
Schema evolution for traditional databases
and data warehouses

Panos Vassiliadis

also: Apostolos Zarras, Petros Manousis, Ioannis
Skoulis, George Papastefanatos

Department of Computer Science and Engineering

University of Ioannina, Hellas

Univ. of Ioannina

Expect
some last
minute
edits

Database Evolution: why and what

• Software systems and, thus, databases are dynamic
environments and can evolve due
– Changes of requirements
– Internal restructuring due to performance reasons
– migration / integration of data from another system
– …

• Database evolution concerns

– changes in the content (data) of the databases as time passes by
– changes in the internal structure, or schema, of the database
– changes in the operational environment of the database

2

What evolves in DBMS...

• Data
 UPDATE EMP

SET SALARY = SALARY *1.10

WHERE...

EMP_ID SALARY

100 1500

EMP_ID SALARY

100 1650

• Metadata – Schemata – Models

ALTER TABLE EMP

ADD COLUMN PHONE VARCHAR ...

EMP_ID SALARY

100 1500

EMP_ID SALARY PHONE

100 1650 210777777

3

Why is (schema) evolution so
important?

• Software and DB maintenance makes up for at least
50% of all resources spent in a project.

• Changes are more frequent than you think
• Databases are rarely stand-alone: typically, an entire

ecosystem of applications is structured around them
=>

• Changes in the schema can impact a large (typically,
not traced) number of surrounding app’s, without
explicit identification of the impact

4

Evolution taxonomy

• Schema evolution, itself, can be addressed at
– the conceptual level (req’s, goals, conc. model, ….

Evolve)
– the logical level, where the main constructs of the

database structure evolve
• E.g.,: relations and views in the relational area, classes

in the object-oriented database area, or (XML)
elements in the XML/semi-structured area),

– the physical level, involving data placement and
partitioning, indexing, compression, archiving etc.

5

Evolution taxonomy: areas

• Relational databases
• Object Oriented db’s
• Conceptual models
• XML
• Ontologies
• …

• Special case of relational: data warehouses

6

… To probe further …
• Michael Hartung, James F. Terwilliger, Erhard Rahm:

Recent Advances in Schema and Ontology Evolution. In
Schema Matching and Mapping (Zohra Bellahsene,
Angela Bonifati, Erhard Rahm), 149-190, Springer 2011,
ISBN 978-3-642-16517-7

• Matteo Golfarelli, Stefano Rizzi: A Survey on Temporal
Data Warehousing. IJDWM 5(1): 1-17 (2009)

• Robert Wrembel: A Survey of Managing the Evolution
of Data Warehouses. IJDWM 5(2): 24-56 (2009)

7

Roadmap

• Evolution of views
• Data warehouses

• Impact assessment in ecosystems
• Empirical studies

8

VIEW ADAPTATION

What views and mat. views are
Traditional research problems related to views
View adaptation
Significant works

9

Views

• Virtual views: macros that allow the developers
to construct queries easier by using them as
tables in subsequent queries

CREATE VIEW sales_vv AS
SELECT t.calendar_year, p.prod_id, SUM(s.amount_sold) AS

sum_sales
FROM times t, products p, sales s
WHERE t.time_id = s.time_id AND p.prod_id = s.prod_id
GROUP BY t.calendar_year, p.prod_id;

Query:
SELECT * FROM sales_vv WHERE calendar_year > 2012;

10

Views
• Materialized views are not macros, however, as they

actually store (precompute) the result in persistent storage

CREATE MATERIALIZED VIEW sales_mv
BUILD IMMEDIATE
REFRESH FAST ON COMMIT
AS
SELECT t.calendar_year, p.prod_id,
SUM(s.amount_sold) AS sum_sales

FROM times t, products p, sales s
WHERE t.time_id = s.time_id AND p.prod_id =
s.prod_id

GROUP BY t.calendar_year, p.prod_id;

http://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_6002.htm#SQLRF01302

11

Traditional research problems with
views

• Query answering: how to integrate views (of all
kinds) in the optimizer’s plan?

• View selection: which views to materialized given
query and update workloads?

• View maintenance: how to update the stored
extent of the mat. view when changes occur at
the sources?
– For which views can I do it? (query class)
– How: Full or Incremental?
– When: On update? On demand? Periodically?
– Available info: deltas only? Int. constraints?

12

Oracle 11g and Materialized Views
CREATE MATERIALIZED VIEW view-name

BUILD [IMMEDIATE | DEFERRED]

– Compute extent at view definition or at query time

REFRESH [FAST | COMPLETE | FORCE]

– FAST: incremental (needs log def. on source tables); COMPLETE: full; FORCE: if
FAST fails, then COMPLETE

ON [COMMIT | DEMAND]

– Trigger refresh when sources are updated, or on-demand

[[ENABLE | DISABLE] QUERY REWRITE]

– Used by the optimizer during Query Optimization

AS SELECT ... query definition …;

CREATE MATERIALIZED VIEW LOG ON times
WITH ROWID, SEQUENCE (time_id,
calendar_year)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON products
WITH ROWID, SEQUENCE (prod_id)
INCLUDING NEW VALUES; 13

View adaptation

• What if there is a change in
– the view definition?
– the schema of the sources?

• Can we maintain the view’s
– definition
– extent

• correctly and efficiently?

14

Gupta et al @ Inf. Systems, 26(5), 2001

• Assume the view definition changes
• Given

– the old and the new view definition
– the existing data that are stored in the view
– the source tables
– (when needed: auxiliary information, like indexes on PK’s,

aux. relations, …)
• Produce the extent corresponding to the new view

definition
• Such that

– It is done incrementally rather than via a complete
recomputation

15

A “taxonomy” of atomic changes to SPJ
and SPJG+ views

Method: The authors assume a comprehensive set of potential atomic changes.

