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EKTENHX ITIEPIAHYH XTA EAAHNIKA

AAeEavopa TTihaiidov tov AAEEavopov ko tng BoAevtivng. Msc, Tunquoatog
I[Tipogopikng IMavemomuo Ioovvivov, lovitog 2010. Online negotiation for
privacy preserving data publishing.
Emprénovrag: [Tdvog Baciledong.

To mpéfinua g mpootaciag g WIMTIKNAG TOV 0edoUEVOY TTOV SNUOGLEVOVTOL
opiletoar ¢ mPOPANUA ™G OMudclag mapovciaong dedouEveV YOp® Omd  TIg
dpacmpomteg M 115 mphEelg amd £vo oOVOAO  aTOU®V, TPOKEWEVOL VO
e&ummpemBodv o1 akdAovbot dVo avtaywvieTikol otdyol: (0) Vo EMTPEYOVLE GE Eval
OUVOAO KOAOTPOUIPET®V XPNOT®OV Vo €QaprOlovy dtdpopovg aryopiBuovg e£6pvéng
dedopévev e okomd TV eEayyn YPNOYLMOV TANPOPOPIDV GTATIGTIKOD YOPOUKTNPO
Y T0 oOUVOAO dedopévay, kal, (B) va eumodicovpe €vov kakOPovAo eiGforéa va
OLVOLAGCEL KATOEG EEMTEPIKES TANPOPOpieg oL €xel (oT0 aicbnomn Tng TPOCOTIKNG
yvoong Ttov  ecforéa, AGhdeg Oomuoctia dwabéciua cOvorao dedopévav, KAT.),
TPOKEUEVOD VO GUVOVAGEL TO GLYKEKPYEVO TPAOGMTO GTOV TPAYHOTIKO KOGUO (Kot
Wing tov gvaicnTOV TANPOEOPIOV YUP® amd avtd TO TPOGMTO) HE OVIIGTOUYN
EYYPAON TOV ONUOCLEVETOL 6TO VPV Kowod. H xbpla teyvikn mov ypnoomoteiton yio
TNV TPOGTAGIO OVTOV TOV dEJOUEVOV EIval | AVEOVLLOTOINGT), 1] OO0 LETATPENEL TOL
OedoUEVO GE U0l GLYKEKPIUEVT] LOPOT] TPV OMpoGlevdel. Xty mapovca epyacio 1
TEYVIKN M OTOL0L YPNGLUOTOCULE YO VO, TETOYOVE TNV OVOVLUOTOINGT ovopaleton
KaBoAkn Kwowomoinon, N onoia () €ivot TOAD KaAN Yo TV ¥pNoT TOV 0AAYOpOpmY
e€OpLENG 00O UEVMV IOV YPNGLUOTOLEL 0 KAAOTPOaipeTOS ¥PNOTNG, (B) TOAD Ypriyopm
oe oyéon pe kamoteg AAdeg pneboddovg mov vapyovv otV Piprtoypapic, cuyxpdvag
opwg, (v) vmapyel 1o mpoPAnuo e dypaeng KATOWmY €YYPAO®V, UE GKOTO Vo
TETVYOVLE TO EMBLUNTO EMinEdO YEVIKEVONC.

2mv gpyocio avt AVTIHETOTICOLE T 0kOAOVOO TPOPANLATA TOV JEV LANPYAV GTNV

oxetikn PPproypapic. O mTPAOTOC GTOYOG NTAV VO, LEAETNGOVE TNV GUVIEST] TOV
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&xovv HeTa&D TOVG Ol TPELG TAPAUETPOL TOV TPOPANUATOG — ONANOY, TO GUVOAD T®V
EYYPOUPAOV TOL OlYPAPOVUE, TO EMMEOO YEVIKELONG KOl TEAOG TO KPUINPLO
avovoponoinong. O Pacikdg otdyog TG epyaciog ivol va Tapéyel 6To ¥PNoTN TV
duvatdtnto TG online SOTPAYUATELONG TOV TPLOV TOPAUETPOV TOV OVOPEPOLE
nhve, dniaodt, (o) To emimedo TG avewvvporoinong mov embuuel, (B) to mAnbog Tov
SLLYPAPOUEVDV EYYPUPDV TOL EMTPENEL, Kot (V) TOo Pabud ¢ aveovopomoinong mov
emBopel.

H mpot mpocéyyion mov éyovpe glvar 0 TPoUTOAOYIGHOG TOV 1GTOYPAUUOTOS Yiol
OAOVG TOVG SLAPOPOVLS GLVIVAGUOVS AVOVVUOTOINGNG TOV UTOPEL VO KATOOKEVAGEL
po nEBodog kaboAkng Kmdtkomoinong. Avtd emTPEMEL TOV VITOAOYIGUO ETAKPPOV
Moewv eEopetikd ypryopa (o€ xpdvo pepikdv milliseconds). [apéyovpe oto ypnot
kot emakpiPei amoviioelg (av pmopodv va LIApEOLV), GALL Kol TPOTACELS Yl
TPOGEYYIOTIKEG AVCELS HEC® OVTAOV TOV oToypappdtov. [ap’ dAa avtd, n pébodog
avt] wpobimofétel €va xpOVO  TPO-EMEEEPYACIAG YOO TNV KOTOOKELY] T®V
IGTOYPOUUATOV, O OTOTI0G AVEPYXETAL GTNV TAEN LEYEDOVG HEPIKMV dEKAOMV AETTMOV —
€101, VIAPYEL YDPOG Yo TEPUTEPD PeATidoels. [ To oKOmd avtd mpoteivovpe Kot
plo oevtepn pébBodo, m omoio mpobmoroyiler poOvVo €va pKpO TOGOGTO TV
IOTOYPOUUATOV, e 6KOTO Vo emtayvvOel o xpovog mpo-emeEepyaciog. Ta mepdpatd
pog £3€1EAV YPOUIKY ETTAYLVOT GTO YPOVO QVTO, PE TOAD KOAES 1) €6TM OMOOEKTEG
TIWES Yo TNV TOOTNTA TOV OMOTEAEGUOTOS, OVOAOYX HE TO €100G TG omdvTnomg.
TéNog, Yo v avTILETOTIGOVE KOt TO, TPOPANLATO TOWOTNTOS TNG TEAIKNG OTdvInomg
(kaBdg n mponyovpevn péBodog mapovciace amokAGeES 6e 600 £I0M TPOCEYYIOTIKMOV
AMCE®V TTOV TPOTEIVOVTOL GTO YPNOTN), EWGAYOVLUE Wi TPitn €kdoyN TG HEBOIOV,
oV omoio VITOAOYILOLUE TO 1GTOYPOLLE TOV LVYNAOTEPA OTOdEKTOV KOUPOL (o€
oxéomn UE TOVG TMEPLOPICUOVS Tov BEtel 0 ¥pNoTNG) 6T0 YPOVo eKTEAEONC. ALt 1
pébodog kootilel 0.1-0.3 devteporenta Yoo KAOe aitnuo evog ypMotn, aArd kepdilet
e€apetikn mooTNTO TEMKNG AVGELS Yo OAa Ta €10M amavimoewv. Etol, pmopovpe va
EMTPEYOVUE OTOV JOXEPLOTH VO STPAyHATEDETOL TNV TOWOTNTA TG ADONG, TO

xpOvo mov Oa mwhpet Yo va v AAPel KBS Kot TG TOPAUETPOVS TOV OUTHHOTOG TOV

xpPHoT.
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The problem of privacy preserving data publishing is defined as the problem of
publicly presenting a data set with the structured records around the activities or
transactions of a set of persons, in order to accommodate the following two
antagonistic goals: (a) allow a set of well-intended knowledge workers to execute data
mining algorithms over the public data set in order to extract useful information of
statistical nature for this data set, and, (b) prevent a malicious attacker to combine
these publicly available data with background knowledge (in the sense of personal
knowledge of the attacker, other publicly available data sets, etc) in order to link a
specific person in the real world (and in particular sensitive information around this
person) with its corresponding record in the public data set. The main technique that
data curators undergo is the anonymization of data, which involves transforming the
data (in one of many ways that the research community has come up with) before
presenting them for public use. In our setting, we focus on the global recoding
approach which is a method for data anonymization with (a) high utility for the data
mining tools of the well-intended users, (b) faster times than the alternative methods
(although not fast enough for an online environment), and, at the same time, (c) the
problem of having to delete (a.k.a., suppress) outlier groups to attain an acceptable
level of generalization.

In this thesis we attack the following goals, not previously explored by the research
community. The first goal of this thesis is to study the interplay of suppression,
generalization and privacy criterion and record how changes to one of these
parameters affect the two others. The main goal, however, of this thesis is to provide

the means to negotiate the configuration of the anonymization of a data set, by
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allowing a target group of known well-meaning users and the data curator who is
responsible for the anonymization of data to agree online on (a) the level of data
generalization (and thus, the incurred information loss for the well-meaning users),
(b) the number of tuples that can be omitted from the published data set and (c) the
privacy criterion that the data curator imposes.

Our first approach involves precomputing suitable histograms for all the different
anonymization schemes that a global recoding method can follow. This allows
computing exact answers extremely fact (in the order of few milliseconds). We
provide both exact answers, if they exist, and suggestions for approximate answers by
exploiting these histograms. However, this approach requires a pre-processing time in
the orders of few dozens of minutes; whenever this is not feasible, alternative
approaches must be explored. To this end, we propose a method that precomputes a
small subset of the histograms in order to speed up the pre-processing time. Our
experiments indicate a linear speedup along with very good or acceptable values for
the quality of the proposed solutions, depending on the type of answer. Finally, to
alleviate the problems of deviations from the optimal solution for two cases of
approximation suggestions, we introduce a third variant, where the histogram of the
top acceptable node (in terms of height constraint) is also computed at runtime. This
method pays the price of 0.1-0.3 seconds to gain excellent quality of solution for all
kinds of answers. This way, the data curator is equipped with alternative tools that he

can use depending on the constraints in terms of user time and quality of solution.
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CHAPTER 1. INTRODUCTION

1t is Monday morning and the deputy minister of the Ministry of Health and Insurance
arrives at his office. In the corridor, he finds three angry people quarrelling: the
Chief Information Technology (CIT) officer, his legal councillor and his strategic
planning advisor.

Advisor: Ah, you came! Please tell them I must have these hospital data for the new
Insurance law...

Lawyer: No, you can’t! It is against the law to have access to the data unless they are

appropriately anonymized! Individuals must be hidden in the crowd before you can
have access to their health data.

CIT: But we have anonymized the data and he doesn’t like them!

Advisor: You call these ‘data’? Not only did you generalize the details of the records,
but you have suppressed 10% of the data set!

Minister: Is this right? Can’t you give him at least the full data set, without deleting
records?

CIT: We did! Twice! The first time, we used a technique called full-domain
generalization and he complained the data were too much generalized...

Advisor: .. you bet they were...

CIT: and the second time, we used a more elaborate technique called local recoding,
and he complained that the data were not suitable for him

Advisor: You IT people you are always giving me headaches. We have spent zillions
of hours in meetings with all the 5 departments of the ministry trying to ‘reconcile the
warehouse dimensions’ as you said, because your precious warehouse wouldn’t work
otherwise. And now you ‘re telling me that after all this effort, these ‘dimensions’ and
their hierarchies are no good because you had to do this local recoding of yours and

give me age groups of 17 — 32 that you think have any meaning to anybody!
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Minister (holding the CIT’s hands --who is making a threatening move-- before he
punches the advisor). Isn’t there any other way?

CIT: Well, his majesty refuses to take data with noise or any perturbation of values
and we showed him a preview of a technique called data anatomization and he says
that the utility of data is zero for him...

Minister: OK, I got it. I am a politician and I know it when I see it: you have to
negotiate your demands and seek for a compromise for the antagonistic demands of
information utility, hiding in the crowd, suppression, and generalization...

CIT: Yeah, right, if we could do this interactively we wouldn’t be here on Monday

morning shouting outside your office...

Privacy preserving data publishing is the problem of publicly presenting a data set
that includes information around the activities or transactions of a set of persons, in
the form of structured records in order to accommodate the following two antagonistic
goals: (a) allow a set of well-intended knowledge workers to execute data mining
algorithms in order to extract useful information of statistical nature around the data
set, and, (b) prevent a malicious attacker to combine these publicly available data with
background knowledge (in the sense of personal knowledge of the attacker, other
publicly available data sets, etc) in order to link a specific person in the real world
(and in particular senmsitive information around this person) with its corresponding
record in the public data set. The main technique that data curators undergo in order to
process the available data before making them public is the anonymization of data,
which involves transforming the data (in one of various ways that the research

community has come up with) before presenting them.

To give a simple example, assume that the data curator of a hospital wants to make
patient records publicly available to knowledge workers without allowing malicious
users understand which records corresponds to which person in the real world. In the
case of the patient records of our example, the disease, symptoms and treatment of
each patient are examples of such sensitive values. To achieve that, a set of identifier
attributes of data are removed (in the case of patients’ example, this would be the
name, SSN, tax-agency-id, or other similar attributes). However, this is not enough: as

the bibliography has characteristically shown for the case of Massachusetts’ governor
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[Swee02a] it is still possible to identify to whom a record corresponds via a set of so-
called quasi identifier attributes (for example, here: zipcode, age, sex) whose
combination might uniquely characterize a person. In our example, a patient’s
neighbor who knows (a) the zip code, sex and age of a patient, and (b)the fact that the
patient was hospitalized on a specific date, can reason on the patient’s disease if there
are no other patients with similar characteristics. To attack this vulnerability, the
research community has come up with a variety of techniques that aim to abstract the
detailed values of the original records with more generalized values in the published
data set: so, instead of publishing the exact zip code 45110, a generalized version of it
might be published: 4511*, or 451**, Similarly, instead of publishing that the age
attribute has the value of 35 for a certain record, one might publish that the age
belongs to the range [31, 40]. A published data set is k-anonymous if every record in
the published data shares the same quasi identifier value with at least k-1 other tuples.
Sometimes, a generalization scheme (i.e., a decision on the level of abstraction for
each of the quasi-identifiers) produces nice groups with the exception of some outlier
groups that violate the k-anonymity criterion. Some of the published approaches allow
the deletion of these tuples, which is known as suppression in the literature. As we
shall see in the sequel, the management of suppression is a non-trivial problem for the

data curator.

The research community has provided several methods and statistical tests to allow
the effective publishing of private data. One line of research deals with the privacy
criterion: any privacy criterion (like the abovementioned criterion of k-anonymity)
suffers from vulnerabilities of statistical nature; therefore different privacy criteria
have been developed over time, each covering weaknesses of the previous (with the
computational complexity and the possibility of suppressing the whole data set in the
end being the main drawbacks of more and more sophisticated privacy criteria).
Another line of research deals with the nature of anonymization process: instead of
generalizing the data set it is also possible to introduce noise or destroy the linkage of
quasi-identifiers to sensitive values. However, one of the criticisms against these
approaches 1is that although each of these methods seems to perform quite well in
terms of the privacy offered for the individuals whose records are in the public data

set, it also appears to annoy the knowledge workers since the “world’s truth”



20

presented by the data set is either false, or destroyed in terms of utility. Even the area
of generalization has several possible approaches within it: for example, why do we
have to generalize uniformly all postal codes? If a geographical region is densely
represented in the data set, then the need to generalize it at the same level of
abstraction with a region which is sparsely represented is not directly obvious (since
the former can easily reach groups of the desired privacy criterion at lower levels of
abstraction than the latter). Therefore, approaches that customize the partition of data
to groups in non-uniform ways (also known as local recoding of values, as opposed to
the global recoding of values alternatively suggested) have been proposed in the
literature. Despite their obvious advantage, which is the minimization (or actually, the
elimination) of suppression, it has also been argued that these approaches are slow,
make it extremely difficult for the data mining tools to extract useful knowledge and

present the users with unnatural groupings of data [FWCY10].

Despite all this activity, there are several issues not covered by the research
community so far, that we try to address in this thesis. To the best of our knowledge,
this is the first time that these issues are explored in a systematic way. The first
problem involves the systematic study of the relationship between suppression,
generalization, and privacy criterion. In other words, what is the amount of
generalization that appears to be necessary before we restrict suppression to tolerable
ranges? What is the role of the value of the privacy criterion in this relationship? 4
second problem that this thesis addresses is the proposal of efficient ways that allow
the user achieve an anonymous data set with constraints over the generalization
height, the amount of suppression and the tunable value of the privacy criterion. A
third, related problem involves the ability to provide suggestions to the user that are
close to his original desideratum around generalization, suppression and privacy.
The desideratum is that the user negotiates interactively with an anonymization
system the properties of an anonymized data set. If, for example, the user sets a
suppression threshold too low for the anonymization to attain the privacy criterion
that he also sets, then the system should ideally respond very quickly with a negative
answer to the user, along with a set of proposals on what possible generalizations,
close to the one that he originally submitted, are attainable with the specific data set.

This practically requires the ability to provide answers to the user in user time.



21

Problem statement. The main goal of this paper is to provide the means to negotiate
the configuration of the anonymization of a data set, by allowing a target group of
known well-meaning users and the data curator who is responsible for the
anonymization of data to agree on (a) the level of data generalization (and thus, the
incurred information loss for the well-meaning users), (b) the number of tuples that
can be omitted from the published data set and (c) the privacy criterion that the data

curator imposes.

We make the following assumptions:

e We assume that the end users require that data are published with respect to a set of
generalization hierarchies whose members and structure are predetermined. To put
this in context, we assume that the users have been working with the dimensions of
a data warehouse for some time and have a strong point of view on how they want
information presented to them. Therefore, they are quite reluctant to work with
automatically computed intervals of values that are typically produced by local or
multidimensional recoding methods.

e Moreover, we assume that the data curator has a range of acceptable values for the
privacy preservation criterion (e.g., for the parameter / of 1-diversity) and, despite
the fact that he starts with a preferred value, he does not set a strict constraint on a
specific value.

e Another assumption has to do with the possibility of omitting (“suppressing”)
tuples from the published data set. The omission of tuples clearly results in
(sometimes high) information loss; however, sometimes, removing a set of outlier
tuples can allow the generalization of the data set to a much lower level of
abstraction, thus resulting to a published data set that is more rich in information
rather than if the tuples were retained. We allow, thus, the suppression of tuples;
however we impose the reasonable constraint that a maximum number of
suppressed tuples is acceptable by the end users.

Furthermore, we operate on the basis of the following soft-constraints:

e Among several possible anonymization schemes for the same data sets, we need to

discover the one that best fits the user’s needs. Typically, a decision criterion, in

the form of a utility function is employed for the assessment of the quality of a
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candidate solution. In the rest of our deliberations, we use a simple decision
criterion by default, concerning the height of a possible solution in the
anonymization hierarchies, since it is very intuitive for the user and possesses nice
monotonicity properties.

e Finally, we pose as a soft-constraint the desideratum of a non-strict privacy
criterion. We want our method of privacy preservation to be pluggable to the
proposed framework and retain the possibility of choosing among alternative
methods for privacy preservation (e.g., k-anonymity, I-diversity, t-closeness, X, Y
anonymity etc). In our deliberations we will focus on two practically attainable
criteria, specifically k-anonymity and l-diversity; however other criteria are also

applicable to our method.

In summary, we can state the problem we are attacking as follows:

Given

(a) a data set 7, comprising an identifier attribute /D, a set of quasi-identifier
attributes QI = {4, ..., 4}, and a sensitive attribute S,

(b) a set of generalization hierarchies H = {h,, ..., h,}, one for each quasi-identifier
attribute,

(c) a privacy constraint (e.g., k-anonymity, /-diversity, ...),

(d) fixed constraints for (dl) the maximum height per attribute that the
anonymization method can attain h = [/, ..., h,°], (d2) the lowest value for the
privacy constraint (e.g., k for k-anonymity) and (d3) the maximum number of
suppressed tuples that the user is willing to tolerate MaxSupp,

(e) a quality criterion function QoS() for the assessment of the best possible
anonymization when more than one answers are available (e.g., the solution with
the lowest height, and possibly the less suppressed tuples, or maximum
discernibility, as another example).

Produce
(1) An anonymized data set 7* such that

e T*is a generalization of T,
e T* fulfils the abovementioned privacy constraints (d1) — (d3), and,
e T* minimizes the quality criterion function QoS(T*),

if such a T* can be attained,
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or,
(11) A set of alternative generalizations that are also generalizations of 7 and
each of them minimizes the deviation for one of the parameters of the
problem, specifically, (a) the acceptable generalization heights, (b) the
minimum acceptable value for the privacy constraint and (c) the number of

suppressed tuples.

T~ Global recoding T~ k-anonymity T~ Height
——  Local recoding ——  [l-diversity ——  Discernibility (Cpy)
T Multidim. recoding | t-closeness 1 Classification (Ccy)
——  Anatomization - .. ——  Avg Class size (Cayg)
1~ Perturbation T .. T~ NCP4
Tuple anonymization Privacy criterion Quality assessment
method method

Figure 1.1 Problem Parameters

The possible values for different parameters of the problem are depicted in Figure 1.1.
The anonymization method can be any of global / local /multidimensional recoding
[LeDRO5], [LeDRO6], [Xut06], [LWFP08], [GhKMO09], tuple perturbation
[AgSTO05], [ZKSYO07], anonymization [XiTa06] or other. The privacy criterion can be
any of k-anonymity [Swee(02a], I-diversity (in any of its forms) [MaGKO06], t-
closeness [LiLV07], or other. The function that assesses the quality (or penalty) of a
candidate solution can be the height of the solution [Sama01], the discernibility metric

[BaAg05], the average class size [LeDRO06], or other.
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Our approach. In our case, we start with a simple setting, comprising k-anonymity
and l-diversity, global generalization and solution height as the choices of preference.
The first method proposed in this thesis involves precomputing statistical information
for several possible generalization scheme. A generalization scheme is determined by
deciding the level of generalization for every quasi-identifier — in other words a
generalization scheme is a vector characterizing every quasi-identifier with its level of
generalization. To efficiently compute the amount of suppression for a given pair of
(1) value for the privacy criterion and (ii) a generalization scheme, we resort to the
precalculation of a histogram per generalization scheme that allow us to calculate the
necessary statistical information. For example, in the case of k-anonymity we group
the data by the quasi identifier set of attributes in their generalized form and we count
how many groups have size 1, 2, ... etc. So, given a specific value of k, we can
compute how many tuples will be suppressed for any generalization scheme.
Similarly, in the case of I-diversity, we count the number of different sensitive values
per group along with the size of the group per group.
We organize generalization schemes in a lattice. A node v is lower than a node u in
the lattice if u has at least one level of generalization higher than v for a certain quasi-
identifier and the rest of the quasi-identifiers in higher or equal levels. Once the
histogram is computed for every node in the lattice, the main algorithm checks
whether there exists a possible solution to the abovementioned problem that satisfies
all criteria. This is performed by first checking the solutions in the top-acceptable-
node vpq defined with generalization levels [A, ..., Ay]. If a solution exists then we
exploit a simple monotonicity property and look for possible answers in quasi
identifiers with less or equal generalization levels than the ones of the top acceptable
node. In the case that no solution exists in the top acceptable node, the algorithm
provides the user with 3 complementary suggestions as answers:

— The first suggested alternative satisfies & and h but not MaxSupp. In fact, we
search the space under the top acceptable node and provide the solution with the
minimum number of suppressed tuples. In typical situations, we can guarantee
that the answer is already in found in the top acceptable node and by exploiting
the original search of the top acceptable node, we can provide the answer

immediately.
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— The second suggested alternative is a solution that finds the maximum possible &
for which h and MaxSupp are respected for the quasi identifiers of the top
acceptable node. Again, this is an answer that can be provided immediately by
exploiting the search of the top acceptable node.

— Finally, the third alternative is a solution that satisfies k£ and MaxSupp but violates
h. This means that we have to explore the space of quasi identifiers that are found
in generalization levels higher or equal than the top acceptable node. We exploit
some monotonicity properties already discussed early in the literature [Sama01]
to avoid unnecessary checks and utilize a binary search exploration of heights on
the lattice.

The proposed method is guaranteed to provide the best possible answers for the given

user requests. Our experiments indicate that this is performed in less than 10

milliseconds for typical data sets used in the research literature.

However, the method comes at a price, and specifically, at the price of precomputing
the histograms for all the nodes of the lattice. This precomputation requires several
minutes (e.g., our experiments gave 20-40 minutes for the largest quasi-identifier
sets). If one is to avoid the cost of full precomputation, we need to devise an
alternative approach. So, in this thesis, we explore a second approach that tries to
precompute a small subset of the lattice’s nodes with their histogram. The goal is to
carefully select the generated nodes in order to (a) minimize the deviation from the
optimal solution and (b) precompute the necessary subset of the lattice in times that
are tolerable by the users. Our approach is based on the ranking of generalization
levels with respect to their grouping power (since, the larger the groups, the less the
suppression). Then, we try to rank the combinations of levels for all the possible
generalization schemes and pick a fixed subset of them (e.g., 5%). Our experiments
demonstrate a linear speedup of the precomputation time with the approximation
factor, very good performance for the provision of exact answers and level
relaxations, as well as certain deviations in terms of the approximate generalization

heights and suppressions.

Finally, by observing that the two out of the three alternatives suggested in the

absence of an exact answer are due to the top-acceptable node, we propose a third
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method that computes the histogram of this node at runtime. Our experiments
demonstrate that the time penalty for this extra computation is in the order of 0.1 —
0.3 sec and the two relaxations that suffered in the previous approach demonstrated
an identical behavior to the case of the full lattice; therefore, if this time overhead can
be tolerated in terms of user time (and for the case of our experiments we believe it

does), then the quality of solution improves drastically.

— Roadmap. In Chapter 2, we discuss the fundamental concepts of the problem
under investigation. In Chapter 3, we explore the interplay of the problem’s
parameters, specifically, the size of the quasi-identifier set, and the values for the
privacy criterion and the acceptable suppression. In Chapter 4, we discuss the
proposed method with a full precomputation of the lattice of generalization
schemes. In Chapter 5, we discuss alternatives to this full precomputation. In
Chapter 6, we discuss related work. Finally, in Chapter 7, we conclude with our

findings and present insights for future work.
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CHAPTER 2. FUNDAMENTAL CONCEPTS AND
TERMINOLOGY

2.1 Motivating Example
2.2 Background and Terminology

2.3 The annotated lattice of generalization Schemes

2.1. Motivating Example

Assume that a trusted data curator has collected the microdata table displayed in
Figure 2.1. The microdata comprise (a) an identifier attribute, Name, (b) a set of
quasi-identifier attributes, specifically, Age, Work Class, and Education, and (c) a
sensitive attribute, (Working) Hours per Week. Each attribute is accompanied by
value hierarchies, pretty much in the way OLAP dimensions are organized in value
hierarchies. So, for example, the Education of a person who has attended school till
the 11™ grade, is characterized with respect to different levels of abstraction as (a)
Detailed: 11"™-grade, (b) Level 1: Senior secondary, (c) Level 2: Secondary, and (d)
Level 3: Without Post Secondary. As another example, Age can be organized in terms
of years, 5-year intervals, 10-year intervals, etc. In Figure 3.1, the hierarchies for the
attributes Work Class and Education can be inspected in detail.
We want to publish the data under the following setting:

(a) every tuple belongs to a group of tuples with the same quasi identifiers, with

size at least 3 (i.e., the privacy constraint is k-anonymity, with k£ = 3)
(b) no tuples are suppressed (i.e., MaxSupp =0)
(c) Age and Work Class can be generalized at most 1 level, whereas Education

can be generalized at most 3 levels up (i.e., h=[1, 1, 3]).
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Name ‘ Age ‘ Work_class Education |Hours/week
Thales 39 Private Hs-grad 40
Anaximander 38 Private Hs-grad 50
Anaximenes 37 Private Hs-grad 40
Pythagoras 38 Private 11th 45
Gorgias 28 Loc-gov Bachelors 30
Heraclitus 31 Federal-gov Master 50
Empedocles 30 State-gov Bachelors 60
Leucippus 32  Self-emp-not-inc  Bachelors 50
Democritus 35 Self-emp-inc ~ Prof-school 54
Protagoras 33 Self-emp-inc Assoc-acd 40

Figure 2.1 Microdata table (Based on Adult data set)

As one can see in Figure 2.2 this setting is feasible. The microdata table is partitioned
in three groups, each having at least 3 tuples. No tuples are suppressed and the
generalization is respected in all three quasi identifiers. The color and format of the
tuples in Figure 2.2 suggests the group to which they belong to. The identifier

attribute Name is not published and presented here for intuition reasons only.

Name Age | Work_class Education Hours/week
Thales 37-41 Private Without-post-secondary 40
Anaximander 37-41 Private Without-post-secondary 50
Anaximenes 37-41 Private Without-post-secondary 40
Pythagoras 37-41 Private Without-post-secondary 45
Gorgias 27-31 Gov Post-secondary 30
Heraclitus 27-31 Gov Post-secondary 50
Empedocles 27-31 Gov Post-secondary 60
Leuappus 32-36 Self-emp Post-secondary 50
Denoaritus 32-36 Self-emp Post-secondary 54
Protagoras 32-36 Self-enp Post-secondary 40

Figure 2.2 Generalized data set (3-anonymous, no suppression, h=[1,1,3]).

Assume now that we want to achieve a 4-anonymous generalization of the microdata,

still retaining the constraints for no suppression and generalization heights (i.e.,
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MaxSupp = 0 and h=[1,1,3]). One can see that we cannot attain such a setting (only

one group has size 4, the rest comprise of only three tuples). Then, we need to

perform some relaxation to our constraints. Several such relaxations can be suggested

to the user:

The first suggested alternative satisfies & and h but not MaxSupp. We see that a
possible solution suppresses all the groups with less than 4 tuples, thus removing

6 tuples. Then, the resulting data set is depicted in Figure 2.3.

Name Age | Work_class Education Hours/week
Thales 37-41 Private Without-post-secondary 40
Anaximander 37-41 Private Without-post-secondary 50
Anaximenes 37-41 Private Without-post-secondary 40
Pythagoras 37-41 Private Without-post-secondary 45

Figure 2.3 Generalized data set with suppression relaxed (4-anonymous, h=[1,1,3],

but 6 tuples suppressed).

The second suggested alternative is a solution that finds the maximum possible k&
for which h and MaxSupp are respected for the quasi identifiers of the top
acceptable node. Clearly this is the generalization of Figure 2.1 (since it only
suffices to reduce k = 4 by one to achieve it).

Finally, the third alternative that can be suggested is a solution that satisfies & and
MaxSupp but violates h. We can try to ascend the hierarchy for every quasi
identifier attribute by one level, until the desired suppression is achieved. So, we
ascend attribute Age by one level and present ages in intervals of 10 years.
However, we still have the same three groups as in Figure 2.2 (albeit, with
different values in the age field). Then, we ascend attribute Work Class by one
level, to a level that comprises two values only worked and never worked). These
two transitions manage to merge the second and third group of Figure 2.2 into a
single group comprising 6 tuples. This way, both constraints regarding group size
and suppression, k = 4 and MaxSupp = 0, are supported and the result is the one
depicted in Figure 2.4.
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Name Age | Work_class Education Hours/week
Thales 37-46 Worked Without-post-secondary 40
Anaximander 37-46 Worked Without-post-secondary 50
Anaximenes 37-46 Worked  Without-post-secondary 40
Pythagoras 37-46 Worked  Without-post-secondary 45
Gorgias 27-36  Worked Post-secondary 30
Heraclitus 27-36  Worked Post-secondary 50
Empedocles 27-36  Worked Post-secondary 60
Leucippus 27-36  Worked Post-secondary 50
Democritus 27-36  Worked Post-secondary 54
Protagoras 27-36  Worked Post-secondary 40

Figure 2.4 Generalized data set with generalization height relaxed (4-anonymous, no
suppression, but h=[2,2,3]).

