order: strict partial order and negative transitivity

• total order: strict partial order and chain

Clearly, transitivity is a central issue in the characterization of the na-
ture of weighted preference relations and needs to be explored in detail.
The main problems with transitivity are due to the fact that we need to
compute a weight for the transitively deduced relation; this is not always
straightforward, due to the delicate nature of the type of W∗

w.

5.3 Transitivity and its Implications

The main idea in transitivity has to do with the nature of the domain. If
Rainbow is preferred to Deep Purple with weight low and Deep Purple to
Led Zeppelin with weight fair, what can we deduce for the relationship of
Rainbow and Led Zeppelin, and its weight? One possibility for the answer
is fair, i.e., the maximum of the two weights. Still, this is a matter of taste; in
fact it is also quite possible to say a little bit more than fair. Assuming that
the natural choice is max, though, allows to reflect again on the possibility
of defining preferences with an ’at-least’ modality in the definition of the
preference relation (as opposed to ’exact’) for the preference’s weight (I
prefer Rainbow at least with a weight of fair over Led Zeppelin): as we
shall see, we can do even better; to this end, we introduce range-belief
preferences in the following section.

The situation is possibly different if the domain of Ww allows us to de-
fine difference over the weights. So, if instead of low, the weight is 0.3 and
instead of fair, the weight is 0.5, can we assume that Rainbow are preferred
to Led Zeppelin with a score of 0.8? What if the two scores were 0.8 and
0.9 and the upper limit is 1.0?

In the sequel, we will explore alternative implications for transitivity
and discuss their semantics and properties. In our deliberations we need
to enrich the domain of weights with a function that assigns the score of
the transitively computed relationship. Formally, we assume a computable
function fsit, fsit: Ww×Ww →Ww that takes the original weights as input
and produces the new one as output.

Definition 17 (Simple Item Transitivity). For each t1,t2,t3 ∈ R, and w1,w2

∈ Ww the following holds:

t1 �w1 t2 and t2 �w2 t3 ⇒ t1 �w t3, w =fsit(w1, w2), w ∈ Ww

where fsitis a computable function fsit: Ww ×Ww →Ww.

For ordinal domains supporting only order among their members, func-
tion fsit could be min, max, a constant (e.g., the ’I don’t know the score’
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constant) or any other applicable function. In case Ww is of ratio scale and
it supports difference, then a variant of addition can be defined as long as it
is closed for the domain Ww (which is straightforward for domains isomor-
phic to the integers, but requires special care for finite domains).

A possible example of function fsit for an ordinal domain is the following:

w =


w1 if w2 = w0

w2 if w1 = w0

max(w1, w2) otherwise
(1)

A second example for function fsit is w = w0 for any w1, w2, projecting
the computed transitive relationship of two tuples into a weightless qualita-
tive relationship.

A third example of function fsit for an interval scale domain is the fol-
lowing:

w =


w1 if w2 = w0

w2 if w1 = w0

max(w1, w2) + |w1 − w2| if this sum doesn′t exceed >
> otherwise

(2)

If the domain is infinitely countable, the last case is useless; on the other
hand, if the domain is finite, it is important to guarantee that fsit is closed
for Ww.

Another possible consideration has to do with the case of two values that
are both preferred over a third one. What is the relationship of the two first
values, then?

Definition 18 (Simple Weight Transitivity). For each t1,t2,t3 ∈ R, and
wa,wb ∈ Ww the following holds:

t1 �wa t2 and t1 �wb t3, wb > wa ⇒ t2 �w t3, w =fw(wa, wb), w ∈Ww

where fwis a computable function fw: Ww ×Ww →Ww.

Observe that the implication holds only when wb > wa and therefore,
the cases where w0 could possibly be involved are excluded. Simple weight
transitivity can be defined both for domains in any of the ordinal, ratio and
interval scales. Still, it is much more interesting when weight differences
can be defined – i.e., when the domain of Ww is of ratio or interval scale.
Assume I prefer Savatage to (a) Saxon with a score of 0.3 and (b) AC/DC

with a score of 0.7. Then, if simple weight transitivity is supported, we can
infer that I prefer Saxon to AC/DC with a score of 0.4, assuming fw = wb−wa.
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5.4 Semantics and Consistency Considerations

So far we have covered how preferences can be expressed as well as what
their properties are. So, when a user poses a query over the relation R, how
are the results going to be ranked according to the user’s profile P? To deal
with this problem we need to relate the user’s preferences to the ranking of
tuples in the database.

The mapping of a qualitative expression over a relation R to a qualita-
tive relation is straightforward. Assume a qualitative preference expression
p(φ1, φ2, w) over R. Then, for all tuples t1, t2 ∈ R, t1 6= t2, if

(i) φ1(t1) and φ2(t2),

(ii) NOT (φ1(t2) and φ2(t1))

then t1 �wL t2.
Whereas the above discussion resolves the problem of the introduction

of semantics for a single expression, things are more complicated when it
comes to the introduction of semantics for a whole profile. Specifically, the
following problems have to be considered:

• Is it possible that two expressions in a qualitative profile have a con-
flict?

• Can we determine a-priori that a profiles is polythetic or monothetic?

• In the case of a polythetic profile, where a tuple can be assigned to
the extent of more than one expressions, how do we ultimately decide
its final extent?

5.4.1 Conflicts in qualitative profiles

Transitivity allows us to deduce inconsistencies for a profile. We can find
problems of conflicting preferences concerning the precedence between pref-
erence expressions as well as inconsistencies concerning the degree of prece-
dence.

Cyclic preferences. The first case of inconsistency has to do with cyclic
preferences. Assume the case of a profile P with the following three pref-
erences: pa(φ1, φ2, wa), pb(φ2, φ3, wb), pc(φ3, φ1, wc). Clearly this presents
a problem since a simple application of transitivity will result in every ex-
pression being preferred to everyone else. We need to avoid this kind of
situations and to this end we introduce acyclic profiles3. To keep the dis-
cussion concise and to the point, in the discussions of this section, we will
extend the notions of preference and transitivity from tuples to preferences.

3Observe that scores in quantitative profiles relieve us from this kind of problems
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Definition 19 (Acyclic profiles) A qualitative profile is acyclic if for every
preference expression p(φ1, φ2, w) of the profile it is impossible to derive an
expression p′(φ2, φ1, w

′), either directly or transitively.

Weight Inconsistencies. Given a function to compute simple item
transitivity, is it always possible to compute exactly one value for the transi-
tive distance between two tuples? Assume a domain Ww = {little, fairly, a lot}
and a function fsit producing the maximum of the two values as the derived
weight for the transitive relationship. Assume also the profile of Figure 4
that is pictorially represented as a Hasse diagram. Then, it is clear that
(a) the left path in the figure indicates the albums of Accept are preferred
to the ones of Metallica with a weight a lot, whereas (b) the right path
indicates that they are preferred with a weight little.

Can we assume that this is a possibly rare case for real-world users? Ac-
tually, there exist reports (see [SJ99]) that contradict this intuitive assump-
tion; in fact, even simple properties of distance functions (e.g., distance(A,B)
> distance(A,A), A 6= B) appear to be violated by user responses. There-
fore, we believe it is necessary to require preference management systems to
be tolerant to inconsistencies caused by user input.

Figure 4: Inconsistency for the distance of two preferences via multiple paths

Proposition 5.1 It is still possible to have two different evaluations for the
distance of two preference expressions via transitivity.