• Addition or deletion of an attribute in the SELECT clause.
• Addition, deletion, or modification of a predicate in the WHERE clause (with and

without aggregation).
• Addition or deletion of a join operand (in the FROM clause), with associated

equijoin predicates and attributes in the SELECT clause.
• Addition or deletion of an attribute from the GROUPBY list.
• Addition or deletion of an aggregation function to a GROUPBY view.
• Addition, deletion, or modification of a predicate in the HAVING clause. Addition

of the first predicate or deletion of the last predicate corresponds to addition and
deletion of the HAVING clause itself.

• Addition or deletion of an operand to the UNION and EXCEPT operators.
• Addition or deletion of the DISTINCT operator.

For each type of change the authors propose a set of steps required to maintain the

view’s extent

16

Example: Adding an atomic selection
to the WHERE clause

Assume we add a filter Q to a view V0
CREATE VIEW V0 AS
SELECT A1, …, An
FROM R1 & … & Rm
WHERE Q AND C1 AND … AND Ck

We want to maintain V0 given its old extent and the source relations.

Algebraically: V’ = V - V- U V+
where V+ are the tuples that should be inserted in the view and V- are

the tuples to be removed

DELETE FROM V WHERE NOT Q //delete V-

INSERT INTO V (SELECT A1, …, An //add V+

FROM R1 & … & Rm
WHERE Q1 AND NOT C1 AND … AND NOT Ck)

 17

Important notes

• Maintenance is incremental: you try to
recompute V by checking out only the existing
data

• “Taxonomy” of atomic changes with locality
principle: if you are given a complex
redefinition, you can process it one change at
a time (atomic changes are composable)

18

Nica et al., EDBT 1998

• What if the schema in one of the relations
participating to the view definition changes?

• The method by Nica et al., proposes an algorithm
(heavily oriented towards handling deletions) for
rewritting the view to address the change

• Two pillars:
– A Meta Knowledge Base keeping semantic properties

of the database
– The annotation of views with directives on how to

respond to changes

19

Meta Knowledge Base

• Information on
– Available relations and views
– Implicit join conditions
– Semantic equivalences: which attribute/relation can

be regarded as a potential replacement for another
• For example:

– Join conditions:
• product.prod_id = sales.prod_id

– Equivalence assertions:
• sales.prod_id = product.prod_id
• times.calendar_year = year(sales.time_id)

20

View annotation
• E-SQL: language to annotate parts of a view (exported

attributes, underlying relations and filters) wrt:
– Dispensability: if the part can be removed from the view

definition completely
– Replaceability with an another equivalent part.

CREATE VIEW empProj_VV AS
SELECT e.ΕΝame, e.Ephone (AD true, AR true) p.PName,

w.PDuration
FROM EMP e (RR true), PROJECT p, WORKS w
WHERE (e.Εid = w.Eid) AND (p.Pid = w.Pid) AND

(p.Plocation=Barcelona) (CD true)

//assuming a relation EMP_ContactInfo duplicating id, name,

phone of EMP’s, possibly with other contact info means

21

Complex View Synchronization
algorithm

• Input : (0) an SPJ view V, (1) a change in a relation, (2)
old MKB entities, and, (3) new MKB entities.

• Output: view rewritings to adapt to new MKB providing
the same result

• Means: model that represents attributes as hyper-
nodes and (i) relations, (ii) join cond., and (iii)
equivalence assertions as hyper-edges

• Steps:
– find all entities affected for Old MKB to become New MKB,
– for each one of these entities find a replacement from Old

MKB,
– rewrite the view over these replacements.

22

DATA WAREHOUSE EVOLUTION

- DWs as Views
- Evolving dimensions & SCD
- Multiversion

23

Early days (late ‘90s)

• Back then, people continued to think that
DWs were collections of materialized views,
defined over sources.

• In this case, evolution is mostly an issue of
adapting the views’ definitions whenever
sources changes

24

Bellahsene (DEXA’98, KAIS02)

• Annotate views with a HIDE clause that works oppositely
to SELECT (i.e., you project all attributes except for the
hidden ones)

• What if sources change? The author considers
attribute/relation addition & deletion and the impact it
has to view rematerialization (how to recompute the
materialized extent via SQL commands)

• Cost model to estimate the cost of different options

25

Quix @ DMDW ‘99
• Context: DW schemata annotated with quality factors
• Metadata that track the history of changes and provide a set

of rules to enforce when a quality factor (completeness,
consistency, correctness, …) has to be reevaluated.

• Basic taxonomy of changes

Relation View Attribute Constraint

Add    

Delete    

Rename   

Redefine
semantics



26

… and then came dimension buses and
multidimensional models …

• … which treat the DW is a collection of
– cubes, representing clean, undisputed facts that are to be

loaded from the sources, cleaned and transformed, and
eventually queried by the client applications

– defined over consolidated dimensions that uniquely and
commonly define the context of the facts

• … The idea of a central DW schema acting as

reference for the back-stage loading and front-end
querying completely changed the perspective of DW
research …

27

Slowly Changing Dimensions

What you ‘ve probably head for dimension updates is SCD’s

• Type 0: no change allowed
• Type 1: new value overwrites old
• Type 2: new record; valid time timestamps + status columns

indicate which row is current and what happened
– New Surrogate Key (so joins with facts work as if these are different

dimension records)
– Same natural / detailed key (to be used in group by’s)
– Status attribute: Current vs Old (aka Type 6)

• Type 3: add new column “PreviousValueForAttributeXXX” and
update cells with new and old values respectively

28

Slowly Changing Dimensions

• Type 4: definitions vary
– Split type 2 table in two tables subsets of the data

set: the historical one and the current one (single
row)

– Kimball’s: if some attributes of the dimension
change frequently, export a new table (called
“profile”) just for them; facts have two FK’s for
the dimension, one for the dim table and another
for the profile table