2.2. Background and Terminology

In this section, we will formally introduce the fundamental concepts around the issues
of anonymization that we will address in this paper. We distill several well-known
concepts in the related literature; consequently, the interested reader can also refer to
[Sama0l, LeDRO5, MaGKO06, LWFP08] for alternative presentations of these

concepts.

We start by assuming a microdata relation R containing all the detailed information.
We have three categories of users. First, we assume there is a trusted data curator with
full access to the detailed information whose job description includes the publishing
of data without sacrificing the privacy of the persons to whom the data correspond.
We assume that the data curator is trusted. We also have a set of well-meaning
analysts who apply data mining algorithms over the published data whose aim is to
find statistically important information about the data set, but not anything in
particular for specific individuals. Finally, we also have a set of attackers whose aim
is to discover the correct values for one or more persons in the real world, by
exploiting any published information available (and not necessarily the published
version of R).

The attributes of R can be divided in the following categories:
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¢ Identifiers: these are attributes allow anybody with access to the microdata of R to
relate a tuple of R with a person in the real world. For example, a person’s name, or
SSN belong to the identifier class of attributes. When publishing data, identifiers
are removed from the published data set.

e Quasi-identifiers: A set of attributes is called a Quasi-Identifier Set if the
combination of these attributes allows a person with access to the published data
set to relate a tuple of this data set to its hidden identifier (and consequently, to a
person in the real world). In the example of Fig. 2.1 assuming that the attacker
knows that Heraclitus is working for the federal government and has a bachelors
degree, even if the name is projected out of the published relation, a quick glance
at the remaining columns quickly reveals that there is only one person with the
characteristics of Heraclitus in the data set. Therefore, even if the name is removed,
the combination of Work Class and Education is sufficient for an attacker to relate
the respective tuple to the hidden identifier (i.e., attribute Name). The set of quasi-
identifier attributes of a relation will frequently be referred to as QI as a shorthand.
An attribute that is member of the quasi-identifier set is called a quasi-identifier.

e Sensitive attributes: A sensitive attribute is an attribute whose value must not be
linked to a hidden identifier value by an attacker. The core of the private data
publishing problem is to alter the original data set in such a way that the published
data set restricts the probability of relating the published value of a sensitive
attribute to the hidden identifier of a tuple. For example, in a patients’ data set, the
name of the patient and disease that she suffered must not be linked by an attacker.
In our example, it is the task of the data curator to prevent an attacker from relating
a (hidden) Name identifier (e.g., Heraclitus) to the value of Hours per Week that he
works (here: 50).

o Indifferent attributes: these are any other attributes of the data set that we do not
care if they can be linked to a hidden identifier.

As typically happens in the literature, we will assume that there is one sensitive
attribute in the microdata and that no indifferent attributes are present in the data set,
unless this is explicitly stated. So, without loss of generality, we assume that R is
defined as R (Aip, 41, A2, ..., An, S), where App is an identifier, Ay, 4>, ..., Ay 1s the

quasi-identifier set and S is the sensitive value.
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The quasi identifier attributes are accompanied by value hierarchies in a way that
resembles a lot the way OLAP dimensions organize their values in hierarchies. We
assume the following setting for quasi-identifier attributes and their domains.

e Every attribute 4 is accompanied by a domain of values, dom(A) that is isomorphic
to the integers. Typically, attributes can be either nominal or arithmetical. The
isomorphism to the integers is not obvious for the nominal values; however, an
artificial ordering can be imposed to the domain of such attributes (especially, if, as
typically happens, the microdata table has a foreign key to a lookup table for the
quasi identifier).

e Every quasi-identifier attribute is part of hierarchy of attributes. A hierarchy of
attributes H is a finite list of attributes, whose first member is the most detailed
level of values (the one that belongs to the microdata table too) and the last
member is the level H.All: H={A4y, A1, A2, ..., An, HAll}. The attributes that
participate in a hierarchy are called anonymization levels, or simply levels of the
hierarchy (in correspondence to the aggregation levels in an OLAP context). The
higher an attribute is in the hierarchy, the coarser the level of semantic abstraction
its values have. The level All stands for complete anonymization of the values for
this attribute; to this end, its only member is a single value, *. For example, the
quasi-identifier attribute Age can belong to a hierarchy with values at the year
level, 5-year intervals, and 10-year intervals: Hape = {Ag€ycar, Ag€5-year, AZ€10-years
Age.All}. Whenever an attribute Ayign 1s at a higher level in a hierarchy than an
attribute Ajow, we denote this by the notation Ajow —> Anigh. We will frequently reuse
terminology from the domain of OLAP and refer to a hierarchy of attributes as a
dimension, whose attributes will also be called /evels (of detail).

e We assume a full mapping between the domains of the attributes of a hierarchy,

A . .
denoted as anc Ah' Formally, given two attributes Ajow and Anigh, Aiow —> Anighs
1

A . . A .
v, = anc Ah (v) is a total function anc Ah : dom(Aiow) — dom(Anign) returning a value
1 1

vh at a coarser level for a value v, at a lower level. In other words, for every
detailed value (e.g., Age 37 years at the detailed level) there is a single value at the

coarser level (e.g., the interval [31-40] years) to which it corresponds. We reuse the
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. . . A . .
notation v; — v, for the values of the respective domains. The anc " function is
i

defined as the identity function if Ajow = Anigh.
e An extra well-formedness constraint involves the composition of ancestor

functions. For any values of any three levels A4;, A», A3, such that 4, - 4, — 43,

the following property must hold: if v2=ancjz (v) and v3=ancj3 (v,), then
1 2

A
v;=anc ~(v) too.
4

e We call a hierarchy ragged if the mapping of values in not full for all the domains
of all attributes. For example, observe the value ‘Without pay’ in the third level of
the hierarchy for the quasi-identifier Work class. The value ‘Without pay’ does not
have any descendants mapped to it at the levels LO and L1, thus violating the
definition of a hierarchy. Ragged hierarchies are easy to compensate by adding
artificial representatives of coarse values at the detailed levels where such
representatives are missing. For example, in the case of the value ‘Without pay’ in
L2, we introduce two artificial values ‘W/O pay L1’ at level L1 and ‘W/O
pay L1’ at level L0, and update the ancestor function appropriately to incorporate
all these three values. Therefore, in the sequel, we do not consider ragged

hierarchies at all.

A full domain, or global, generalization of a relation R(4p, 41, 42, ..., An, S) 1S a
new relation P that is produced by (a) the projection of the non-identifier attributes
and (b) the replacement of the values of a quasi-identifier attribute with their
respective ancestor values on the basis of the hierarchies previously defined.
Naturally, the ancestor function that is employed for an attribute can be the identity

function.

Formally, we say that a relation R (4dp, A1, A2, ..., An, S) is fully generalized to a
relation P (Q1, Oa, ..., On, S), or, equivalently, that P is a full domain generalization,
or, global generalization of R, if

(a) at the schema level, Q; = anc(4;), for all i =1, .., n, and,
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(b) for every tuple ¢ in R, we introduce a tuple ¢ in P, such that #[S] = #[S], and, for
every attribute 4i of R, the value #[4;] is replaced by a value #[Q;].

A generalization scheme of a relation R (4p, 41, 4, ..., Ay, S) 1s a set of quasi
identifiers QI= {Q1, 0>, ..., On} that produce a full domain generalization P (Q;, O,
..., On, S) of R. Given a specific generalization scheme as above, we refer to the level

Qi as the generalization level of attribute 4;.

k-anonymity [MaGKO06]. A relation 7 (be it microdata or a generalized relation) is
said to be k-anonymous with respect to a set of (generalized or not) quasi-identifier
attributes QI= {Q1, 0>, ..., On}, if every tuple ¢ in 7, there exist at least k-1 other tuples
tii, tia, ..., tik in T such that t{Q] = t;;[Q] = t[Q] = - - - = tik1[QO] for all quasi-
identifiers Q in QI.

Blocks (equivalence classes). We will refer to a set of tuples of a relation 7 under a
generalization scheme @/ with the same values of quasi identifiers (again,
independently of their level of generalization) as a block or equivalence class for

relation T and its generalization scheme.

Observe that a full domain generalization produces a partition of the published
relation 7" to blocks/partitions/equivalence classes on the basis of the generalization
scheme. In other words, all tuples belonging to a block form an equivalence class. By
definition, these partitions are disjoint, and then, 7 is the union of these disjoint

partitions.

Clearly, k-anonymity is the first attempt to hide individual tuples in the crowd. A k-
anonymous generalization protects a tuple from an attacker by placing it in a block of
at least k tuples with the same quasi identifier values. This way, if an attacker knows
the quasi-identifier values for a person in a real world, the tuple that corresponds to
the victim is ‘hidden’ in the crowd of its respective block and it is harder for an
attacker to relate the hidden identifier to the correct sensitive value via the quasi
identifier. There are several weaknesses of k-anonymity (see, for example [MaGK06])

and so several extensions are constantly being developed by the research community.
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In the context of this paper, we restrict ourselves to the simplest —yet quite powerful-
extension of simple I-diversity [MaGKO06] that tries to address the problem on non-
diversity of the sensitive values within a block: if all (or a significant fraction of) the
tuples of a block have the same sensitive value, then the block gives away (with
certainty or high probability) the sensitive value of the victim. So, the sensitive values
of the tuples of the same group must be quite diverse (“well represented” in the
[MaGKO06] terminology). The simplest (and most popular) way to do this is to ensure

that every block possesses at least / distinct sensitive values.

Simple I-diversity. A generalization T satisfies simple 1-diversity, if in every block g,

no more than % of the tuples have the same sensitive value.

2.3. The annotated lattice of generalization schemes

2.3.1. The lattice of generalization schemes

The possible generalization schemes that can occur via a combination of
anonymization levels for different quasi identifiers can be organized in a lattice. In
this section, we will formally introduce the lattice; discuss how it can be produced and

what its properties are. A first discussion of the lattice is in [Sama01, Incognito].

Lemma. A hierarchy forms a total order at the intentional level and a partial order at
the extensional level.

Proof.

At the intentional level, by definition we assume that the anonymization levels of a
hierarchy form a line. Thus, for any two levels A, and 4y, one must precede the other
(either Ax — Ay, or A, — Ax) with the — function being the ordering function of the
total order.

At the intentional level, it is easy to show that the values of a hierarchy form a tree:
there is a single value (*) at the top level of the hierarchy, and every value has a single
ancestor value at the preceding anonymization level (remember, the anc function is
both total and a function). Thus, the resulting hierarchy of values can form a tree with
the values as nodes and an edge between two values if they belong to consecutive

levels and they are related via an anc function.
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A partial order for a set of values P and an ordering function <, imposes three
constraints: reflexivity (x<x), antisymmetry (x<y and y<x imply x=y) and transitivity
(x<y and y<z imply x<z). Assuming the set of all the values of the union of the
domains of the attributes of a hierarchy as the set P and the anc function as the

ordering function, we can conclude that all three properties hold. QED

Definition. Given a set of hierarchies H=[H|, ..., H,] that constitute a set of quasi
identifier dimensions, the anonymization lattice L is the Cartesian product of the
hierarchies at the intentional level.

Remember that given a set of ordered sets Py, ..., P, their Cartesian product P = P; x
... X Py 1s also an ordered set with the following constraint:

15 oo X0) < V1, ...y Yn) < for each 7, x; < y; in Pi

In other words, every member of the Cartesian product P is annotated by one level per
quasi-identifier dimension and a member x follows a member y if all the individual
levels of x are lower or equal to the respective levels of y, for all the quasi identifier

dimensions.

Take for example the hierarchies for the quasi-identifier set [Age, WorkClass, Race]
as depicted in Figure 3.1. We will assume that Age has five levels of anonymization
{Ao, A1, Az, A3, As=A.All}, Workclass has four levels {Wy, W\, W,, Ws=W.All}, and
Race has 3 levels of anonymization, too {Ry, R;, R,=R.All}. In all our deliberations in
the sequel, we will assume that the order of quasi-identifiers is fixed; for example, in
this case, we will always list the attribute Age first, Workclass second and Race third.
Consequently, when we refer to the node with levels 42, W3, RO we can refer to it as

230 for shorthand. The lattice for the quasi identifier set is depicted in Figure 2.5.



37

432

@O@
@.@..@

@@O @@@.@.
. .Q@..@Q...
@..@ @@‘.
.O@
@.O

N
000

Figure 2.5 A lattice for the three quasi identifiers of the reference example Age, Work
class and Race.

So far, we refer to the result of the Cartesian product of the quasi identifiers as a

lattice, but we have not proved that it is indeed a lattice.

Lemma. The ordered set that results as a Cartesian product P = H; x ... x H,, over a

set of anonymization hierarchies is a lattice.

Proof. For an ordered set to be a lattice, two constraints must hold, for any two

members of the set x and y:

e x and y have a supremum or join or least upper bound (i.e., there always exists a
member z such that both x<z and y<z) — we denote this as xvy

¢ x and y have a infimum or meet or greatest lower bound (i.e., there always exists a
member z such that both z<x and z<y) — we denote this as xAy

It is easy to see that the Cartesian Product P has a unique bottom element (typically

denoted as L) which is H;.Lo, Hy.Lo, ..., Hn1.Lo, Hy.Lo and a unique top element

(typically denoted as T) which is Hy.Lay, Hy.Lay, ..., Hyi.Lay, Hy.Lay. Therefore, any
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two members of the lattice will at least have these two as supremum and infimum

(although not necessarily them). QED.

Discussion for the extensional level. Similarly to the intentional level, one can
explore the Cartesian product at the extensional level. We will not delve in the
particularities of this aspect, since we will not use the Cartesian product of the
hierarchies at the extensional level. Notice however that the result is not a lattice (in
contrast to the intentional level having a single member at the bottom of the list, the
extensional level has several members at the bottom of the tree; thus, the resulting

partial order does not have a unique bottom element).

How big is the lattice? Assume n dimensions [D1, ..., Dn] , each with levels
levels(D1i) levels (including the top and bottom elements). The total number of nodes
in the lattice is

IL| = levels(D1) x levels(D2) x ... x levels(Dn)

Assuming A levels per dimension on average, this quantity is approximated by A".

2.3.2. Annotation of the Lattice with histograms

Each node of the lattice corresponds to a generalization scheme. Thus, it can be
annotated with information concerning the generalization scheme, the anonymization
method, the number of suppressed tuples and other information related to the status of

the generalization scheme represented by the node.

KA-histogram. The k-anonymity histogram for a generalization scheme QI= {0, Q»,
..., On} over an original microdata relation R is a finite list of pairs KA= [p1, p2, ...,
pm] of the form p (size, blockCount) computed as follows:
1. The original microdata relation R is generalized according to QI and its
accompanying hierarchies to a generalized relation 7
2. We compute all the equivalence classes of T according to QI and count their
sizes in terms of tuples (to be reused in the histogram as the attribute size)
3. For every possible size that appears, we count how many blocks (blockCount)
are of this size. The result of this is a set of pairs of the form (size,

blockCount).
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Take for example the microdata table R of the reference example (depicted in Fig.
2.1) and its generalization T according to the generalization scheme Q/=[A.L1, W.L1,
E.L3] (depicted in Fig. 2.2). We observe that there are two blocks of size 3 and one
block of size 4. The resulting KA-histogram for 7" is depicted in Figure 2.6.

size blockCount
3 2
4 1

Figure 2.6 KA-histogram

Observe that the histogram does not trace which blocks are formed (although each
pair can be annotated with the pairs that correspond to it). However, the histogram
allows us to quickly compute the relationship of privacy to suppression. For example,
given the histogram of Figure 2.6, if one wants to impose a constraint of 4-anonymity,
then 6 tuples (2 groups of size 3) have to be suppressed for the corresponding

generalization scheme.

Similarly to the histogram for k-anonymity one can compute the respective histogram
for simple I-diversity by counting the number of distinct sensitive values that appear
in a group.
SLD-histogram. The simple l-diversity histogram for a generalization scheme Q=
{01, O, ..., On} over an original microdata relation R is a finite list of triplets
SLD=[pi, p2, ..., pm] of the form p(distinctSCount, blockCount, sumTupleCount)
computed as follows:
1. The original microdata relation R is generalized according to QI and its
accompanying hierarchies to a generalized relation 7
2. We compute all the equivalence classes of 7" according to QI and count the
number of distinct values in the sensitive attribute within each equivalence
class (to be reused in the histogram as the attribute distinctSCount) as well as
the number of tuples for each equivalence class
3. For every possible distinctSCount that appears, we count how many blocks

(blockCount) are of this size as well as the overall number of tuples that
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belong to these blocks (sumTupleCount). The result of this is a set of triplets

of the form (distinctSCount, blockCount, sumTupleCount).
Again, take for example the microdata table R of the reference example (depicted in
Figure 2.1) and its generalization 7 according to the generalization scheme Q/=[A4.L2,
W.L2, E.L3] (depicted in Figure 2.4). We observe that there are two blocks, the first
having three distinct sensitive values among its four tuples and the second having five
distinct values among its six tuples. If we had more than one blocks with the same
distinctSCount value, we would sum the number of tuples that belong to each of them
and obtain the overall sumTupleCount for this value of distinctSCount. The resulting

SLD-histogram for 7' is depicted in Figure 2.7

distinctSCount | blockCount | sumTupleCount
3 1 4
5 1 6

Figure 2.7 SLD-histogram

Cumulative KA-histogram. Apart from the simple KA-histogram, a very convenient
tool that we will employ when relating suppression with privacy is the cumulative KA
histogram, which, for every size k of the KA histogram measures the number of tuples
in groups with smaller size than k.

cumKA(k) = Zgize=1.x-1 (size*blockCount(size)) = cumKA(k-1) + (k-1)* blockCount(k-1)

Cumulative SLD-histogram. Similar to the cumulative KA histogram we can define
a cumulative SLD histogram for the case of simple I-diversity. The cumSLD explains
the need for the sumTupleCount measurement in the simple SLD histogram, as it is
exactly this value that is summed in order to obtain an exact measurement of how
many tuples need to be suppressed when a specific request for a value of / is issued.
Specifically, for every possible value of / (i.e., of distinct number of sensitive values
within a group), the cumSLD histogram measures the total number of tuples
belonging to groups with a smaller value of distinctSCount than 1.

cumSLD(]) = Zyse=1.1.1 (sumTupleCount(dsc))
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Usage. To see how the histograms facilitate the task of determining appropriate
anonymization schemes, take for example the first 10 pairs of the KA and the cumKA
histogram from the Adult data set with quasi identifier set {4ge, Work class, Race}
and generalization scheme A.L1, W.L1, R.LO depicted in Figure 2.8.

size | KA- cumKA
histogram | histogram

1 26 0
2 16 26
3 10 58
4 5 88
5 8 108
6 6 148
7 4 184
9 5 212
10 4 257
11 1 297

Figure 2.8 The 10 first pairs for the KA and cumKA histogram over the Adult data set
with quasi identifier set {Age, Work class, Race} and generalization scheme A.L1,
W.L1, R.LO.

350

300 +

250 +

—1CumKA

1 hist.
200 e MaxSupp

150 + —

100 +

Ll

1

Figure 2.9 CKAb. The 10 first pairs for cumKA histogram depicted as graph along
with a MaxSupp threshold of 200 tuples.
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Observe the graphical representation of Fig. 2.9. The depicted histogram is the one of
Figure 2.8. Along with it, suppression maximum threshold of 200 is also depicted in
the figure. Then, the figure tells us that if we want an anonymization setting where no
more than 200 tuples are suppressed, we cannot use a value of k higher than 7. If we
want to use a value of k = 8, 9, 10, etc, then we must suppress at least 212, 212, 257,
etc tuples, thus violating the constraint on our MaxSupp. Therefore, it is evident, that
given a fixed generalization scheme and maximum tolerable number of suppressed
tuples, we cannot achieve any value of k that we want; on the contrary, there is an
upper bound to the anonymization that we can perform, as expressed by the value of

k.

Discussion. To compute the size of the lattice with histograms (in bytes), one has to

multiply the lattice size |L| with the average size of the histogram per node.
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CHAPTER 3. VALIDITY OF THE PROBLEM:
EARLY FINDINGS

3.1 Working With Adult data set

3.2 K-anonymity for Adult data set

3.3 L- diversity for Adult data set

3.4 K-anonymity and /-diversity for [IPUMS
3.5 The price of histograms

3.6 Summary of Findings

Is suppression really a problem for the well intended end users? What is the

interrelationship between suppression, generalization and anonymity parameters?

So far, related research in the area of generalization has mainly followed a
suppression-agnostic approach. Apart from few early papers [SamaOl, Swee02a,
Bayardo0O5] that deal with suppression issues, subsequent research was primarily
targeted to local or multidimensional recoding techniques where suppression is not an
issue. Despite the obvious benefits of these approaches, it is quite possible that the
well-meaning end-users cannot utilize the ad-hoc generalizations of the quasi
identifier data to perform their data analysis operations and might demand the
presentation of data in generalization hierarchies that have been constructed in
advance, taking into account the mappings of values that are intuitive to the users. In
this case, we lose one of the good properties of multidimensional and local recoding
which is the fitting of outliers in convenient areas. The presence of outliers demands

either high generalization abstractions or suppression.
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The goal of this section is to fill the aforementioned gap and assess how suppression,
generalization and anonymity criteria are related. The main desideratum is the
answer to the questions: “how high should we go in the hierarchies to achieve low
suppression?”, or, “how is the anonymity criterion (e.g., k in k-anonymity) affecting
the percentage of suppressed tuples?”, or “assuming that we have a strict anonymity
criterion (e.g., a high value of k)t and significant ascending in the hierarchy, what
percentage of the data set is eventually suppressed?”. The answers to these questions
are important, since (a) they reveal some knowledge that the current body of
knowledge has not addressed and (b) they can guide us through the subsequent

negotiation process towards acceptable solutions.

To assess how suppression, generalization and anonymity criteria are related, we start
with a simple, but illustrative test. We chose the simplest anonymity criterion, k-
anonymity, as our privacy criterion. The criterion of k-anonymity has a simple test: it
requires that every group formed by a combination of values by the quasi-identifiers
contains at least k tuples. So, if we want to measure the extent of suppression in a data
set, for a given generalization scheme, we need to measure the tuples that fall in
groups with size smaller than k. Again, this is the simplest test that can be performed
for generalization techniques; out of the more elaborate tests (like I-diversity, t-
closeness or other) that require extra constraints on the statistical properties of the
sensitive values of each group, we also work with I-diversity, too. L-diversity comes
in several flavours of increasing complexity; its simplest variants require that every
sensitive value in a group is repeated no less time than a certain percentage; or else,
that there are at least / distinct values in the group.

For our experiments, we work with (a) the Adult data set [UCI] and (b) the PUMS
data set [[PUMS].

The goal of the experiments was to measure the number of suppressed tuples as we

increase (a) the generalization height and (b) the size of the quasi identifier.
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3.1. Working with the Adult data set

The first data set that we consider is the Adult data set [UCI] (a.k.a census income
dataset), which the most common data set used in the related literature. The dataset in
its cleansed version (after uncertain and NULL values are removed) comprises 30162
tuples of the 1994 USA census. Since we require levels of generalization for the
quasi-identifiers, we assigned hierarchies determined in advance to the quasi
identifiers of the data set. We reused the hierarchies of [FuWYO05] which we found
reasonable. The hierarchies for the fields Education, Occupation, Marital status,
Work class, and Race are depicted in Figure 3.1-Figure 3.5. Attribute Age is organized
in years, 5-year intervals, 10-years intervals, 20-year intervals and *. We have used
the attribute Hours per Week as the sensitive attribute. Attributes Gender and Salary
were not used due to their very small domain of values (Salary has only two values,
higher or lower than 50K). Attribute Native Country is also not used, since out of the
30162 tuples of the Adult data set, the 27625 tuples have a value of USA, which

practically means that the attribute is pretty much like being at level all.

An interesting experimental parameter was the choice of attributes for each quasi-
identifier size. Since we need to experiment with different sizes of the quasi-identifier

set of attributes, we needed to test the attributes on their grouping power: If an

attribute tends to drive an anonymization scheme with large equivalence classes, this

means that the possibilities for suppression are smaller than with the case of an

attribute that drives the anonymization towards groups with small equivalence
classes. So, we have sorted the attributes according to their grouping power via the
following procedure.

e For every attribute, we fix all other attributes at level all and keep this attribute at
the most detailed level.

e Then, for every value of this attribute, we count the number of tuples that have this
value and group the results per group size. For example, Table 3.1 lists attribute
Marital Status at the most detailed level, as well as the first 10 rows for attribute
Age that gave the following histograms:

Clearly, attribute Age drives the anonymization towards many small-sized

equivalence classes compared to attribute Marital Status. Practically, this is due to



48

the fact that the domain of attribute Age is much larger, thus resulting in many
small groups. We considered the smallest of these values (which gives us the
smaller group that can be formed) as our discriminatory criterion. This is an
approximate estimation for the grouping power of the attribute. We avoided the
average value of the first few results, since this can be misleading (as for example,
in the aforementioned case of attribute Native Country).

e Then, we sort the attributes with respected to the size of smallest group in

ascending order.

Table 3.1 Histograms for attributes Marital Status and Age.

Marital_status level0, Number of groups Age level0, Number of groups
size of group with this size size of group with this size
21 1 1 1
370 1 3 2
827 1 5 1
939 1 7 1
4214 1 8 1
9726 1 13 1
14065 1 14 1

15 1
16 1
20 1

The resulting order of attributes was: Age with a smallest group size of 1, Occupation
with a smallest group size of 9, Work Class with a smallest group size of 14, Marital
status with a smallest group size of 21, Education with a smallest group size of 45,
and, finally, Race with a smallest group size of 231. We decided to mix attributes with
high and low grouping power as much as possible in our experiments, thus resulting
in the final order of attributes which is Age, Work class, Race, Occupation, Education,
Marital status, Native Country. So, for example, when we say that the quasi-identifier
size is 3, the quasi-identifier attributes are Age, Work class, Race, when we say that
the quasi-identifier size is 6, the quasi-identifier attributes are Age, Work class, Race,

Occupation, Education, Marital status.

3.2. K-anonymity for the Adult data set

In this subsection, we report on our findings for the relationship of maximum allowed

suppression, privacy preservation (expressed by the k-anonymity criterion) and level
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of generalization over the Adult data set. In our experiments, we measure the number
of suppressed tuples per node of the lattice of the Adult set. We have conducted this
experiment for all the possible values of QI between 2 and 7. We discuss the cases of
QI =3 and 5 that are the most characteristic — the rest of the case behave similarly to

the observations we make here.
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Figure 3.6 Cumulative histograms for different levels of generalization for |QI| size of
3 (a,b) and 5(c,d).

Figures 3.6a,b depict the cumKA histograms — i.e., the number of tuples to be
suppressed per value of k for two different levels of generalization. The size of the QI
is 3 and comprises the attributes Age, Work Class, and Race (in this order). In Figure
3.7a we depict the histogram for the case where no generalization takes place
(denoted as AOWORO) and Figure 3.7b depicts the histogram for the case where all
attributes are generalized by one level (denoted as AIWI1R1). We observe that (a)
there is a practically linear increment of suppressed tuples per value of k (i.e., the
suppression increases rather slowly with k) and (b) once we generalize all the

dimensions by one level, the suppression is reduced by 2 orders of magnitude. In
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Figures Figure 3.6¢,d we can see the cumKA histograms for size of QI equal to 5;
specifically, the attributes considered are Age, Work class, Race, Occupation and
Education. 1t is worth noting that the increase of the QI size by 2 dramatically
increases the amount of suppression by one order of magnitude. Interestingly, on the
case where QI=5 and no generalization takes place, the amount of suppression
surpasses 50% of the data set for a value of k=6. The vase where all dimensions are
generalized by one level presents a more linear increase of the suppression with the
increase of k and demonstrates amounts of suppression lower by one order of
magnitude than the case of no suppression.

Figures 3.7a,b depict the KA histograms — i.e., the number of groups per group size
for two different levels of generalization. In Figure 3.7a we depict the histogram for
the case where no generalization takes place (denoted as AOWORO) and Figure 3.7b
depicts the histogram for the case where all attributes are generalized by one level
(denoted as AIWI1R1). We observe that there is an exponential reduction in the
number of groups per group size within each histogram. Most importantly, however,
if one compares the two generalization levels, there is a reduction by a scale factor of
30 for the number of groups of the same size between the two generalization schemes!
The same applies for the cumulative behavior of the histogram too. For example, if
we want to achieve 3-anonymity, we have to suppress 554 tuples (1*296+2*129) for
the case of AOWORO and 17 tuples (1*11+2%*3) for the case of AIWIR.
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Figure 3.7 Number of groups per group size for different levels of generalization for

In Figure 3.7c,d we can see the KA histograms for size of QI equal to 5; specifically,

the attributes considered are Age, Work class, Race, Occupation and Education. One

can observe the following:

- The exponential decrease of number of groups as the size of group increases is
retained
- This phenomenon applies to both cases of no generalization and generalization by

one level

|QI| size of 3 (a,b) and 5(c,d).
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- Most importantly, one can observe a significant increase in the number of

suppressed tuples between the cases of (a)-(b) with |QI|=3 and (c¢)-(d) with |QI|=5.
For example, achieving 3-anonymity in the latter case requires suppressing 10458

tuples (1*¥*6920+2*1769) for AOWOROOOEO and 1619 tuples for (1*887+2%366)

level A1 WIRIOIEI.

In Figure 3.9 we can see the full lattice for the case of QI=3 (4ge, Work class, Race).
The numbers that annotate each node show the number of suppressed tuples

introduced by the node’s generalization scheme for 3-anonymity. Figure 3.10 depicts
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the respective information for QI = 5 (Age, Work class, Race, Occupation and

Education) for a subset of the full lattice, and specifically, for the lattice between the

generalization schemes 00000 and 11111.

The case of the partial lattice. Before proceeding, we would like to justify the
introduction of the partial lattice as one of the means of our experimental method.
One of the problems we have faced when comparing findings for different sizes of the
quasi identifier set is that the results are not directly comparable. This is due to two
main reasons: (a) the size of the lattice differs significantly and (b) the reported
numbers of suppressed tuples also differ significantly due to the fact that as the QI
size grows, the number of groups formed grows too, and each group shrinks in size as
a result (thus, for a fixed k, the number of suppressed tuples grows as the |QI|
increases). Although this is a clear and well expected result, we would like to be able
to compare the two cases to the extent that this is possible. We observed that if we
would focus on the sublattice between 00...0 and 11...1, we had a lattice of
comparable size to the lattice of QI = 3 and a quite good approximation of the
behavior of the suppression process for the full lattice. In Fig. 3.8 we depict the
average number of suppressed tuples per level for the full and partial lattice; as one
can see the difference is significant only for the case of H5 (where the partial lattice

has only one node).
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Figure 3.8 Average number of suppressed tuples over different heights for 3-
anonymity and QI size of 5 for (a) the full lattice and (b) the partial lattice of the data

set.
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Figure 3.10 Sub-Lattice (between 00000 and 11111) with suppressed tuples for quasi
identifier set of size 5. The QI is Age, Work Class, Race, Occupation, Education.
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3.2.1. Comparison of different levels of generalization with fixed k and QI size

Observe Table 3.2 that compares the two lattices level by level. For each layer of
nodes we list the minimum, average and maximum numbers of nodes suppressed, the
fractional decrease over the non-generalized data set and the decrease in the
suppression with respect to the previous layer. Figure 3.11 depicts the average number

of suppressed tuples per level graphically.