Given a qualitative profile P defined over a domain Ww and a relation R,
as well as a simple item transitivity function fsit we introduce the following
two definitions:

• The profile is extensionally transitively consistent, if for every pair of
tuples t1 and t2 for whom we can compute a preference relation, there
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is a single weight w that characterizes this relationship– i.e., either
t1 �w t2 or t2 �w t1.

• The profile is intentionally transitively consistent, if for every pair of
preferences p1 and p2 for whom we can compute a preference relation-
ship there is a single weight that characterizes this relationship.

5.4.2 Polythetic and monothetic profile identification

As with quantitative profiles, qualitative profiles may also cause polythetic
classifications. Again, we will define two notions of monothetic classifica-
tions:

• Intentional monothetic classification, refers to the property of a profile
to allow us to determine that every tuple will be related to at most
one preference expression

• Extensional monothetic classification refers to the property of a spe-
cific instance of R to relate each of its tuples to at most one preference
expression.

Assume a profile P over a relation R, R = A1, . . ., An. Without loss
of generality, assume that the preference expressions of the profile involve
only the attributes A1, . . ., Ak, k ≤ n. Assume also that every expression of
the profile is in conjunctive normal form and, consequently involves atoms
each of which defines a range of values over the domain of an attribute A,
dom(A). Then, given a tuple t, all the possible values that define the pref-
erence(s) to the extent(s) of which the tuple t will eventually be classified
are within the space Ωk=dom(A1)× . . .×dom(Ak). Then, a profile is inten-
tionally monothetic if every preference expression defines a subspace of the
space Ωk that is disjoint to every other subspace derived from the preference
expressions.

Theorem 5.2 Assume a qualitative profile P defined over a relation R, R
= {A1, . . ., An}. P involves a finite set of preference expressions. The
profile P is intentionally monothetic if the following hold:

1. There is a core of attributes A1, . . ., Ak, k ≤ n, all of which are
involved in all the expressions of P .

2. Every preference expression is of the form
∧
i ∈ 1... k∗ (Ai θi vi) �w∧

j ∈ 1... k∗ (Aj θj vj), k∗ ≥ k, with θ ∈ (<,>,≤,≥,=, 6=) and v
denoting a value in dom(A).

3. For the core attributes of each expression φ, we can derive a range-
aware preference expression φ∗ of the form

∧
i ∈ 1... k (Ai ∈ rangei),

with rangei being the union of disjoint value ranges in dom(Ai).
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4. For every two expressions φ and φ′ there exists at least one core at-
tribute A whose range expressions in φ and φ′ are completely disjoint.

Proof. Assume that the conditions of the theorem are all met and a tuple
t is classified in more than one extents; i.e., it is involved with preference
p1 and p2. Then, the two preferences share a common subspace within Ωk.
Still, this is impossible: by definition, even if k − 1 out of the k ranges
are identical, there must exist at least one core attribute A where the two
preference expressions have disjoint ranges. In this case, the subspaces of
the two preferences in the k-space are necessarily disjoint, too.

The second requirement specifies the structure of the involved profiles. k∗ is
greater or equal than k, since (a) all the k attributes must be covered (and
therefore we need at least k atoms per expression), (b) expressions of the
form A > vlow ∧A < vhigh can be specified by the user, and (c) expressions
on non-core attributes are allowed. Here, we assume that the user provides
meaningful ranges of values (although we do not cover meaningless cases as
sex =′ Female′, illness =′ Prostate′ – see next too).

Is it possible to use one attribute in only one preference? Yes, if it is not
part of the core! Fundamentally, there need to be k common attributes in
the core of the profile whose subspaces must be completely disjoint. Now, if
the extent of a preference is actually a subset of the k-space that the core
attributes assign to the preference, by using a range on another attribute
outside the core, this is fine, too.

Observe that the third requirement calls for the union of ranges. This is
due to the presence of atomic expressions of the form A 6= v in the profiles,
resulting in ranges of the form (−∞ . . . v − 1] ∪ [v + 1 . . .∞) for domains
isomorphic to the integers (or generally, (−∞ . . . v) ∪ (v . . .∞) for the rest
of the domains). Expressions without 6= produce single ranges.

Clearly, the essence of the theorem lies in the ability to deduce that the
regions in the k-space of the core of the preferences are mutually disjoint.
The fourth requirement is hard but effective –especially, in the absence of any
other information (e.g., functional dependencies, business constraints, etc).
Therefore, relaxed variants of the theorem can be devised too when auxil-
iary information is available. Moreover, it is easy to see that extensionally
monothetic profiles are profiles whose expressions have common subspaces
that are empty of tuples.

5.4.3 Resolution of multiple extents in polythetic profiles

Monothetic profiles have no problems of semantics, since each tuple refers
to at most one preference. What happens with polythetic profiles, though,
when we must resolve a single extent to place a tuple that is related to one
or more preferences? As the reader might recall, quantitative profiles resolve
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problems by combining scores or prioritizing preferences. Score combination
is not an option for qualitative profiles so preference prioritization seems to
be the only path tho follow.

Traditional composition schemes include Pareto and lexicographic com-
position. Pareto composition treats all preferences as equals and postulates
that for tuple t1 to be preferred over tuple t2, t1 must be better in at least one
attribute and not worse in all the others than t2. Lexicographic composition
requires an a-priori ordering of preferences. By combining all preferences
of a profile via lexicographic composition it is possible to derive a unique
preference extent for every tuple.

Is it possible to exploit the preference networks to rank tuples? The
answer to the question is not always positive. Let us revisit Ingo’s profile
in Figure 2. The album Helloween in Figure 1 satisfies two preferences (a)
Band = Helloween, and (b) Genre = ’speed’. Both preferences appear to
be second best in Ingo’s profile. So, unless a strict priotization of preferences
is introduced, the profile remains polythetic. At the same time, one cannot
avoid the thought that in some (but not all) cases like this where all the
preference extents of a tuple are equally preferred, it is not really important
to have a monothetic profile (since the result presented to the user will be
the same).

Based on all the above, there are the following cases that we consider:

• The profile is defined as the lexicographic composition of all its pref-
erences; in this case, a tuple belongs to the extent of the preference
with the highest priority

• As a last resort, we can have a (possibly partial) specification of the
prioritization of the preferences made by the user. Under this ap-
proach, when a tuple belongs to two preference extents, it is ranked
according to a conflict resolution function fconf with fconf taking as
input the two preference expressions and returning one of them who
is the winner. For example,

fconf (p1, p2) =


p1 if p1 � p2 can be established
p2 if p2 � p1 can be established
� otherwise

(3)

Observe the last clause: if neither precedence can be established, then
no preference wins and the tuple is not considered at all (!).

5.5 Range-Belief relations

Apart from the simple cases of transitivity, we can explore more elaborate
ones. Consider the following example:

• Assume the finite domain W∗
w = {very little, little, fair, a lot, strongly}.
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• I like Rainbow more than Deep Purple with weight very little.

• I also like Deep Purple more than Led Zeppelin with weight fair.

Assume now that the domain is of interval type and we can compute the
following distance, based on two user-defined variants of value addition and
value distances (not listed here)

fair + (fair - very little) = a lot

Then, we can claim that I prefer Rainbow to Led Zeppelin with strength
a lot, based on simple item transitivity. Still, this is quite an unorthodox
approach and requires an interval scale assumption and some non-intuitive
definitions of arithmetic operations over values and their intervals. On the
contrary, the most reasonable answer that we can deduce for the relationship
of Rainbow and Led Zeppelin is that I prefer Rainbow to Led Zeppelin

with strength (i) at least fair (i.e., the maximum of fair, very little) and
(ii) no more than strongly, which is the maximum of the domain.