29

Hurtado, Mendelzon and Vaisman @
DOLAP99, ICDE’99

Quick guide to dimensional modeling
For each dimension:
• Levels for “granularity degrees” of

information
• Each level L with a domain dom(L)

(typically isom. to integers)
• Can have attributes too
• Typically form a lattice with

– a detailed level at bottom and
– A single-valued ‘ALL’ level at the top

• Rollup functions between
subsequent levels

• Have to be fully defined at the
domain level and consistent under
composition

• Drill-down relations (not functions):
their inverse

• [HuMN99a,b] Set of
operators for evolving
dimensions
prescribing what
should be done to
have both a
consistent schema
and a consistent set
of instances

ALL

Year

Day

Month
Week

30

Hurtado, Mendelzon and Vaisman @
DOLAP99, ICDE’99

Generalize Adds a new level above a preexisting one, + a rollup function

Specialize Adds a new level below the current bottom level + a rollup function
Relate Adds a new edge, between two parallel levels. The associated roIlup

function, if it exists, is determined automatically. If not possible to do
so uniquely, the operator is not applicable.

Unrelate Deletes an edge between two levels.
Delete Level Deletes a level with the precondition that the new hierarchy must

have a unique bottom level (ALL cannot be deleted).
Add Instance Adds a value, say x, + a pair of the form (x,y) for each rollup function
Delete Instance Deletes a value x from a level L + rollup functions

Reclassify Update rollup-memberships (e.g., a brand moves to a new company)

Split & Merge Czechoslovakia <-> Czechia & Slovakia + rollup functions

Update Rename value without structural changes

31

Blaschka, Sapia and Höfling
@DaWaK’99
• Data model + an

evolution algebra :
– Evolution operators for

multi-dimensional
schemata and

– Spec. of their effects to
both schema and
instances.

• Operators: atomic
evolution operations,

• that can be used for
complex operations.

Algebraic Operator

Insert level

Delete level

Insert Attribute

Delete Attribute

Connect attribute to dimension level

Disconnect attribute from dimension level

Connect attribute to fact

Disconnect attribute to fact

Insert classification relationship

Delete classification relationship

Insert fact

Delete fact

Insert dimension into fact

Delete Dimension
32

… and then came
versioning…
• After we had obtained a

basic understanding of how
multidimensional schemata
are restructured, people
thought:

• “what if we keep track of the
history of all the versions of a
DW schema as it evolves?”

• Then, we can ask a query
that span versions, get the
data, transform them into a
convenient schema for the
query and show results to
the users 33

Closely related to temporal
management in DW’s

See later today PhD
defense by Waqas Ahmed

Eder and Koncilia @ DaWaK 2001
• Multidimensional data model that allows the registration of temporal

versions of dimension data in data warehouses.
• To navigate between temporal versions: mappings as transformation

matrices. Each matrix is a mapping of data from structure Vi to V i+1 for a
dimension D. For example, table T describes a split of value a into values
a1 and a2 respectively. There is an mapping function that describes that
the 30% of the fact –values for A should be placed to a1 and the remaining
should be placed in a2 .

• This mapping function is described in a transformation matrix T that says
exactly that in order to go from A to A1 we need to take 30% of the tuples
of table A and what remains goes to table A2.

• Queries are posed over snapshots of the database. For each query the
appropriate snapshots are computed.

T A1 A2

A 30% 70%

34

Eder and Koncilia @ DaWaK 2001
• We can transform each cuboid C (with facts) over a set of dimensions from

version Vi to version Vi+1, by sequentially transforming each of its
dimensions one at a time.

• Original cube (dimension values on the side)

• Transformation matrices for dimensions

• Final cube with the values of the original version over the structure of the

new version

Photos stolen from the paper 35

Eder, Koncilia and Mitsche @
DaWaK’03, CAiSE’04

• Making use of three basic operations (INSERT,
UPDATE and DELETE), the authors are able to
represent more complex operations on
dimension values such as: SPLIT, MERGE,
CHANGE, MOVE, NEW-MEMBER, and DELETE-
MEMBER.

• Also: data mining techniques for the detection
of structural changes in data warehouses.

36

Golfarelli, Lechtenbörger, Rizzi and
Vossen @ DKE 2006

• How to facilitate cross-version queries?

• A graph model for DW multidimensional schemata
• Nodes : (i) fact tables and (ii) their attributes of fact tables

(including properties and measures),
• Edges: functional dependencies (aka dimension hierarchies)

defined over the nodes of the schema.

37

Golfarelli, Lechtenbörger, Rizzi and
Vossen @ DKE 2006

• Taxonomy of changes:
– Add / delete node (i.e., tables and attributes)
– Add / delete edge (i.e., restructure dimensions)

• Transactions = sequences of atomic changes

38

Golfarelli, Lechtenbörger, Rizzi and
Vossen @ DKE 2006

Augmented schema of a previous version
• Assume a version Sk
• Assume a set of changes M1,…, Mn
• Then you get to a version Sk+n
• The augmented version of Sk wrt Sk+n is the schema and

data of Sk, along with all the extra attributes and FD’s added
at Sk+n

• So basically, we are adapting the previous schema+data to
the structure of the new version

• This might require aggregations or disaggregations (and
estimations of the necessary values), addition of default
values, …

39

Golfarelli, Lechtenbörger, Rizzi and
Vossen @ DKE 2006

• Assume a fact
– SALES(ProdID, DayId, CustId, Price, Qty)

• With a set of dimensions
– Product (Product, Type, Family)
– Customer(Customer, CustGroup)
– Time(Day, Month, Year)

• and a set of changes
– Add attribute Salesman and a hierarchy Salesman -> Store
– Remove day from the time hierarchy and replace it with Month
– SumSales = Qty*Price