Table 3.2 Number of suppressed values for 3-anonymity as (a) the height of the
generalization increases and (b) the size of the quasi identifier set increases (for |QI| =

3 and5)
QI =3 QI =5
Min Avg Max Avg % % over Min Avg Max Avg % over
over previous % previous
full over
full
HO | 554 554 554 1.83 - 10458 | 10458 | 10458 | 34.67 -

HI| 125 207 | 295 0.69 | 6233 4514 | 7795 9879 [ 25.84 [ 34.15

H2 28 56 69 0.191 72921 2169 | 5459 8913 | 18.10 | 42.80

H3 12 24 54 0.08 | 57.52| 1619 | 3472 7398 | 11.51 | 57.22

H4 4 8 15 0.03 64.79] 1051 | 1881 | 3353 | 6.24| 84.53
HS5 1 4 7 0.01 ] 52.66 773 733 733 | 243 156.67
H6 0 2 4 0.01 [ 58.50 - - - - -

For each row of Table 3.2, we denote with ‘avg % over full’ the fraction of the
average number of suppressed tuples of the specific height (listed in column ‘Avg’)
over the number of tuples of the whole data set. This measure allows us to see the
gradual degradation of the number of suppressed tuples as we ascend the lattice.
Also, we denote with ‘% over previous’ the fraction:
Error!

This measure allows us to see the gain from ascending one level up in the lattice each
time.
The study of Table 3.2 presents the following observations:
- Comparison of different levels for the same QI. It is clear that as the height

increases the number of suppressed tuples drops with a high rate (observe also

Figure 3.11 where this is graphically depicted). Clearly, there is a point after
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which the climbing of the lattice is not further required; this practically happens
little after the middle of the lattice’s height (at height 4 for the 7 levels of QI=3
and height 8 for the 14 levels of QI =5 — see Figure 3.8 for the latter.

Comparison of different QI sizes. If one compares the average and the minimum
numbers of suppressed tuples per height, one can see that the case of QI=5
presents numbers that are between 18 and 262 times(!) higher for levels HO to
H4. For this range of levels, the higher the level, the higher the suppression for
QI=5. Remember that Figure 3.8 also depicts the results for the full lattice; with
the exception of level H5 which has an average number of suppressed tuples
twice the size of the partial lattice, the observations are practically similar.

Not all attributes are born equal. Finally, observe that the range of values
between minimum, maximum and average suppression per level is quite wide.
Interestingly, in the low levels of generalization (which are much more
interesting, because this is where we really want our solutions to be found), the
careful choice of generalization scheme can yield approximately half the
suppressed tuples than the average case. As the height increases, the importance
of this choice remains significant albeit of less importance. The fact that the
generalization of some attributes leads to a higher reduction of the number of
suppressed tuples is due to the fact that a generalization over an attribute with a
large domain reduces main small groups at the detailed level to coarser groups at
the generalized level, producing, thus, higher opportunities for the reduction of
suppression.

- Observe, for example, level H3 for QI=3. Node 102 has the smallest
number of suppressed tuples (12). It is interesting to notice its parents at
level H2: node 002 suppressed 69 tuples (much more than node 102),
whereas node 101 suppressed 28. In other words, the best node is produced
by (a) generalizing attribute Age, (b) not touching attribute Work Class and
(c) slightly ascending over attribute Race. At the same time, the maximum
number of suppressed tuples at level H3 is attained by node 030, which does
the exact opposite of node 102: it only generalizes (a lot, at level 3) attribute
Work Class.

- At the same time, at level H3 for QI=5 (4ge, Work class, Race, Occupation,
Education) we can observe that (again) the nodes with the largest and

smallest number of suppressed tuples are practically complementary: node
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01101 yields a suppression of 7398 tuples and node 11010 yields a
suppression of 1619 tuples. Observe also what happens when we generalize
attribute Work Class: very small reductions to suppression are produced in
almost all occasions when we move from a node without generalization of
Work class to a node that generalizes Occupation (except in the case of the
combination of Occupation with WorkClass) for practically all the levels.
This is mainly due to the fact that moving from LO to L1 for Work Class (a)
does not involve the values: Private, (b) has a rather small grouping for the
values under Self-Employed and, thus, (c) ultimately reduces to grouping
the government jobs under value ‘Gov’ at L1.

Also, observe the behavior of attribute Occupation (4™ in the numbering of
attributes). Apparently, it pays off to ascend from HO to H1, but not really
to ascend from H1 to H2, unless in combination with attribute Age. At the
same time, ascending from the nodes of H2 with no generalization for
Occupation to H3 at nodes that do generalize Occupation practically reduce
suppression in half(!). In other words, it appears that Age is the dominant
attribute to consider for suppression reduction and that Occupation
demonstrates different behavior at different levels, depending on the rest of

the generalized attributes.

avg # supp tuples
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\
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Figure 3.11 Average number of suppressed tuples over different heights for 3-
anonymity. The QI size of 3 refers to the full lattice and the QI size of 5 to the partial

lattice of Figure 3.2.4.
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In this subsection, we report on our findings when comparing different values of k for

the privacy criterion of k-anonymity for their effect on the number of suppressed

tuples. For each layer of nodes we list the minimum, average and maximum numbers

of suppressed tuples, for a height up to H6, for QI sizes of 3 (Table 3.3) and 5 (Table

3.4). The results are also graphically depicted in Figure 3.12 and Figure 3.13.

Table 3.3 Minimum, maximum and average number of suppressed tuples for
k=3,10,25 and QI size of 3 over the full lattice.

|QI|=3 (lattice up to height H6)

k=3 k=10 k=25
Min avg max min avg max min avg max
HO 554 554 554 1921 | 1921 | 1921 4578 | 4578 | 4578
H1 125 209 295 5221 1030 1357 1184 2546 | 3573
H2 28 57 69 170 352 508 610 | 1153 | 1926
H3 12 24 54 51 148 484 195 419 | 1236
H4 4 8 15 28 45 94 56 127 222
HS 1 4 7 2 19 37 14 48 105
Hé6 0 2 4 0 9 23 14 21 40

Table 3.4 Minimum, maximum and average number of suppressed tuples for
k=3,10,25 and QI size of 5 over the partial lattice.

IQI|=5 (PARTIAL lattice)

k=3 K=10 k=25
Min avg max min avg max min avg max
HO | 10458 | 10458 | 10458 | 18916 | 18916 | 18916 | 25945 | 25945 | 25945
H1| 4514 | 7795 98791 10944 | 15974 | 18801 | 16492 | 22282 | 25945
H2| 2169 | 5459 | 8913 | 6151 | 12684 | 18325 | 10655 | 18624 | 25945
H3| 1619 | 3472 7398 4824 9291 | 17359 | 8516 | 14867 | 25084
H4 | 1051 | 1881 33531 3990 6049 | 10141 | 7520 | 10923 | 16818
HS 773 733 7331 3259 3259 | 3259 | 6712 6712 | 6712
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Figure 3.12 Average and minimum number of suppressed tuples over different heights
for a QI size of 3 and different k for k-anonymity. The reported numbers refer to the
full lattice.
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Figure 3.13 Average and minimum number of suppressed tuples over different heights
for a QI size of 5 and different k for k-anonymity. The reported numbers refer to the
partial lattice.

Our observations can be summarized as follows:

- The effect of k to the suppression. By comparing the same lines of the two
tables over different values of k, one can clearly see that the effect of the
privacy criterion (here: k for k-anonymity) to the amount of suppressed tuples
is practically analogous to the amount of suppression performed.

As the height is small and the number of suppressed tuples significant (in fact,
higher than the value of k, i.e., till height H3 included), the ratio of the

minimum number of suppressed tuples between k=3 and k=10, as well as



Table 3.5 Ratio of minimum values for different values of k, QI size and height
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k=10 and k=25 increases slowly (we chose the minimum since it is the value

of the best solution) and remains close to the fraction of the two k’s.

QI=3 |Q1=4 QI=5 [Q11=6

min(k=10) | min(k=25) | min(k=10) | min(k=25) | min(k=10) | min(k=25) | min(k=10) | min(k=25)/

/min (k=3) | /min(k=10) | /min (k=3) | / min(k=10) | / min (k=3) | / min(k=10) | / min (k=3) | min(k=10)
HO 3.47 2.38 2.86 1.56 1.81 1.37 1.57 1.18
H1 4.18 2.27 3.14 2.02 2.42 1.51 1.91 1.34
H2 6.07 3.59 3.97 2.28 2.84 1.73 2.17 1.47
H3 425 3.82 4.75 2.27 2.98 1.77 2.49 1.64
H4 7 2 6.07 3.59 3.8 1.88 2.61 1.68
H5 2 7 425 3.12 422 2.06 3.03 1.71

The effect of height increase over the number of suppressed tuples is the same
for different k’s. Observe Figure 3.12 and Figure 3.13. All the lines are
practically parallel; in other words, independently of k, the trend of
suppression and the height increases is the same. Observe also, that when
minimum values are concerned, the changes are slightly steeper than in the
case of average values; however this observation is of secondary importance.

Computing the fraction between minimum and average number of suppressed
tuples. Concerning QI=3, the fraction of the average number of suppressed
tuples over the minimum number of suppressed tuples is approximately
around 2 — and, in a couple of cases it raises up to 3 times. When we move to
QI=5, the respective fraction ranges on average between 1.8 to 1.5 — dropping
as k increases. In other words, it is still important to carefully pick a good

solution with a price of 50% — 100% with respect to the average cost. Still, as

QI and k increase, the importance of this decision diminishes.

For completeness, we also list the average and the min numbers of suppressed tuples

for the

full lattice of QI=5 in Table 3.6, Figure 3.14 and Figure 3.15.




61

Table 3.6 Average number of suppressed tuples for k=3,10,25 and QI size of 5 over

the full lattice

|QI|=5 (FULL lattice). avg and min #suppressed tuples per level

k=3 k=10 k=25
avg min Avg min avg min

HO 10458.00 10458 | 18916.00 18916 | 25945.00 25945
H1 7795.20 4514 | 15973.80 10944 | 22282.00 16492
H2 5537.07 2169 | 12734.20 6151 | 18954.20 10655
H3 3711.88 1123 9652.73 3468 | 15463.70 6599
H4 2296.34 716 6804.24 2065 | 11929.88 4247
HS 1295.15 322 4400.43 1160 8539.00 2471
H6 644.26 108 2551.32 578 552431 1257
H7 282.98 41 1288.55 230 3173.08 648
HS8 110.42 8 554.97 60 1535.83 263
H9 40.52 2 212.72 14 631.24 26
H10 14.16 0 72.94 0 223.06 12
H11 4.92 0 25.14 0 78.46 0
H12 1.42 0 10.09 0 26.30 0
H13 0.27 0 2.87 0 6.27 0
H14 0 0 0 0 0 0
H15 0 0 0 0 0 0
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Figure 3.14 Average number of suppressed tuples over different heights for a QI size
of 5 and different k for k-anonymity. The reported numbers refer to the full lattice.
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Figure 3.15 Min number of suppressed tuples over different heights for a QI size of 5
and different k for k-anonymity. The reported numbers refer to the full lattice.

3.2.3. Comparison of different QI sizes (over different levels) with a fixed value of k

In this subsection, we focus our observations in the effect of increasing the QI size
over the amount of suppressed tuples. We fix the level of k-anonymity to k = 3 and
present our results per different levels of generalization and QI size.

Our observations can be summarized as follows:

- Clearly, different QI sizes at the same level have on average an increase of the
scale of 2 -3 times, for large volumes of suppressed tuples. This scale factor
changes as the volume of suppressed tuples drops

- Moreover, it is clear that statistically tolerable amounts of suppressed tuples
are attained slower as the size of QI grows. For example, the suppression
percentage falls under 1% of the total volume of data at height H1 for QI = 3,
H3 for QI =4, H6 for QI =5 and after H8 for QI = 6.

- The most important observation is that a QI of size n drops to the levels of
suppression of the QI of size n-1 around 3-4 levels of generalization later for

smaller QI'’s and 1-2 levels for larger QI’s.



3.2.3.1. Partial lattices
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Table 3.7 Average number of suppressed tuples and percentage over the full data set
for 3-anonymity for different QI sizes over the partial lattice.

QII=3 |QI|=4 QI|=5 Q=6
Avg Avg % Avg Avg % Avg Avg % Avg Avg %
over full over full over over full
full
HO 554 1.836 | 3297.0 10.9 | 10458.0 34.71 15318.0 50.8
H1 208.66 0.691 1847.8 6.1 7795.2 25.8 1 12808.7 42.5
H2 48.5 0.160 803.3 2.7 5458.8 18.1 ] 10342.5 343
H3 17 0.056 217.5 0.7 3471.9 11.5 7958.4 264
H4 - - 47.0 0.2 1881.4 6.2 5740.1 19.0
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Figure 3.16 Percentage of suppressed tuples over different heights for 3-anonymity.
The reported numbers refer to the partial lattices for all QI sizes.

Table 3.8 Min number of suppressed tuples over the full data set for 3-anonymity for
different QI sizes over the partial lattice.

min
QI=3 | QI=4 | ]QI=5 | ]QI=6
HO0 554 3297 10458 15318
H1 125 1042 4514 8304
H2 28 318 2169 4901
H3 12 110 1619 4023
H4 4 47 1051 3155
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Figure 3.17 Min suppressed tuples over different heights for 3-anonymity. The
reported numbers refer to the partial lattices for all QI sizes.

3.2.3.2. Full lattices

Table 3.9 Average number of suppressed tuples and percentage over the full data set
for 3-anonymity for different QI sizes over the full lattice.

|QI=3 |QII=4 |QII=5 |QI|=6

Avg | Avg % Avg Avg % Avg Avg % Avg Avg %

over over over over

full full full full
HO| 5540 1.8] 3297.0 10.9] 10458.0 347 15318.0 50.8
H1| 2087 07] 18478 6.1 77952 25.8| 12808.7 42.5
H2| 3565 0.2 868.6 29 55371 184 10369.3 34.4
H3| 240 0.1 354.3 12| 37119 123 ]| 8105.1 26.9
H4 8.5 0 121.0 04] 22963 76| 6036.7 20.0
H5 4.0 0 42.9 0.1 1295.1 43 4255.2 14.1
H6 1.7 0 15.1 0 644.3 211 2803.0 9.3
H7 0.7 0 6.1 0 283.0 091 1703.8 5.6
HS8 0 0 2.1 0 110.4 0.4 941.1 3.1
H9 0 0 0.4 0 40.5 0.1 465.5 1.5
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Figure 3.18 Percentage of suppressed tuples over different heights for 3-anonymity.
The reported numbers refer to the full lattices for all QI sizes.
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Table 3.10 Average number of suppressed tuples and percentage over the full data set
for 3-anonymity for different QI sizes over the full lattice.

Min # of suppressed tuples
QII=3 | [QI=4 | |QI=5 | |QI=6
HO 554 3297 10458 15318
H1 125 1042 4514 8304
H2 28 318 2169 4901
H3 12 110 1123 2867
H4 4 28 716 1941
H5 1 12 322 1177
H6 0 4 108 629
H7 0 0 41 354
HS 0 0 8 155
H9 0 0 2 33
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Figure 3.19 Min suppressed tuples over different heights for 3-anonymity. The
reported numbers refer to the full lattices for all QI sizes.

3.2.3.3. Selected nodes

Observe also Table 3.11, where we compare “homologous” nodes. Since the quasi-

identifier size is different, one might possibly argue that the abovementioned

comparison is unfair. So, we compare the following cases:

— both configurations have a single attribute generalized (QI=3 with nodes 001,
010, 100 vs. QI=5 with nodes 00001, ..., 10000): observe how the ranges for QI
=3 are all below 1%, whereas the smallest suppression for QI =5 is practically

15%(!)
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Table 3.11 Comparison of homologous nodes: (a) absolute numbers and (b)
percentage of suppressed tuples over the full data set for 3-anonymity.

001 | 010 | 100 avg 00001 | 00010 | 00100 | 01000 | 10000 avg

# tuples

206 | 295 | 125 | 208.66 | 9879 | 9017 | 9544 | 6022 | 4514 | 7795.2
suppressed
% vs 0 0.68 | 0.97 | 0.41 0.69 3575 | 29.89 | 31.64 | 19.96 | 1498 | 25.84

— both configurations have three levels generalized (QI = 3 with node 111 vs. QI=5
with nodes 00111, ..., 11100): no matter which node of QI=5 we pick, with a
generalization of three levels, it is clear that the effect of the size of QI is very
important: the best possible suppression of the nodes with QI=5 is 95 times larger
than the respective suppression of node 111. At the same time, in order to
highlight that almost all of these nodes are important nodes in the lattice, we
extend Table 3.12 with the last column which shows that each of these nodes
(with the exception of 00111) provides a significant reduction of the amount of
suppressed tuples with respect to the average node of its previous level (i.e., apart
from node 00111, all the other nodes would be worthy candidates to consider as

generalization schemes if necessary).

Table 3.12 Comparison of homologous nodes: (a) absolute numbers, (b) percentage of
suppressed tuples over the full data set for 3-anonymity and (c) improvement over the
average of the previous level

Num. % over level % improvement over the
suppressed 0 avg previous level
111 17 0.056 69.9115
00111 7398 24.527 -35.519
01011 4042 13.400 25.957
01101 4705 15.599 13.812
01110 4105 13.609 24.803
10011 2917 9.671 46.565
10101 3390 11.239 37.900
10110 3118 10.337 42.883
11001 1629 5.400 70.159
11010 1619 5.367 70.342
11100 1796 5.954 67.100
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— QI =3 with node 111 vs. QI =5 with node 11111: In Table 3.13, we can see that
the top of the “diamond” of the partial lattice, which is the best that the partial
lattice can do, is quite low, in both cases -- even despite the fact that a difference
of two attributes in the QI size results in a scale factor of 45(!!) for the suppressed

29

tuples. This is an important observation, since one might “safely” restrict the
search within the partial lattice for a quick generalization which is not necessarily

the optimal.

Table 3.13 Comparison of homologous nodes: (a) absolute numbers and (b)
percentage of suppressed tuples over the full data set for 3-anonymity.

111,QI=3 11111, QI =5
# tuples suppressed 17 773
% vs 0 0.056 2.56

3.2.4. Big picture

In the sequel we provide a combined view of all the results of this subsection. We use
a diagrammatic technique that combined QI sizes, heights and different values of k
and depicts the number of suppressed tuples for every possible combination in a

single figure.
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Figure 3.20 Relative volume of suppressed tuples for different combinations of
generalization height, k and QI size (each sub-bar depicts the avg number of
suppressed tuples fully —i.e., not as a differential over the previous sub-bar; thus, it is
meaningless to add the different values of sub-bars within a bar). Each vertical
interval between horizontal lines corresponds to 10,000 tuples.
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Figure 3.21 Relative volume of suppressed tuples for different combinations of
generalization height, k and QI size (each sub-bar depicts the avg number of

suppressed tuples incrementally —i.e., with each bar as a differential over the previous

sub-bar; thus, it makes sense to add the different values of sub-bars within a bar).

Figure 3.22 Relative volume of suppressed tuples for different combinations of
generalization height, k and QI size (each sub-bar depicts the min number of

suppressed tuples fully —i.e., not as a differential over the previous sub-bar; thus, it is

meaningless to add the different values of sub-bars within a bar). Each vertical
interval between horizontal lines corresponds to 10,000 tuples.
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Figure 3.23 Relative volume of suppressed tuples for different combinations of

generalization height, k and QI size (each sub-bar depicts the min number of

suppressed tuples incrementally — 1i.e., with each bar as a differential over the previous
sub-bar; thus, it makes sense to add the different values of sub-bars within a bar).

Our observations can be summarized as follows:

A first observation (see for example Figure 3.23) is that all QI sizes have the
same behavior: for low generalization levels they produce high numbers of
suppressions and as the generalization level rises, the number of suppressed
tuples drops gracefully. This is clearly depicted in Figures 3.20 for the average
values and Figures 3.22 for the minimum values — in both these charts the
absolute values of each QI size are depicted.

The larger the QI size, the slower this drop is. This is evident as (a) in small
heights, one can see QI=3 which quickly disappears then; (b) the increase to
the suppressed tuples due to QI=6 is quite small compared, e.g., to QI=5 at
lower levels; at higher levels however, the contribution of QI=5 drops whereas
QI=6 that drops slower practically retains its contribution to suppression. See
also Fig. 3.9 which clearly depicts the phenomenon.

The increase of suppression due to the increase of k increases slowly with the
height for as long as this has a meaning (see Table 3.5: within each column, as
the height increases, the ratio of best solution for adjacent k’s increases too).
Interestingly, all k’s fall with similar, but not identical speed as the height

increases; see also Fig. 3.15 which clearly depicts the phenomenon.
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e When comparing average to minimum values it appears that the average
values on suppression are practically 2,5 times as high as the minimum ones
(observe Table 3.14). Again, this demonstrates clearly that it is worth paying
the price to explore thoroughly the search space of possible solutions for a

user’s request.

As already mentioned, another result not clearly depicted in Figures 3.20 — 3.23 has to
do with the particularities of each of the quasi-identifier attributes. Different attributes

have different impacts to suppression; this will be detailed further in Section 5.

Table 3.14 Ratio of average number of suppressed tuples over minimum number of
suppressed tuples for different QI sizes, values of k (in k-anonymity) and height.

[QI[=3 |QI|=4 |QI|=5 |QI|=6 avg
avg/min | k=3 | K=10| k=25| k=3 | k=10 | k=25] k=3 | k=10| k=25| k=3 | k=10 | k=25

HO 1 1 1 1 1 1 1 1 1 1 1 1| 100
H1 1.7 2.0 22| 18 1.8 1.7] 17 1.5 14] 15 1.4 12| 166
H2 2.0 2.1 19| 27 2.6 25| 26 2.1 18] 21 1.8 15| 214
H3 2.0 2.9 21] 32 3.1 35] 33 2.8 23| 28 2.3 19| 268
H4 2.1 1.6 23| 43 3.8 31| 32 3.3 28| 31 2.6 22| 287
H5 4.0 9.5 35| 36 4.5 471 40 3.8 35] 36 2.9 26| 418
H6 1.5] 38 2.6 85] 6.0 4.4 44| 45 4.2 35| 434
ava 2.13 318 207 2901 277 357 311 270 246 266| 231 199| 266




3.3. L-diversity for the Adult data set
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Figure 3.24 Cumulative histogram yw I-diversity

3.3.1. Comparison of different levels of generalization with fixed k and QI size

As one can clearly see in all the charts and tables of this section, as the height

increases, the number of suppressed tuples drops with a high rate — after a certain

level, it becomes meaningless to climb further up the lattice. The same phenomenon

has been observed in the case of k-anonymity, too.
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- Not all attributes are born equal. Again, as in the case of k-anonymity, it is clear
that the careful choice of generalization scheme can significantly improve the
number of suppressed tuples — especially at the lower parts of the lattices (that
present the most important regions too).

- Observe, for example, level H3 for QI=3. Node 102 has the smallest
number of suppressed tuples (12). It is interesting to notice its parents at
level H2: node 002 suppressed 123 tuples (much more than node 102),
whereas node 101 suppressed 50. In other words, the best node is produced
by (a) generalizing attribute Age, (b) not touching attribute Work Class and
(c) slightly ascending over attribute Race. At the same time, the maximum
number of suppressed tuples at level H3 is attained by node 030, which does
the exact opposite of node 102: it only generalizes (a lot, at level 3) attribute
Work Class.

- At the same time, at level H3 for the partial lattice of QI=5 (Age, Work
class, Race, Occupation, Education) we can observe that (again) the nodes
with the largest and smallest number of suppressed tuples are practically
complementary: node 01101 yields a suppression of 10472 tuples and node
11010 yields a suppression of 2476 tuples. The latter is produced by the
node 10010 at H2 which is also the one with the smallest amount of
suppressed tuples at its level. Clearly, the combination of the generalization
of Age and Occupation minimize the suppression (see also the rest of the
nodes of H3 that are produced by 10010: they have similar amounts of
suppressed tuples and they are significantly lower than the other nodes of
the level). Interestingly, the best generalization scheme at level H3, is not
depicted in the partial lattice and it is 10020 (which practically says that

occupation is fully generalized at its top-acceptable level).

3.3.2. Comparison of different values of | and height with a fixed QI size

In this subsection, we report on our findings when comparing different values of / for
the privacy criterion of I-diversity for their effect on the number of suppressed tuples.
For each layer of nodes we list the minimum and average numbers of suppressed

tuples, for QI sizes of 3 (Table 3.16) and 5. For the latter we explore the case of full
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lattice (Table 3.17). The results are also graphically depicted in Figure 3.27 and
Figure 3.28 for QI=3 and Figures 3.29 and Figure 3.30 for QI=5.

Our observations follow closely the respective observations for k-anonymity and can
be summarized as follows:

- As [ increases, so does the amount of suppressed values (for the same height
and QI size). The amount of suppression is not directly analogous to the value
of /, however the scaling of the suppression is quite close to the scaling of the
value of /.

- All the lines in all the charts of this subsection expose the same trend: as the
height increases, the number of suppressed tuples drops quite quickly

- Asin the case of k-anonymity, the ratio of minimum to average value is higher
than 50% (Table 3.15) (in fact it rises to quite large values at big heights; if
one removes the outliers the average ratio of average to minimum value is

around 3).

Table 3.15 Ratio of average number of suppressed tuples over minimum number of
suppressed tuples for different QI sizes, height and 1-3

avg/min (1-3)
[QIF3 [ |QI=4 ||QI=5 [|QI=6
HO0 1 1 1 1
H1 1.94 1.58 1.59 1.44
H2 2.27 2.58 2.29 1.92
H3 3.6 3.12 3.07 2.49
H4 1.9 5.29 3.17 2.83
HS 4.5 7.41 3.73 3.28
H6 6.17 4.78 4.03
H7 8.3 10.9 4.40
HS8 2.1 10.69 5.61
H9 0.4 37.35 11.38
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Table 3.16 Average and minimum number of suppressed tuples pre level for QI=3

over the full lattice for different values of |

|QI=3 (full lattice)
1-3 1-6 1-9
min avg min avg min avg
HO 1033 1033 2476 2476 4251 4251
H1 240 468 788 1430 1258 2356
H2 50 114 357 535 680 1160
H3 12 43 54 182 104 377
H4 6 11 22 50 29 99
HS 1 5 2 19 2 28
H6 0 2 0 10 0 11
H7 0 1 0 2 0 3
HS8 0 0 0 0 0 0
H9 0 0 0 0 0 0
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£ 500 -
E 0 IIK\II 1
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Figure 3.27 Minimum number of suppressed tuples pre level for QI=3 over the full

lattice for different values of |
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Figure 3.28 Minimum number of suppressed tuples pre level for QI=3 over the full

lattice for different values of /
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Table 3.17 Average and minimum number of suppressed tuples pre level for QI=5
over the full lattice for different values of |

|QI|=5 (full lattice)
1-3 1-6 1-9
min avg min avg min Avg
HO0 13167 | 13167 20261 | 20261 25901 | 25901
H1 6463 | 10301 | 11971 | 17150 15624 | 22002
H2 3347 7694 6923 | 13890 | 10027 | 18551
H3 1774 5458 4043 | 10705 6392 | 15042
H4 1132 3594 2668 7738 4173 | 11506
HS 581 2172 1463 5180 2573 8181
Hé6 244 1168 689 3130 1241 5259
H7 50 545 302 1670 675 3015
HS§ 20 214 63 741 250 1466
H9 2 75 7 272 63 587
H10 0 23 0 85 14 196
H11 0 7 0 26 0 57
H12 0 2 0 9 0 15
H13 0 0 0 2 0 4
H14 0 0 0 0 0 0
H15 0 0 0 0 0 0
30000
25000 +
%_ 20000 -
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j=13
2 15000 \ 13
£ 10000 \ -6
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5000 \\ 9
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°Z22TTLLE22933038
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Figure 3.29 Minimum number of suppressed tuples pre level for QI=5 over the full
lattice for different values of |
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Figure 3.30 Average number of suppressed tuples pre level for QI=5 over the full
lattice for different values of |

3.3.3. Comparison of different QI sizes (over different levels) with a fixed value of |

In this subsection, we focus our observations in the effect of increasing the QI size
over the amount of suppressed tuples. We fix the level of /-diversity to / = 3 and
present our results per different levels of generalization and QI size.

Our observations can be summarized as follows:

- Clearly, different QI sizes at the same level have varying levels of increase to
the minimum number of suppressed tuples. This scale up can range from 5 to
2 and systematically decreases as QI increases. However, as in the case of k-
anonymity, it is clear again that the size of QI is the determining factor for the
amount of suppression that can take place.

- Moreover, it is clear that statistically tolerable amounts of suppressed tuples
are attained slower as the size of QI grows. For example, the suppression
percentage falls under 1% of the total volume of data at height H1 for QI = 3,
H3 for QI =4, H6 for QI =5 and after H8 for QI = 6 (all at the same level with
k-anonymity).

As in the case of k-anonymity, we also observe that a QI of size n drops to the levels of

suppression of the QI of size n-1 around 2-3 levels of generalization later
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Table 3.18 Average and minimum number of suppressed tuples per level for all QI
sizes and 1=3 over the full lattice

|QI|=3 |QI|=4 |QI|=5 |QI|=6
avg min avg min avg min avg min
HO 1033.0 1033 ] 5116.0 5116 | 13167.0 | 13167 | 17871.0 | 17871
H1 467.7 240 | 3118.0 1972 1 10300.6 6463 | 15405.8 | 10671
H2 113.7 501 1644.4 6371 7694.4 3347 ] 12928.4 6719
H3 43.2 12 750.1 240 | 5457.6 1774 1 10518.6 4210
H4 114 6 264.8 501 35935 1132 ] 8200.0 2894
H5 4.5 1 89.0 121 2171.9 581 | 6079.5 1848
H6 1.7 0 24.7 41 1168.2 244 | 4236.2 1049
H7 0.7 0 8.3 0 545.0 50| 2740.5 622
HS8 0 0 2.1 0 213.9 20| 1617.6 288
H9 0 0 0.4 0 74.7 2 854.0 75
20000
18000
16000 \
3 14000 \
§' 12000 -+
% 10000 \ —lail=
= 8000 laif=4
§ 6000 \ [Ql|=5
4000 \\ \\ ——al|=6
2000
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Figure 3.31 Minimum number of suppressed tuples per level for all QI sizes and 1=3
over the full lattice
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Figure 3.32 Average number of suppressed tuples per level for all QI sizes and 1=3
over the full lattice

3.4. K-anonymity and L-diversity for the PUMS data set

In this subsection, we report on our findings with the PUMS data set [[PUMS]. The
PUMS data set comprises 600000 records of the USA census. The attributes of the
PUMS data set are age, birthplace, education, gender. The hierarchies of these
attributes are the same for the same with Adult for the attributes age, education and
gender but different for the birthplace (we can see birthplace hierarchy in Figure

3.33).We have used occupation as the sensitive attribute for this data set.
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K-anonymity. Although the data set size is significantly larger than the one of Adult,
the quasi-identifier size of the PUMS data set is small, as it comprises only 4
attributes. Therefore we have not experimented with the quasi-identifier size, but
rather we have explored the interrelationship of k with the different heights of the
lattice. In Table 3.19 and Figure 3.34 we depict the average number of suppressed
tuples per height and in Figure 3.35 and Table 3.20 we depict the minimum number of
suppressed tuples per level.