To produce such relationships among tuples, we need to revisit our as-
sumption that a preference weight is exactly w. To this end, we introduce
a range belief preference relation as follows:

Definition 20 (Range-Belief Preference Relation). A relation P is a range-
belief qualitative preference relation over a database relation R if it is a subset
of (dom(A1)× . . .× dom(Ak)× (dom(A1)× . . .× dom(Ak)×Ww ×Ww.

For two arbitrary tuples of R, say t1 and t2 and an arbitrary weight w,
if P(t1, t2, wlow, whigh) holds, it is necessary that wlow ≤ whigh. Then, we

write t1 �
[wlow,whigh]
P t2 and read it as ”t1 is strictly preferred over t2 with

a weight that belongs to the range [wlow, whigh]”.

When the context is clear, we will simplify notation and write t1 �[wlow,whigh]

t2 only.

Obviously, t1 �[w,w]
P t2 ≡ t1 �wP t2

In other words, a range-belief preference relation says that although we
do not know the exact value for the weight of the relationship, we know that
it falls within a closed range of values.

For infinitely countable domains, we can also slightly abuse the terminol-
ogy of the closed interval of weights for preference relations and extend the
notation by including ∞ and −∞. This way, we can also support semantics
of at least (t1 �[wlow, ∞] t2) and at most (t1 �[−∞, whigh] t2) weights.

Definition 21 (Range Item Transitivity). For each t1,t2,t3 ∈ R, and w1,w2

∈ Ww the following holds:
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t1 �w1 t2 and t2 �w2 t3 ⇒ t1 �[wlow,whigh] t3, [wlow, whigh] = frange(w1, w2),

where frange is a computable function frange : W2
w →W2

w.

5.6 Transitive Closure

Definition 22 (Transitive Closure). The transitive closure of a weighted
qualitative preference relation can be recursively computed by applying the
transitivity rules until no results can be computed further.

Assume a weighted preference relation P over a database relation R.
Then, the transitive closure of P , denoted as P ∗, is defined as follows:

t1 �wP ∗ t2 ≡ ∃ k in N s.t. t1 �wPk t2

where P k, is recursively defined as follows:

1. t1 �wP 1 t2 ≡ t1 �wP t2

2. t1 �wPn t2 ≡ ∃ t3,w13,w32 s.t. t1 �w13

Pn−1 t3 and t3 �w32
P t2 and w =

fsit(w13, w32)

An open issue for research is the conditions under which the transitive
closure is consistent. In other words, assuming there are more than one ways
to compute the distance between two preferences (i.e., via two different
intermediate preferences), how can we guarantee that the outcome of the
application of the transitive computations is the same?
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6 Operations

In this section, we discuss operations concerning two weighted preference
relations. Specifically, we will discuss the intersection, difference, union,
and prioritized composition of two weighted preference relations. For each
of these operations we will explore different possibilities concerning variants
that have to do with the treatment of weights.

We will first define operations for plain weighted preference relations and
then, we will extend our definitions for range-belief preference relations. We
will employ the shorthand notation w to express a range [wlow, whigh] and
wa to express a range [wal , w

a
h].

6.1 Projection

Assume a preference relation P1 defined over the database relation R with
a domain of weight W1. Assume now a second domain for weights W2 and
a total function MW : W1 → W2. The projection of a weighted qualitative
preference P1 defined over the domain W1 to a preference relation P2 defined
over a domain W2 is straightforward:

∀ (t1, t2, w) ∈ P1, (t1, t2,MW (w)) ∈ P2

Interestingly, the mapping functionMW : W1→{w0} projects the weighted
qualitative preferences of P1 to simple qualitative preferences of traditional
models [Cho03], [Kie02]. In other words, weights are eliminated from the
expression of the preferences (e.g., instead of ’I prefer Iron Maiden to
Metallica a lot’ the new preference states ’I prefer Iron Maiden to Metallica’).4

6.2 Intersection

Assume two preference relations P1 and P2 defined over the same database
relation R. The plain intersection of two weighted preference relations P1
and P2 is defined as the set of preferences that are common to both of them.

P1
⋂
P2 : {t1 �w t2 | t1 �w t2 ∈ P1, t1 �w t2 ∈ P2}

Obviously, for a preference to hold in the intersection of two preference
relations, the same precedence and the same weight must be present in the
two preference relations. We can relax the requirement on the equality of

4W1 and W2 should be of the same type and the properties of W1 should be guaranteed
by the mapping: for example, if it is of ratio type, then distances must be preserved under
the mapping MW . Still, this is a matter of measurement theory and outside the scope of
this paper.
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weights and provide a customizable intersection operator. Take for example
the case where two friends are organizing a party and they must decide what
music they will play. So, they compare their profiles and try to come up
with a list of songs that they both like. Assume that Steve prefers Saxon

to Judas Priest a lot, whereas Adrian prefers Saxon to Judas Priest

fairly. In the plain definition of intersection, the preference of Saxon to
Judas Priest would be ignored. Still, we can do better and decide that we
have a rule that given the weights of preference assigns an ”aggregate” value
to the final weight. This can be either the minimum, or the maximum, or
any other value belonging to the domain of weights Ws.

Formally, we assume a function f∩, f∩: Ws ×Ws → Ws that resolves
conflicting weights for the same tuples of the database relation R. Then, we
can define the shallow intersection of two weighted preference relations as
follows:
P1

⋂f∩ P2 : {t1 �w t2 | t1 �w1 t2 ∈ P1, t1 �w2 t2 ∈ P2, w = f∩(w1, w2)}

Note: An interesting case is when f∩ is f∩: Ws ×Ws → {�}, i.e., it
removes any weight information from the preference.

Intersection for Range-Belief Preferences. Assume now that pref-
erences are expressed as range-belief preferences. We can define the inter-
section of two range-belief preference relations in a similar manner to simple
relations. First, we define the plain intersection of two range-belief prefer-
ence relations P1 and P2 is defined as the set of preferences that are common
to both of them.

P1
⋂
P2 : {t1 �w t2 | t1 �w t2 ∈ P1, t1 �w t2 ∈ P2}

Next, we can define shallow intersection via a conflict resolution func-
tion. Formally, we assume a function f∩, f∩: W4

s → W2
s that resolves

conflicting weights for the same tuples of the database relation R. Then, we
can define the shallow intersection of two range-belief preference relations
as follows:

P1
⋂f∩ P2 : {t1 �w t2 | t1 �w

a
t2 ∈ P1, t1 �w

b
t2 ∈ P2, w = f∩(wa, wb)}

Obviously, several functions could be candidates for f∩. To our point
of view, the most reasonable choice for f∩ would be common interval. For
example, assume that Adrian prefers Saxon to Judas Priest in the range
[fair,uttermost] and Steve prefers Saxon to Judas Priest in the range
[a lot,very much] (Figure 5). Then, it appears reasonable to select the com-
mon interval of the two ranges the new range-belief preference. In other
words,
w = [max(fair, a lot), min(uttermost, very much)] = [a lot,very much].
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Figure 5: Intersection of Steve’s and Adrian’s profiles

6.3 Difference

Assume two preference relations P1 and P2 defined over the same database
relation R. Plain difference concerns the subtraction of the elements of a
weighted preference relation P2 from a weighted preference relation P1.