• Then, the new fact is
SALES’(ProdID,MonthId,CustId,SalesmanId,Price,Qty,Su

mSales)
40

Golfarelli, Lechtenbörger, Rizzi and
Vossen @ DKE 2006

SALES(ProdID, DayId, CustId, Price, Qty)
SALES’(ProdID,MonthId,CustId,SalesmanId,Price,Qty,SumSales)

• We can compute the augmented version of the OLD schema
SALESAug(ProdID,DayId,MonthId,CustId,SalesmanId,Price,Qty,Su

mSales)

• …that includes @ schema level
– The old attributes & FD’s
– The new attributes & FD’s added during evolution
– … hoping that all FD’s hold (otherwise there is no augmentation)

• … and at data level: values of SALES (the old v.) with
interpolation for the measures due to dimension addition

41

Golfarelli, Lechtenbörger, Rizzi and
Vossen @ DKE 2006

• History is a sequence of versions H = (v1, …, vn) . Each version has
– Its own schema
– The augmented schema wrt vn //needs modification if vn+1

comes
– The timestamp of change

• Why bother?
• Because at query time, we can transform the old schema and

data to the last one.
• Then we can pose queries to the old data based on the structure

of the new one and a get a uniform result under the last known
schema.

• If differences (e.g., because of attribute deletions), we retain the
common set of attributes 42

Wrembel and Bebel @ JoDS’07
• How to handle changes that come up on the external data sources

(EDS) of a data warehouse?
• Deal with it via a multiversion technique!
• Everything has a version

– Dimensions, levels and hierarchies
– Facts
– Attributes
– Integrity constraints

• Mappings are between versioned objects. E.g.,
– level versions are mapped to dimension versions
– Fact versions to level versions
– …

• Both real and alternative (for simulation) versions are supported

43

Wrembel and Bebel @ JoDS’07
• How to handle changes that come up on the external data sources

(EDS) of a data warehouse?
• Deal with it via a multiversion technique!
• Everything has a version (each with a valid time):

– Dimensions, levels and hierarchies
– Facts
– Attributes
– Integrity constraints

• Mappings are between versioned objects. E.g.,
– level versions are mapped to dimension versions
– Fact versions to level versions
– …

• Both real and alternative (for simulation) versions are supported

44

Wrembel and Bebel @ JoDS’07

Photo stolen from the paper 45

Wrembel and Bebel @ JoDS’07
• Schema Change Operations

– the addition / deletion of attribute @ dimension level table,
– the creation of a new fact table + the association of a fact with a

dimension
– the renaming of a table,
– snowflake changes:

• the creation of a new dimension level table with a given structure
• the inclusion of a parent dimension level table into its child dimension level

table,
• the creation of a parent dimension level table based on its child level table.

• Instance change operations

– Add/del level instance
– Change parent of a level
– Merge many instances of a level into a single one / split(inverse)

46

Wrembel and Bebel @ JoDS’07
• Querying multiple versions
• Split original query to a set of single version queries
• For each single version query, do a best-effort approach:

– if attributes are missing, omit them;
– use metadata for renames
– ignore v. if a grouping is impossible
– …

• If possible, the collected results are integrated under the
intersection of attributes common to all versions (if this is
the case of the query);

• Else they are presented as a set of results, each with its
own metadata

47

Wrembel and Bebel @ JoDS’07

DW

Metadata
manager

Refresher

Monitor

Monitor

Monitor

…

Wrapper

Wrapper

Wrapper

… …

monitored
External
Data
Sources

48

A CASE STUDY OF DW EVOLUTION

George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, Yannis Vassiliou.
Metrics for the Prediction of Evolution Impact in ETL Ecosystems: A Case
Study. Journal on Data Semantics, August 2012, Volume 1, Issue 2, pp 75-
97

49

Context of the Study
• We have studied a data warehouse scenario from a

Greek public sector’s data warehouse maintaining
information for farming and agricultural statistics.

• The warehouse maintains statistical information
collected from surveys, held once per year via
questionnaires.

• Our study is based on the evolution of the source
tables and their accompanying ETL flows, which has
happened in the context of maintenance due to the
change of requirements at the real world.

• Practically this is due to the update of the
questionnaires from year to year

50

Internals of the monitored scenario

• The environment involves a set of 7 ETL
workflows:
– 7 source tables, (S1 to S7)
– 3 lookup tables(L1 to L3),
– 7 target tables, (T1 to T7), stored in the data

warehouse.
– 7 temporary tables (each target table has a

temporary replica) for keeping data in the data
staging area,

– 58 ETL activities in total for all the 7 workflows.

51

PL/SQL to graph transformation

• All ETL scenarios were source coded as PL\SQL
stored procedures in the data warehouse.
– We extracted embedded SQL code (e.g., cursor

definitions, DML statements, SQL queries) from
activity stored procedures

– Each activity was represented in our graph model
as a view defined over the previous activities

– Table definitions were represented as relation
graphs.

52

Method of assessment

• We have represented the ETL workflows in our
graph model

• We have recorded evolution events on the nodes
of the source, lookup and temporary tables.