Our observations can be summarized as follows:

- The general trend of suppression as the height increases is quite similar with
the one discovered at the Adult data set: the suppression levels are high for
small heights and quickly drop to small amounts of suppressed tuples. This
holds for all the values of k that we have tested (i.e., k=3, 10, 50, 100, 150).
Interestingly, all the values of k demonstrate this cut-off behavior within the
range of two heights (H3 and H4) when the minimum number of suppressed

tuples is concerned (see Figure 3.4.2).

Table 3.19 Average number of suppressed tuples for different values of k for the

PUMS data set

Average # of suppressed tuples
k=3 k=10 k=50 k=100 k=150
HO 31933.0 | 128493.0 | 369177.0 | 490040.0 | 539066.0
H1 12020.3 | 57561.5 | 220812.5 | 330966.5 | 396465.0
H2 5071.2 | 25413.6 | 124158.2 | 204604.8 | 260322.4
H3 1790.9 0873.9 | 59787.8 | 115041.2 | 158743.6
H4 530.4 3197.8 | 23421.8 | 50488.1 | 77780.2
H5 149.4 1028.2 7789.6 | 17577.8 | 28101.9
H6 31.8 290.3 2307.0 5288.1 8920.8
H7 4.5 54.9 679.8 1534.8 2667.9
HS8 0.6 6.3 147.9 402.4 663.5
H9 0 0 94 79.9 156.5
H10 0 0 0 0 15.4
H11 0 0 0 0 0
H12 0 0 0 0 0
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Figure 3.34 Average number of suppressed tuples for different values of k for the
PUMS data set

- The relationship between minimum and average suppressed tuples is quite
different than the case of the Adult data set. The minimum values drop very
quickly with the increase of the height, whereas this fall is much slower than
the case of the average suppression: in other words, the choice of a good
anonymization scheme is much more important in the case of the PUMS data

set.
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Table 3.20 Minimum number of suppressed tuples for different values of k for the
PUMS data set

min # of suppressed tuples
k= k=10 k=50 k=100 | k=150
HO 31933 | 128493 | 369177 | 490040 | 539066
H1 4462 | 27036 | 140719 | 226622 | 288288
H2 570 3778 30578 | 64388 | 95620
H3 169 1370 11141 | 27287 | 42793
H4 3 197 2037 4775 7705
H5 0 18 527 1193 2482
Hé6 0 0 95 391 779
H7 0 0 0 0 0
HS8 0 0 0 0 0
H9 0 0 0 0 0
H10 0 0 0 0 0
H11 0 0 0 0 0
H12 0 0 0 0 0
600000
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500000 \
400000 \
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Figure 3.35 Minimum number of suppressed tuples for different values of k for the
PUMS data set

L-diversity. We have tested the PUMS data set for its behaviour concerning the
suppression of tuples in the case of /-diversity for different values of / (specifically, 3,
6, 9). The choice of values for / was such that the data set was not massively
suppressed for reasonable heights (observe Table 3.22, where H2 still holds around

1% of suppression for the best possible solution). We depict our findings in Table
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3.21 and Figure 3.36 for the average number of suppressed tuples per height and value
of / as well as in Table 3.22 and Figure 3.37 for the minimum number of suppressed

tuples — i.e., the best possible solution—per height and value of /.

Table 3.21 Average number of suppressed tuples for different values of I for the
PUMS data set

avg # of suppressed tuples
1=3 1=6 1=9
HO 37187.0 | 96136.0 | 147964.0
Hl1 14255.8 | 41891.5 [ 71999.5
H2 6136.4 | 18788.9 | 33843.0
H3 2177.5 | 7380.6 | 14116.6
H4 630.1 | 2329.0 4849.2
H5 178.1 721.6 1524.5
H6 38.1 183.8 438.3
H7 5.0 28.7 84.0
H8 0.6 2.8 9.4
H9 0 0 0.9
H10 0 0 0
H11 0 0 0
H12 0 0 0
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Figure 3.36 Average number of suppressed tuples for different values of | for the
PUMS data set



Table 3.22 Minimum number of suppressed tuples for different values of | for the

PUMS data set

min # of suppressed tuples

1=3 1=6 1=9
HO 37187 | 96136 147964
H1 5333 | 20837 40589
H2 701 2779 6129
H3 204 927 2026
H4 3 89 332
H5 0 7 41
Hé6 0 0 0
H7 0 0 0
HS8 0 0 0
H9 0 0 0
H10 0 0 0
H11 0 0 0
H12 0 0 0
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Figure 3.37 Minimum number of suppressed tuples for different values of 1 for the
PUMS data set
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Our findings can be summarized as follows:

- The general tendency for the drop of suppressed tuples as the height increases
is verified once again: there is an exponential drop of the suppression as the
height increases, for all values of /.

- The cut-off point, whereas suppression becomes acceptable low for the best
possible anonymization scheme (Figure 3.37) is quite low (around H1 and H2
for all values of 1), whereas this picture is quite different for the average case
(Figure 3.36) where it is found approximately two levels higher.

- The comparison of k-anonymity and /-diversity shows a remarkable
resemblance for the general trend and the behavior of the amount of
suppressed tuples as the height or the privacy criterion increase their value.

Again, we can think of k-anonymity as a good estimator of /-diversity.

3.5. The price of histograms

The lattice of generalization schemes and most importantly, the histograms with
which the lattice is annotated come with a price, both in terms of space and in terms
of construction time. In this section, we discuss these preprocessing and storage

prices.

K-anonymity. In Figure 3.38 we depict the time needed to construct the full lattice
and to annotate it with the necessary histograms for the case of k-anonymity.
Naturally, the latter task takes up practically all the necessary time. As the QI size
increases the time also increases exponentially. However, for all the QI sizes that we

have considered, the time ranges from few seconds to less than 20 minutes.

20

15

=
=]

time (min)
wu

o

[l

Figure 3.38 Construction time for the full lattice and its k-anonymity histograms for
the Adult data set.
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Clearly, the size of the data set influences the time needed to construct the full
lattice’s histograms. Remember that the histogram for each node in the lattice
practically requires two aggregate queries over all the data set (one that constructs the
groups and another that counts the group sizes frequencies). This does not explain,
however, the exponential delay with the increase of QI size; the reason for this
phenomenon is depicted in Figure 3.39, where we present the lattice size in terms of
nodes and edges.

Number of lattice nodes Number of lattice edges
20000

8

4000
15960

3000 16000 |
12000
2000 -

900 8000 -

1000 -
60 180 . 4000 A 3315
0 — 133 519
ol
3 4 5 6 Al 3 a 5 6l

Figure 3.39 Lattice size in terms of nodes and edges for the k-anonymity lattice of the
Adult data set.

Again, we can observe the same exponential increase (esp., in the case of edges).

Although the time spent to construct the lattice is significant, the amount of memory
that is needed to keep the histograms in main memory is quite small. Observe Figure
3.40, where we depict the amount of main memory spent to retain the histograms for
all the nodes of the lattice in the case of k-anonymity. Remember that the lattice size
is dependent only upon the number of dimensions and the number of levels of each
dimension and not upon the size of the data set (in fact, the data set influences the size
of the histogram only with respect to the number of groups produced — however for
each group we only need two integers, so this cost is not so important after all).
Again, the increase is exponential in terms of the QI (which is clearly due to the

exponential increase in the number of lattice nodes).
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Figure 3.40 Main memory spent to retain the k-anonymity histograms for the Adult
data set (KB).

L-diversity. In our experimentation with the Adult data set, we have also explored the
case of L-diversity. Specifically, in Figure 3.41 we depict the construction time for the
[-diversity histograms, and in Figure 3.42 we depict the memory cost for retaining
these histograms. The observed phenomena are practically the same as with k-
anonymity; however observe that the number of distinct values that / can take (the x-
axis of the histogram, in other words) is much less than the respective values for the

case of k-anonymity; therefore, the size needed is lower for /-diversity than k-

anonymity.
Construction time
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Figure 3.41 Construction time for the full lattice and its 1-diversity histograms for the
Adult data set.
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Figure 3.42 Main memory spent to retain the I-diversity histograms for the Adult data
set (KB).

IPUMS. Apart from the Adult data set, the observed values are also consistent with
the case of the IPUMS data set (see Figure 3.43). As we have already mentioned, the
lattice size is practically independent from the data size and dependent mainly upon
the lattice’s hierarchies; therefore the histogram sizes are comparable for Adult with
QI=5 and IPUMS (the hierarchies are slightly different). The construction time,
however is quite different and this is clearly due to the fact that the size of IPUMS is

50 times the size of the Adult data set. This explains the difference in time costs.

k-anonymity I-diversity
Average time (minutes) 10.5 38.087
Histo size (Kbytes) 530.688 58.424

Figure 3.43 Construction time (min) and main memory spent (KB) for the [PUMS
data set.

3.6. Summary of findings

The goal of this chapter has been to study the relationship of suppression,
generalization height and privacy criterion and via this study, to characterize the
importance of the problem. Overall, we can safely claim that the problem is valid and
important. Low generalization heights (that are of more interest to us due to their
information utility), or large values for the privacy criterion (which is of more interest
to us due to the increased privacy it offers to individuals), or erroneous choice of

generalization scheme can result in large amounts of suppressed data, quite possibly
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much higher as compared to more careful choices concerning the generalization

scheme.

Our detailed findings concerning the relationship of the involved parameters can be

summarized as follows:

As the generalization height increases, the suppression drops quickly at small
heights; the drop in suppression is less important in higher heights, where the
number of suppressed tuples becomes statistically small and drops slowly.
Interestingly, the overall trend for the decrease of suppression is practically the
same for different values of & or / — of course, with different amounts of
suppressed tuples.

As the value for the privacy criterion (e.g., k in k-anonymity) increases, the
suppression increases too. This is especially important in lower heights of
generalization that are both important due to their information utility and
demonstrate high volumes of suppression.

As the size of the quasi identifier set increases, the effect to suppression is
significant, as suppression increases too — sometimes drastically. Some
quantitative evaluations around this theme suggest that (a) given a specific
height and k an increase in QI size by one increases the suppression by a
factor of 2 — 3; (b) to attain the same suppression threshold an increase in QI
size by one, requires ascending 1-2 levels for k-anonymity and 2-3 levels for /-
diversity.

Not all attributes, generalization levels and, consequently, generalization
schemes have the same effect to suppression. It is noteworthy that within the
same height, the minimum possible suppression is approximately 2.5 times
lower than the average for k-anonymity and 3 times lowers for l-diversity.
This is especially evident in cases where the suppression has high values or
values that cannot really be tolerated; on the other hand, for too large values of
suppression (e.g., too large Qls or k) the relationship between average and
minimum value does not follow this rule.

Based on the above, it is important that for case that do matter, and where we
can really attain good amounts for tuple suppression, it is really important to

carefully pick the generalization scheme that will minimize this suppression.
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The faster we identify these generalization schemes the faster the process

completes.

We should also note that the above findings seem consistent with both k-anonymity
and l-diversity over two data sets — with slight variations of course. Also, we should
mention here that the effect of QI size to lattice is really important (of exponential
nature) and this mainly affects the construction time of the lattice’s histograms (which
is also affected by the database size, of course, however with lesser degree of

importance)
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CHAPTER 4. ONLINE NEGOTIATION
ALGORITHMS FOR PUBLISHING PRIVATE
DATA

4.1 Simple negotiation for k-anonymity (as privacy criterion) and the height (as
the criterion for the quality of solution)

4.2 Theoretical guarantees on the correctness of the proposed algorithm

4.3 Experimental Method

4.4 Finding for k-anonymity over the Adult data set

4.5 Finding for I-diversity over the Adult data set

4.6 Finding over the [IPUMS data set

4.7 Summary of findings

In this section, we explore a reference algorithm for the on-line negotiation over
antagonistic privacy criteria. The general idea of the algorithm is based on two steps:
(a) an off-line, preprocessing step, where the histogram lattice is built and (b) an on-
line step, where the users pose requests for anonymizations over different

combinations of criteria and the algorithm returns either exact results or suggestions.
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Preprocessing step

Input:

e a data set 7, comprising an identifier attribute /D,

e a set of quasi-identifier attributes QI = {4, ..., 4,},

e a sensitive attribute S,

e a set of generalization hierarchies H = {hy, ..., h,}, one for each quasi-identifier
attribute

e a privacy constraint (e.g., k-anonymity, /-diversity, m-uniqueness, ...),

Output:

e a histogram lattice L(V,E) such that: (a) a node v, labelled [/, ..., /,] exists for
every combination of hierarchy levels /;, over all quasi identifier hierarchies, (b) a
set of edges stemming from every node v = [/, ...,k,..., [x] to nodes u, with u
being nodes of the form [/}, ...,k+1,..., Iu], forall k =1, ..., n, (¢) a histogram C
with pairs of the form [statProp, counter] annotates every node v, with statProp
being the statistical property of a group that determines the privacy level and

counter being the number of groups with size groupSize in the result of this

grouping query.

Figure 4.1 Off-line preprocessing step

The generic pre-processing step, where the lattice is built and each of its nodes is
annotated with the appropriate histogram is depicted in Figure 4.1. The only unclear
point to the above definition is the statistical property parameter, which we clarify
right away. The problem is defined for privacy criteria that can be defined as
properties of each group. Remember that given a node v [/i, ..., [,], its groups are
formed when we group 7T by the values of [/;, ..., /,]. Then, a statistical property is
tested for every group, depending on the privacy criterion. For example, the privacy
criterion of k-anonymity requires that each of these groups accounts for at least k
tuples; the criterion of /-diversity requires at least / different sensitive values in the
group, and so on. This statistical property is counted in each histogram. So, for
example, a value of <45, 67> in [-diversity means that there are 67 groups with 45
different sensitive values for a certain generalization scheme. Other statistical

properties of this nature include the entropy of a group (in entropy-based /-diversity)
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of the distance of the distribution of the sensitive values of the group to the

distribution of the sensitive values of the data set (in t-closeness).

The “pluggable” parameters of the problem of on-line privacy negotiation can be

summarized as follows:

Parameters
Table 4.1 Problem parameters and possible examples
Lattice Possible values
Lattice extent Full or Partial lattice

Lattice construction | Offline or on-line

Lattice contents Depends on the privacy constraint(s) supported.

Example: histogram’s <X-value, Y-value> are <groupSize, counter> for k-

anonymity
Algorithm
Privacy constraint k-anonymity, I-diversity, t-closeness, m-uniqueness, ...
QoS() A utility function that determines the best solution (including tie-breakers).

Examples: Height of a solution, discernibility, ...

Once the offline, pre-processing step, is completed, then we are ready to exploit the
lattice in order to devise anonymization schemes in ab on-line fashion. The problem
specification as a set of input/output specification for the generic case is depicted in

Figure 4.2.
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On-line step
Input:
¢ a histogram lattice L(V,E) over a data set 7 and a set of hierarchies H as before
e a privacy constraint (e.g., k-anonymity, /-diversity, m-uniqueness, ...),
e fixed constraints for
e (d1) the maximum height per attribute that the anonymization method can attain
h=[h" ..., ",

e (d2) the lowest value for the privacy constraint (e.g., k for k-anonymity) and

e (d3) the maximum number of suppressed tuples that the user is willing to
tolerate MaxSupp,

e a quality criterion function QoS() for the assessment of the best possible
anonymization when more than one answers are available (e.g., the solution with
the lowest height, and possibly the less suppressed tuples, or maximum
discernibility, as another example).

Output:

e An anonymized data set 7* such that

e T is a generalization of 7, T* fulfils the abovementioned privacy
constraints (d1) — (d3), and, 7* minimizes the quality criterion function
QoS(T*), if such a T* can be attained,

or,

e A set of alternative generalizations that are also generalizations of 7" and
each of them minimizes the deviation for one of the parameters of the
problem, specifically, (a) the acceptable generalization heights, (b) the
minimum acceptable value for the privacy constraint and (c) the number

of suppressed tuples.

Figure 4.2 Problem specification for the generic case of on-line privacy negotiation




99

4.1. Simple negotiation for k-anonymity (as privacy criterion) and height (as the

criterion for the quality of the solution)

In the sequel we present a simple algorithm to perform on-line negotiation over
conflicting privacy requirements. The following table shows how the parameters of

the generic problem are instantiated for the problem under consideration.

Table 4.2 Parameters of the Algorithm

Offline Used value

Lattice Full lattice construction

<X-value, Y-value> | groupSize for k-anonymity, counter

On-line

Privacy constraint k-anonymity

QoS() Height of a solution

Algorithm SimpleAnonymiyNegotiation operates over a relation R with a hierarchy H
that results in a lattice annotated with histograms L. In the rest of our deliberations we
will focus on the case of k-anonymity, however the same algorithm applies to the case
of l-diversity, with the histograms of the lattice L and the constraints checking for
determining whether a candidate node of the lattice is actually a solution being the
only differences among the two cases. The proposed algorithm takes as input a table
to be generalized, a set of hierarchies for the quasi-identifier attributes, the histogram
lattice for all possible combinations of the generalization levels, and the requirements
for the maximum desirable generalization level per quasi-identifier, the maximum
tolerable number of tuples to be suppressed and the least size of a group, £, as the
privacy constraint. The output of the algorithm are either
(a) an node of the lattice (i.e., a generalization scheme) that provides the best
possible exact solution to the user requirements (with best possible being
interpreted as the one with the lowest height, and, if more than one candidate
solutions have this lowest height, the one with the minimum suppression), or,
(b) three suggestions for approximate answers to the user request, the first relaxing
the number of suppressed tuples, the second relaxes the constraints on the heights
per dimension and the third relaxing the minimum acceptable privacy criterion

(e.g., k in k-anonymity).
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The algorithm proceeds as follows:

Algorithm SimpleAnonymityNegotiation(L,k,h,MaxSupp)

In: Lattice L with the histograms for R,H, constraints for k, h, MaxSupp

Out: an exact solution s[v,k,h,supp] or s1,s2,s3, si=[v_i,k_i,h_i,supp_i]

Var: a 2D vector of candidate solutions Candidates[hmax][]

Begin

Let v_max be the node that corresponds to the constraint h;

if v_max is visited then exit;

mark v_max as visited;

if (checkExactSolution(v_max,L,k,h,MaxSupp) == true){
Candidates[height(v_max)] = Candidates[height(v_max)] U {v_max};
for all v_c in lower(v_max)

ExactSublatticeSearch(v_c,L,k,h,MaxSupp,Candidates);
//when the recursion is over, the Candidates has the full list of nodes
//that can serve as candidate solutions
minHeight = minimum height having Candidates[minHeight] = {};
v_win = v in Candidates[minHeight] with the lowest possible suppression for k;
return(v_win,k,minHeight,suppressed(v_win,k));

}

else{
approxSol_1 = ApproximateMaxSupp(L,v_max,k,h,MaxSupp);
approxSol_2=ApproximateH(L,v_max,height(v_max),height(top),k,h,MaxSupp);
approxSol_3 = ApproximateK(L,v_max,k,h,MaxSupp);
return approxSol_1, approxSol_2, approxSol_3;

}

End.

Figure 4.3 Algorithm Simple Anonymity Negotiation

First the algorithm identifies a reference node in the lattice, to which we refer a vyax.
The node vpmax is the node that satisfies all the constraints of h for the quasi-
identifiers, at the topmost level; in other words, vi.x 1s the highest possible node that
can obtain an exact answer to the user’s request. We will also refer to vi.x as the top
acceptable node. Then, two cases can hold: (a) vmax 1s able to provide an exact
solution (Lines 4 - 13), or (b) it is not, and thus we have to resort to approximate
suggestions to the user (Lines 14 — 20). The check on whether a node can provide an

exact solution is given by function checkExactSolution that looks up the histogram of

a node v and performs the appropriate check depending on the privacy criterion (k-
anonymity, l-diversity, ...) . Note that this is the only part of the algorithm that needs
to be customized according to the privacy criterion.

When the former case is concerned and an exact answer can be provided by the top-

acceptable candidate node vmax, then we can be sure that the sublattice induced by
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Vmax contains an exact answer; however, we need to discover the one with the
minimum possible height and, therefore, we need to descend down the lattice to
discover it. For the case where the lowest possible height that contains a node that
can return an answer that respects the constraints set by the user, we resolve the tie by
choosing the node with the least suppression. The auxiliary variable Candidates
holds all the nodes that conform to the user request, organized per height. Each time
such a node is found, it is added to Candidates at the appropriate level (Line 5) and
its descendants (returned via the function /ower()) are recursively explored via the

call of function ExactSublatticeSearch. When the lattice is appropriately explored we

need to find lowest level with a solution in the lattice (Line 10) and, among the
(several possible) solutions of this level we must pick the one with the least

suppression (Line 11).

ExactSublatticeSearch(v,L,k,h,MaxSupp,Candidates){
if v is visited then exit;
mark v as visited;
if (checkExactSolution(v,L,k,h,MaxSupp) == true){
Candidates[height(v)] = Candidates[height(v)] U {v};
for all v_c in lower(v)
ExactSublatticeSearch(v_c,L,k,h,MaxSupp,Candidates);

Figure 4.4 Function Exact Sub lattice Search

checkExactSolution(v,L,k,h,MaxSupp){
lookup histogram of v in L;
if suppressed(v,k) <= MaxSupp && height(v) <= h return true;
else return false;

Figure 4.5 Function check Exact Solution

If the top-acceptable node vimax fails to provide an answer that conforms to the user
request, then we are certain that it is impossible to derive such a conforming answer
from our lattice and we need to search for approximations. So, we provide the users
with suggestions on the possible relaxations that can be made to his criteria. In this

context, three suggestions are considered:

The first suggestion, provided by the invocation of function ApproximateMaxSupp,

retains the privacy criterion k and the max tolerable height h fixed and tries to find
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the best possible solution with respect to the number of suppressed tuples. Since h is
to be respected, again we are restricted in the sub-lattice induced by vi.x. Since vyax
has failed to provide a conforming answer, no node in the sublattice can provide such
an answer, either. So, we assess the number of tuples that have to be suppressed if we
retain k fixed and stay at the top-acceptable node vyax. Observe that any node in the
sublattice of vmax Will result in higher or equal number of suppressed tuples (see the
next section for a proof) — remember that the lower we go, the smaller the groups are
and the higher the suppression. In other words, it will either be vimax that will give the
answer or one of its descendants in the rare case that the groups of the descendant are
mapped one to one to the groups of vy.x thus resulting in exactly the same number of
suppressed tuples.

The third suggestion is quite similar to the first: this time, function ApproximateK

retains the height constraints h (again) and the maximum tolerable number of
suppressed tuples MaxSupp and tries to determine what is the highest k that can
provide this approximation. Again, for the same reasons as in the case of the
approximation of suppression, we restrict our search to vmax (or any of its descendants

that has a 1:1 mapping of groups to the ones of viay).

ApproximateMaxSupp(L,v,k,h,MaxSupp){
find the minimum amount of suppressed tuples, approxSupp, s.t.
checkExactSolution(v,L,kh,approxSupp) returns true;
if no such value exists, return {};
else{
for all v_c in sublattice(v) (recursively){
checkExactSolution(v_c,L,k,h,approxSupp)
break when a whole level fails to produce a solution;
}
let v_win be the node with the lowest height that satisfies k,h,approxSupp
(with arbitrary tie resolution)
return v_win,k,h,approxSupp;

}

Figure 4.6 Function ApproximateMaxSupp




103

ApproximateK(L,v,k,h,MaxSupp){
find the maximum value of k, approxK, s.t. checkExactSolution(v,L,approxK,h,maxSupp)
returns true;
if no such value exists, return {};
else{
for all v_c in sublattice(v) (recursively){
checkExactSolution(v_c,L,approxK,h,maxSupp)
break when a whole level fails to produce a solution;
}
let v_win be the node with the lowest height that satisfies approxK,h,maxSupp
(with arbitrary tie resolution)
return v_win,approxKh,maxSupp;

Figure 4.7 Function ApproximateK

Finally, the second suggestion, provided by function ApproximateH retains the

maximum tolerable number of suppressed tuples MaxSupp and the privacy criterion
of k and tries to determine what is the lowest height h that can provide an answer for
these constraints. This time, we operate outside the borders of the sublattice of vyax

since h is not to be respected. The function ApproximateH performs a binary search

on the height between the height of vy, and the upper possible height (the top of the
lattice). Every time a level is chosen, we start to check its nodes for possible solutions

via the function checkIfNoSolutionInCurrentHeight. If the function explores a height

fully and fails to find an answer, this is an indication that we should not search lower
than this height (remember: failure to find a solution signals for ascending in the
lattice). Every time the function finds a node that can answer, then we must search in
the lower heights for possibly lower solutions. At the end, the binary search stops and
the value currentMinHeight signifies the lowest possible height where a solution is
found. Then, we explore this height fully to determine the node with the minimum

suppression.
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ApproximateH(L,v,h_low,h_high,k,h,MaxSupp){
while(h_low <= h_high){
h_current = middle between h_low and h_high;
flag = checkIfNoSolutionInCurrentHeight(L,h_current,k,MaxSupp);
if (flag == true){
low = current + 1;

}

else{
currentMinHeight = current;
high = current - 1;

}

}

for all v_c in currentMinHeight, find the one v_win, with the minimum suppressed(v_c,k);
//exception: this fails only if k > [R/, else top of the lattice always answers
return v_win,k,height(v_win),MaxSupp;

checklIfNoSolutionInCurrentHeight(L,h_current,k,MaxSupp){
for all v_c in h_current
if suppressed(v_c,k) <= MaxSupp return false;
return true;

Figure 4.8 Function Approximate H

4.2. Theoretical guarantees on the correctness of the proposed algorithm

In this subsection, we will discuss properties of the histogram-annotated lattice of

generalization schemes and prove that our algorithm is correct.

Notation. We will employ the following notation:

lower(v) the set of nodes u who are connected to node v via a node (u,v) —i.e.,
the nodes whose generalization scheme is equal to v’s, with the
exception of exactly one dimension where u is one level lower than v.

desc(v) the set of nodes u# for whom a path exists towards v

L(v) the sublattice induced by a node v (i.e., the subset of the lattice whose
nodes are either v, or, descendants of v)

cumKA(vlk)  the number of suppressed tuples (y-value of the cumulative histogram)
for node v when the cut-off constraint for k-anonymity (x-value of the
cumulative histogram) is .

cumSLD(v|l) the number of suppressed tuples (y-value of the cumulative histogram)
for node v when the cut-off constraint for I-diversity (x-value of the

cumulative histogram) is /.
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Theorem 1. Assume a constraint on the height of hierarchies h=[ 4, ..., A,]. Assume
also the node viax = [h1, ..., hy]. All the nodes of the full lattice that respect h are
within the sub-lattice induced by vpax and there is no node outside the lattice induced
by Vimax that respects h.

Proof. Since vm,x is the top element of the lattice, all nodes of the lattice have
dimension heights lower or equal to the dimension heights of vimax. Consequently, all
nodes of the lattice induced by vmax respect h by definition. For a node u not to belong
in the lattice, there must be at least one dimension whose height is higher than the

respective height of vi,.x. Then u does not respect the constraint of h. QED

Given a node vp, that induces a sub-lattice, the groups of vm,x are produced by
aggregating the groups of its descendants in the sub-lattice. Then, for any value o the
cumulative histogram for vp,x has a smaller or equal value than the cumulative
histogram for any node v in the descendants of viax. This holds both for k-anonymity
and I-diversity. Formally:
Theorem 2. Given a node vyax and an integer any value o, the following hold:
cumKA(Viax|at) < cumKA(v|a), vedesc(Viax)
cumSLD(Viax|a) < cumSLD(V|a), vedesc(Vimax)
Proof. This is almost direct consequence of the Rollup-property introduced in
[LeDROS5]. Assume the situation depicted in the following figure. Let L(vi.x) be the
lattice between vy« as the top element and v, as the lowest element. Assume node v
has a generalization scheme [/}, b, ..., [y.1,/*,] while v, has a scheme [1;, b, ..., ln.1,/]
and /, = I*, + 1 (without loss of generality, we can assume that vy, differs from v
only by one level in one dimension, whereas all the other dimensions are exactly the

same; this practically works as the minimum possible distance between the two

)

Then (Rollup-property), there exists a N:1 mapping of values of /*,, over /,, f: dom(Il*,)

nodes).
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— dom(l,). f'is a total function. A 1:1 mapping is also acceptable as a rare, special
case in this setting. As a N:1 function, we know that for every /*, there exists exactly
one value in /, (but not obligatorily the inverse).

So, for every group x*[x;, X2, ..., Xn.1, Xn*, count®] that appears in v, there exists a
group x[x1, X2, ..., Xn-1, Xn, COUNt] i vax, and due to £, many groups of v (and, at least
one) are potentially mapped to groups of vmax (but not vice versa). Therefore, for
every such pair x, x*, such that f{x*)= x, x*.count* < x.count. Similarly, the same

holds for the number of distinct sensitive values.

Remember now that the cumulative histogram records the tuples that are to be
suppressed whenever a constraint on the minimum group size is given. There are three
cases that concern us here:

(1) a<x*.count™ < x.count: in this case, neither x* nor x would be suppressed with
a request for a.
(1) x*.count™ < x.count<a: both x* and x would be suppressed with a request for a
-- i.e., both would be counted in cumKA(v|a) and cumKA(vyqy|a), respectively.
(111)x*.count™*<a < x.count: in this case, x* would be counted in cumKA(v|a) and x
would not be counted in cumKA(Vyqx|ot)
For all these cases, it is impossible that a group is counted in cumKA(Vyq|a) and its

respective groups are not counted in the appropriate cumKA(v|a), vedesc(Vimax). On
the other hand, unless a 1:1 mapping exists, there are groups counted in cumKA(v|c)
but not in cumKA(vVyax|a).

Exactly the same holds for cumSLD. QED

Corollary 2.1. Assume a user request ¢ = [kh,maxSupp] over a lattice £ annotated
with the cumulative histograms for a data set D. If all the nodes at height 4 violate ¢
then it is impossible to find a node v at a height lower or equal than / that respects g.

Proof. Obvious.

Observation. Observe that the simple histograms, e.g., KA(v|k) demonstrate arbitrary
relationships for nodes and their descendants. For example, assume the following
table 7 with a QI={date, item}, and the corresponding histograms at two different
levels of the date dimension. The table has three sections. In the first section at the

left, we depict 4 rows and their quasi-identifier values. The second section of the table
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in the middle, contains the counts per group at the {day, item} level. The third section,

at the right, contains the counts per group at the {month, item} level.

Microdata Counts per QI group at Counts per QI group at
day level month level
Ol value Count() QI value Count()
1/Jan/2010 | Cola | ... 1/Jan/2010 | Cola | 2 Jan/2010 | Cola | 3
1/Jan/2010 | Cola | ... 2/Jan/2010 | Milk | 1 Jan/2010 | Milk | 1
2/Jan/2010 | Milk | ... 3/Jan/2010 | Cola | 1
3/Jan/2010 | Cola

Here are also the histograms for the nodes {day,item} and {month, item}:

k=1 k=2 k=3
Day 2 1 0
Month 1 0 1

Observe that for value £=2, the histogram of the lower-level node has a higher value
than the histogram of the higher-level node. This is typical for small values of £ which
appear in the histograms of lower level nodes but disappear at higher levels, since the
small groups of the lower level are merged in large groups of the higher level,
resulting in the absence of small sized groups at the high level. At the same time, for
value k=3 the opposite phenomenon is observed. Therefore, it is not possible to derive

any theoretical guarantees for the simple histograms.