P1 − P2 : {t1 �w t2 | t1 �w t2 ∈ P1, t1 �w t2 /∈ P2}

Similarly to intersection, this does not eliminate preferences over the
same items but with different weights. So, again, we assume a shallow
difference variant, which exploits a function f−, f−: Ws ×Ws →Ws that
resolves conflicting weights for the same tuples of the database relation R
and is defined as follows:
P1 −f− P2 : {t1 �w t2 | t1 �w t2 ∈ P1,@w′ ∈Ws, s.t., t1 �w

′
t2 ∈ P2}⋃

{t1 �w t2 | t1 �w1 t2 ∈ P1, t1 �w2 t2 ∈ P2, w = f−(w1, w2)}

Difference for Range-Belief Preferences. Difference is defined in a
similar way to the previous definitions for both the plain and the shallow
case.

The interesting question in the case of all kinds of preferences is the
choice of the function f−. If difference is allowed for the members of Ws,
then it quite possible to consider the difference of the weights (for simple
weighted preferences), or the respective parts of the involved ranges (for
range-belief preferences). A good example is to pick the complement of the
common range of the two preferences, if a single such complement is defined.
If we assume the aforementioned example with Adrian and Steve (Figure 5)
then such a complement cannot be defined as there are two complements
of the common range. Assuming now that Adrian prefers Saxon to Judas

Priest in the range [fair,uttermost] and Steve prefers Saxon to Judas

Priest in the range [very much,uttermost] (Figure 6) we can express the
shallow difference of their preferences, as
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w = single complement((fair, uttermost), (very much, uttermost)) = [fair,
a lot].

Figure 6: Difference of Steve’s and Adrian’s profiles

6.4 Union

There is no notion of plain union, since we need to take care of potential
conflicts in advance. Coming back to the example of Steve and Adrian we
can have the following two possible conflicts, along with a third non-conflict:

• they both prefer Saxon to Judas Priest but Steve with weight a lot,
and Adrian with weight fairly,

• Steve prefers Deep Purple to Black Sabbath fairly and Adrian prefers
Black Sabbath to Deep Purple a lot,

• Steve prefers Wishbone Ash to AC\DC and Adrian prefers The Who to
Deep Purple, both with fair weight.

Then, a union result comprises three parts: (a) preferences belonging to
P1 with no counterpart in P2, (b) preferences belonging to P2 with no coun-
terpart in P1 and preferences belonging to both preference relations, either
(c) with the same, or, (d) possibly with a different weight. Contradicting
preferences are excluded. Again, for the last case (d), we assume a function
f∪, f∪: Ws×Ws →Ws that resolves conflicting weights for the same tuples
of the database relation R.

Formally, assume two preference relations P1 and P2 defined over the
same database relation R. The union of the two preference relations P1 and
P2 via the function f∪ for weight resolution is defined as follows:

P1
f∪⋃
P2 =


{t1 �w t2 | t1 �w t2 ∈ P1,@w′ ∈Ws, s.t., t1 �w

′
t2 ∈ P2

∨
t2 �w

′
t1 ∈ P2}

{t1 �w t2 | t1 �w t2 ∈ P2,@w′ ∈Ws, s.t., t1 �w
′
t2 ∈ P1

∨
t2 �w

′
t1 ∈ P1}

{t1 �w t2 | t1 �w t2 ∈ P1, t1 �w t2 ∈ P2}
{t1 �w t2 | t1 �w1 t2 ∈ P1, t1 �w2 t2 ∈ P2, w = f∪(w1, w2)}

(4)
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Interestingly, the union operation treats both preference relations P1 and
P2 equally (and symmetrically). So, when Steve and Adrian disagree on the
issue of Deep Purple and Black Sabbath, nobody’s preference wins. Now
assume that the party takes place for Adrian’s birthday and Steve gives in
whenever a conflict occurs. This brings us to the prioritized composition of
two preference relations which is dealt with in the following subsection.

Union for Range-Belief Preferences. Before proceeding to prior-
itized composition, we need to consider what happens with the union of
range-belief preferences. The main idea is quite similar to the case of simple
weighted preferences; in fact, the three first cases are the same. The only
difference of simple and range-belief preference relations has to do with the
case when the two preferences have a different weight. Again, a function
f∪ defined over ranges this time must be defined. A simple example is the
function that returns the union of two ranges, if such a union can produce
a single interval. Assume the following situation (Figure 7):

• Bruce prefers Saxon to Judas Priest with a range little to fairly,

• Steve prefers Saxon to Judas Priest with a range very much to ut-
termost,

• Adrian prefers Saxon to Judas Priest with a range of fair to very much,.

Then, we cannot define a union for the preference of Bruce and Steve. Still,
Bruce and Adrian can produce a union for their preferences with a range
of little to very much, and Adrian with Steve can have a range of fair to
uttermost.

Figure 7: Union for Bruce’s, Steve’s and Adrian’s profiles

6.5 Prioritized Composition

The prioritized composition of two preference relations P1 and P2 favors the
former over the latter. So, it comprises the elements of P1 and any elements
of P2 that are not covered due to identity or conflict by the elements of P1.
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Formally, assume two preference relations P1 and P2 defined over the
same database relation R. The prioritized composition of the two prefer-
ence relations P1 and P2 is defined as follows:

P1 & P2 : {t1 �w t2 | t1 �w t2 ∈ P1
∨

(t1||t2 ∈ P1 ∧ t1 �w t2 ∈ P2}

Observe how conflicts are resolved in favor of P1. Observe also the
indifference operator in the case where we incorporate elements of P2 in the
result.

The definition is the same when we consider the case of range-belief
preferences. If there is an overlap in the ranges of two preferences with the
same expression, then the first preference wins.

In both union and prioritized composition it is a modality whether we
want to deal with preferences that concern the same items but with different
weight. We believe that the definitions we give cover the most practical case;
still, there are other possibilities that we leave as unexplored ground for the
future.

6.6 Open Issues

There are several issues not explored in this paper. We try to give a brief
presentation of these issues that are open for future research.

Distance. What is the distance of two preference relations? What is
the distance of two profiles?Is it possible to resort to techniques measuring
graph distance to the rescue?

Composition of preferences over different database relations
So far, in all the operations concerning two preference relations, we have
assumed two preference relations P1 and P2 defined over the same database
relation R. What happens if we need to combine preferences from different
database relations?

Assume the case where James wants to form a band. James is responsible
for the vocals of the band and he has a list of candidates for the band’s lead
guitar players as well as his preferences about them. The same applies for
his preferences over bass guitar candidates. So, he inputs his data into the
relations LeadGuitarHero and BassGuitarHero respectively. Now, James
must decide which combination of lead and bass guitar players will be the
best and this has to come up via a combination of the individual preferences
over lead and bass guitarists.

There are two possible ways to combine the preferences over different
database relations. The Pareto composition treats both preference relations
as equal. The Lexicographic composition treats one preference relation as
more important than the other (and resembles a lot the aforementioned
prioritized composition). The product of the two preference relations is a
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result not intuitively clear. The precise intuition and semantics of the above
notions are open to definition and further exploration.
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7 Preference Networks and Naive Profile Consol-
idation

In this section, we will present a preliminary way to consolidate quantitative
and qualitative profiles. We will impose specific assumptions to guarantee
the well-formedness of the involved profiles as well as the resulting profile
and we will also explore risks and implications of this naive consolidation.

7.1 Assumptions

In the rest of our deliberations, we will make several necessary assumptions
that will guarantee the consistency of the involved profiles and the validity
of the transformations that we will define. For reasons of intuitive and
algorithmic consistency we require that all profiles are acyclic; moreover, we
need to make several other assumptions that pertain to the structure of the
graphs of the involved profiles.