• We have applied each event sequentially on the
graph and monitored the impact of the change
towards the rest of the graph by recording the
times that a node has been affected by each
change

53

Graph modeling of a data-intensive
ecosystem

• The entire data-intensive ecosystem, comprising databases
and their internals, as well as applications and their data-
intensive parts, is modeled via a graph that we call
Architecture Graph

• Why Graph modeling?
– Completeness: graphs can model everything
– Uniformity: we would like to module everything uniform manner
– Detail and Grand-View: we would like to capture parts and

dependencies at the very finest level; at same time, we would like to
have the ability to zoom-out at higher levels of abstraction

– Exploit graph management techniques and toolkits

54

Relations – Attributes - Constraints

CREATE TABLE EMP (EMP# INTEGER PRIMARY KEY,
 NAME VARCHAR(25) NOT NULL,
 TITLE VARCHAR(10),
 SAL INTEGER NOT NULL);

S S S

PK

op

EMP

SalNameEMP# Title

S

NNC

op

NNC

op

55

Queries & Views
Q: SELECT EMP.Emp# as Emp#,
 Sum(WORKS.Hours) as T_Hours
 FROM EMP, WORKS
 WHERE EMP.Emp# = WORKS.Emp#
 AND EMP.SAL > 50K
 GROUP BY EMP.Emp#

map-select

map-select

S

S

group by

map-select

SUM

from

=where
op2

GB group by

W.EMP#.FK
op

S SS

Q

WORKS

Emp# Hours Proj#

T_HOURS

Emp#

op

S
S S

EMP.PK

op

EMP

SalNameEmp#

op1

from

op1

>=

AND
wherewhere

op2
50K

56

Modules: relations, queries, views

map-select

map-select

S

Sgroup by

from

=where
op2

op1

GB group by

W.EMP#.FK

op

op

S
S

S SS

S

EMP.PK

op

V

WORKS

EMP

SalNameEmp#

Emp# Hours Proj#

HOURS

Emp#

Module

Module

Module

Module

Q
from

map-select map-select
SUMT_HOURS

op2

op1>=

50K

AND

where
where

S

Emp#

S

from

map-select

SELECT Emp#,
 SUM(Hours) as T_HOURS
FROM V
GROUP BY Emp#

CREATE VIEW V AS
SELECT Emp#, Hours
FROM EMP E, WORKS W
WHERE E.Emp# = W.Emp#
AND E.Sal >= 50K

WORKS (Emp#, Proj#,Hours)

EMP(Emp#, Name, Sal)

57

Zooming out to top-level nodes (modules)

V

WORKS

EMP

Q
4

3

4

1

map-select

map-select

S

Sgroup by

from

=where
op2

op1

GB group by

W.EMP#.FK

op

op

S
S

S SS

S

EMP.PK

op

V

WORKS

EMP

SalNameEmp#

Emp# Hours Proj#

HOURS

Emp#

Module

Module

Module

Module

Q
from

map-select map-select
SUMT_HOURS

op2

op1>=

50K

AND

where
where

S

Emp#

S

from

map-select

SELECT Emp#,
 SUM(Hours) as T_HOURS
FROM V
GROUP BY Emp#

CREATE VIEW V AS
SELECT Emp#, Hours
FROM EMP E, WORKS W
WHERE E.Emp# = W.Emp#
AND E.Sal >= 50K

WORKS (Emp#, Proj#,Hours)

EMP(Emp#, Name, Sal)

58

Metrics: Node Degree
Simple metrics:
in-degree, out-degree, degree

EMP.Emp# is the most
important attribute of
EMP.SAL, if one
considers how many
nodes depend on it.

map-select

map-select

S

S

from

=where
op2

op1

W.EMP#.FK

op

op

S
S

S SS

S

EMP.PK

op

V

WORKS

EMP

SalNameEmp#

Emp# Hours Proj#

HOURS

Emp#

Module

Module

Module

map-select

op2

op1>=

50K

AND

where
where

from

Edge direction:
from dependant
to depended upon

59

Metrics: Transitive Node Degree
Transitive Metrics:
in-degree, out-degree, degree

Observe that there is both a view and
a query with nodes dependent upon
attribute EMP.Emp#.

map-select

map-select

S

Sgroup by

from

=where
op2

op1

GB group by

W.EMP#.FK

op

op

S
S

S SS

S

EMP.PK

op

V

WORKS

EMP

SalNameEmp#

Emp# Hours Proj#

HOURS

Emp#

Module

Module

Module

Module

Q
from

map-select map-select
SUMT_HOURS

op2

op1>=

50K

AND

where
where

S

Emp#

S

from

map-select

60

Strength: Zooming out to modules

4
1V

WORKS

EMP

Q

3

3

A zoomed out graph highlights the
dependence between modules
(relations, queries, views), incorporating
the detailed dependencies as the weight
of the edges

Again, for modules, we
can have both:
• Simple strength
• Transitive strength

61

Metrics: Node Entropy

P(v|yk) =
∑
∈Vy

i

k

i

yvpaths

yvpaths

),(

),(, for all nodes yi ∈V.

V

WORKS

EMP

Q

The probability a node v being affected by an evolution event on node yi :

Examples
P(Q|V) = 1/4,
P(Q|EMP) = 2/4,
P(V|WORKS) = 1/3

62

Entropy of a node v : How sensitive the node v is by an arbitrary event on the
graph.

() ∑
∈

−=
Vy

ii
i

yvPyvPvH)|(log)|(2 , for all nodes yi ∈V.

Macroscopic view
tables
affected

Occurrences pct

Add
Attribute 8 122 29%

Add
Constraint 1 1 0%

Drop
Attribute

Count 5 34 8%
Modify

Attribute 9 16 4%
Rename

Attribute 5 236 57%
Rename

Table 7 7 2%

416

63

29%

0%

8% 4%

57%

2%

Breakdown per event type

Add Attribute

Add Constraint

Drop Attribute Count

Modify Attribute

Rename Attribute

Rename Table

ATTN: change of requirements at
the real world determines pct
breakdown!!