The following set of theorems guarantees that the proposed algorithm is correct. First
we prove that once a node provides a solution (i.e., respects the three criteria posed by
the user), we need to search its descendants for the lowest possible node that returns
an answer, too.

Then, we deal with the case where the top-acceptable node fails to meet the user

constraints and thus, we need to search for approximations.

Theorem 3. Assume a user request ¢ = [k,h,maxSupp] over a lattice £ annotated with
the cumulative histograms for a data set D. Assume the top-acceptable node v,y that
has h as its generalization scheme. If v, respects ¢, then the node with the lowest

height that respects ¢ is in L(Viax)-
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Proof. Obvious, due to Theorem 1 and Theorem 2: All the nodes that respect q are
obligatorily in L(vim.x) and there is at least one solution to the user request (the one of
vmax). Theorem 2 does not disqualify the possibility that a node with lower height than
Vmax respects the constraints of q; therefore, we need to search for the best possible

answer in L(Vmax). QED.

Once the exact answering is covered, we need to consider the cases of the relaxations
and answer the question: where should we search for possible relaxations if an exact
answer 1s not there? So, assume the case where the criteria set by the user for h
highlight node vi,.x Which is unable to fulfill all three conditions and, we decide that
the first approximation we want to explore involves relaxing k, respecting —at the

same time- maxSupp and h.

Since we want to respect h, we must search for solutions within the lattice induced by
Vmax- Assume that v,y violates &, h, maxSupp. To relax the privacy criterion we need
to find a smaller value than & which will have the property that maxSupp will be
respected. Of course, we want to give the maximum possible privacy, so we need to
find the maximum possible such value. We will use the notation 4; (standing for
“relaxed k”), k; < k, for the largest value that respects &, h, MaxSupp within the node
Vmax- However, there is a catch in the situation: it is not always possible to find such a
value k;. A clear (and actually, frequent at small heights) example for this situation is
when the number of groups of size 1 at vy is larger than maxSupp. Then, it is

impossible to find a lower £ that respects maxSupp.

In Theorem 4 we will show that, if a solution exists, then, in any of the nodes of the
sublattice induced by v, there is no value £* which is larger than 4. and suppresses
the same amount of tuples — in other words, it provides better k-anonymity with the
sacrifice of the same amount of tuples. In Theorem 5 we will deal with the case where

no solution can be found anyway.

Theorem 4. Assume a user request ¢ = [k,h,maxSupp] over a lattice £ annotated with
the cumulative histograms for a data set D. Assume that the top-acceptable node vipax
which has h as its generalization scheme fails to respect g. Assume the largest value

kr, ke < k, such that vy, respects ¢=[k,h,maxSupp]. Then, there is no node v, V#Vmax,
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vEL(Vmax), such that q*=[k*,h,maxSupp], kK >k, is respected at v.

Proof. If vy, fails to meet ¢, then no node in L(vmax) can respect g. This holds for an
query gi=[k,h,maxSupp], ki<k, too. If this did not hold, and there existed a node v,
V#Vmaxs VEL(Vmax) such that &, h, MaxSupp is respected at v and then, cumKA(v|k) <
cumKA(Vimax|ki). Absurd by Theorem 2. QED.

Observation. What this theorem says is that the maximum possible value that we can
get for the approximation of k is 4. So, should we take vi.x as the node that gives the
solution? Practically, the answer is positive; however, theoretically, we need to
perform an extra test. Observe that it is possible to have a situation where there is a
1:1 mapping between the groups of the higher level node vmax and the lower level
node v (i.e., for every group of the ancestor node there is exactly one group of the
descendant node). In this case, their histogram is exactly the same and v is a better
solution than vy,.x (due to its lower height). This means that the descendants of vyax
must be recursively searched for this possibility when we want to relax k. However,
the search can be made in a breadth-first way; if a certain level does not have a node
with the property of the 1:1 mapping, no further search should be performed.

Moreover, this is a property that can be known offline, in advance.

Theorem 5. Assume a user request ¢ = [k,h,maxSupp] over a lattice £ annotated with
the cumulative histograms for a data set D. Assume that the top-acceptable node Vi,
which has h as its generalization scheme fails to respect g. Assume there is no value
kr, ke < k, such that vy, respects g=[k,h,maxSupp]. Then, there is no node v, V#Vmax,
v€L(Vmax), such that q*=[k*,h,maxSupp], k >k, is respected at v, for any value k.

Proof. If there is no value £, at vy, that respects ¢, this means that the cumulative
histogram at vy, at position 4;, has already too many tuples to be suppressed. In other
words, cumKA(Vimaxlk:) > maxSupp. However, cumKA(vmaxlk;) 1s the smallest amount
of tuples to be suppressed for all veL(vmax). Consequently, if vy.x fails to provide any

value £; that respects q*, then no other node in L(viax) can. QED

The easiest case is the case when we want to relax the amount of suppressed tuples.

Observation. Observe that for any node v, there is always a y-value (i.e., a number of
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suppressed tuples) for a fixed k" at the cumulative histogram; this can be 0 if we are
lucky and all groups are of size larger than k', or |D| if we are unlucky and K is larger

that the larger possible & the node can sustain.

Based on the above observation, when we deal with relaxing the suppression, there is
only one issue, specifically, which is the node that for a fixed &, # will produce the
minimum suppression. Not surprisingly, it turns out that this node is either viax Or one

if its descendants that has a 1:1 mapping of groups with vy,x.

Theorem 6. Assume a user request ¢ = [k,h,maxSupp] over a lattice £ annotated with
the cumulative histograms for a data set D. Assume that the top-acceptable node Vi
which has h as its generalization scheme fails to respect g. Assume the smallest value
M, M > maxSupp, such that vy, respects ¢=[kh,M]; actually, this is
M=cumKA(Vimax|k). Then, there is no node v, v#vmax, VEL(Vmax), such that q*=[k,h,M *],
M <M, is respected at v.

Proof. Since M=cumKA(vmalk), by Theorem 2 this is the smallest possible
cumKA(v|k) for any ve L(Viax). QED.

Observation. If vy, does not respect ¢, then there is no information we can exploit
concerning the height relaxation. The lowest possible solution that respects both & and
maxSupp, if such a solution exists, is outside L(vmax), but it can be found in any other
node, at any height. So, we must search the entire lattice for the relaxation of h except

for L(Vimax)-

Theorem 7. Assume a user request g = [k,h,maxSupp] over a lattice £ annotated with
the cumulative histograms for a data set D. Assume that the top-acceptable node vipax
which has h as its generalization scheme. Then, the following hold:
— If vmax respects g, then the lowest node that can answer ¢ is in L(Vimax)-
— If vmax does not respects g, then (i) the relaxation of &k and the relaxation of
maxSupp are provided by vmax; (i1) we must search the entire lattice for the
relaxation of h.

Proof. Directly from the above.
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Observation. Based on all the above, the algorithm Simple Anonymity Negotiation is

correct.

4.3. Experimental method

Goals. Our experiments are oriented towards assessing the following properties.

Effectiveness. Given an initial request by the user with thresholds on the
maximum tolerable amount of suppressed tuples, the maximum level of
generalization per quasi-identifier attribute and the minimum acceptable value for
the privacy criterion (either k for k-anonymity, or, / for simple 1-diversity), how
likely is it to obtain a completely acceptable solution for a given setup of data set,
quasi-identifier set and sensitive attribute? The set of experiments aim to discover
the effect of all the problem parameters to the likelthood of achieving an
acceptable solution as opposed to the probability of needing to resort to an answer
that relaxes one of the above constraints. We diagrammatically depict answers to
queries with successful answer with light color and answers to queries that
needed relaxation with blue (dark) color.

Efficiency. Given the full lattice that is derived from the hierarchies of the quasi-
identifier attributes and the full histogram for the privacy criterion under
consideration, how fast can we obtain an answer to the user’s request (either fully
compliant with the user criteria, or a relaxed one, if this is not possible)? To
assess the efficiency of the method, in every experiment we measure (a) the
number of visited nodes of the lattice and (b) the total execution time needed to
produce an answer (in msec). In all occasions, the reported execution times are
the average of 5 executions of the same request of (lowest-acceptable-k,
maxSupp, top-acceptable node = constraint on all dimensions for the top tolerable
level). Naturally, the number of visited nodes is always the same and the varying

quantity is the time needed to retrieve an answer or a set of 3 possible relaxations.

Data sets. The data sets we have used are: (a) the Adult — Income data set from the

UCT repository [UCI], (b) the IPUMS - data set downloaded from [IPUMS].

Parameters. We have tested algorithm Simple anonymity Negotiation for its

efficiency and effectiveness over different data sets, quasi-identifier sizes, values for
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the privacy criterion for both k-anonymity and I-diversity, maximum allowed
suppression levels and maximum allowed generalization heights per quasi-identifier
attribute. For each data set and privacy criterion, we employ different values for these
parameters, thus, we refer the reader to the subsequent subsections for more details on

specific values.

Implementation specific data structures and database schema
In our implementation we retain the lattice in a database at the hard disk as a relation

Node and a relation Edges. The relation edges are straightforward: Edges(Start, End).

The relation Nodes varies with the size of quasi-identifier set, as we retain two
attributes per quasi-identifier dimension: (a) an attribute dim; with the name of the
dimension and an attribute index; with the level of the dimension that the node has. So
relation Nodes is as follows: Nodes(id,dim,,index,,......dimy,index,). A value [25,age,
2, race, 1, work_class,1] indicates the node with level 2 for age, level 1 for race and

level 1 for work class.

At the same time, in main memory we implement the following data structures:

- For each node of the lattice, we retain two lists that hold the histogram: the first
list keeps the number of tuples and the second list keeps the number of tuples that
pertain to every value of the histogram (i.e., position 7 in the list refers to value /
for the x-axis of the histogram)

- We retain a collection of nodes that practically holds all the information for the
nodes in main memory. In other words, we keep the id, the levels and the
abovementioned histogram for every member of the collection that represents a
node of the lattice. Also, we use an attribute to mark nodes as visited or not. We
opted for a hash-based dictionary implementation of the collection, with id being
the hash-value, in order to allow efficient lookup by id (remember that the edges
hold id’s of nodes, so whenever we move up or down from a node this

implementation comes handy).

Of course, apart from the above, we also keep the data sets in the appropriate
databases. In the following, we list the database schemata for each of the two data sets
we have employed. We depict the sensitive attribute in teletype letters.

Database schema for the Adult data set
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Adult(ld, Age, Gender,Race,Marital Status,Native country, Work Class,Occupation,Sa
lary,Hours per week)

Age (levely, level,, level,, levels, levels)

Race(levely, level,, level,)

Marital_status(levely, levely, level,, levels)

Education(levely, level,, level,, levels, levels)

Occupation(levely, level,, level,)

Work Class(levely, level,, level,, levels)

Database schema for the Ipums dataset

Adult(id, age, education, birthplace, gender, occupation)
Age (levely, level,, level,, levels, levels)

Education(levely, level,, level,, levels, levely)
Birthplace(levely, level,, level,, levels)

Gender(levely, level,)

Configuration. In all our experiments we have used a Core Duo 2.5GHz server with
3GB of memory and 300GB (7200 RPM) hard disk. The operating system was
Ubuntu 8.10 and the database server was MySQL 5.0.67. The code is written in Java
in Eclipse IDE.

4.4. Findings for k-anonymity over the Adult data set

In this subsection, we discuss our experimental findings when working with the Adult

data set and k-anonymity as our privacy criterion.
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Table 4.3 Experimental parameters and possible values

QI[=3 QI[=4 QI[=5 QI[=6

Generalization level | 101, 211 | 1001, 2011 | 11001, 21012 | 111001, 211012

constraints (default), 212 (default), 2112 | (default), 22112 | (default), 222112

For all QI’s, we have used three configurations: (a) a low one,
with all levels constrained low in their hierarchies, (b) a
middle-low (default) with some constraints placed on levels in
the middle of their hierarchies and (c¢) middle, with all levels

constrained at the middle in their hierarchies

k 3, 10 (default), 50

MaxSupp 32, 321 (default), 3216 (approx. 0.1%, 1%, 10% of the data
set)

4.4.1. Effect of k over time costs

In this sequence of experiments we modify the value of minimum tolerable k and
assess its impact to the number of visited nodes and execution time. All experiments
operate with a fixed set of values for the rest of the parameters, and specifically:

- Maximum allowed number of suppressed tuples = 321

- The constraint on the uppermost tolerable level is 211, 2011, 21012, 212012
for |QI|=3, ..., 6 —i.e., in every dimension, we place a constraint approximately

up to the middle of its hierarchy.

When |QI] is small (|QI|=3), the maximum number of suppressed tuples pushes the
solution lower than the starting level (which is the maximum tolerable level). So, the
algorithm recursively descends towards 0,0,..,0. As k increases, the solution is found
earlier.

In all other cases, the cost in terms of visited nodes increases sub-linearly with k.
There is a single exception to the sublinear increase, and this is the case of k = 50 and
QI = 6, where the number of visited nodes drops. This is due to the fact that the binary
search over the height was successful quick enough and gave a quick correct answer

(you can see an example of such a binary search in Figure 4.9).
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Parameters: 1032 211012

Parameters:10 321 211012

Parameters:10 3216 211012

Start: low:7 high:18
Current: 12

Find, and check 34 nodes
Current: 9

Don’t find, check 496 nodes
Current: 10

Don’t find, check 469 nodes
Current: 11

Find, and check 286 nodes
Solution at level :11

Check 396 nodes

Start: low: 7 high: 18
Current: 12

Find, and check 2 nodes
Current: 9

Find, and check 416 nodes
Current: 7

Don’t find, check 396 nodes
Current: 8

Don’t find, check 469 nodes
Solution at level :9

Check 495 nodes

Start: low: 7 high: 18
Current: 12

Find, and check 1 nodes
Current: 9

Find, and check 4 nodes
Current: 7

Find, and check 116 nodes
Solution at level :7
Check 395 nodes

Figure 4.9 Example of binary search for Variant max supp (QI-6) that detects a

solution early enough

The important observation here is that the number of nodes visited increases
dramatically with |QI| with a scale factor of 5 (approximately) for every extra attribute
added to the QI set (i.e., the values of QI=5 are 5 times greater than the respective
values of QI = 4; the same approximately happens when we increase QI to 6). In
terms of time, the experiments do not take more than 3,5 msec for QI=4,5. QI = 3
takes longer (between 5 and 1 msec) due to the recursive call to search in lower levels

of the hierarchy. QI = 6 makes between 6 and 8 msec for all three values of k.

There are certain cases, where the relaxation for the decreasing of k does not return a
result. These cases do not induce a significant overhead, since the search is locally

performed in the top-acceptable node.

4.4.2. Effect of height constraints over time costs

In this sequence of experiments we modify the constraints over the maximum
tolerable generalization heights per attribute and assess the impact of these heights to
the number of visited nodes and execution time. All experiments operate with a fixed
set of values for the rest of the parameters, and specifically:

- Lowest tolerable k = 10

- Maximum allowed number of suppressed tuples = 321
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We employ three variants for the top-acceptable node, for each QI. The three variants

involve constraints in all the dimensions of the QI set (and thus, a respective a top-

acceptable node) in the following 3 fashions:

(a) every dimension is constrained by a level that is low in the hierarchy,

(b) some dimensions are constrained low in the hierarchy and some are

constrained in the middle

(c) all dimensions are constrained in the middle of their hierarchy

Specifically, the constraints employed are as follows:

Table 4.4 Constrains for the Experiment

Low Low-middle | Middle
QI=3 101 211 212

1001 2011 2112

4
5 11001 21012 22112
6 111001 211012 222112

The findings for the effect of the constraints in the hierarchy are as follows:

The lower the constraint is, the more search for finding adequate relaxation is
required. In other words, when the constraints are set low, it is impossible to
obtain an answer at the top-acceptable node and thus, we need to climb a lot in
the lattice until we reach a tolerable relaxed solution. On the contrary, when
the constraint is in the middle, the required climbing is less.

The time required for the operation to complete is typically analogous to the
number of visited nodes. All experiments for QI =4 and 5 run between 2 and
6 msec. The case of QI = 6 induces an extra overhead with times between 5
and 8 msec.

An exception to all the above findings is the case where the QI is small (|QI| =
3). In this case, the top-acceptable node is adequate for an answer and the
algorithm recursively descends towards the best possible answer. The times
needed are in the range of 1 and 6 msec.

Another observation here is that when the top-acceptable node is low in the
lattice, it is quite frequent that the relaxation of k (keeping the top-acceptable
node and the maxSupp fixed) fails. This is due to the fact that when we are

low in the lattice, the suppressed tuples are too many and possibly even k=2 is
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not sufficient to fulfill the requirements for maxSupp. On the other hand, when
the top-acceptable node is relatively higher in the lattice, the number of
suppressed tuples is lower; thus, finding a relaxed answer is feasible.
Again, the important finding is that, ultimately, the dominating factor in terms of time
and number of visited nodes is the size of the QI. The rule of the scale factor of 5 for
every extra attribute in the QI seems to be preserved (see Figure 4.10; the shaded
areas in Fig. 4.10 depict cases where the search was directed downwards in the
sublattice of vi,x and a drop in the values is observed as QI increases; the cells not

defined are cases where we move from a downwards search to an upwards search).

Height 34 455 556
Low - 5,91 4,75
Low-middle - 5,78 6,20
Middle 0,90 6,00 3,31

Figure 4.10 Scale up in number of visited nodes as QI size increases for different

values of the height constraint

4.4.3. Effect of maxSupp over time costs

In this sequence of experiments we modify the value of maximum tolerable amount of
suppressed tuples and assess its impact to the number of visited nodes and execution
time. All experiments operate with a fixed set of values for the rest of the parameters,
and specifically:

- Lowest tolerable k = 10

- The constraint on the uppermost tolerable level is 211, 2011, 21012, 212012
for |QI|=3, ..., 6 —i.e., in every dimension, we place a constraint approximately

up to the middle of its hierarchy.

The maximum allowed number of suppressed tuples takes the following values: 32,
321, 3216.

Typically, the number of visited nodes logarithmically decreases as the value of
maxSupp increases (each time by a factor of 10). This is clearly due to the fact that
the higher the number of tolerable number of suppressed tuples is, the easier it is to
find a solution. In fact, when the experiments operate on the largest possible value of

maxSupp (i.e., 3216 suppressed tuples), all QI’s expect for the case of QI = 6 achieve
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an acceptable solution in the top-acceptable node and move downwards to obtain a
better solution. The times needed for the cases of QI =4, 5, 6 range between 1 and 8
msecs.

There are exceptions to the above general observation, which we list:

- The case of QI=3 has the peculiarity that the top-acceptable node achieves an
acceptable solution for a maxSupp of 321. In this case, we observe that the
higher the maxSupp, the more time it takes to find a good solution, since too
many nodes qualify for acceptable solutions. In all cases, the recursive search
for a better solution is much costlier than the search for an approximate
solution of maxSupp = 32 in QI = 3. The time ranges between 2 msecs for the

approximate search and Smsecs for the costliest exact search.

- The case of maxSupp =321 and QI = 6 breaks the general rule, as it is costlier
than the case of maxSupp = 32 in terms of visited nodes.

Again, the dominating factor in terms of cost is the size of the QI. The rule of scale-up
in terms of 5 is broken: the increase for every extra attribute in the QI results in
approximately 3 to 6 times more visited nodes. In Figure 4.11, we can observe this
scaling up on the upper left part of the figure. Also, the shaded areas in Figure 4.11
depict cases where the search was directed downwards in the sublattice of vy.x (Where
a drop in the values is observed as QI increases) and the cells not defined are cases

where we move from a downwards search to an upwards search.

maxSupp 34 45 56
32 3,20 6,10 3,47

321 - 5,78 6,20

3216 0,86 0,26 -

Figure 4.11 Scale up in number of visited nodes as QI size increases for different

values of maxSupp
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4.5. Findings for I-diversity over the Adult data set

In this subsection, we discuss our experimental findings when working with the Adult
data set and I-diversity as our privacy criterion. The assessed measures and
parameters are the same with the ones discussed in our experimental method section
and section 4.3 (for k-anonymity over the Adult data set). The only difference, of

course, concerns the values we have used for 1, which are summarized as follows:

Table 4.5 Parameters of the Algorithm and experiments for I-diversity

Offline Used value

Lattice Full lattice construction

<X-value, Y-value> | groupSize for l-anonymity, counter

On-line
Privacy constraint l-diversity
QoS() Height of a solution
Experiments
L 3, 6 (default), 9

4.5.1. Effect of l over time costs

In this sequence of experiments we modify the value of minimum tolerable / and
assess its impact to the number of visited nodes and execution time. All experiments
operate with a fixed set of values for the rest of the parameters, and specifically:
- Maximum allowed number of suppressed tuples = 321
- The constraint on the uppermost tolerable level is 211, 2011, 21012, 212012
for |QI|=3, .., 6 —i.e., in every dimension, we place a constraint approximately
up to the middle of its hierarchy.
As with the case of k-anonymity, we can observe that as / increases, the cost scales up
very slowly with the increase of 1. One might blame the choice of the values for / (i.e.,
we could have picked significantly larger values for 1), but this is not correct: a value
of 1=9 at the bottom level introduces a suppression of 15% (for QI = 3) to 93% (for QI
= 6) at the bottom node of the lattice and 0.6% (for QI=3) to 38% for 11...1 (for

QI=6). The times are always very small and range between 1 and 8 ms. The times
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reported are subject to phenomena of DBMS caching and thus are not in complete
accordance to the numbers of visited nodes; however, the fluctuations in the time
needed for the execution of the algorithm are unimportant and due to the few 10’s
incurred in our implementation as well as DBMS caching. Remember that the lattice
is small and in general, it can fit in main memory: for QI = 6 we have 3600 nodes and
15960 edges. Also remember that in our experiments, for the sake or program
simplicity, we keep the edges in a relation at the hard disk, while we keep the nodes

with their histograms in main memory.

At the same time, the cost increases dramatically with the increase of QI.

Observe also that for a small QI (and small 1) — i.e., for the cases with small numbers
of suppressed tuples-- the possibility of finding an acceptable solution within the
constraints expressed by the user is significant. So, for QI=3 as well as for QI=4 and
=3, the algorithm found an acceptable solution at the top-acceptable node of the
user’s constraint and recursively climbed down the lattice to find a better solution. For
the rest of the cases, the algorithm produced approximate solutions; interestingly for
high values of QI and I, the algorithm could not provide an approximation for a lesser

value of / (depicted as RIx3 in the detailed results).

4.5.2. Effect of height constraints over time costs

In this sequence of experiments we modify the constraints on the maximum possible
height for the quasi-identifier attributes and assess the impact of the height vector to
the number of visited nodes and execution time. All experiments operate with a fixed

set of values for the rest of the parameters, and specifically:

All experiments operate with:

- Lowest tolerable 1= 6
- Maximum allowed number of suppressed tuples = 321

Again, as in the case of k-anonymity we fix three combinations of values for the
height constraints: (a) all quasi-identifiers are constrained low in their hierarchy; (b)

some quasi-identifiers are constrained low and some in the middle of the hierarchies
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and (c) all quasi-identifiers are constrained in the middle of their hierarchies. The

specific values for these constraints are the ones reported in section 4.3.2.

The findings for the effect of the constraints in the hierarchy are practically the same

with k-anonymity and can be summarized as follows:

Exactly as in the case of k-anonymity, the lower the constraint is, the more
search (both in terms of number of nodes visited and time spent) for finding
adequate relaxation is required, since the solution that satisfies both / and
maxSupp is found further up in the lattice. When the QI size is small (QI=3 or
4), it is possible that middle and low-middle constraints result in exact answers
(which, in turns, are produced by a recursive descent down the lattice from the
top-acceptable node of the specified constraints).

All the times needed to provide the user with an exact or approximate answer
fall between 2 and 6 msec. Interestingly, the number of nodes visited and the
required times are also very similar to the ones of k-anonymity.

Again, as in the case of k-anonymity, the relaxation of / frequently fails to
deliver a solution.

Again, as in the case of k-anonymity, the size of the QI is the dominating
factor for the cost; every extra attribute in the QI incurs a scale up of 3 — 5 in

terms of both visited nodes and time spent.

4.5.3. Effect of maxSupp over time costs

In this sequence of experiments we modify the constraint on the maximum possible

amount of suppressed tuples and assess its impact to the number of visited nodes and

execution time. All experiments operate with a fixed set of values for the rest of the

parameters, and specifically:

The maximum tolerable amount of suppressed tuples takes the values: 32, 321,
3216

Lowest tolerable / = 6

The constraint on the uppermost tolerable level is 211, 2011, 21012, 212012
for |QI|=3, .., 6 — i.e., in every dimension, we place a constraint approximately
up to the middle of its hierarchy

As in the case of the other experiments, here too the results are remarkably similar to

the ones of k-anonymity.
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- The higher the maximum tolerable number of suppressed tuples is, the faster
we get a solution when the result is approximate. This is due to the fact that
the answer is found lower in the lattice. The opposite holds when the answer
is exact (e.g., in the case of QI=3, where it is possible to attain an exact
answer); in this case, the first possible answer is attained at the top-acceptable
node and then the algorithm descends to find the best possible answer,
resulting in higher execution times.

- The costs in terms of time and visited nodes are quite similar to ones of k-
anonymity. The time costs range between 1 and 7 msec.

- The size of the QI is once again the dominant factor and each extra attribute in

the quasi-identifier set incurs a scale up of 4-5 times more visited nodes.
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4.6. Findings over the IPUMS data set

In this subsection, we discuss our experimental findings when working with the
IPUMS data set and both k-anonymity and I-diversity as our privacy criterion. As
already mentioned, the PUMS data set has a quasi-identifier size QI=4. The

parameters we have used are as follows:

Table 4.6 Parameters for IPUMS experiments

k 3,30,50,100,150

1 3,6,10

Top-acceptable node | low (1010), middle-low (2110), middle (2220)
MaxSupp 600, 6000, 60000

Unless otherwise stated when we vary a parameter, the rest of the parameters are

pinned to the middle of the above values.

Our findings are qualitatively the same as with the case of the Adult data set when the
QI is small both in terms of time and visited nodes. Here, we should point out again

that: it is the lattice that matters and not the data size.

k-anonymity. As k increases there is a certain limit above which it is not possible to
obtain exact answers. For small k’s, where an exact answer is possible, the higher the
value of k, the faster this solution is computed (remember: the algorithm is driven
downwards the lattice recursively; a higher value of k stops the descent earlier). For
higher values of k where we seek an approximation upwards in the lattice, the number
of visited nodes increases as the need for a higher k drives the solution higher in the
lattice.

As the height of the top-acceptable node increases, the solution is found faster for the
case of rather low topmost nodes (where approximate answers are required). When
the top-acceptable node is set in the middle of the lattice, the exact solution is found
fast (the search is downwards the lattice and completes quickly). As the maximum
tolerable number of suppressed values increases, the same phenomenon is also
observed: the higher the value, the easier to obtain a solution — for large values of

maxSupp, we can even attain an exact answer quite easily.
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All the above results are very similar to the observations we have done for the Adult

data set too.

I-diversity. The case of I-diversity demonstrates a completely different picture than k-

anonymity. Apart from a couple of cases, all the other attempts for a solution lead to

exact answers. First, let us state that things appear to operate as expected when exact

answers are attained:

- As the value of / increases, the determination of a solution completes faster as a
large value of / is prohibitive for several of the low-level solutions

- As the height of the top-acceptable node increases, the solution is computed
slower (as the beginning of the descent starts higher)

- As the maximum tolerable number of suppressed tuples increases, the solution is
also slower since the search can go to higher depths in the lattice.

The interesting part is that the data set behaved quite close to the case of QI=3 of the

Adult data set (and, thus, differently from the rest of the QI sizes of the Adult data

set). Clearly this is due to the value of /: as the data size increases and the domains

are comparable, the groups are larger and, most importantly, the possibilities for

different sensitive values within a group are higher.

4.7. Summary of findings

We have experimented with algorithm Simple Anonymity Negotiation over two data
sets and with two privacy criteria: k-anonymity and 1-diversity. We have assessed the
performance in terms of time and visited nodes as we vary the value for the privacy
criterion, the maximum tolerable generalization height and the maximum tolerable
amount of suppressed tuples. Our findings can be summarized as follows:

— The increase of the privacy criterion has divergent effects. When QI is small,
there is an exact answer and the search is directed towards lower heights.
Consequently, as k increases the solution is found earlier. On the contrary, for
larger QI sizes and relaxations to user request, the increase of k sublinearly
increases the search space.

— The increase of the maximum tolerable height has similar behavior. When the
QI size is small, we can have exact solutions and the height increase increases
the search space. In all other occasions where relaxations are sought, the

higher the constraint, the faster a solution is found.
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The constraint on the maximum tolerable amount of suppressed tuples has also
a similar behavior: the higher the constraint is set, the faster an approximate
solution is found (except for low QI sizes where exact answers are possible
and the behavior is inverse)

In all experiments, it is clear that the costs are dominated by the QI size.
Finally, in all experiments, the times ranged between 1 and 8 msec, thus
facilitating the online, interactive negotiation of privacy with the user.

The experiments with l-diversity demonstrate a similar behavior as the
experiments of k-anonymity. Similarly, the IPUMS data set presents similar
behavior as compared to the Adult data set. The only exception is the case of 1-
diversity, where the IPUMS offered exact answers quite frequently compared
to their frequency in the case of the Adult data set; however, the behavior of
the algorithm is identical to the one in the case of the Adult data set both for

exact and approximate answers.
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CHAPTER 5. PARTIAL LATTICE
CONSTRUCTION

5.1 Partial lattice construction and the grouping power of generalization levels
5.2 The grouping power of hierarchy levels and its effect to suppression

5.3 The grouping power of lattice nodes and its effect to suppression

5.4 Preprocessing time

5.5 Quality of solution

5.6 Performance of Algorithm PartialLatticeNegotiation

5.7 The effect of the number of selected nodes

5.8 Extending the partial lattice at runtime

5.9 Summary of findings

So far, we have seen that the on-line part of the determination of an exact or
approximate anonymization scheme is completed within milliseconds for all possible
combinations of quasi-identifier size, data size, privacy criterion and so on. This way
is it is clear that the user can interact in real time with a negotiation system that (a)
answers anonymization requests and (b) guides the user to different alternatives if the
exact answer to his request is not feasible.
At the same time, the precomputation of the lattice at full scale, comprising all the
histograms for every node of the lattice presents several problems as:

— It requires a non-negligible amount of space

— It requires a non-negligible amount of time to be computed

— It has to be fully recomputed when updates occur (unless auxiliary data

structures are also kept)
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— It scales up exponentially with the number of quasi identifier attributes and
their hierarchies.