• Clearly, a cycle in the network of a profile indicates an intuitive prob-
lem; therefore, we need to verify that all the profiles result in di-
rected acyclic graphs. In the sequel, we will assume that all profiles
are acyclic.

• A profile that is disconnected presents a challenging case where the
user has specified that there are two disjoint areas of interest for him.
Dealing with each component in isolation is a possible work-around
for the subsequent operations that we will discuss; still, it is possible
that some kind of profile consolidations will unite the disconnected
components. For the moment, we restrict the scope of our investigation
to profile networks with exactly one component.

• It is possible for qualitative profiles to have edges with unknown weights
(equivalently, with the value unknown). Unless otherwise specified, we
avoid these cases since they unnecessarily complicate the functions we
need to define in the sequel and assume that all the edge weights on a
qualitative profile are known. We conjecture that extensions to cope
with unknown values are also feasible.

• In the rest of our deliberations, we will assume that the quantitative
profiles that we will use are lines (all the scores are different). We
conjecture that an extension of this assumption to lattices is feasible
but not within the scope of this paper.

• We need to assume that Ww is at least ordinal (and therefore, its
members can be ordered). This also allows us to ”order” the nodes of
a quantitative profile according to their score.
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7.2 Naive Consolidation without Transformations

A simple way to merge a quantitative and a qualitative profile is to simply
identify the common preference expressions of the two profiles and connect
the respective networks at these places.

Definition 23 (Naive Consolidation). An intentional preference network
LI of a qualitative profile Pw and a quantitative profile Ps over a relation R
is a graph G(V,E) constructed as follows:

1. Each expression participating in any kind of preference of any of the
two profiles is mapped to a node v ∈ V . If an expression appears more
than once, exactly one node is used. If an expression is found in both
profiles it is called a junction expression and its corresponding node a
junction node.

2. The strength of a quantitative preference annotates the node of the
respective expression.

3. Given two expressions φ1 and φ2, a directed edge (φ2 → φ1) connects
the nodes of the two expressions if φ1 covers φ2. If the two expressions
belong to the qualitative profile and φ1 �w φ2, the edge is annotated
with the appropriate weight w.

Figure 8: A qualitative and a quantitative profile and their naive consolida-
tion

Observe Figure 8 where a qualitative and a quantitative profile are de-
picted in the left and middle of the figure. The two profiles have two common
nodes s and t and each is well specified in its own purview: all the nodes
of the quantitative profile have scores (sα, ss, sβ, sγ , st) and all the edges of
the qualitative profile have weights (wsx, wxy, wyt, wsz, wzt, wtu, wtv). If we
consolidate the two profiles into one with the method of this section, then
the resulting network is depicted on the right-hand side of the figure.
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Consistency considerations. Let us make the following assumptions
for the original qualitative and quantitative profiles:

• Both profiles are acyclic, and with exactly one component.

• The quantitative profile is a line.

• For every path x → . . . → y in the qualitative profile, there is no
path y → . . . → x in the quantitative profile and vice versa.

The last assumption guarantees that the ordering of nodes in the two profiles
is analogous (it is similar to state that we can find an topological ordering
of the nodes of the qualitative profile that respects the order of the nodes
of the quantitative line). Observe that the restriction is of existential and
not universal nature (i.e., we do not require that every path in one profile
has a homologous path in the other profile, but rather, that a path of the
opposite direction does not exist).

Can we be assured that the resulting network is well formed? We can
state the following proposition:

Proposition 7.1 Given a quantitative and a qualitative profile that respect
the aforementioned assumptions, the network that results from their naive
consolidation is acyclic.

Figure 9: Counter-example for the possibility of cycles in the consolidated
profile

Proof. There are two possibilities for a cycle to exist in the consolidated
profile. The first possibility is that a path x → . . . → y in one profile,
is combined with a path y → . . . → x in the other profile. This is ruled
out by the preconditions we have set. The second case is that a new edge is
added that creates such a path. This is not possible either. Observe Figure
9. On the left hand side we depict a qualitative and a quantitative profile;
on the right hand side their consolidation is depicted along with an edge
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that generates a cycle. Assuming a junction node t is it possible to have an
edge from a node u that follows t (i.e., there exists a path t→ . . . → u) to
a node β that precedes t (i.e., there is a path β → . . . → t)? Observe that
the consolidation does not generate any new edges, therefore an edge from
a node in the qualitative profile towards a node in the quantitative profile
can only exist if both these nodes are junction nodes. In this case, though,
at least one of the two profiles already has a cycle, which is not possible
based on the assumptions we have already made. Therefore, a cycle is not
possible.

Can we always perform a consolidation of two profiles? Observe the case
of Figure 10. On the right hand side the user has specified a qualitative
profile. The profile states that the user prefers tuples fulfilling predicate A
to the ones fulfilling predicate C. Similarly, the user prefers tuples fulfilling
predicate z to the ones fulfilling predicate B. The most preferred tuples,
however, are the ones fulfilling predicate x. Observe that B is not related
to A or C at all (although the user knows the existence of these predicates
since he uses them in his profile). Then, the system makes a quantitative
recommendation which is depicted as a line in the middle of Figure 10. In
this case, as far as the junction nodes of the two profiles are concerned, A is
preferred to B which, in turn, is preferred to C. Some other predicates (all
in lowercase) are also part of the two profiles (named with latin characters
in the qualitative, and greek characters in the quantitative profile, respec-
tively). Can we consolidate the two profiles? All the necessary requirements
are met; so, one could argue that in principle there is no problem. How-
ever, the resulting consolidated profile (depicted in the right hand side of the
figure) extends the user’s profile with new information (depicted as dotted
edges) that is possible violating the original relative positions of the user’s
preferences: now, B is explicitly preferred to C, although the user had no
such specification in his original profile.

Figure 10: A legal consolidation with side-effects
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There are several paths to handle this kind of situations. We could
possibly disallow the merging of this kind of profiles, requiring that no new
information is added for the junction points. Intuitively, we would like to
have profiles such that, for every pair of junction nodes A,B for which a path
A → . . . → B exists in the quantitative profile (necessarily, due to the
linear nature of the quantitative profile), there is also a path A → . . . →
B in the qualitative profile, too.

Note here that one could define a conservative consolidation policy that
respects the quantitative profile, in a similar fashion.

We will formalize the notions of suitability of two profiles for consolida-
tion as follows:

Definition 24 (Loosely Homologous profiles) A quantitative profile Ps and
a qualitative profile Pw are loosely homologous if for every two junction
points in the line of the quantitative profile having no other junction node
between them (but maybe other non-junction nodes), there is no path in the
qualitative profile that passes from the higher node without passing from the
lower one.

For example, assuming two junction nodes A and B with A being higher
than B, there is no path Z → . . . → A starting from another junction
point Z that does not pass from B. In other words, homologous profiles
have the nice property that as far as junction points are concerned, every
path in the qualitative profile passes exactly from the same (consequently,
all) junction nodes as in the quantitative line.

Definition 25 (Strongly Homologous profiles) A quantitative profile Ps and
a qualitative profile Pw are strongly homologous if for every path in the
qualitative profile, all the junction nodes are met in the same order as in the
quantitative line.

Figure 11 presents different cases of homology between a quantitative
and several qualitative profiles.

We can have various levels of strictness in our consolidation policies.