S1 ETL1_ACT1

S4 ETL1_ACT4

Sources

ETL1_ACT2 ETL1_ACT3

ETL1_ACT5

ETL1_ACT9

T3_TMP

L2 L3

ETL1_ACT10 ETL1_ACT11 ETL1_ACT12

ETL1_ACT8

L1

ETL1_ACT13

ETL1_Q4 T3

T2_TMP ETL1_ACT7ETL1_Q3 T2

T1_TMP ETL1_ACT6ETL1_Q2 T1

Targets

filter filter filter

filter filter

project

join, project

filter

join join

project

filter

filter

join, filter

project

join, project

Workflow of the first ETL scenario, ETL1

64

65

Out – degree
- Schema size for tables
- Output schema size for activities

66

Pretty good job
for tables

Decent job for filters
and joins

Not so good for
projection activities 67

Strength out did not work so
well -- esp. for tables, it is too
bad

68

69

Strength-total works the other
way around

S2 ETL2_ACT1

Sources

ETL2_ACT2 T3_TMPETL2_ACT4 ETL2_ACT3

L1

ETL2_ACT5

ETL2_Q2 T3

Targets

T1_TMP

filter join, projectfilter join

filter

join, filter

Workflows of the second & third ETL scenarios, ETL2 – ETL3

S3 ETL3_ACT1

Sources

ETL3_ACT2 T3_TMPETL3_ACT4 ETL3_ACT3

L1

ETL3_ACT5

ETL3_Q2 T3

Targets

T1_TMP

join, filterjoin, projectfilter filter join

filter

70

71

S4 ETL4_ACT1

Sources

ETL4_ACT2

T3_TMP ETL4_ACT3L1 ETL4_ACT6

ETL4_Q2

T3

Targets

ETL4_ACT5

T1_TMP

ETL4_Q3

ETL4_Q4

ETL4_Q5

ETL4_Q6

ETL4_Q7

ETL4_Q8

ETL4_Q9

ETL4_Q10

T4_TMP ETL4_ACT4 T4

filter filter join

filter

filter

join

join, project

join, project

project

project

project

project

project

project

project

ETL 4 72

73

Suddenly everything
is underestimated

Pretty good job in the left part

74

Transitive metrics to
the rescue

S5 ETL5_ACT1 ETL5_ACT2 T5_TMPETL5_ACT3 ETL5_ACT4ETL5_Q1 T5

Targets

T1_TMP

Sources filter filterfilter filter join

S6 ETL6_ACT1 ETL6_ACT2 T6_TMPETL6_ACT3 ETL6_ACT4ETL6_Q1 T6

Targets

T1_TMP

Sources
filter filterfilter filter join

S7 ETL7_ACT1 ETL7_ACT2 T7_TMPETL7_ACT3 ETL7_ACT4ETL7_Q1 T7

Targets

T1_TMP

Sources
filter filterfilter filter join

ETL 5,6,7 75

76

Schema size and module complexity as
predictors for the vulnerability of a system

• The size of the schemas involved in an ETL design significantly affects the design
vulnerability to evolution events.

– For example, source or intermediate tables with many attributes are more vulnerable to changes at
the attribute level.

– The out-degree captures the projected attributes by an activity, whereas the out-strength captures
the total number of dependencies between an activity and its sources.

• The internal structure of an ETL activity plays a significant role for the impact of
evolution events on it.

– Activities with high out-degree and out-strengths tend to be more vulnerable to evolution
– Activities performing attribute reduction (e.g., through either a group-by or a projection operation)

are in general, less vulnerable to evolution events.
– Transitive degree and entropy metrics capture the dependencies of a module with its various non-

adjacent sources. Useful for activities which act as “hubs” of various different paths from sources in
complex workflows.

• The module-level design of an ETL flow also affects the overall evolution impact on
the flow.

– For example, it might be worthy to place schema reduction activities early in an ETL flow to restrain
the flooding of evolution events.

77

Summary & Guidelines
 ETL Construct Most suitable Metric Heuristic

Source Tables out-degree Retain small schema size

Intermediate &
Target Tables out-degree Retain small schema size in

intermediate tables

Filtering activities out-degree, out-strength Retain small number of
conditions

Join Activities
out-degree, out-strength,
trans. out-degree, trans. out-
strength, entropy

Move to early stages of the
workflow

Project Activities
out-degree, out-strength,
trans. out-degree, trans. out-
strength, entropy

Move attribute reduction
activities to early stages of the
workflow and attribute increase
activities to later stages

78

IMPACT ASSESSMENT
… and data intensive ecosystems…

79

Data intensive ecosystems

• Ecosystems of applications, built on top of
one or more databases and strongly
dependent upon them

• When the database changes, the applications
are affected
– Syntactically
– Semantically

80

Evolving data-intensive ecosystem

81

Evolving data-intensive ecosystem

82

The impact can be syntactical (causing crashes), semantic (causing info loss or
inconsistencies) and related to the performance

Semantically unclear

Syntactically invalid

Remove CS.C_NAME

Add exam year

The Hecataeus tool & method.
Here: a map of Drupal

83 http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

What happens if I modify table
search_index? Who are the neighbors?

84

What happens if I modify table
search_index? Who are the neighbors?

85 Tooltips with info on the script & query

In the file structure too…

86

How to handle evolution?
• Architecture Graphs: graph with the data flow between modules (i.e.,

relations, views or queries) at the detailed (attribute) level; module
internals are also modeled as subgraphs of the Architecture Graph

• Policies, that annotate a module with a reaction for each possible event
that it can withstand, in one of two possible modes:

– (a) block, to veto the event and demand that the module retains its previous structure
and semantics, or,

– (b) propagate, to allow the event and adapt the module to a new internal structure.

• Given a potential change in the ecosystem
– we identify which parts of the ecosystem are affected via a “change propagation”

algorithm
– we rewrite the ecosystem to reflect the new version in the parts that are affected and

do not veto the change via a rewriting algorithm
• Within this task, we resolve conflicts (different modules dictate conflicting reactions) via a

conflict resolution algorithm

87
Manousis+ @ ER 2013 for the details of impact analysis (summary coming)
ER 2014 for the visualization (not here)

University E/S Architecture Graph

88

Architecture Graph

89

Modules and Module
Encapsulation
Observe the input and output
schemata!!