One could possibly argue that space is not really a problem in the sense that the
lattice’s size is dependent on the size of the underlying data, but on the size of the
quasi-identifier set and the accompanying hierarchies. The computation of the
histograms for each node, on the other hand, is an aspect that deserves attention. In
our experiments, we have observed that the construction times for the full lattices
annotated with histograms take up time in the order of half an hour for a quasi-
identifier size of up to 6 and simple privacy criteria like k-anonymity and 1-diversity.
Clearly, this can be tolerated in certain applications, however, it is possible that some
applications may not tolerate even this amount of time. To address this problem, in
this section we explore different variants of the pre-processing step, where instead of
generating the full lattice, we either opt to precompute a part of the lattice’s
histograms, or we generate the histogram of only the node that we visit in each move
we make over the lattice. We refer to these alternatives as (a) partial, or, (b) on-line
computation of the lattice. Of course, in these cases, we pay the price of not
necessarily obtaining the optimal answer. In the rest of this section, we explore these
alternatives and assess their impact on the effectiveness (quality of solution) and

efficiency (time to build and explore the lattice) of the respective algorithms.

5.1. Partial lattice construction and the grouping power of generalization levels

The first possibility that we can explore is the partial computation of the lattice which
has to be based on carefully selecting which nodes to generate. This is done on the
basis of the effect that different attributes have to the relationship of suppression and
privacy criterion. Overall, our method proceeds as follows:

1. An estimation of the effect that different levels have to suppression is made;
on the basis of this estimation, each node in the lattice is also ranked with
respect to the possible effect it can have to suppression.

2. The histograms for a specific percentage p% of the nodes of the lattice are
computed.

3. Once this preprocessing is completed, the partial lattice is ready for usage;
then, a modified version of the algorithms of section 4 is used to address user

requests.
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As we have already seen, not all dimensions and not all levels are equally affecting
the amount of suppression we need to perform. Clearly, it is desirable that our node
selection process picks lattice nodes that reduce the amount of suppression. Since we
want to avoid generating all the lattice’s histograms, we have to resort to prediction /
estimation methods for the suppression power of a candidate node. To this end, a
possible alternative to explore is the estimation of the importance of attributes to the
suppression process. In the first of the following subsections we discuss the metrics
we use for estimating the grouping power of levels; in the subsequent subsection we
discuss how we exploit these metrics in order to achieve the desirable, i.e., the

prediction of the grouping power (and thus, its effect to suppression) for lattice nodes.

Before proceeding we would like to remind the reader that relations involve identifier
attributes that are removed, quasi-identifier attributes that are candidates for
generalization, sensitive attributes that are to be protected and indifferent attributes
that play no role in the generalization process. In general, we assume that a relation R
is defined as R(4ip, A1, ..., 4n, Xi, ..., Xm, S), where 4\p is an identifier, 4, ..., Ay is
the quasi-identifier set, X, ..., X, are the indifferent attributes and S is the sensitive

value.

5.2. The grouping power of hierarchy levels and its effect to suppression

Both the case of k-anonymity and the case of I-diversity suggest that the larger the
groups are, the less suppression we need to perform. Therefore, it would be desirable
to be able to identify levels that produce large groups and promote them against levels
that do not have this property. We use two fundamental metrics, the first concerning
the average group size produced by a level and the second concerning the importance

of a level as compared to its previous level in the same hierarchy.

Average Group Size. We estimate the effect that a generalization to a level A" will
have to suppression via the average group size for this level. To compute the average
group size we perform a simple query where (a) we group the relation R by the quasi-
identifier set at the detailed level for all the quasi-identifiers but the one into
investigation who is generalized to level h, and (b) we compute the average group size

for this generalization scheme by diving the size of R with the number of groups that
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are formed in the previous step. Technically, if the quasi-identifier set is 44, ..., 4, ...,
Anp, then the group by clause of the query that retrieves the number of groups is set to
Ay, ..., A" ..., A,. Bear in mind that this is quite different than simply grouping by A"
The former produces the groups and their cardinality for all the combination of
dimension A with the rest of the dimensions whereas the latter will only produce a
number of tuples per value of the domain of 4". This way we can also get reasonable
estimations for the top-acceptable level of a hierarchy, too (as opposed to the
production of a single group that grouping by 4" would produce). Observe also the
role of the indifferent attributes here: the primary key of the relation does not
obligatorily comprise only quasi-identifiers; however our method works for any
configuration with or without indifferent attributes (in the latter case, the average

group size of the lowest level is 1).

Relative Importance of Generalization Levels. The average group size of a level is
a quite powerful indicator of the effect a level has to the suppression; however it is not
the only one. Whenever a certain dimension (e.g., the dimension Age as we shall see
in the examples for the Adult data set) consistently produces large group sizes, it
dominates the decisions on the possible generalizations that we should consider. It is
possible, for example, that both levels Age® and Age’ produce good large group sizes,
but the benefit from moving from level 2 to level 3 in the age dimension might be
small (i.e., Age” does a pretty good job, and despite the fact that Age > produces larger
groups it would be better to generalize another dimension one level up; unfortunately,
average group size does not give us this information). So, we need to introduce a
metric that captures the relative importance of a level within its dimension — i.e., as
compared to levels of the same dimension. To this end, we define the relative
importance of a generalization level A" i.e., of an attribute in dimension A at height /

as the fraction

‘ ik
avgGroupSzeld) " for all heights / in Al ..., 1, or
avgGroupSize(A™ )

rellmp (Ah) = A

1

—— for 7=0
| rel Im p(4")
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A first comment on the internals of the relative importance measure, observe the
recursion in the definition: we can define the relative importance of a level as the
increase in group size with respect to its lower level; of course, this is impossible for
the lowest, most detailed level of a hierarchy. To define the relative importance of this
lowest level, we could choose among alternative scores. We avoided the lowest
possible score of 0, since setting the value to 0 would be unfair for nodes of the form
400000 (that would score much lower than they deserved). We also avoided setting
the score to 1 (as one would normally expect) as a score of 1 is too close to several
scores of middle-height levels (as we observed during our experiments) and this
would result again in unfair rankings. Finally, we opted for fine-tuning the importance
of the lowest level of each hierarchy to the inverse of the importance of level 1 as (a)
it makes sense in terms of intuition and (b) it appears to work fine in practice. In terms
of the introduced recursion, it is clear that we can always perform the computation of

rellmp(Ah) for all possible values of 4.

Experimental findings. To illustrate the concept of the relative importance of each
level, we list the measurements for the Adult data set. Remember that in our
experiments we have used Age, Work Class, Race, Occupation, Education and
Marital Status as the quasi-identifier, Gender and NativeCountry as indifferent
attributes (the former because it only has two values and the second because it is too
biased for the value USA; thus, they both tend to be generalized always) and Hours
per Week as the sensitive attribute. In Table 5.1, we present both the relative
importance of attributes organized per hierarchy as well as the total ordering of
attributes by their importance.

The results are not surprising at all: as already observed in the previous experiments,
the age hierarchy presents remarkable improvements when we chose to use it for
generalization. This is due to the vast domain of its levels, compared to the other
attributes (observe that age' is the most strong attribute and the best choice to direct
efforts for generalization that minimize suppression and, not surprisingly, age’ is the
weakest attribute to keep at a generalization scheme). As mentioned early in this
paper, age and occupation appear to be the attributes where generalization appears to
pay off, the former due to its domain and the balance of the mappings among different

levels) and the latter due to the structure of its first level that comprises three values
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only along with a nice balance to the lower-level values, too. The rest of the attributes

rise to significant heights before being comparable with age and occupation.

Table 5.1 Relative Importance of generalization levels for the Adult data set. Left:
number of groups and average group size per level; Right: total order of all the levels
by relative importance (descending)

level num Avg group | rellmp() Level rellmp()
groups Size

age 400000 3455 8.73 1.56 agel 1.70
300000 5380 5.61 1.30 age4 1.56

200000 7015 4.30 1.30 occupationl 1.42

100000 9117 3.31 1.70 occupation2 1.38

000000 15537 1.94 0.59 age3 1.30

education 040000 8247 3.66 1.26 education3 1.30
030000 10407 2.90 1.30 age2 1.30

020000 13526 2.23 1.09 education4 1.26

010000 14796 2.04 1.05 work_class2 1.24

000000 15537 1.94 0.95 marital_status3 1.16

marital_status 003000 11190 2.70 1.16 marital_status2 1.14
002000 13018 2.32 1.14 race2 1.13

001000 14855 2.03 1.05 education2 1.09

000000 15537 1.94 0.96 work_classl 1.06

occupation 000200 7932 3.80 1.38 educationl 1.05
000100 10975 2.75 1.42 marital_statusl 1.05

000000 15537 1.94 0.71 racel 1.02

race 000020 13478 2.24 1.13 work_class3 1.00
000010 15210 1.98 1.02 race( 0.98

000000 15537 1.94 0.98 marital_statusO 0.96

work_class 000003 11790 2.56 1.00 education0 0.95
000002 11798 2.56 1.24 work_class0 0.94

000001 14668 2.06 1.06 occupation( 0.71

000000 15537 1.94 0.94 age0 0.59

5.3. The grouping power of lattice nodes and its effect to suppression

Having defined the grouping power and the relative importance of a generalization
level, we can now proceed to define the estimated importance of a node. Assuming a
node v, defined by its quasi-identifier levels as v[Alhl,Azhz,...Anhn], we exploit the
individual metrics of each level and combine them in order to predict the importance
of a node in the lattice with respect to its ability to provide as low suppression as

possible, if chosen as the elected generalization scheme.
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Early failures and level metrics that we have used. In our deliberations, we first
started by using the average group size metric as the measure for each level. We tried
to provide an estimation of the group size of each node by multiplying the shrinking
power of each of its levels and assessed how well the produced metric approximated
the actual order of nodes per height with respect to their suppression. This approach
did not work very well as the levels with very large group sizes dominated the
outcome; so, we decided to change the way we combined the individual metrics and
opted for simple summation. Here, observe that the combined metric tries to estimate
the goodness of each node as compared to the other nodes in a very efficient way; so,
the actual meaning of the produced score is not so important.
The problem with the domination of the scores by large groups came again when we
tried to combine the average group size and the relative importance of each node in its
hierarchy as the product of these two metrics. So, we decided to use the logarithm of
the group size as a useful indication. Overall, the level metrics we have used are:

e Average group size (y)

e Relative importance of a level (n)

e The product y*p

e The product logx(y)*p
Estimated node importance. Given these individual metrics, we define the estimated
importance of a node (with respect to its power to reduce suppression) as the sum of
the metrics of each of the levels that define the node.

o I'(v)=2(1)

o MEV)-E (W)

e 'MV)=2(r* W)

o AW)=Z(log(y)* )

For example, assume the case of QI=3 for the Adult data set, with Age, Race,
WorkClass as the quasi-identifier set, and the node A3R21W2 (Age3, Racez,
WorkClass®) of the resulting lattice. Then, according to the values of Table 5.1, the
estimated importance of the node A3R2W2 with the p metric is 1.30+1.13+1.24=3.67.

Experimental method and findings. We measured the estimated importance of all

nodes of the lattice for QI=3,4,5,6 for the Adult data set. For each of the estimator
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measures, we have measured the 5% top nodes in terms of actual suppression for the
case of k-anonymity with k = 3, 10, 50. For heights with too few nodes, we kept at
least 2 nodes. The goal of the experiment is to identify which of our prediction
metrics provides the best possible approximation to the exact results that the full
lattice would give.

For every height /#, we compare the case of the full lattice and the case of our node
selection according to each of the four metrics. According to the nodes selected, we
pick the one with the least actual suppression, which we call the winner node for the
metric under inspection. Then, we compare this best node per metric with the best
actual node and we count the misses we get as well as the deviation of the winner’s

node suppression against the best possible suppression (of the full lattice).

k=3 Till 30 tuples Overall
#dev(l') | Err(') | #dev(A) | Err(A) #dev(l) | Err(l') | #dev(A) | Err(A)
QI=3 0 0% 0 0.00% 3 28.21% 4 26.67%
QI=4 2 21.96% 1 3.41% 5 29.64% 5 11.85%
QI=5 2 2.86% 2 2.35% 4 1.43% 6 7.42%
QI=6 1 0.60% 1 1.31% 4 8.21% 6 8.59%
k=10 Till 30 tuples Overall
#dev(l) | Err(') | #dev(A) | Err(A) #dev(l) | Err(l') | #dev(A) | Err(A)
QI=3 2 52.99% 0 0% 3 22.27% 2 0.36%
QI=4 3 57.87% 1 8.53% 4 29.83% 5 54.56%
QI=5 3 6.84% 2 4.51% 5 3.85% 6 2.54%
QI=6 0 0% 2 1.85% 2 5.27% 7 6.34%
k=50 Till 30 tuples Overall
#dev(l) | Err(l') | #dev(A) | Err(A) #dev(l) | Err(l') | #dev(A) | Err(A)
QI=3 2 33.20% 2 12.30% 2| 16.60% 4 44.01%
QI=4 4 38.38% 1 0.61% 5122.39% 3 0.36%
QI=5 1 0.05% 1 1.30% 2| 0.04% 3 0.90%
Ql= 0 0% 2 1.00% 3| 24.44% 7 25.08%

Figure 5.1 Number of deviations and accuracy for the estimator functions I'and A

To forestall any possible criticism on the evaluation of selected nodes with respect to
their actual suppression, we would like to remind the reader that the underlying idea
here is as follows: had we used the estimation metric in practice, we would have
picked these particular nodes via the metric under inspection and we would have

calculated their histogram. Then, a simple exhaustive algorithm could go through all
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these histograms (that are too few to present a problem) and find the winner per

height.

Since the error is the percentage of the difference between the best solutions between
full and partial lattice construction over the full lattice’s value, we had to handle the
cases where the actual suppression was zero. In this case, each extra tuple was given a
penalty |D[', with |D| being the size of the data set. Again, this does not cover
adequately all cases as there exist cases where the actual suppression was very small
(less than 0.1% of the overall data set) and small differences in the amount of
suppression resulted in large errors. So, when we give consolidate results we present
one report for the overall experiment and another for the subset of the lattice’s heights
where the best solution is larger than 0.1% of the data set (in the case of the Adult
data set, 30 tuples).

The results are depicted in consolidated form in Figure 5.1 and in detailed form in
Figures 5.2-5.13. The consolidated results per combination of k and QI size report the
number of times that the estimator missed the best possible node (#dev) and the

average of the error made by the estimator.

In Figure 5.1 we present the two best estimator methods, the average group size (I)
and product of the group size’s logarithm with its relative importance (A). The
former, I', presents very good results for the largest QI size (6) and a large range of
results for the other QI sizes. The latter, A, retains a very good estimation range for
all occurrences. It is true, however, that its performance drops at the higher level of
the lattice, where the best possible suppression is 0; in these cases, A frequently
misses this possibility, although the selected nodes approximate the best possible
solution with very low numbers of suppressed tuples. For completeness, it should be
also noted that the relative importance of levels (M) produces frequent misses of the
best possible solution, sometimes with significant deviations, whereas the behavior of
I'M follows the one of I" quite closely — sometimes, with even better results.

Overall, based on all the above, we find A to be the estimator of choice for the

subsequent experiments.
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QI 3 k 3
height | actual r Err(I) M Err(M) I'M | Err(I'M) A Err(A)
0 554 554 0% 554 0% 554 0% 554 0%
1 125 125 0% 125 0% 125 0% 125 0%
2 28 58 107.14% 28 0% 28 0% 28 0%
3 12 21 75.00% 17 41.67% 18 50.00% 17 41,67%
4 4 4 0% 9 125.00% 4 0% 9 125,00%
5 1 2 100.00% 1 0% 2 100.00% 2 100,00%
6 0 0 0% 0 0% 0 0% 2 0,01%
7 0 0 0% 0 0% 0 0% 0 0%
8 0 0 0% 0 0% 0 0% 0 0%
9 0 0 0% 0 0% 0 0% 0 0%
#dev | avg(err) | #dev | avg(err) | #dev | avg(err) | #dev | avg(err)
Till 30 tuples 0] 0% 0] 0% 0] 0% 0 0%
Overall 3] 28.21% 2116.67% 2 | 15.00% 4| 26.67%
Figure 5.2 Detailed table of deviation for |QI|=3 and k=3
QLA k3
height | actual r Err(I) M Err(M) I'M | Err(I’'M) A Err(A)
0 3297 3297 0% | 3297 0% | 3297 0% | 3297 0%
1 1042 1042 0% | 1042 0% | 1042 0% | 1042 0%
2 318 554 74.21% 318 0% 318 0% 318 0%
3 110 125 13.64% 110 0% 125 13.64% 125 13,64%
4 28 89 | 217.86% 47 67.86% 58 | 107.14% 50 78,57%
5 12 18 50.00% 19 58.33% 18 50.00% 18 50,00%
6 4 4 0% 11 | 175.00% 4 0% 4 0%
7 0 2 0.01% 2 0.01% 2 0.01% 4 0,01%
8 0 0 0% 0 0% 0 0% 2 0,01%
9 0 0 0% 0 0% 0 0% 0 0%
10 0 0 0% 0 0% 0 0% 0 0%
11 0 0 0% 0 0% 0 0% 0 0%
#dev | avg(err) | #dev | avg(err) | #dev | avg(err) | #dev | Avg(err)
Till 30 tuples 2| 21.96% 0] 0.00% 1|341% 1 3.41%
Overall 5| 29.64% 4| 25.10% 4| 14.23% 5 11,85%

Figure 5.3 Detailed table of deviation for |QI|=4 and k=3
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QLS k3

height | actual r Err(I) M Err(M) 'M Err(I'M) A Err(A)
0 10458 | 10458 0% [ 10458 0% | 10458 0% | 10458 0%
1 4514 4514 0% 4514 0% 4514 0% 4514 0%
2 2169 2169 0% 2169 0% 2169 0% 2169 0%
3 1123 1123 0% 1619 44.17% 1123 0% 1123 0,00%
4 716 716 0% 753 5.17% 731 2.09% 731 2,09%
5 322 342 6.21% 377 17.08% 342 6.21% 322 0%
6 108 126 16.67% 164 51.85% 126 16.67% 126 16,67%
7 41 41 0% 47 14.63% 41 0% 41 0%
8 8 8 0% 31| 287.50% 8 0% 8 0%
9 2 2 0% 16 | 700.00% 2 0% 4| 100,00%
10 0 2 0.01% 9 0.03% 2 0.01% 2 0,01%
11 0 2 0.01% 0 0% 2 0.01% 2 0,01%
12 0 0 0% 2 0.01% 0 0% 2 0,01%
13 0 0 0% 0 0% 0 0% 0 0%
14 0 0 0% 0 0% 0 0% 0 0%
15 0 0 0% 0 0% 0 0% 0 0%
#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev avg(err)
Till 30 tuples 2 | 2.86% 51| 16.61% 3] 3.12% 2.35%
Overall 41 1.43% 91 70.03% 51| 1.56% 7.42%

Figure 5.4 Detailed table of deviation for |QI|=5 and k=3
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QL6 k 3

height | actual r Err(T) M Err(M) '™M Err(I'M) A Err(A)
0 15318 | 15318 0% | 15318 0% | 15318 0% | 15318 0%
1 8304 8304 0% 8304 0% 8304 0% 8304 0%
2 4901 4901 0% 4901 0% 4901 0% 4901 0%
3 2867 2867 0% 4023 40.32% 2867 0% 2867 0%
4 1941 1941 0% 2446 26.02% 2196 13.14% 2196 13,14%
5 1177 1248 6.03% 1177 0% 1177 0% 1177 0%
6 629 629 0% 752 19.55% 629 0% 629 0%
7 354 354 0% 524 48.02% 354 0% 354 0%
8 155 155 0% 243 56.77% 155 0% 155 0%
9 33 33 0% 78 | 136.36% 33 0% 33 0%
10 9 9 0% 33 | 266.67% 9 0% 9 0%
11 2 5] 150.00% 17 | 750.00% 5| 150.00% 5] 150,00%
12 0 1 0.003% 10 0.03% 2 0.01% 4 0,01%
13 0 1 0.003% 2 0.01% 2 0.01% 2 0,01%
14 0 0 0% 0 0% 0 0% 2 0,01%
15 0 0 0% 0 0% 2 0.01% 2 0,01%
16 0 0 0% 0 0% 0 0% 0 0%
17 0 0 0% 0 0% 0 0% 0 0%
18 0 0 0% 0 0% 0 0% 0 0%
t#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev avg(err)
Till 30 tuples 1 0.60% 6 32.71% 1.31% 1.31%
Overall 4 8.21% 10 70.72% 5 8.59% 8.59%

Figure 5.5 Detailed table of deviation for |QI|=6 and k=3
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height | actual r Err(I) M Err(M) '™M Err(I'M) A Err(A)
0 1921 1921 0% | 1921 0% | 1921 0% | 1921 0%
1 522 522 0% 522 0% 522 0% 522 0%
2 170 257 51.18% 170 0% 170 0% 170 0%
3 51 133 | 160.78% 51 0% 51 0% 51 0%
4 28 31 10.71% 29 3.57% 31 10.71% 29 3,57%
5 ) 2 0% 14 | 600.00% 2 0% 2 0%
6 0 0 0% 0 0% 0 0% 2 0,01%
7 0 0 0% 0 0% 0 0% 0 0%
8 0 0 0% 0 0% 0 0% 0 0%
9 0 0 0% 0 0% 0 0% 0 0%
#dev | avg(err) | #dev | avg(err) | #dev | avg(err) | #dev | avg(err)
Till 30 tuples 2 52.99% 0 0% 0 0% 0 0%
Overall 3 22.27% 2 60.36% 1 1.07% 2 0.36%

Figure 5.6 Detailed table of deviation for |QI|=3 and k=10

height | actual r Err(I) M Err(M) I'M | Err(I'M) A Err(A)
0 9416 | 9416 0% [ 9416 0% [ 9416 0% [ 9416 0%
1 3273 | 3273 0% [ 3273 0% [ 3273 0% [ 3273 0%
2 1261 | 1921 52.34% [ 1261 0% [ 1261 0% [ 1261 0%
3 522 522 0% 752 44.06% 522 0% 522 0%
4 170 378 | 122.35% 285 67.65% 257 51.18% 257 51.18%
5 51 139 | 172.55% 61 19.61% 139 | 172.55% 51 0%
6 28 31 10.71% 29 3.57% 31 10.71% 29 3.57%
7 2 2 0% 14 | 600.00% 2 0% 14 | 600.00%
8 0 0 0% 0 0% 0 0% 2 0.01%
9 0 0 0% 2 0.01% 0 0% 2 0.01%
10 0 0 0% 0 0% 0 0% 0 0%
11 0 0 0% 0 0% 0 0% 0 0%
#dev | avg(err) | #dev | avg(err) | #dev | avg(err) | #dev | Avg(err)
Till 30 tuples 3[157.87% 3121.89% 2 | 37.29% 1 8.53%
Overall 4 | 29.83% 6 | 61.24% 3 [ 19.54% 5 54.56%

Figure 5.7 Detailed table of deviation for |QI|=4 and k=10
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height | actual r Err(I) M Err(M) '™M Err(I'M) A Err(A)
0 18916 | 18916 0% | 18916 0% | 18916 0% | 18916 0%
1 10944 | 10944 0% | 10944 0% | 10944 0% | 10944 0%
2 6151 6151 0% 6151 0% 6151 0% 6151 0%
3 3468 3468 0% 4824 39.10% 3468 0% 3468 0%
4 2065 2065 0% 2868 38.89% 2508 21.45% 2508 21.45%
5 1160 1207 4.05% 2007 73.02% 1207 4.05% 1160 0%
6 578 578 0% 1004 73.70% 578 0% 578 0%
7 230 274 19.13% 230 0% 274 19.13% 274 19.13%
8 60 83 38.33% 141 | 135.00% 83 38.33% 60 0%
9 14 14 0% 41 | 192.86% 14 0% 14 0%
10 0 14 0.05% 22 0.07% 14 0.05% 14 0.05%
11 0 2 0.01% 8 0.03% 2 0.01% 2 0.01%
12 0 0 0% 14 0.05% 0 0% 2 0.01%
13 0 0 0% 4 0.01% 2 0.01% 2 0.01%
14 0 0 0% 0 0% 0 0% 0 0%
15 0 0 0% 0 0% 0 0% 0 0%
#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev Avg(err)
Till 30 tuples 3 6.84% 5 39.97% 4 9.22% 2 4.51%
Overall 5 3.85% 10 34.55% 7 5.19% 6 2.54%

Figure 5.8 Detailed table of deviation for |QI|=5 and k=10
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height | actual r Err(I) M Err(M) '™M Err(I'M) A Err(A)
0 24040 | 24040 0% 24040 0% 24040 0% 24040 0%
1 15836 | 15836 0% 15836 0% 15836 0% 15836 0%
2 10649 | 10649 0% 10649 0% 10649 0% 10649 0%
3 7153 7153 0% 9200 28.62% 7153 0% 7153 0%
4 5063 5063 0% 6236 23.17% 5827 15.09% 5827 15.09%
5 3562 3562 0% 3616 1.52% 3562 0% 3562 0%
6 1823 1823 0% 2660 45.91% 1823 0% 1823 0%
7 1222 1222 0% 1895 55.07% 1222 0% 1222 0%
8 639 639 0% 970 51.80% 639 0% 639 0%
9 285 285 0% 493 72.98% 285 0% 300 5.26%
10 54 54 0% 188 248.15% 54 0% 54 0%
11 21 21 0% 73 247.62% 21 0% 21 0%
12 7 14 100.00% 29 314.29% 14 100.00% 14 100.00%
13 0 14 0.05% 14 0.05% 14 0.05% 14 0.05%
14 0 0 0% 8 0.03% 2 0.01% 14 0.05%
15 0 0 0% 14 0.05% 2 0.01% 2 0.01%
16 0 0 0% 4 0.01% 2 0.01% 2 0.01%
17 0 0 0% 0 0% 0 0% 0 0%
18 0 0 0% 0 0% 0 0% 0 0%
#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev avg(err)
Till 30 tuples 0 0.00% 8 47.93% 1 1.37% 2 1.85%
Overall 2 5.27% 14 57.33% 6 6.06% 7 6.34%
Figure 5.9 Detailed table of deviation for |QI|=6 and k=10
QI _3_k 50
height | actual r Err(T) M Err(M) T'M [ Err(I'm) Err(A)
0 8297 | 8297 0% 8297 0% 8297 0% 8297 0%
1 2123 | 2123 0% 2123 0% 2123 0% 2123 0%
2 1345 | 1345 0% 1402 4.24% 1402 4.24% 1402 4.24%
3 428 698 | 63.08% | 673 | 57.24% [ 698 [ 63.08% | 673 | 57.24%
4 137 278 [ 102.92% | 137 0% 278 [ 102.92% | 137 0%
5 14 14 0% 76 442.86% 14 0% 67 378.57%
6 14 14 0% 14 0% 14 0% 14 0%
7 0 0 0% 14 0.05% 14 0.05% 14 0.05%
8 0 0 0% 0 0% 0 0% 0 0%
9 0 0 0% 0 0% 0 0% 0 0%
#dev | avg(err) | #dev | avg(err) [ #dev | avg(err) | #dev | avg(err)
Till 30 tuples 2 |33.20% 2 [12.30% 3 | 34.05% 2| 12.30%
Overall 2| 16.60% 4 | 50.44% 4| 17.03% 4| 44.01%

Figure 5.10 Detailed table of deviation for |QI|=3 and k=50
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QI 4.k 50
height | actual r Err(T) M Err(M) '™M Err(I'M) A Err(A)
0 20066 | 20066 0% 20066 0% 20066 0% 20066 0%
1 10053 | 10053 0% 10053 0% 10053 0% 10053 0%
2 4612 7036 52.56% 4612 0% 4612 0% 4612 0%
3 2123 2123 0% 3217 51.53% 2123 0% 2123 0%
4 1345 1848 37.40% 1555 15.61% 1402 4.24% 1402 4.24%
5 359 631 75.77% 359 0.% 631 75.77% 359 0%
6 137 278 102.92% 137 0% 278 102.92% 137 0%
7 14 14 0% 76 442.86% 14 0.00% 14 0%
8 0 14 0% 14 0.05% 14 0.05% 14 0.05%
9 0 0 0% 14 0.05% 14 0.05% 14 0.05%
10 0 0 0% 0 0% 0 0% 0 0%
11 0 0 0% 0 0% 0 0% 0 0%
#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev avg(err)
Till 30 tuples 4 38.38% 2 9.59% 26.13% 1 0.61%
Overall 5 22.39% 5 42.51% 5 15.25% 3 0.36%
Figure 5.11 Detailed table of deviation for |QI|=4 and k=50
QI_5_k_50
height | actual r Err(T) M Err(M) '™M Err(I'M) A Err(A)
0 29650 | 29650 0% 29650 0% 29650 0% 29650 0%
1 19750 | 19750 0% 19750 0% 19750 0% 19750 0%
2 14575 | 14575 0% 14575 0% 14575 0% 14575 0%
3 10546 | 10546 0% 12933 | 22.63% | 10546 0% 10546 0%
4 6954 6954 0% 8073 16.09% 7328 5.38% 7947 14.28%
5 4336 4336 0% 6870 58.44% 4336 0% 4336 0%
6 2002 2002 0% 5014 | 150.45% | 2002 0% 2002 0%
7 1366 1366 0% 2243 64.20% 1366 0% 1366 0%
8 613 613 0% 1068 74.23% 613 0% 613 0%
9 169 170 0.59% 234 38.46% 170 0.59% 169 0%
10 59 59 0% 137 132.20% 59 0% 59 0%
11 14 14 0% 14 0% 14 0% 14 0%
12 0 14 0.05% 14 0.05% 14 0.05% 14 0.05%
13 0 0 0% 14 0.05% 14 0.05% 14 0.05%
14 0 0 0% 0 0% 0 0% 0 0%
15 0 0 0% 0 0% 0 0% 0 0%
#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev avg(err)
Till 30 tuples 1 0.05% 8 50.61% 2 0.54% 1 1.30%
Overall 2 0.04% 10 34.80% 4 0.38% 3 0.90%

Figure 5.12 Detailed table of deviation for |QI|=5 and k=50




151

QL 6.k 50
height | actual r Err(I) M Err(M) '™M Err(I'M) A Err(A)
0 29868 | 29868 0% 29868 0% 29868 0% 29868 0%
1 24626 | 24626 0% 24626 0% 24626 0% 24626 0%
2 19084 | 19084 0% 19084 0% 19084 0% 19084 0%
3 15380 | 15380 0% 18364 19.40% 15380 0% 15380 0%
4 12278 | 12278 0% 13893 13.15% 13156 7.15% 13630 | 11.01%
5 9088 9088 0% 9855 8.44% 9088 0% 9176 0.97%
6 5515 5515 0% 8444 53.11% 5515 0% 5515 0%
7 4360 4360 0% 6684 53.30% 4360 0% 4360 0%
8 2482 2482 0% 3959 59.51% 2482 0% 2482 0%
9 1786 1786 0% 2449 37.12% 1786 0% 1786 0%
10 869 869 0% 1169 34.52% 869 0% 869 0%
11 137 137 0% 515 275.91% 137 0% 137 0%
12 14 79 464.29% 234 1571.43% 79 464.29% 79 464.29%
13 0 14 0.05% 14 0.05% 14 0.05% 14 0.05%
14 0 0 0% 14 0.05% 14 0.05% 14 0.05%
15 0 14 0.05% 14 0.05% 14 0.05% 14 0.05%
16 0 0 0% 14 0.05% 14 0.05% 14 0.05%
17 0 0 0% 0 0% 0 0% 0 0%
18 0 0 0% 0 0% 0 0% 0 0%
#dev avg(err) | #dev avg(err) | #dev avg(err) | #dev avg(err)
Till 30 tuples 0 [ 0.00% 9 | 46.21% 1] 0.60% 2 1.00%
Overall 3 | 24.44% 14 | 111.90% 6 | 24.82% 7 25.08%

Figure 5.13 Detailed table of deviation for |QI|=6 and k=50

5.4. Preprocessing time

The time to complete the preprocessing time for the different QI sizes of the Adult

data set is depicted in Fig. 5.14. We observe that the time falls to approximately one

minute for QI = 6 (remember that it used to be approximately 20 minutes for the full

lattice, which demonstrates a linear speedup with the approximation factor.
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Figure 5.14 Total constuction time for the partial lattice of the Adult data set

We can observe the exponential curve in the construction time as QI increases. This is
clearly due to the nature of the problem: as we keep the percentage of nodes fixed
(here: 5%) every extra attribute in the QI scales up the number of nodes by the size of

its levels.