1. We can follow a conservative consolidation policy and restrict ourselves
to loosely or strongly homologous profiles. This way the number of
semantic discrepancies is minimized. A conservative policy assumes
that consolidated profiles are small extensions of the existing profiles
(e.g., a qualitative profile specified by the user is slightly extended by
a suggestions made my a machine-learning algorithm)

2. In several cases, it is possible to avoid conservative policies and adopt
a more liberal consolidation policy that treats both profiles equally and
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Figure 11: A quantitative profile and several qualitative profiles with differ-
ent degrees of homology to it

allows such discrepancies. This way, we disallow consolidations only
when cycles are not introduced in the resulting profile.

Observe Figure 8 again. Despite the fact that the originating profiles
were fully specified in terms of weights and scores, the new profile is not.
What we are missing from the setting of Figure 8 is (a) the weights of
the edges in the quantitative graph and (b) the scores of the nodes of the
qualitative graph. How can we compute the missing information? This will
be the topic of the following section.
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8 Mapping of quantitative to qualitative prefer-
ences

Two well formedness properties for a consolidated profile can be defined:

• A preference network is qualitatively fully specified if all the edges of
the graph are annotated with appropriate weights w, w ∈ Ww.

• A preference network is quantitatively fully specified if all the nodes of
the graph are annotated with appropriate scores s, s ∈ Ws.

• A preference network is fully specified if it is both quantitatively and
qualitatively fully specified.

A simple way to provide fully defined networks is to map one kind of
profile to another and fill the missing information (edge weights in the quan-
titative graphs and node scores in the qualitative graph).

Figure 12: Reference example for the computation of distances

Intuitively, assume that we know the distance δ(s, t) between the nodes
s and t for the graph of Figure 12. Then, we can base the computation of
edge weights in the quantitative graph on the assumption that the weight
of an edge in the qualitative path is the percentage of the distance that
corresponds to this edge over the total distance between the s and t. Simi-
larly, the score of a node v in the qualitative graph is the percentage of the
distance of the path between s and v over the total distance of the path
between s and t.

Then, if we want to compute the weight of the edge (β, α), wβα, the
intuitive way to do it is:

wβα = δ(βs,αs)
δ(ts,ss)

,
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with δ() being the function that computes the distance between two
scores and translates it to a weight for an edge. In other words, the weight
of the edge between the node β and the node α is the ratio of the distance
of scores of β and α over the total distance of the scores of s and t.

Similarly, if we want to compute the score of node x sx, the intuitive
solution is:

sx = δ(st, ss) * weight(path(s,x))
weight(path(s,t)) + ss

The distance of the scores of nodes s and t multiplied by the percentage
of the weight of the path from s to x over the total weight of the path from
s to t signifies what part of this score distance corresponds to the node x.
Then, the score of x is ss incremented by this quantity.

Limitations. All the above intuitive translations are sensitive to the po-
tential of the domains of weights and scores. The domain Ws of scores must
be at least of interval scale, so that the difference of two scores can be defined.
On the other hand, the domain Ww of edge weights must be of ratio scale so
that the ratio of weights can be computed. This is quite a burdensome re-
quirement. In the rest of our deliberations, unless otherwise specified, we will
assume that the domain Ws of scores is of interval scale (and only). We
will also assume that the domain Ww of weights is of ordinal scale (and only)
and only the ordering of its values is naturally given. The goal of the follow-
ing subsections is to provide mappings between quantitative and qualitative
preferences. We will achieve this based on some external functions that
complement the domains for that purpose only.

8.1 Mapping quantitative to qualitative preferences

Quantitative preference expressions can be directly mapped to qualitative
expressions by exploiting the preference scores. Intuitively, if the quanti-
tative preference score for an expression φ is greater than the respective
score for a tuple φ′, then, φ � φ′. Still this does not help us determine the
weight w of the qualitative relation, and for this purpose we need a function
that translates the ”difference” in the quantitative scores to a qualitative
preference weight.

Formally, assume the following:

• a relation R and two expressions, φ1 and φ2 defined over R

• an interval domain Ws for quantitative scores and an ordinal domain
Ww for qualitative weights
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• two preferences, p1 and p2 that assign a score s1 to φ1 and s2 to φ2,
s1,s2 ∈Ws; without loss of generality assume s1 > s2 (remember that
Ws is at least in the ordinal scale)

• a function fsw, fsw: Ws × Ws → Ww

Then, a qualitative relation can de derived where φ1 dominates φ2 by
the result of fsw, i.e., φ1 �fsw(s1,s2) φ2.

Example. Assume a quantitative domain Ws = {0.1, 0.2, . . . , 1.0} and
a qualitative domain Ww = {little, fairly, a lot}. Assuming two scores, s1
and s2, s1 > s2, we can define a function fsw as follows:

fsw =


little, if diff(s1, s2) = 0.1
fairly, if diff(s1, s2) ∈ [0.2, 0.4]
a lot, otherwise

(5)

There are several important observations that we can make for the map-
ping of quantitative to qualitative preferences.

• Observe that we make no particular assumption neither on the na-
ture, nor on the relationship of the domains of quantitative scores and
qualitative weights Ws and Ww, respectively. For example, we could
have a simple ordinal domain for scores ”I like Savatage a lot and
Metallica fairly” and a ratio scale for strengths ”I prefer Savatage

twice to Metallica” (or, equivalently, tS �2 tM , with tS any tuple
fulfilling the predicate band=Savatage and tM any tuple fulfilling the
predicate band=Metallica).

• Since the qualitative relationship ultimately refers to tuples and not
expressions (and each tuple is related to exactly one preference for-
mula), it is not necessary that all expressions are defined over the
same attribute.

• The aforementioned mechanism can be extended to map scores to
range-belief weights.

A simple algorithm can be devised on the previous scheme to produce a
well specified profile when given a quantitative linear profile.
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Algorithm Full Specification of Quantitative Line
Input: A linear quantitative profile P ; an ordinal domain of weights

Ww; an interval domain of scores Ws; a function fsw
translating score differences to edge weights

Output: The well specified profile P ′ with all its edges annotated
with weights in Ww

begin1

current = node at the bottom of line P ;2

for every edge e=(current,current.next) do3

e.weight=fsw(current,current.next);4

current = current.next;5

end6

Observations. The following observations can be made for the previous
transformation:

• Obviously, there is no alteration in the structure of the graph. The
covers relationship is maintained.

• If one wants to derive the qualitative distance of two consecutive nodes
via the transitivity functions of the qualitative weights, this will not
necessarily produce the same results as with the function fsw. The
circumstances under which this can be guaranteed are a topic for future
research.

8.2 Mapping qualitative to quantitative profiles

The mapping of qualitative to quantitative profiles is based on augmenting
a given score for a node of a qualitative profile on the basis of the weights
of the edges of the paths that stem from this node.

Formally, assume the following:

• a relation R and two expressions, φ1 and φ2 defined over R and con-
nected via a qualitative edge with a weight w from φ2 to φ1 (i.e., φ1
�w φ2)

• an interval domain Ws for quantitative scores and an ordinal domain
Ww for qualitative weights

• a quantitative preference, p2 that assigns a score s2 to φ2

• a function fws, fws: Ws × Ww → Ws

Then, a quantitative relation can de derived where φ1 dominates φ2 with
weight w and φ1 is annotated with the score that is the result of fws(s2, w).
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Example. Assume a quantitative domain Ws = {0.1, 0.2, . . . , 1.0} and
a qualitative domain Ww = {little, fairly, a lot}. Assuming a score and a
weight, w and s2, we can define a function fws as follows:

fws =


min(1.0, s2 + 0.1), if w = little,
min(1.0, s2 + 0.3), if w = fairly
min(1.0, s2 + 0.6), otherwise

(6)

The annotation of a qualitative profile with scores can be produced via a
DFS exploration of the graph, assuming scores are available for the fountains
of the network. Each time a new node is visited, its score can be computed
on the basis of the score of the previous node and the weight that connects
them. As already mentioned in previous sections, it is quite possible that
the passing of the algorithm from the same node for a second time might
produce a different score. Given a set of scores for the same node φ, we need
a reconciliation function frec that reduces the list to a single score. Then,
since a profile network can be topologically ordered it is easy to devise an
algorithm that (a) topologically sorts the profile and computes the individual
scores and dependencies each time, and (b) reconciles the individual scores
of the same node into a single result.