SELECT V.STUDENT_ID, S.STUDENT_NAME,
 AVG(V.TGRADE) AS GPA
FROM V_TR V |><| STUDENT S ON STUDENT_ID
WHERE V.TGRADE > 4 / 10
GROUP BY V.STUDENT_ID, S.STUDENT_NAME

90

Policies to predetermine reactions
Remove CS.C_NAME

Add exam year

Allow addition

Allow deletion

RELATION.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;
RELATION.OUT.SELF: on DELETE_SELF then PROPAGATE;
RELATION.OUT.SELF: on RENAME_SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;

VIEW.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;
VIEW.OUT.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
VIEW.OUT.SELF: on DELETE_SELF then PROPAGATE;
VIEW.OUT.SELF: on RENAME_SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on DELETE_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on RENAME_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
VIEW.SMTX.SELF: on ALTER_SEMANTICS then PROPAGATE;

QUERY.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;
QUERY.OUT.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
QUERY.OUT.SELF: on DELETE_SELF then PROPAGATE;
QUERY.OUT.SELF: on RENAME_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on DELETE_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on RENAME_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
QUERY.SMTX.SELF: on ALTER_SEMANTICS then PROPAGATE;

Policies to predetermine the modules’ reaction to a
hypothetical event?

91

How to handle evolution?
Remove CS.C_NAME

Impact assessment & rewriting

92

Internals of impact assess. & rewriting
1. Impact assessment. Given a potential event, a status

determination algorithm makes sure that the nodes of the
ecosystem are assigned a status concerning (a) whether they
are affected by the event or not and (b) what their reaction
to the event is (block or propagate).

2. Conflict resolution and calculation of variants. Algorithm
that checks the affected parts of the graph in order to
highlight affected nodes with whether they will adapt to a
new version or retain both their old and new variants.

3. Module Rewriting. Our algorithm visits affected modules
sequentially and performs the appropriate restructuring of
nodes and edges.

93

Conflicts: what they are and how to
handle them (more than flooding)

94

R

View0

View1 View2

Query1 Query2

R

View0 n

View1
n

View2
n

Query1 n

View0

View2

Query2

BEFORE
AFTER

• View0 initiates a change
• View1 and View 2 accept the

change

• Query2 rejects the change
• Query1 accepts the change

• The path to Query2 is left intact, so
that it retains it semantics

• View1 and Query1 are adapted
• View0 and View2 are adapted too,

however, we need two version for
each: one to serve Query2 and
another to serve View1 and Query1

Played an impact analysis scenario:
delete attr. ‘word’ from search_index

95

2. Queries Q215
and Q216 vetoed

1. The table
allowed the
deletion, but…

Other efforts

• Maule et al @ ICSE 2008
• The Prism/Prism++ line of research

96

Maule et al. @ ICSE’08
• Given an OO app. built on top of a relational db schema

and a change type
• Produce the locations of the code that are affected
• Method:
1. Slicing. A prototype slicing implementation to identify the

database queries of the program.
2. A data-flow analysis algorithm to estimate all the possible

runtime values for the parameters of the query.
3. Use an impact assessment tool, Crocopat, with a

reasoning language (RML). Depending on the type of
change, a different RML program that assesses impact
over the stored data of the previous step is run: this
isolates the lines of code affected by the change.

97

Prism/Prism++

• Series of works from the same authors
• Carlo Curino, Hyun Jin Moon, Carlo Zaniolo. Graceful

database schema evolution: the PRISM workbench.
PVLDB 1(1): 761-772 (2008)

• Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo
Zaniolo. Update Rewriting and Integrity Constraint
Maintenance in a Schema Evolution Support System:
PRISM++. PVLDB, 4(2):117–128, 2010.

• Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo
Zaniolo. Automating the database schema evolution
process. VLDB J., 22(1):73–98, 2013.

98

Prism/Prism++ motivation
• Evolution happens all the time => can be viewed as a

sequence of changes

Automatically migrate schema + data+ surrounding queries

• SMO’s are a principled set of operators to describe evolution
steps, s.t.:
– The evolution DDL is implied by the SMO’s
– The DML for data migration can be automatically produced

from the SMO’s
– The surrounding queries can be rewritten to the new

schema
99

v1 v2 vn
…

SMO’s and ICSMO’s

100

<policy>
(i) CHECK if current
db satisfies the constraint, else ICMO
is rolled back,
(ii) ENFORCE the removal of all data
violating the constraint,
(iii) IGNORE violating tuples + informs
the user about this.

Automatic creation of
- DDL (schema evo)
- DML (data migration)
is feasible

ICSMO’s: the technique is
extended to cover
Integrity Constraints too.

Answering old queries to new
schemata without user noticing it

• Assume we migrate the schema + data
from v1 to v2

• Can we rewrite the query q1 to q1’ s.t.
we get the same result, as if we were
still in v1?

101

v1 v2

q1 q1'

SMO

?

V1: R(…)
Q1: SELECT * FROM R

SMO: PARTITION R in S(…), T(…)

Q1’: SELECT * FROM S,T WHERE S.ID =T.ID

• SMO invertibility:
• q1/v1 = q1 /SMO-1(v2) = q1’ / v2

EMPIRICAL STUDIES

102

WHAT ARE THE
“LAWS” OF
DATABASE SCHEMA
EVOLUTION?

103

What are the “laws” of database
(schema) evolution?

• How do databases change?
• In particular, how does the schema of a

database evolve over time?

• Long term research goals:
– Are there any “invariant properties” (e.g., patterns

of repeating behavior) on the way database
(schemata) change?

– Is there a theory / model to explain them?

104

Why care for the “laws”/patterns of
schema evolution?