The breakdown of the lattice and histogram construcion time is as listed in Table 5.2

for the Adult data set and Table 5.3 for the IPUMS data set.

Table 5.2 Breakdown of construction time (sec) of partial lattice for the Adult data set

QI=3 Q=4 | QI=5 QI=6
Level importance
comp. 1.15 1.8 3.27 5.4
Node importance
comp. 0.05 0.18 0.40 0.99
Histogram computation 2.52 425 | 1332|5847
Overall 3.72 624 | 1700 | 64.70

We observe that, as expected, the interaction with the database is the one that
consumes most of the time.The first of these interactions, specifically the computation
of level importance requires one aggregate query per level and does not take too much
time. At the same time, the computation of histograms is largely affected by the

number of nodes selected to be part of the partial lattice; since our rule indicates a
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fixed percentage, the exponential nature of the cost remains, albeit significantly

reduced.

Table 5.3 Breakdown of construction time (msec) of partial lattice for the IPUMS data

set
QI=4
Level importance comp. 31.64
Node importance comp. 0.18
Histogram computation 7765
Overall 109.47

5.4.1. Answering user requests via the partial lattice

The method for answering a request by the user is a modified variant of the algorithm

of the full lattice.

O O0ON AW =

28.

. if an exact answer is found,

. else{
. Appr: for every heighth, in height(v_max) down to 0{

Algorithm PartialLatticeAnonymityNegotiation(L,k,h,MaxSupp)
In: Partial lattice L with the histograms for R,H, constraints for k, h, MaxSupp
Out: an exact solution s[v,k,h,supp] or s1,s2,s3, si=[v_i,k_i,h_i,supp_i]
Begin
Let v_max be the node that corresponds to the constrainth;
if v_max is part of L{
Check v_max for an exact answer;
if no such answer exists, goto Appr;

}
for every height h, in height(v_max)-1, down to 0{
for every node v in h, v in descendants(v_max), {
if an exact answer is given by v
keep the v with the minimum suppression as v_opt;
(break ties by h)
}//observe: all descendants of v_max must be checked in all levels

return v_opt with its answer;

for every node v in desc(v_max) in h {
check suppressed(v,k);
keep v_optM the node with the least suppression, k respected;
check max k for v, s.t.,, MaxSupp is respected;
keep v_optk the node with the max k that respects MaxSupp;
}
}
approxSol_1=solution(v_optk)
approxSol_3=solution(v_opt™)
approxSol_2=ApproximateH(L,v_max,height(v_max),height(top),k,h,MaxSupp);
return approxSol_1, approxSol_2, approxSol_3;

}
End.

Figure 5.15 Algorithm for Partial lattice Anonymity Negotiation

The algorithm starts with a quick check: if the highest node of the sublattice of valid

answers, v_max, cannot return an exact answer, then it is clear that no other node in
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the sub-lattice can; therefore the search is directed towards finding a set of
approximate answers (Line 15-28). If however, the node v_max is not part of the
partial lattice or, it is part of the partial lattice and gives an exact answer, then, the
sublattice must be checked. Due to the small size of the sublattice, it is quite
reasonable to explore it via a practically exhaustive search (Lines 6—12). So, we
search all levels and keep the answer with the minimum suppression (ties over
suppression are broken by picking the solution with the least height). Here, due to the
fact that the lattice is partial, we must note that we cannot rely on any pruning criteria:
if a node fails to give an exact answer at height 4, this does not mean that there are no
nodes in heights lower than 4 that can answer. Therefore, the entire sublattice must be
searched. Observe also, that due to the constraint that at least two nodes per level are
computed, the bottom node is always computed; so, there is always at least one
descendant of v_max in the partial lattice L.

If an exact answer is not found, we must search for approximate answers. The two of
the three approximations are performed in a simple way: we search all nodes in the
heights from v_max to 0 to find (a) the node that gives the least suppression, keeping
k fixed, and (b) the node that gives the maximum k, keeping MaxSupp fixed. This is
shown in lines 16 — 23. Apart from these two suggestions, we need to find the node
with the least height that respects both k and MaxSupp. This is done the same way as
in the full lattice (Line 26) --see also function ApproximateH, which we summarize
here: we search the upper part of the lattice with binary search; if a node answers
positively we search downwards for lower nodes that can answer too; else we search

upwards and check if the level under investigation is unable to provide a solution.

5.5. Quality of solution

Having explained the method via which user requests are answered, we can now
proceed to discuss our findings concerning the quality of answers returned by the
algorithm of the previous subsection. Figures 5.16 — 5.18 depict the detailed results of

the workloads of section 4 when the partial lattice is used instead of the full one.
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Parameters Actual solution Aproximate solution QoS
k | su height | [ k su height d(k) | d(su d(h
3,321,211 3 125 1 3 125 1 0 0 0
10,321,211 10 170 21| 10 170 2 0 0 0
50,321,211 No exact answer. Approx:
50 673 3
50 251 41| 50 137 4 0 114 0
31 314 3
=
3,321, 2011 No exact answer. Approx:
3 635 2
3 283 3 3 50 4 0 233 1
10,321, 2011 10 655 41| 10 2349 2 0 1694 -2
10 170 41| 10 257 4 0 87 0
5 301 4 No solution
50,321,2011 50| 4077 41| 50 7669 2 0 3592 -2
50 137 6] 50 137 6 0 0 0
5 301 4 No solution
s ]
3,321, 21012 3 656 6 3 3639 2 0 2983 -4
3 108 6 3 126 6 0 18 0
No solution No solution
10,321, 21012 10 | 2533 6] 10 9223 2 0 6690 -4
10 230 71| 10 274 7 0 44 0
No solution No solution
50,321, 21012 50| 9214 6]| 50 19324 2 0 10110 -4
50 169 91| 50 169 9 0 0 0
No solution No solution
e ]
3,321, 211012 3] 1611 7 3 7226 2 0 5615 -5
3 155 8 3 155 8 0 0 0
No solution No solution
10,321, 211012 | 10 ] 5362 71| 10 14627 2 0 9265 -5
10 285 91| 10 300 9 0 15 0
No solution No solution
50,321,211012]|50] 15106 71| 50 24558 2 0 9452 -5
50 137 11]| 50 137 11 0 0 0
No solution No solution

Figure 5.16 Qos in details for Variant k
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Aproximate
Parameters Actual solution solution QoS
k su height | [ k su height || d(k) | d(su d(h
10,321,101 10 257 21|10 257 2 0 0 0
10,321, 211 10 170 21110 170 2 0 0 0
10,321, 212 10 170 21110 170 2 0 0 0
T S

10,321, 1001 10| 2349 21|10 2349 2 0 0 0
10 170 411 10 257 4 0 87 0

No solution No solution
10,321, 2011 10 655 41|55 10 2349 0 1694 -2
10 170 41| 61 10 257 0 87 0
5 301 4 No solution 5 301 -4
10,321, 2112 10 285 41] 10 285 4 0 0 0
10,321,11001 10| 8169 31|10 9223 2 0 1054 -1
10 230 71] 10 274 7 0 44 0

No solution No solution
10,321, 21012 10 ] 2533 6]] 10 9223 2 0 6690 -4
10 230 71] 10 274 7 0 44 0

No solution No solution
10,321,22112 10 369 8| 10 2250 5 0 1881 -3
10 60 81| 10 60 8 0 0 0
9 315 8 No solution 9 315 -8

ke

10,321, 111001 10 | 12823 41110 | 14627 2 0 1804 -2
10 285 91|10 300 9 0 15 0

No solution No solution
10,321, 211012 10| 5262 71110 ]| 14627 2 0 9365 -5
10 285 91|10 300 9 0 15 0

No solution No solution
10,321,222112 10 712 10]| 10 3971 6 0 3259 -4
10 54 10]| 10 54 10 0 0 0
5 298 10 No solution 5 298 | -10

Figure 5.17 Qos in details for Variant level
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Parameters Actual solution Aproximate solution QoS
k su height ]| k su height d(k) | d(su d(h
10,32, 211 10 55 4 10 77 3 0 22 -1
10 28 4 10 29 4 0 1 0
7 31 4 5 32 3 -2 1 -1
10,321,211 10 170 2 10 170 2 0 0 0
10,3216, 211 1921 | 1921 |
10,32, 2011 2349 1694
35 10 28 10 29 6 0 1 0
No Solution No Solution
10,321, 2011 10 655 4 10 2349 2 0 1694 -2
10 170 4 10 257 4 0 87 0
5 301 4 No Solution 5 301 -4
10,3216, 2011 10 | 2110 2 10 2349 2 0 239 0
10,32, 21012 10 | 2533 6 10 9223 2 0 6690 -4
10 14 9 10 14 9 0 0 0
No Solution No Solution
10,321, 21012 10 | 2533 6 10 9223 2 0 6690 -4
10 230 7 10 274 7 0 44 0
No Solution No Solution
10,3216, 21012 No exact answer. Approx:
10 9223 2
551 10| 2533 10 578 6 0 1955 0
2211

10,32,211012 5362 14627 9265

10 21 11 10 21 11 0 0 0

No Solution No Solution
10,321, 211012 10 | 5362 71l 10 14627 2 0 9265 -5
10 | 285 91| 10 300 9 0 15 0

No Solution No Solution
10,3216, 211012 10 | 5362 71| 10 14627 2 0 9265 -5
10 | 1222 71| 10 1222 7 0 0 0
51 2915 7 No Solution 5 2915 -7

Figure 5.18 Qos in details for Variant max supp
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The detailed Tables do not reveal too much per se; we complement them with Tables

5.19 — 5.21 where we discuss each answering method (i.e., exact answers along with

the 3 relaxations) in isolation. In all these Tables, the cells with grey background are

the ones where the full lattice allowed the derivation of an exact solution and the

partial lattice failed. The cells with the blue background are the ones where the

respective phenomenon occurred for relaxation 3. Remember that:

Approximation 1 keeps k& and h fixed and tries to find the closest possible
suppression that the data set can provide

Approximation 2 keeps k£ and maxSupp fixed and tries to find the lowest
possible level where both these values are respected

Approximation 3 keeps maxSupp and h fixed and tries to find the closest
possible & to the original one that the data set can support

The overall performance of the partial lattice with just a 5% support of the full

lattice’s nodes seems quite satisfactory.

Approximation 1 has the tendency to move downwards the lattice, until a node
that is within the sublattice of vmax is found. So, all the solutions are quite
lower than the height constraint (with a difference ranging between -1 and -5)
and therefore provide significantly larger suppressions than the one suggested
by the full lattice. Remember, however that this is just a suggestion in the
context of an interactive user session.

Approximation 2 tries to minimize the height that provides a solution that
respects both k and maxSupp and apparently it does a pretty good job in all
occasions (see all three tables for column Aheight and section Approximation
2 in all three tables) with small deviations for the suppressed tuples (but still,
within the user’s threshold) and no deviations for k with respect to the answer
of the full lattice. Remember that this is the most complicated search as it
travels throughout the whole lattice in search for an answer.

Approximation 3 fails frequently in both the full and the partial lattice.
Unfortunately, the partial lattice fails to support this approximation. Out of the
36 possible value combinations, 9 had an exact answer in both the full and the
partial lattice(so the approximation never fired in the first place) and out of the

27 remaining cases, (a) 17 cases presented no solution in neither the full nor
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the partial lattice, (b) 6 cases had an exact answer in the full lattice and no
solution in the partial lattice, (c) 3 cases had an answer in the full lattice and
an approximation in the partial lattice, and (d) only 1 case had an
approximation in the both lattices.
Overall, we practically had three occurrences where the full lattice gives an exact
answer and the partial lattice fails: (1) QI=3, k=50, (i1) QI=4, k=3 (ii1) QI=S5,
maxSupp=3126. We find this performance quite satisfactory.
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5.6. Performance of Algorithm PartialLatticeNegotiation

In this subsection we discuss the performance of the algorithm
PartialLatticeNegotiation in terms of time and visited nodes. Our findings are as
follows:

— The full lattice was already a fast answering mechanism for the QI sizes that
we have explored. In all occasions, the time to navigate over the full lattice
before returning an answer was between 0.66 — 8 msec. In the case of the
partial lattice, the times range between 0.33 to 2 msecs, due to the reduced
“lattice” size. In cases where time is really critical then this scaling down with
a scale factor between 2 and 8 can be useful.

— Exactly as in the case of the full lattice, the increase of k results in an increase
in the number of visited nodes for the case where we resort to relaxations.
Concerning the case of exact answers, although our experiment does not give
conclusive answers on the behavior of the algorithm, it is noteworthy that out
of the 3 cases in QI=3 where the full lattice gave an exact solution, the two
were retained in the partial lattice too.

— The behavior of the algorithm over the full lattice as the height of the allowed
exact solution rises is retained. As the height constraints are put higher, there
are more nodes to be visited for exact solutions from this height downwards.
On the contrary, when we have to resort to relaxations things remain quite
stable. Here, it is noteworthy to discuss the role of the top acceptable node
Vmax- 1f Vmax 18 present we can have a very quick test on whether we will need
relations (in most case we will), or an exact answer is possible (this happens in
the case of QI=4, height=low, for example). In general, however, this luxury is
not always available in the partial lattice, and this increases the search space.

— The behavior of the algorithm over the full lattice as maxSupp increases is also
retained: time drops as maxSupp increases, since we find a desired solution
faster.

— In all cases, the dominant factor for the performance of the algorithm is again
QI size; naturally the effect is scaled down as the lattice size is scaled down

too. Interestingly, it is worth noting that the maximum number of nodes visited
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by the algorithm over the partial lattice is 94 which is the 5.2% of the

maximum number of visited nodes in the case of full lattice (1792).
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5.7. The effect of the number of selected nodes

Insofar, we have explored the case where we restrict the number of selected nodes to
5% of the full lattice (to be exact, to at least two nodes per height and 5% of the
height’s nodes otherwise). However, we have not explored the case where we modify
this selectivity parameter to other values. To this end, we have explored to other
values with a reasonable amount of selectivity, specifically 1% and 10%. We believe
that given the antagonizing goals of fast lattice pre-computation and reasonably
constraint deviation from the optimal solutions, these seem quite appropriate limits for

the selectivity factor.

We varied p% to the values 1%, 5%, 10% and £ to the typically used values £=3,10,50
and observed the results. The results are astonishing:

— The exact answers and the relaxation of maxSupp (approximation 1) or k
(approximation 3) are identical in all three values of p%, for all values of k.

— The relaxation of height (Approximation 2), which explores all the available
lattice, was slightly better when p% was raised to 10% and slightly worse
when p%=1%. In Fig. 5.22, we depict the differences of 1% and 10% with
respect to 10% with dark background and white font.

Based on the above, we can argue that a reasonable value for the selectivity factor

between 1% and 10% suffices to provide the same results without further tuning.



04,d JO sanea Jud1dpIp 10¥ (7 uonewrxorddy) uonexedr WYIIAY J0J SOIUAIJI 7T S N3

0 0 0 9=10 0 0 0 9=10 0

0 0 0 S=10 0 0 0 S=10 0

0 0 0 =10 0 0 i =10 0

0 - - €=10 0 - - €=10 YIT-

0S=Y 0T=Y €=y Z xoaddy 0S=4 | oT=Y €= Z xoaddy 0S=Y oT=H | €= %0T1=d
0 0 0 9=10 0 0 0 9=10 0 ST 0 9=10
0 0 0 S=10 0 0 0 S=10 0 ¥ 81 S=10
0 0 0 =10 0 0 I =10 0 L8 €ee- =10
0 - - €=10 0 - - €=10 YIT- €=10
0S=Y 0T=Y €=y Zxoaddy 0s=1 | o1=H €=y Zxoaddy 0S=Y oT=¥ | €= %S=d
0 0 0 9=10 0 0 9=10 8S- ST 0 9=10
0 0 0 S=10 0 S=10 18 68- 8T S=10
0 0 0 =10 0 0 1 =10 0 L8 €ee- =10
0 - - €=10 0 - - €=10 YIT- €=10
0S=Y 0T=Y €=y Z xoxddy 0S=¥ | OT=Y €=y Z xoxddy 0S=Y 01=¥ | €= %1=d

OLT



171

5.8. Extending the partial lattice at runtime

A critical factor that differentiates the full-lattice and the partial lattice methods is the
existence of the histogram of the top-acceptable node. As we have seen, the partial
lattice methods approximates the full lattice method quite well when (a) an exact
answer can be found and (b) when we relax the height constraint and the search is
expanded throughout all the available lattice. On the other hand, the partial-lattice
method suffers at the relaxations of & and MaxSupp, which are exactly the ones that
are executed over the top-acceptable node and nowhere else.

Therefore, it is clear that the presence of the histogram of the top-acceptable node
would ameliorate the quality of the provided relaxations. Of course, this comes at the
price of constructing the node’s histogram at run-time. How severely is performance
degraded if we pay the price of runtime construction to gain the high quality of

solutions?

We have experimented with this extension. The algorithm Partial Lattice Negotiation
is altered by adding the computation of the histogram of the top-acceptable node as

the first step of the algorithm and restricting the approximations 1 and 3 to this node.

Algorithm PartialLatticeWithTopAcceptableHisto(L,k,h,MaxSupp)
In: Partial lattice L with the histograms for R,H, constraints for k, h, MaxSupp
Out: an exact solution s[v,k,h,supp] or s1,s2,s3, si=[v_i,k_i,h_i,supp_i]
Begin

1. Compute the histogram of v_max if not already in L;

2. if v.max gives exact answer{

3. for every height h, in height(v_max)-1, down to 0{

4, for every node v in h, v in descendants(v_max), {

5. if an exact answer is given by v

6. keep the v with the minimum suppression as v_opt;

7. (break ties by h)

8. }

9. }

10. else{

11. approxSol_1 = ApproximateMaxSupp(L,v_max,k,h,MaxSupp);

12. approxSol_2=ApproximateH(L,v_max,height(v_max),height(top),k,h,MaxSupp);

13. approxSol_3 = ApproximateK(L,v_max,k,h,MaxSupp);

14.

15. return approxSol_1, approxSol_2, approxSol_3;

16. }
End.

Figure 5.23 Algorithm Partial Lattice With Top Acceptable Histogram
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We have experimented by keeping p% to 5%. The results of our experimentation are
very interesting. In a nutshell, the introduction of the computation of the histogram for
the top-acceptable node introduces a significant overhead compared to the simple case
of the partial lattice of the order of 140 — 335 msec, but, all the solutions practically
coincide with the ones of the full lattice. Specifically, our results are as follows:

- The cases where an exact answer was given by the full lattice are all captured
(as opposed to the three misses of the simple partial lattice). Out of these 12
occasions, there are two occasions where there is a discrepancy between the
answer of the full lattice and the answer of the extended partial lattice.

- The relaxation of height remains practically the same as with the case of the
partial lattice; remember that this is the case where all the available lattice is
explored for the lowest possible height where a solution exists.

- The relaxation of maxSupp provides significant improvements compared to
the case of the simple lattice. As expected, all the deviations in terms of
suppressed tuples disappear (remember that the relaxations of maxSupp and k
are performed at the top-acceptable node).

- Similarly, the deviations in terms of suppression and & for the relaxation of &
also disappear. Most importantly, all the cases where the partial lattice failed
to follow the behavior of the full lattice have disappeared. Again, this is due to
the fact that the relaxation of & takes place on the top-acceptable node too.

- In terms of time, it is clear that the time is practically stable and dominated by
the cost of the computation of the histogram for the top-acceptable node. In
Figures 5.24-5.26 we depict the time and the number of visited nodes for

different size of QI and different £, level of top-acceptable, and MaxSupp.

Overall, one can argue with safety that if the time to compute the histogram for the
top-acceptable node can be tolerated at runtime (and for the case of our experiments

we believe it does), then the quality of solution improves drastically.



Time (msec)
k QI=3 QI=4 QI=5 QI=6
3 144.00 206.67 260.00 334.33
10 143.00 205.33 259.67 334.33
50 142.67 204.00 260.00 334.33
# visited nodes
3 7 4 10 47
10 7 6 19 74
50 7 7 25 88

Figure 5.24 Time and visited nodes for all QI and Variant &

Time (msec)
level QI=3 QI=4 QI=5 QI=6
Low 153.33 197 259.33 327.66
Low-middle 145.33 202.66 267.33 325.33
middle 144 206.66 262 310.66
# of visited nodes
Low 4 8 23 74
Low-middle 7 6 19 74
middle 9 9 11 27

Figure 5.25 Time and visited nodes for all QI and Variant level

Time(msec)
Max_supp QI=3 QI=4 QI=5 QI=6

32 142.33 193.33 270 333.66

321 139.66 193 269 333.33

3216 137.66 193 269 334

# visited nodes

32 5 7 26 88

321 7 6 19 74

3216 7 4 4 25

Figure 5.26 Time and visited nodes for all QI and Variant
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Exact =3 | k=10 | k=50 Exact k=3 | k=10 | k=50 Exact K=3 | k=10 | k=50
QI=3 0 0 0 QI=3 0 0 0 QI=3 0 0 0
QI=4 -142 - - QI=4 1 - - QI=4 0 - -
QI=5 - - - QI=5 - - - QI=5 - - -
QI=6 - - - QI=6 - - - QI=6 - - -
Approx1 | k=3 | k=10 | k=50 Approx1 | k=3 | k=10 | k=50 Approx1 | K=3 | k=10 | k=50
QI=3 - - - QI=3 - - - QI=3 - - -
QI=4 - 0 0 QI=4 - QI=4 -

QI=5 0 0 0 QI=5 0 QI=5

QI=6 0 0 0 QI=6 0 QI=6

Approx2 | k=3 | k=10 | k=50 Approx 2 | k=3 [ k=10 | k=50 Approx 2 | K=3 | k=10 | k=50
QI=3 - - - QI=3 - - - QI=3 - - -
QI=4 - 87 0 QI=4 - 0 0 QI=4 - 0 0
QI=5 18 44 0 QI=5 0 0 0 QI=5 0 0 0
QI=6 0 15 0 QI=6 0 0 0 QI=6 0 0 0
Approx 3 =3 | k=10 | k=50 Approx 3 =3 | k=10 | k=50 Approx 3 =3 | k=10 | k=50
QI=3 - - - QI=3 - - - QI=3 - - -
QI=4 - 0 0 QI=4 - 0 0 QI=4 - 0 0
QI=5 - - - QI=5 - - - QI=5 - - -
QI=6 - - - QI=6 - - - QI=6 - - -

Figure 5.27 Summary of Qos deterioration for variant k (with vmax histogram
construction)
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low- low- low-
Exact low | middle | middle Exact low | middle | middle Exact low | middle | middle
QI=3 0 0 0 QI=3 0 0 0 QI=3 0 0 0
QI=4 - - 0 QI=4 - - 0 QI=4 - - 0
QI=5 - - - QI=5 - - - QI=5 - - -
QI=6 - - - QI=6 - - - QI=6 - - -
low- low- low-
Approx 1 | low | middle | middle Approx 1 | low | middle | middle Approx 1 | low | middle | middle
QI=3 - - - QI=3 - - - QI=3 - - -
QI=4 0 0 - QI=4 0 0 - Ql=4 0 0 -
QI=5 0 0 0 QI=5 0 0 0 QI=5 0 0 0
QI=6 0 0 0 QI=6 0 0 0 QI=6 0 0 0
low- low- low-
Approx 2 | low | middle | middle Approx 2 | low | middle | middle Approx 2 | low | middle | middle
QI=3 - - - QI=3 - - - QI=3 - - -
Ql=4 87 87 - QI=4 0 0 - QI=4 0 0 -
QI=5 44 44 0 QI=5 0 0 0 QI=5 0 0 0
QI=6 15 15 0 QI=6 0 0 0 QI=6 0 0 0
low- low- low-
Approx 3 | low | middle | middle Approx 3 | low | middle | middle Approx 3 | low | middle | middle
QI=3 - - - QI=3 - - - QI=3 - - -
QI=4 - - - QI=4 - - - QI=4 - - -
QI=5 - - 0 QI=5 - - 0 QI=5 - - 0
QI=6 - - 0 QI=6 - - 0 QI=6 - - 0

Figure 5.28 Summary of Qos deterioration for variant height (with vmax histogram

construction)




176

Exact 32 | 321 | 3216 Exact 32| 321 | 3216 Exact 32| 321 | 3216
QI=3 - 0 0 QI=3 - 0 0 QI=3 - 0 0
QI=4 - - 239 QI=4 - - 0 QI=4 - - 0
QI=5 - - 0 QI=5 - - 0 QI=5 - - 0
QI=6 - - - QI=6 - - - QI=6 - - -
Approx 1 32| 321 3216 Approx 1 32| 321 3216 Approx 1 32 | 321 3216
QI=3 0 - - QI=3 0 - - QI=3 0 - -
QI=4 0 0 - QI=4 0 0 - QI=4 0 0 -
QI=5 0 0 - QI=5 0 0 - QI=5 0 0 -
QI=6 0 0 0 QI=6 0 0 0 QI=6 0 0 0
Approx 2 32 | 321 | 3216 Approx 2 32| 321 | 3216 Approx 2 32| 321 | 3216
QI=3 1 - - QI=3 0 - - QI=3 0 - -
QI=4 1 87 - QI=4 0 0 - QI=4 0 0 -
QI=5 0 44 - QI=5 0 0 0 QI=5 0 0 -
QI=6 0 15 0 QI=6 0 0 0 QI=6 0 0 0
Approx 3 32| 321 3216 Approx 3 32| 321 3216 Approx 3 32 | 321 3216
QI=3 0 - QI=3 0 - - QI=3 0 - -
QI=4 - 0 - QI=4 - 0 - QI=4 - 0 -
QI=5 - - - QI=5 - - - QI=5 - - -
QI=6 - - 0 QI=6 - - 0 QI=6 - - 0

Figure 5.29 Summary of Qos deterioration for variant maxSupp (with vmax histogram

construction)
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5.9. Summary of findings

We have experimented for the effectiveness and efficiency of the proposed method
over two data sets, the Adult and the [IPUMS data sets, with the same parameters as
we have experimented in the full lattice approach.

In summary, we can state the following about the simple partial lattice construction:

- The exact answering and the answering for the relaxation of height (that explores
all the available lattice) provide very good approximations to the optimal
solutions provided by the exact lattice. Specifically,

(a) Only 3 out of 10 exact answers are missed and compensated by relaxations
(b) The height relaxation has very small, or zero deviations from the suggestions
of the full-lattice method.

- The relaxation of suppression provides answers that are gravitated towards the
lower parts of the sublattice of the top-acceptable node and, thus, result in high
values of suppression as compared to the ones provided by the top-acceptable
node in the full lattice approach.

- The relaxation of k was already having a hard time finding answers in the
full-lattice approach. This becomes worse in the partial-lattice approach and few
results are returned.

Concerning the rest of the problem’s parameters, we can state the following:

— The time needed to answer a user request ranges between 0.33 — 2 msecs for
the case of simple partial lattice

— The increase of k increases the search space for the relaxations; the same
happens as the maxSupp is decreased

— The size of QI is a determining factor for the behavior of the proposed
method. Observe that small QI sizes give exact answers. At the same time, the
size of the partial lattice, and consequently, the time to construct its histograms
is proportional to the selectivity factor. For example, in the case of QI=6 with

p = 5%, the lattice size is 94 — i.e., the 5.2% of the full lattice with 1792 nodes.

The extension that computes the histogram of the top-selection node at runtime results

in
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- atime penalty of 0.1 — 0.3 sec;
- a drastic improvement of the two relaxations that suffered in the previous
approach (identical behavior to the case of the full lattice);
— small improvement for the exact answers and no improvement for the relaxation

of height.
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CHAPTER 6. RELATED WORK

6.1 Alternative techniques
6.2 Generalization

6.3 Suppression without generalization

The problem of preserving data privacy has been extensively studied both in the past
and in the recent literature. Previous to the ‘00s, the largest part of research was
conducted in the context of statistical databases, and several techniques have been
proposed that involve swapping values and adding noise to the data in order to meet a
general statistical property [AdWo89]. During the ‘00s, the area received a renewed
interest by the research community. In this section, we cover the most important
papers that are related to our approach; we refer the interested reader to the excellent

survey of Fung et al. [FWCY 10] for further probing.

Privacy in the field of data management deals with the problem of concealing
sensitive information about individual records without destroying the data mining
utility of the published data set. Take for example the case of medical records of a
relation T(Name, Age,ZipCode,Disease) that is to be exported to analysts for data
mining purposes. On the one hand, our aim is to provide the analysts with as much
statistically important information as possible; on the other hand, we want to hide the
relationship of individuals (identified by the identifier attribute Name) with the
sensitive attribute Disease. This equilibrium among goals is primarily achieved by
removing the statistically insignificant attribute Name from the published version of
the relation. Unfortunately, it is still possible to breach the individuals’ privacy via
quasi-identifier attributes (in our example, Age and ZipCode) which can convey
contextual information to an attacker about the concealed identifier attributes and

their linkage to sensitive attributes (in our example, a patient’s neighbor who knows
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the zip code and age of a patient can reason on the patient’s disease if there are no

other patients with similar characteristics). For this purpose three main families of

techniques has been presented to preserve data:

Domain generalization which is the main technique explored by the research

literature with several sub-categories.

Perturbation and control introduction of noise

Anatomization of the published relation to separate the coexistence of quasi-

identifiers and sensitive values in the same published record

6.1. Alterative techniques

The last of these methods (also latest in terms of when they were introduced), is

anatomization. Anatomization dictates that we should not seek to modify the quasi-

identifiers or the sensitive attribute, but, rather, it de-associates the relationship

between them. So, we organize records in groups, each group with a variant set of

sensitive values and we publish two tables: one with the sensitive values of each

group and another with the quasi-identifiers and a group id in the place of the

sensitive value. In Figure 6.1 we demonstrate the effect of anatomizing the data of

table in Figure 2.1. Unfortunately, the data presented by anatomization are not very

helpful for the well-meaning users due to their nature (remember that the published

data can have thousands of records).

Group
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Age Work_class Education | Group ID
39 Private Hs-grad 1
38 Private Hs-grad 1
37 Private Hs-grad 1
38 Private 11th 1
28 Loc-gov Bachelors 1
31 Federal-gov Master 2
30 State-gov Bachelors 2
32 Self-emp-not-inc Bachelors 2
35 Self-emp-inc Prof-school 2
33 Self-emp-inc Assoc-acd 2

@

()

Figure 6.1 Anatomization: (a) quasi identifier table, and, (b) sensitive attribute.
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A second method for the publishing of data involves the perturbation of tuples. These
means that we distort the sensitive values of the published tuples while keeping the
statistical properties of the published data set as close as possible to the ones of the
original data set. We refer the interested reader to [FWCY 10] for a detailed survey of
the works in this area. The main problems with perturbation are that (a) the published
data contain noise (sometimes statistically significant) and it is possible that the well-
meaning data analysts are annoyed by its presence and (b) the noise introduction is
performed in a way that retains a specific statistical property, thus resulting in
sometimes significant deviations for any other statistical measure of the published

data set.