The issue of being able to determine a-priori whether a quantitative pro-
file suffers from the problem of assigning multiple scores to a single expres-
sion given a set of original scores for its fountains is left open for the moment.

Things get even more complicated when we have more information than
a single node. Observe the slightly changed Cliff’s profile of Figure 13 and
assume we know the scores for two nodes: Genre = heavy, with a score
of 0.2 and Band = Iced Earth with a score of 0.8. Assume also a quan-
titative domain Ws = {0.1, 0.2, . . . , 1.0} and a qualitative domain Ww =
{little, fairly, a lot} as well as the aforementioned function for the deriva-
tion of scores for the nodes of a qualitative profile.

The main problems here are two: (a) node thrash and speed has a score
of 0.9, which is already higher than the known score of nodeBand = Iced Earth
and (b) node Band = Iced Earth has three scores: a given 0.8, a score of
1.0 coming from the clearly problematic left-hand path and a score of 0.7
coming from the right-hand path to it. How should the situation be treated?

The main transcendence that we need to perform here is the barrier of
the type of Ww, which is of ordinal scale. What if we could annotate the
domain with a function that transforms it to ratio scale (which allows the
computation of both the difference and the ratio of edge weights)? Assume
for the moment that we can make the following annotation:

fairly = 2 * little, a lot=3 * little
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Figure 13: Cliff’s qualitative profile and problems of deriving scores for its
preferences

Then, all we would have to do is to divide the distance between date <
1985 and Band = Iced Earth in such a way that every path is divided
appropriately to sub-distances according to the weights of the edges. To be
accurate, the overall process requires (a) a transformation of the distances
to the scale [0 . . . 1], (b) the computation of distances and scores for nodes,
(c) the mapping of the computed scores back to values of the domain of Ww.
In our example here, we are conveniently placed already in the appropriate
scaled domain and we use round() to map computed scores to scores in Ww.
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Node Comp. Score Score Node Comp. Score Score

thrash-speed 0.51 0.5 duration>45 0.46 0.5
thrash 0.58 0.6 Iced Earth 0.8 0.8

Iced Earth 0.8 0.8

Observe that things are not entirely all right, even with this trick: the
distance from the left-hand path is 7 times little and the distance from the
right-hand path is 3 times little (!). Still, this method gives the flexibility
of adapting to user-defined preferences, even if they are not consistent.

Formally, we need the following components to be able to perform the
correct calculation of scores that are bounded by an upper an lower value.

• Assume two nodes, vlow and vhigh of a qualitative profile, with vhigh
preceding over vlow. Assume also two scores vlow and shigh assigned
to the two nodes, slow < shigh.

• Assume a function fnormdist that given the two scores, computes their
distance in the normalized range [0 . . . 1]

• Assume a distance granule τ and a mapping of each possible edge
weight to a multiplicand of the distance granule (this way the domain
of weights is transformed to the ratio scale)

• Assume also a function fdenorm that reverts values in the range [0 . . . 1]
to actual scores

Then, the method for computing the distance of two score-annotated
nodes in a qualitative preference network is simple:

1. Compute the distance of the two scores.

2. For each path that connects the two nodes, find the sum of the edge
weights expressed in granules τ and compute the percentage of the
distance that corresponds to the granule τ for this path.

3. Perform DFS over the nodes of the paths and assign each node with a
score expressed as the sum of the score of the previously visited node
augmented with the weight of the edge multiplied by the percentage
of the distance that corresponds to it.

Discussion. Observe that this scheme removes the discrepancies of mul-
tiple paths. Moreover, this scheme is a possible aid to check the consistency
of a profile. Nevertheless, the whole endeavor is based on a questionable
assumption: we are able to map an ordinal domain to a ratio scale. Is it
legitimate to do so?

Intuitively, based on the simple examples that we have used, it appears
that such an extension is reasonable, especially since the user need not know
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its existence. It also seems reasonable to base the proposed method on ratios,
in order to keep intermediate scores bounded within an upper and lower
threshold. This blocks cumulative error propagation too. Nevertheless, the
validity of such an assumption heavily relies on extensive user studies that
corroborate the assumption or not – especially since it appears that users
demonstrate unexpected behavior during such studies [SJ99]. To the best
of our knowledge, there is no experimental study that assesses the quality
of results after such a transformation. So, the issue is left open for further
exploration in the future.
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9 Shallow Consolidation of qualitative and quan-
titative preferences

In this section, we provide a simple extension to the naive consolidation
of a qualitative and a quantitative profile. The extension is based on the
assumption that we can transform a linear quantitative profile to a fully-
specified profile with edge weights.

9.1 Shallow consolidation with emphasis to weights

The shallow consolidation of qualitative and quantitative preferences unifies
the two profiles into one with a light degree of intermingling of the elements
of the two profiles. All paths of the two profiles among the same junction
nodes are placed in parallel (and therefore, their nodes are not comparable
to each other).

Definition 26 (Shallow consolidation of a quantitative and a qualitative
profile with emphasis on weights). An intentional weight-oriented preference
network LI of a qualitative profile Pw and a quantitative profile Ps over a
relation R is a graph G(V,E) constructed as follows:

1. Each expression participating in any kind of preference is mapped to
a node v ∈ V . If an expression appears more than once, exactly one
node is used.

2. The strength of a quantitative preference annotates the node of the
respective expression.

3. Transform the profile Ps to a fully specified profile P ′s.

4. Given two expressions φ1 and φ2, a directed edge (φ2 → φ1) connects
the nodes of the two expressions with a weight w if φ1 covers φ2.

The transformation is oriented towards qualitative preferences. This is
quite handy in the cases where we are not able to transform a qualitative
profile to a fully specified profile (i.e., we cannot compute scores for it) and
thus, we are in need to work only with edge weights.

A fundamental property of the above merging is that the two profiles
remain disjoint except for the matching points of common expressions. In
other words, assuming an edge (v1, v2) in one of the two profiles, the edge
will remain intact after the merging. This why we call the merging of the
two profiles shallow merging.

Example. Assume Cliff enters a website where he can download music.
Cliff has created a qualitative profile with his preferences, depicted on the
left side of Figure 14. We use solid lines to refer to qualitative profiles.
At the same time, based on previous searches and purchases, the site has
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Figure 14: Shallow unification for the qualitative and the quantitative parts
of Cliff’s profile, with emphasis to weights

automatically created a quantitative profile for Cliff, which suggests that
Cliff likes:

• albums published before 1985 with a score of 0.3,

• albums with a duration of less than 60 minutes with a score of 0.4,

• albums in the genre of speed metal with a score of 0.7

• albums produced by Iced Earth with a score of 0.8

In the middle of Figure 14, we depict how the quantitative profile men-
tioned above is mapped to a qualitative profile as well as to the correspond-
ing graph. We represent the edges that result from this transformation with
dotted lines.

We use function fsw as defined in the previous section. Then, the shallow
consolidation of the quantitative and the qualitative part of Cliff’s profile is
depicted on the right hand side of Figure 14.

9.2 Fully specified shallow consolidation

Assume now that we are able to convert both scores to weights in the origi-
nal quantitative profile and edge weights to scores in the original qualitative
profile. Then, we can produce fully specified profiles for the two input pro-
files, and consequently, a fully specified profile for their shallow unification.
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Definition 27 (Shallow consolidation of a quantitative and a qualitative
profile). An intentional preference network LI of a qualitative profile Pw and
a quantitative profile Ps over a relation R is a graph G(V,E) constructed as
follows:

1. Transform the profiles Ps and Pw to fully specified profiles P ′s and P ′w.

2. Each expression participating in any kind of preference is mapped to
a node v ∈ V . If an expression appears more than once, exactly one
node is used.

3. The strength of a preference annotates the node of the respective ex-
pression.

4. Given two expressions φ1 and φ2, a directed edge (φ2 → φ1) connects
the nodes of the two expressions with a weight w if φ1 covers φ2 in any
of the profiles P ′s and P ′w.

Figure 15: Shallow unification for the qualitative and the quantitative parts
of Cliff’s profile

The transformation of qualitative profiles requires the following iterative
procedure:

• We identify all junction nodes over the qualitative profile.

• Starting from the lower junction node, the algorithm iteratively selects
a pair of consecutive junction nodes in the quantitative line. These
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two will serve as the nodes providing upper and lower scores for the
computation of the scores of the non-junction nodes between them.
All the non-junction nodes of the qualitative profile are annotated
with the appropriate scores.

• All the non-junction nodes placed higher than the highest junction
node or lower than the lowest junction node are annotated with scores
derived by the iterative application of a function fws.

Coming back to the example with Cliff’s profile (Figure 15), the result
of the application of the transformations of the original profiles is shown on
the right-hand side of the figure.

9.3 Consistency considerations

How can we be assured that (a) two profiles can be consolidated, in the first
place and (b) their consolidated preference network is valid? As in previous
sections, we make the following assumptions for the original qualitative and
quantitative profiles:

1. Both profiles are acyclic, and with exactly one component.

2. The quantitative profile is a line.

3. For every path x → . . . → y in the qualitative profile, there is no
path y → . . . → x in the quantitative profile and vice versa.

4. For each edge e(x,y,w) of the qualitative profile that relates node x
with node y via a weight w, there exists no edge e′(x,y,w′), w 6= w′, in
the network that results from the transformation of the quantitative
profile to a well specified network (and vice versa).

Can we be assured that the resulting network is well formed? We can
state the following proposition:

Theorem 9.1 Given a quantitative and a qualitative profile that respect the
assumptions (1) - (3), the network that results from their shallow consoli-
dation is acyclic. If assumptions (1) - (4) are respected, then each edge has
a unique weight.

Proof. The three first assumptions are the same as in the previous case of
naive merging. The last assumption guarantees that once the quantitative
profile is transformed to a well specified network, the weights in the two
graphs that are going to be merged are consistent. It suffices to perform the
check only for the edges of one of the two graphs.
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On the other hand, it is possible to have inconsistencies in the distance
between two nodes of the resulting network, even if no such inconsistencies
exist in the first place. Refer to the case of Figure 4: even if the weights are
such that the transitive preference for Accept over Metallica is consistent
between two paths (e.g., in the case that all edges have the weight little),
it is possible that the consolidation with a quantitative profile creates an
inconsistency in the case that both Accept and Metallica are junction
points. In general, since new paths are created in the process of shallow
consolidation, even if the path weights are consistent place for each pair of
nodes in the original qualitative profile before the consoslidation, there is
still the danger of resulting in a transitively inconsistent network.
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10 Deep Consolidation

The consolidation method described in the previous section provides a single
profile; nevertheless, the profile that is produced via this process is practi-
cally a loose coupling of the quantitative and the qualitative profiles. This
is due to the fact that apart from the junction points of the two profiles, the
remainders of the profiles remain unrelated.

In this section, we proceed in consolidating qualitative and quantitative
profiles with deep consolidation semantics. The main idea behind deep con-
solidation is that the the resulting profile will not keep the elements coming
from the originating profiles intact, but rather, it will produce new relation-
ships for them on the basis of their junction nodes, weights and scores.

Given a qualitative and a quantitative profiles, the algorithm proceeds
in the following way:

1. First, the algorithm constructs the respective graphs of the two profiles
and computes all their junction nodes.

2. For each profile, we compute its fully specified counterpart. Therefore,
all nodes are annotated with scores and all edges are annotated with
weights in both profiles

3. The nodes of the quantitative profile’s line that are higher (lower) the
upper (lower) junction node are attached to the qualitative profile in
the same order as in the quantitative profile.

4. Starting from the lower junction node of the line, the algorithm itera-
tively selects a pair of consecutive junction nodes in the quantitative
line. Clearly, non-junction nodes can be placed between them. Then,
the algorithm tries to merge all the nodes that lie within these two
junction nodes either in the qualitative, or in the quantitative profile
into a new network.

How do we merge the nodes found between the two consecutive junction
nodes? We will exploit quantitative scores and a function fsw to construct
the consolidated subgraph. Given two junction nodes vlow and vhigh, the
consolidation proceeds as follows:

1. The set S of all the non-junction nodes between vlow and vhighin both
profiles is constructed. The covers relationship on the basis of scores
is computed.

2. For each pair of nodes u, v that belong to S an edge is added to the
network, annotated with a score w = fsw(score(u), score(v)).

Observe again the deep consolidation for the case of Cliff’s profile. The
right-hand side of the figure depicts the network that results from the deep
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Figure 16: Deep consolidation for Cliff’s quantitative and qualitative profiles

consolidation of the two profiles depicted on the left-hand side. In the re-
sulting network, the original edges are depicted in thick solid lines and the
newly introduced edges are depicted in dotted lines.
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11 Conclusions

In this paper, we have addressed the combination of qualitative and quanti-
tative profiles by introducing preference networks and weighted qualitative
preferences. Preference networks formally capture precedence relationships
between the expressions of a profile in any of the above categories (and
subsequently of the tuples of a relation annotated with the profile) whereas
weighted qualitative preferences capture not only preferences, but degrees
of preference, too. A weight annotates a preference expression and allows
us to infer further properties of the interrelationships between the prefer-
ences within a profile. We also explore properties and possible operations
for weighted qualitative preferences with emphasis to the case of transitivity.
Based on these underpinnings, we have provided methods to map qualita-
tive to quantitative profiles and vice versa and explored the properties and
consistency requirements for this kind of transformations. We have also
provided different types of profile consolidation between a qualitative and
quantitative profile. Throughout the paper, we pay particular attention to
consistency checks and well-formedness properties for profiles that will be
consolidated.

Moreover, we thoroughly explore the formal properties of the domains
out of which scores and preference weights take their values, we discuss
properties of quantitative preferences not explored in the past and introduce
range-belief preferences to handle degrees of uncertainty about the degree
of user preferences.

Future work can pursued in different paths. From a theoretical stand-
point, problem like the consistent and efficient computation of transitive
closure need further exploration. From an algorithmic standpoint, it is
worth considering the possibility of incorporating preference networks and
weighted qualitative preferences in the existing body of algorithms for query
results ranking. From a modeling standpoint, open issues involve the ex-
ploration of preferences bearing degrees of uncertainty and their properties
as well as the integration of both weighted and range belief preferences in
other contexts, like e.g., OLAP (see for example [GR09]).
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