6.2. Generalization

The third area, provides a privacy-preserving version of original data by replacing the
values of the original table with abstractions (e.g., a value of 451** for zip code
instead of 45110). The ultimate goal in terms of privacy is to conceal each individual
tuple into an appropriately constructed group of data, in a way that an attacker cannot
easily reason about the participation of individuals into the group.

This method is called generalization as it iteratively generalizes the values of the
published data set in higher levels of abstraction until the desired level of privacy is
attained. In every step of this process, each individual tuple becomes a member of a
larger group of tuples that all share the same quasi-identifier values (‘hidden in the
crowd’). If the data set is almost capturing the privacy criterion for most of its groups
and there are only few groups that violate it, instead of generalizing again, it is
possible to resort in the removal of the tuples of these outlier groups. This process is
called suppression. The area of generalization is organized in three sub-areas.

— Full-domain generalization, or global recoding

— Multidimensional recoding

— Local recoding

The three main classes of works to which the related literature around data
generalization is classified, all have their own characteristics, along with advantages
and disadvantages. Full domain generalization or global recoding assumes a fixed set
of anonymization levels to which values are generalized. Each quasi identifier comes

with its own hierarchy of anonymization levels and mappings of values. For example,
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ages can come in years, 5 year periods, 10 year periods; in accordance to this scheme
at the schema level, age 23 at the year level is mapped to the interval [21,25] at the 5-
year level and the interval [21,30] at the 10-year level. On the other hand,
multidimensional and local recoding instead of trying to create groups according to
these hierarchies, they work in the opposite direction: they exploit the distribution of
data in the multidimensional space in order to create the groups.

Formally, assume a relation 7 that is to be published as a transformed relation 7*..
The semantics of the generalization process can be regarded as the execution of two
steps:

(a) First, the employed method partitions 7 to a set of disjoint groups, P = {P; U
P, U ... Py}, such that the privacy constraint holds for each group.

(b) Then, 7* is produced by removing the identifier attribute from 7 and replacing
the values of the quasi identifier attributes with a characteristic representation;
this is typically the generalized variants of the microdata values (e.g., replace
zip code 45110 with 451%%).

Note that this is the fundamental intuition of the process and not necessarily the
algorithmic steps to be followed.

The different categories of the generalization family of algorithms are distinguished
mainly by the way they partition data. Global recoding replaces values independently
of their group, whereas local as well as multidimensional recoding replace values with
respect to the contents of the group. The difference of multidimensional from local
recoding is that the former groups tuples in disjoint regions of the multidimensional
space, whereas local recoding allows dense regions to “lend” data to sparse regions so
that every group satisfies the privacy constraint. The replacement is typically done
either by using a predefined hierarchy or by taking the minimum bounding box of the
region in the multidimensional space; however, other presentation methods can be
devised too (such as the choice of representative values from each group). Observe
that in terms of our formal definition, the constructed groups are not necessarily
equivalence classes: in local recoding, two tuples with same quasi identifier values
may end up in different groups and different replacement (i.e., anonymization)

method.
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Full-domain generalization is supported by quite efficient algorithms. The problem
with full-domain generalization is that it generalizes sparse and dense regions of the
multidimensional space in the same way. So, it generalizes all the data set to the
generalization scheme needed by the weakest of its groups. To avoid this, suppression
can be used, but then, the utility of the published data set diminishes as a (sometimes
large) part of it is removed. On the contrary, multidimensional and local recoding
avoid suppression and instead of aligning the groups of tuples to the level hierarchies,
they align the bounds of the groups to the distribution of tuples in the
multidimensional space. This is not so efficient as in the case of global recoding but
provides higher utility for the detailed inspection of the tuples. Unfortunately, the data
mining tools suffer since the data are not in a homogeneous level of abstraction and
therefore the classification or association rules that are extracted miss information. At
the same time, the users are not always happy with the grouping of tuples given by the
local recoding algorithms, as they are accustomed to the semantically meaningful

hierarchies that are used in the case of global recoding.

6.2.1. Full-domain generalization

Full domain generalization is quite fast, since the complexity of the anonymization
process mainly depends on the combinations of levels, one per quasi identifier that
must be tested. Here, we cover the (rather straightforward) case of k-anonymity

quickly, and expand the case of 1-diversity more.

K-anonymity. In [SamaOl, Swee02] the fundamental notion of k-anonymity is
introduced along with the techniques of generalization and suppression that are
mainly used in order to transform the initial dataset to an anonymized one that meets
the k-anonymity principle. From that time, there has been a large body of work that
contributes to data privacy using several k-anonymization algorithms. In [BaAg05],
the authors introduce an algorithm that provides an anonymization of the data set
based on the total ordering of the domains of its attributes. The idea is that even
categorical domains are mapped to integers and an iterative process examines all the
possibilities of grouping these values in abstraction groups (via an enumeration tree).

Every anonymization scheme is accompanied by the cost in terms of information loss;
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due to monotonicity reasons, a node can be pruned if its descendants cannot meet the
optimal cost. LeFevre et.al [LeDROS5] have proposed a clear way to describe full-
domain generalization and introduce Incognito, a sound and complete algorithm for
producing k-anonymous full domain generalizations using bottom-up aggregation
along generalization dimensions and a-priori computation [AgSr94]; we discuss
Incognito in more detail later in this section since it has been the basis for the

recursive construction of our lattices and their exploration.

L-diversity. The achievement of k-anonymity alone does not guarantee immunity to
attacks: the authors of [MaGKO06, MKGV07] present some severe privacy problems
that can occur in a k-anonymized dataset when the distribution of values for the
sensitive attribute within a group is small (a single value in the worst case); to
alleviate the problem, the authors introduce I-diversity as a new privacy-aware
principle. The main idea of the paper is to go beyond k-anonymity in ensuring that
identifier attributes are not linked to their sensitive counterparts via background
knowledge of the attacker. The two highlighted vulnerabilities of k-anonymity are (a)
the possibility of a whole group to have the same sensitive value and (b) the
possibility of having too few sensitive values in the same group. In both cases, the
individuals are not ‘hidden in the crowd’ of their group since all (or, a large number
of) the members of the group have the same sensitive value. If this is the case, if an
attacker relates an individual with a certain group, then he can confer with high
probability the sensitive values of the hidden individual.
L-diversity is a criterion that tells us whether a group is versatile enough in order to
effectively hide its members by exploiting both a large number of members and a
large number of ‘well-represented’ values. The purpose is that the probability of
relating an individual with its sensitive values is low, even in the case where the
attacker can identify the individual’s group. The authors of [MaGKO06] propose three
ways to implement the term ‘well-represented’:

(1) the distinct number of sensitive values in a group should be higher than /

(i)  the entropy of each group should be higher than log(/)

(1)  recursive l-diversity is achieved for each group. Assume that we sort the

values of an sensitive attribute by their frequency in the group; let 7y, 7, ...,

rm be the respective frequencies. In this case, we require that the highest
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frequency () is not greater than the sum of the lowest [[..m] frequencies (7,
..., 'm), multiplied by a scale factor c. (In other words, the frequent values

are not too frequent and the infrequent values are not too infrequent).

Incognito. The Incognito algorithm [LeDROS5] is an efficient algorithm for the
extraction of all the possible generalizations of a data set in order to achieve the
criterion of k-anonymity or I-diversity.
Properties. The pillars of the algorithm are three important properties that characterize
the nodes of the lattice and exploit the monotonicity of the hierarchies and the
resulting groupings that derive from it. Specifically, assuming a node of the lattice
that is found to be k-anonymous, these properties are:
- Generalization: Nodes found higher in the lattice that are derived from this
node, are also k-anonymous
- Rollup property: Frequency sets of higher nodes can be computed from the
current ones via the ancestor relationships of the involved values in their
domain hierarchies
- Subset property: Nodes with fewer QI attributes are also anonymous
Specifically, the Generalization property dictates that if a relation 7 is k-anonymous
over a set of quasi-identifier attributes P, then 7 is also k-anonymous over a set of
quasi-identifier attributes Q that are ancestors of the attributes of P in the respective
hierarchies (Dp_<p Dg). In other words, if a node found low in the lattice qualifies for
a solution, then, its ancestors also qualify as solutions. This is a simple outcome of the
fact that the groups of the higher level node are produced by mergers of the groups at
the lower level node; this results in fewer groups of larger cardinality.
The Rollup property states that once an ancestor node is a candidate solution, we can
also compute its groups by exploiting the groups of any of the lower level nodes that
are its descendants. Specifically, this is done by mapping the QI values of the
descendant’s groups to their respective values of the ancestor level; then, the
frequency sets of all the descendant’s groups that are mapped to the same ancestor
group are summed to compute its frequency set. Observe Figure 6.2, where the values
for the quasi-identifier Age (4), Sex (S), Country (Z) are rolled-up from the exact level
of age (on the left of the figure) to the age level of 5-year intervals (on the right of the

figure): the new frequency sets are simple sums of the respective frequency sets at the
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detailed level. The same applies again when we further anonymized the data set as

depicted at the bottom of Figure 6.2.

4A(,;ge ;Iex ICtleil::try co;mt 1._, Age Sex | Country | count
47 | F Greece 4 X 40-44 | M Italia 6
T T ; 7 4549 |F  Greece | 11
49 | F Greece 7

L

Age Sex | Country | count
40-49 | * Europe | 17

Figure 6.2 Incognito’s Rollup Property

Finally, the Subset property dictates that if you expand the quasi-identifier set with a
new member (i.e., add an extra attribute to the QI set), then the groups are de-
aggregated. The inverse is also useful, since the removal of an attribute from the QI,
results in the merging of groups. Therefore, if a node is k-anonymous when the QI-set
identifier set. More importantly, in a manner that resembles Apriori pruning a lot, if a
node is not k-anonymous when it is tested under N attributes as the quasi-identifier
set, then there is no need to test it for k-anonymity for any superset of these N
attributes, either.

Algorithm. Like all anonymization algorithms, Incognito uses as input the original
data set (denoted as T), the set of attributes that constitute the quasi-identifier set
(denoted as QI) along with their domain hierarchies and a value for the privacy
criterion — here we use k for k-anonymity. The output of the algorithm is a graph that
is a subset of the lattice formed by the Cartesian product of the domain hierarchies of
the quasi-identifier set and contains all the generalizations that fulfill the input privacy
criterion.

The crux of the algorithm is the stepwise expansion of the quasi-identifier set and the

exploration of the respective intermediate lattices generated each time. The algorithm
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starts with all the possible QI-sets of size one (i.e., checks each attribute in isolation).
Every intermediate lattice 1s visited via a breadth-first search, starting from the bottom
all the way to the top. During this traversal, generalizations that fail to fulfill the k-
anonymity criterion are pruned. This check is easily performed by counting the
number of records per frequency set. Once all lattices of quasi-identifier size N have

been explored, their subsets that survive the pruning process are combined to

and joins them. An interesting, Apriori-like, optimization is also the fact that for a
node of QI-size N to be considered, a/l its generating nodes of QI-size N-1 must have
survived the process. This process terminates when the designated quasi-identifier set
of attributes is explored.

Within this process, the aforementioned properties are exploited: if a lower-level node
is found to be k-anonymous, all the nodes at higher levels of generalization that can
be derived from it are marked as k-anonymous too. Moreover, the groups of higher-

level nodes are produced by the groups of lower level nodes whenever this is possible.

The authors prove that the algorithm is sound (the solution generated is correct and
does not violate the consistency constraints that a solution to the problem described is
required to have) and complete (all correct solutions are returned).

Moreover, two extensions are also suggested:

(a) Due to the pruning process, some low level nodes are not part of the solution;
however they can be reused to generate the rest of the surviving nodes. So, it
is possible to pre-compute these ‘super-root’ nodes and avoid computing the
lower parts of the output lattice all the way from the base relation.

(b) All possible subsets of the quasi-identifier size of the base-level generalization
are pre-computed and re-used to avoid computing lower level solutions from

the base relation.

6.2.2. Multidimensional and local recoding

Multidimensional recoding. Multidimensional recoding can be achieved via the

Mondrian algorithm [LeDRO06] which appears to be efficient and produces results
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with “more information at the browsing level” than global generalization. However, if

one wishes to work with predetermined hierarchies, Mondrian is not suitable.

Local recoding. Fast algorithms for local recoding do exist [GhKMO09]]; however,
they do suffer from the same problem as Mondrian: they produce arbitrary (and, in
fact, overlapping) regions for the grouping of source data. Algorithms performing
local recoding with hierarchies are also available [Xu+06]; however, their
performance is very slow for an on-line setting (Ghinita mentions that the Top-Down
method of Xu et al takes around 2 hours for settings where the Hilbert Method of
Ghinita et al., and the Mondrian method of Lefevre et al., take between 10 to 60

¢

seconds; Xu et al in their KDD’06 paper mention: “...the runtime of the top-down

approach is just less than 6 times slower than that of the MultiDim method.”).

k-anonymity as spatial indexing. Iwuchukwu and Naughton [IwNa07] utilize an R-
tree to speed up the anonymization process. The idea is that the internal nodes of the
R-tree can be tuned in order to guarantee that the descendants of an internal node can
always operate in groups of tuples of size no more than k. Once this is achieved, the
anonymization process is very fast; in fact, it can also be easily tuned to the value of £
the user desires for k-anonymity. The method operates well when an intuitive
ordering of the detailed values can be achieved; in other words, whenever the domain
of an attribute can be isomorphically mapped to the set of integers in an intuitive way,
the R-tree approach is a very good solution. There are several benefits from the R-tree
approach: it can be incrementally updated, it can be tuned to accommodate specific
workloads fast, it can provide the aforementioned multi-granular anonymity and it
provides good anonymizations very fast. At the same time, it is not straightforward
how the method operates in categorical domains accompanied by hierarchies. In this
case (which is also the case that we explore in our paper), it is not obvious that an
internal node can always have a bounded number of descendants within the ranges

required by the R-tree.
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6.3. Suppression without generalization

Finally, despite the fact that the bulk of the research has been focused on various
privacy criteria beyond k-anonymity and I-diversity, as well as towards efficient
algorithms, mainly for local recoding, there exist some papers that explore the
theoretical limits of optimal anonymization with respect to suppression and provide
algorithms for its approximation. In this section we present these works as they seem

to be the closest to our case.

Optimality and Approximate Algorithms for k-anonymity. The problem of finding
the best possible anonymization scheme is in principle NP-hard. The theoretical
foundations of the problem are given in [MeWi04]. The problem investigated in
[MeWi04] is based on the idea of locally recoding a data set without reference to any
hierarchies of values for the quasi-identifiers. Specifically, the problem is to try to
minimize the number of cells (attention: cells, not tuples) that are suppressed (i.e.,
they take a value of *) in order to achieve k-anonymity. The authors of [MeWi04]
prove that the problem is NP-hard and provide approximation bounds for it, based on
the idea of the diameter of a set (which measures the maximum distance between any
two tuples of the set, measured as the number of cells in which they differ). It is also
interesting to note that the groups of the partition that are generated can be of bounded
size: they are —of course- larger or equal than £, but they need not be larger than 24-1.
The authors provide an algorithm for the problem by adjusting a well-known greedy
algorithm for the set cover problem to the setting of the problem. The set to be
covered is the set of tuples of the table to be anonymized, say 7, and therefore, the
input to the algorithm is the set of all sets of tuples that are subsets of 7" whose
cardinality is in the range of [k, 2k-1]. The greedy algorithm requires a penalty
measure for each of these subsets that is selected each time and this is the diameter of
the subset. The greedy algorithm results in a set cover of the original table T since a
cover is not a partition (i.e., a member of the original data set may be assigned to
more than one of the covering sets) an adjustment must be made in order to turn the
cover to a partition. The adjustment is simple test, applied repeatedly until no tuple

belongs to two sets: if a tuple belongs to two sets, one of which is larger than £, then,
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it 1s removed from this set; if there are two sets to which the tuple belongs and they
are both of size k, they are merged in one set.

Park and Shim in [PaSh07] extend the fundamental approximation approach of
[MeWi04] with different levels of approximation. The authors still operate in the
same setting as [MeWi04] — i.e., local recoding with no hierarchies and counting of
suppressed cells— and start by changing the penalty for the greedy algorithm to
operate on the basis of the suppression length of a set, which is the number of
attributes where a value of * must be assigned, in any of the tuples of the set. Still, the
previous approach suffers from the problem of having a too large input to generate.
So, the authors of [PaSh07] extend this approach by observing that the frequent
itemsets of the table 7" can serve as good starting point for identifying this input. The
idea is that if a tuple ¢ contains a frequent itemset that spans some of its attributes
(which are called the representatives of ¢), it is possibly a good choice to leave them
intact and consider the rest of the values as candidates for suppression. For each
frequent itemset (frequent being the itemset with support larger than & in this paper)
we compute the set of all tuples of 7 that contain it; this set is added to a set Fgq
which is inserted as input to the proposed algorithm. Several adjustments are also
made in the algorithm, since it is possible that some of these sets are too large (larger
than 2k-1) than what is necessary. Moreover, the authors prove that instead of
frequent itemsets, it is also possible to operate with closed frequent itemsets with the
same approximation factor. In fact, the authors show that it is also possible to
constrain the size of the suppression length by a factor of f with a bounded scale
factor of £ to the approximation factor. Finally, the authors provide a greedy
algorithm that takes as input the subsets of T that are based on the closed frequent
itemsets of 7 and sorts them with respect to their suppression length in increasing
order. Then, the algorithm each time picks the next set of tuples and retains only its
tuples not already covered; this new set is considered as a possible group of the final
partition if its size is larger or equal than £. The authors have experimented with data
sets of varying size; these experiments demonstrate that this last algorithm is

significantly faster and provides a very good amount of suppression to the data set.

Curse of dimensionality on k-anonymity. In [Agg05] the author tries to prove that

the amount of suppressed data increases more and more as the number of the
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attributes that can act as quasi-identifiers increases. The author starts with a
theoretical analysis of how achieving k-anonymity via generalization relates to the
probability that k-anonymity is violated for an arbitrary record in a data set. The
author assumes that every attribute in the dataset can serve as a quasi-identifier. Also,
the author assumes an identical normal distribution for a set of d independent
dimensions of quantitative (i.e., not categorical) nature. Moreover, the method of
generalization is reduced to replacing a tuple with the range of a surrounding “cell”
around it (practically assigning a range of values for every dimension). Then, the
author proves that the probability of achieving k-anonymity tends to zero as the
number of dimensions rises to infinite. This practically means that since no data point
in the data set can achieve k-anonymity at high dimensionalities, all the data set will
have to be suppressed. Similarly, the second result of the paper relates to
anonymization via clustering and demonstrates that as the number of dimensions
tends to infinite, the replacement of a value by its appropriate cluster is meaningless,
as the highest possible distance of two points in each cluster in the high-dimensional
space is practically the same with the maximum distance of any two points in the
whole data set. Finally, the author performs a simulation study for the aforementioned
results and works with two data sets: (a) a synthetic data set containing 10000 points
and 50 dimensions, generated in a way that the number of clusters can be regulated
and (b) a market basket data set generated via the IBM generator, which contains data
with higher skew. In both cases, the amount of suppressed tuples quickly rose from
0% in low dimensionalities to 80-90% in high dimensionalities for the simple case of
2-anonymity.

This is one the few papers dealing with the problem of suppression in k-anonymity.
The paper is focused to the theoretical study of the effect of high dimensionality to the
suppression; since these theoretical results demonstrate that high dimensionalities are
rather prohibitive for anonymization, we have constrained ourselves to more practical
settings that we have explored thoroughly. So, in our approach, we explore the
problem taking into account various other parameters (hierarchies for the
generalization, different values of k, different privacy criteria, and a more constrained
approach to the dimensionality of the data sets, as compared to the theoretical limits

of [Agg05]).
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CHAPTER 7. CONCLUSIONS

The goal of this thesis has been to extend our documented knowledge and proposed
on-line methods for the problem of privacy preserving data publishing. The ultimate
goal pursuded by this thesis is to equip the data curator with the means to fine-tune
several parameters around the privacy-preserving publishing of his data with other
stakeholders by negotiating the values of suppression, generalization and privacy
criterion in user-time, in order to quickly reach a consensus on the anonymization
scheme among all interested stakeholders. Specifically, in this thesis we have attacked

the following problems, not previously explored by the research community.

The first goal of this thesis has been to study the interplay of suppression,
generalization and privacy criterion and record how changes to one of these
parameters affect the two others. This would also determine whether the problem is
worth investigating or not. We have worked with the criteria of k-anonymity and
simple I-diversity over two data sets, the Adult and the IPUMS data set and our
findings can be summarized as follows:
Overall, we can safely claim that the problem is valid and important. Low
generalization heights (that are of more interest to us due to their information utility),
or large values for the privacy criterion (which is of more interest to us due to the
increased privacy it offers to individuals), or erroneous choice of generalization
scheme can result in large amounts of suppressed data, quite possibly much higher as
compared to more careful choices concerning the generalization scheme.
Our detailed findings concerning the relationship of the involved parameters can be
summarized as follows:

— As the generalization height increases, the suppression drops quickly at small

heights; the drop in suppression is less important in higher heights, where the
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number of suppressed tuples becomes statistically small and drops slowly.
Interestingly, the overall trend for the decrease of suppression is practically the
same for different values of k or / — of course, with different amounts of
suppressed tuples.

— As the value for the privacy criterion (e.g., k£ in k-anonymity) increases, the
suppression increases too. This is especially important in lower heights of
generalization that are both important due to their information utility and
demonstrate high volumes of suppression.

— As the size of the quasi identifier set increases, the effect to suppression is
significant, as suppression increases too — sometimes drastically. Some
quantitative evaluations around this theme suggest that (a) given a specific
height and k an increase in QI size by one increases the suppression by a
factor of 2 — 3; (b) to attain the same suppression threshold an increase in QI
size by one, requires ascending 1-2 levels for k-anonymity and 2-3 levels for I-
diversity.

— Not all attributes, generalization levels and, consequently, generalization
schemes have the same effect to suppression. It is noteworthy that within the
same height, the minimum possible suppression is approximately 2.5 times
lower than the average for k-anonymity and 3 times lowers for I-diversity.
This is especially evident in cases where the suppression has high values or
values that cannot really be tolerated; on the other hand, for too large values of
suppression (e.g., too large Qls or k) the relationship between average and
minimum value does not follow this rule.

— Based on the above, it is important that for case that do matter, and where we
can really attain good amounts for tuple suppression, it is really important to
carefully pick the generalization scheme that will minimize this suppression.
The faster we identify these generalization schemes the faster the process

completes.

A second goal of this thesis was to provide efficient ways that allow the user achieve
an anonymous data set with constraints over the generalization height, the amount of

suppression and the tunable value of the privacy criterion. A third, related goal has
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been the ability to provide suggestions to the user that are close to his original
desideratum around generalization, suppression and privacy.

We have attacked the above two goals via three methods. Both methods are based on
precomputing statistical information for several possible generalization schemes (i.e.,
triplets of values for the minimum allowed value for the privacy criterion, the
maximum allowed value for the generalization heights per attribute and the maximum
tolerable amount of suppression). We organize generalization schemes in a lattice and
compute histograms (appropriate to the employed privacy criterion) for the nodes of
the lattice.

The first method we have employed pays the price to precompute the histograms for
all the nodes in the lattice. Then, at runtime, the user gives as input three values, one
for each of the abovementioned criteria as a desirable constraint. The algorithm we
have introduced checks whether there exists a possible solution to the that satisfies all
criteria and outputs either the scheme of lowest height that can respect all three
criteria or, alternative schemes that provide relaxations to the user input. The three
relaxations are based on the idea of keeping the two of the three values of the user
input fixed and finding the closest possible approximation for the third parameter. We
have proved that the proposed method is guaranteed to provide the best possible
answers for the given user requests. Our experiments indicate that this is performed in

less than 10 milliseconds for typical data sets used in the research literature.

However, the method comes at a price, and specifically, at the price of precomputing
the histograms for all the nodes of the lattice. This precomputation requires several
minutes (e.g., our experiments gave 20-40 minutes for the largest quasi-identifier
sets). In one wishes to avoid this precomputation we provide a second method that
precomputes only a small subset of the lattice’s nodes with their histogram. To this
end, we have also addressed the problem of which nodes of the lattice to select. Our
approach is based on the ranking of generalization levels with respect to their
grouping power (since, the larger the groups, the less the suppression). Then, we try to
rank the combinations of levels for all the possible generalization schemes and pick a
fixed subset of them (e.g., 5%). Our experiments demonstrate a linear speedup of the
precomputation time with the approximation factor. The on-line answering has been

sped up (due to the significantly smaller size of the lattice) and remain within few
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milliseconds per user request. At the same time, the quality of solution is quite good
for (a) the case where an exact answer exists and (b) the relaxation requires exploring
the full lattice. The price to pay however, is located in a couple of relaxations where
the proposed solution is either gravitated towards lower nodes in the lattice (and

provides, thus, solutions with high suppressions), or, fails to give an answer at all.

Finally, by observing that the two out of the three approximations are due to the top-
acceptable node, we have proposed a third method that computes the histogram of this
node at runtime. Based on our experiments, the time penalty for this extra
computation is in the order of 0.1 — 0.3 sec and the two relaxations that suffered in the
previous approach demonstrated an identical behavior to the case of the full lattice;
therefore, if this time overhead can be tolerated in terms of user time (and for the case
of our experiments we believe it does), then the quality of solution improves

drastically.

Future work can take up on our results and explore alternative directions. A first
possible way to go is the attempt to come up with some deeper understanding of the
laws connecting the problem parameters and the measurable effects. So,
experimentations over different data sets are required to observe the interrelationships
of the parameters and how they affect the amount of suppression needed.

Second, we could extend the negotiation to other directions that could serve user
needs. Maybe a user decided that some of the attributes make the negotiation difficult
and wants to get rid of them. Or maybe, a user decides that the full domain
generalization method that we support is not good for him and he would like to work
with an alternative anonymization method. Maybe the user would like to have a quick
preview on what results data mining tools can give for the anonymization scheme that
our method proposes. All these possible user needs, provide unexplored turf for

subsequent research



197

REFERENCES

[AdW089]

[Agg0s]

[AgSro4]

[AgSTO5]

[BaAg05]

[FuWYO05]

[FWCY10]

[GhKM09]

[IPUMS]

[IwNa07]

[LeDRO5]

Adam N.T. and Wortman J.C. Security control methods for statistical
databases. ACM Computer Surveys 21,4 (December) 1989.

Charu C.Aggarwal. On k-anonymity and the curse of Dimensionality.
VLDB 2005.

Agrawal, R. and R. Srikant. Fast Algorithms for Mining Association
Rules, Proc. VLDB 1994

Rakesh Agrawal, Ramakrishnan Srikant, Dilys Thomas. Privacy
Preserving OLAP. SIGMOD 2005

Roberto J. Bayardo Jr., Rakesh Agrawal. Data Privacy through
Optimal k-Anonymization. ICDE 2005

Benjamin C. M. Fung, Ke Wang, Philip S. Yu: Top-Down
Specialization for Information and Privacy Preservation. ICDE 2005

See also HTTP://DDM.CS.SFU.CA

B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving
data publishing: a survey of recent developments. ACM Computing
Surveys (CSUR) 2010

Gabriel Ghinita, Panagiotis Karras, Panos Kalnis, Nikos Mamoulis. A
framework for efficient data anonymization under privacy and
accuracy constraints. ACM Trans. Database Syst. 2009

Data set obtained from the web site of Y. Tao for the [XiTa07] paper
http://www.cse.cuhk.edu.hk/~taoyf/paper/sigmod07.html

Tochukwu Iwuchukwu, Toward Scalable and Incremental Anonymity.
K-anonymity as Spatial Indexing: Toward Scalable and Incremental
Anonymity. VLDB 2007

K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient
full-domain k-anonymity. In SIGMOD 2005.


http://ddm.cs.sfu.ca/

[LeDRO6]

[LiLVO07]

[LWFPOS]

[MaGKO06]

[MeWi04]

[MKGV07]

[PaSh07]

[Sama01]

[Swee02a]

[Swee02b]

[UCT]

[XiTa06]

[XiTa07]

[Xu+06]

198

Kristen LeFevre, David J. DeWitt, Raghu Ramakrishnan. Mondrian
Multidimensional K-Anonymity. ICDE 2006

Ninghui Li, Tiancheng Li, Suresh Venkatasubramanian t-Closeness:
Privacy Beyond k-Anonymity and 1-Diversity. ICDE 2007

Jiuyong Li, Raymond Chi-Wing Wong, Ada Wai-Chee Fu, Jian Pei.
Anonymization by Local Recoding in Data with Attribute
Hierarchical Taxonomies. IEEE Trans. Knowl. Data Eng 2008

A. Machanavajjhala, J. Gehrke, and D. Kifer. l-diversity: Privacy
beyond k-anonymity. ICDE 2006.

A. Meyerson, R. Williams. On the complexity of optimal k-
anonymity. PODS 2004.

Ashwin  Machanavajjhala, Daniel Kifer, Johannes Gehrke,
Muthuramakrishnan ~ Venkitasubramaniam. L-diversity: Privacy
beyond k-anonymity. ACM Transactions on Knowledge Discovery
from Data. TKDD 2007

Hyoungmin Park, Kyuseok Shim. Approximate Algorithms for k-
anonymity. SIGMOD 2007.

P. Samarati. Protecting respondents’ identities in microdata release.
IEEE Trans. Knowl. Data Eng. TKDE 2001.

Latanya Sweeney. k-Anonymity: A Model for Protecting Privacy.
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 2002

Latanya Sweeney. Achieving k-Anonymity Privacy Protection Using
Generalization and Suppression. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 2002

U.C. Irvine Repository of Machine Learning Databases. 1998.
http://www.ics.uci.edu/~mlearn

X. Xiao and Y. Tao. Anatomy: Simple and effective privacy
preservation. VLDB 2006.

X. Xiao and Y. Tao. m-Invariance: Towards Privacy Preserving Re-
publication of Dynamic Datasets. SIGMOD 2007.

Jian Xu, Wei Wang, Jian Pei, Xiaoyuan Wang, Baile Shi, Ada Wai-



199

Chee Fu. Utility-based anonymization using local recoding. KDD
2006

[ZKSYO07] Qing Zhang, Nick Koudas, Divesh Srivastava, Ting Yu. Aggregate
Query Answering on Anonymized Tables. ICDE 2007



200



201

SHORT CV

Alexandra Pilalidou was born in 1984 and finished high school in 2003. She obtained
his B.Sc. in Computer Science in 2008 from the computer Science Department of the
University of loannina. Then she entered the Graduate Program of the same
institution under the supervisor of Panos Vassiliadis. Her search research interests
include the areas of database systems, with particular emphasis on privacy issues and
software engineering.






	CHAPTER 1.
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. FUNDAMENTAL CONCEPTS AND TERMINOLOGY
	CHAPTER 3. VALIDITY OF THE PROBLEM: EARLY FINDINGS
	CHAPTER 4. ONLINE NEGOTIATION ALGORITHMS FOR PUBLISHING PRIVATE DATA
	CHAPTER 5. PARTIAL LATTICE CONSTRUCTION
	CHAPTER 6. RELATED WORK
	CHAPTER 7. CONCLUSIONS