• Scientific curiosity!
• Practical Impact: DB’s are dependency

magnets. Applications have to conform to the
structure of the db…
– typically, development waits till the “db

backbone” is stable and applications are build on
top of it

– slight changes to the structure of a db can cause
several (parts of) different applications to crash,
causing the need for emergency repairing

105

Imagine if we could predict how a
schema will evolve over time…

• … we would be able to “design for evolution”
and minimize the impact of evolution to the
surrounding applications
– by applying design patterns
– by avoiding anti-patterns & complexity increase
… in both the db and the code

• … we would be able to plan administration and
perfective maintenance tasks and resources,
instead of responding to emergencies

106

Why aren’t we there yet?

• Historically, nobody from the research
community had access + the right to publish to
version histories of database schemata

• Open source tools internally hosting databases
have changed this landscape:
– not only is the code available, but also,
– public repositories (git, svn, …) keep the entire history

of revisions
• We are now presented with the opportunity to

study the version histories of such “open source
databases”

107

Timeline of empirical studies

108

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Our take on the problem
• Collected version histories for the schemata of 8 open-source

projects
– CMS’s: MediaWiki, TYPO3, Coppermine, phpBB, OpenCart
– Physics: ATLAS Trigger --- Bio: Ensemble, BioSQL

• Preprocessed them to be parsable by our HECATE schema

comparison tool and exported the transitions between each
two subsequent versions and measures for them (size,
growth, changes)

• Visualized the transitions in graphs and statistically studied

the measures, both at the macro (database) and at the micro
(table) level

109

Timeline of empirical studies

110

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Timeline of empirical studies

111

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Sjoberg @ IST 93: 18 months study of a health system.
139% increase of #tables ; 274% increase of the #attributes

Changes in the code (on avg):
relation addition: 19 changes ; attribute additions: 2 changes
relation deletion : 59.5 changes; attribute deletions: 3.25 changes

An inflating period during construction where almost all changes were additions,
and a subsequent period where additions and deletions where balanced.

Timeline of empirical studies

112

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Curino+ @ ICEIS08: Mediawiki
100% increase in the number of tables
142% in the number of attributes.

45% of changes do not affect the information capacity of the schema
(but are rather index adjustments, documentation, etc)

Timeline of empirical studies

113

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

IWPSE09: Mozilla and Monotone (a version control system)
Many ways to be out of synch between code and evolving db schema

ICDEW11: Firefox, Monotone , Biblioteq (catalogue man.) , Vienna (RSS)
Similar pct of changes with previous work
Frequency and timing analysis: db schemata tend to stabilize over time,
as there is more change at the beginning of their history, but seem to
converge to a relatively fixed structure later

Timeline of empirical studies

114

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Qiu,Li,Su@ FSE 2013: 10 (!) database schemata studied.
Change is focused both (a) with respect to time and (b) with respect to the
tables who change.

Timing: 7 out of 10 databases reached 60% of their schema size within 20% of
their early lifetime.
Change is frequent in the early stages of the databases, with inflationary
characteristics; then, the schema evolution process calms down.

Tables that change: 40% of tables do not undergo any change at all, and 60%-
90% of changes pertain to 20% of the tables (in other words, 80% of the tables
live quiet lives). The most frequently modified tables attract 80% of the changes.

Timeline of empirical studies

115

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

Qiu,Li,Su@ FSE 2013: Code and db co-evolution, not always in synch.
• Code and db changed in the same revision: 50.67% occasions
• Code change was in a previous/subsequent version than the one where the

database schema change: 16.22% of occasions
• database changes not followed by code adaptation: 21.62{\%} of occasions
• 11.49% of code changes were unrelated to the database evolution.

Each atomic change at the schema level is estimated to result in 10 -- 100 lines of
application code been updated;
A valid db revision results in 100 -- 1000 lines of application code being updated

Timeline of empirical studies

116

2015 2014 2013 2011 2009 2008 1993

Sjoberg
IST 93

Curino+
ICEIS08

Univ. Riverside
IWPSE09, ICDEW11

Qiu,Li,Su
FSE’13

Univ. Ioannina
CAiSE14, ER15

To be detailed next.
CAiSE14: DB level
ER’15: Table level

SCHEMA EVOLUTION FOR O/S DB’S
AT THE “MACRO” LEVEL

.. What do we see if we observe the evolution of the entire schema?

http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/

Skoulis, Vassiliadis, Zarras. Open-Source Databases: Within, Outside, or Beyond
Lehman's Laws of Software Evolution? CAiSE 2014
Also: Growing up with stability: How open-source relational databases evolve.
Information Systems, Volume 53, October–November 2015

117

Datasets
https://github.com/DAINTINESS-Group/EvolutionDatasets

● Content management Systems
● MediaWiki, TYPO3, Coppermine, phpBB, OpenCart

● Medical Databases
● Ensemble, BioSQL

● Scientific
● ATLAS Trigger

118

https://github.com/DAINTINESS-Group/EvolutionDatasets�
https://github.com/DAINTINESS-Group/Hecate�

Data sets

119

Dataset
Versi

ons
Lifetime

Table

s Start

Table

s End

Attribut

es Start

Attribut

es End

Commit

s per

Day

% commits

with

change

Repository URL

ATLAS Trigger 84 2 Y, 7 M, 2 D 56 73 709 858 0,089 82%
http://atdaq-sw.cern.ch/cgi-bin/viewcvs-

atlas.cgi/offline/Trigger/TrigConfiguration/TrigDb/share/sql/com

bined_schema.sql

BioSQL 46 10 Y, 6 M, 19 D 21 28 74 129 0,012 63%
https://github.com/biosql/biosql/blob/master/sql/biosqldb-

mysql.sql

Coppermine 117 8 Y, 6 M, 2 D 8 22 87 169 0,038 50%
http://sourceforge.net/p/coppermine/code/8581/tree/trunk/cpg

1.5.x/sql/schema.sql

Ensembl 528 13 Y, 3 M, 15 D 17 75 75 486 0,109 60%
http://cvs.sanger.ac.uk/cgi-

bin/viewvc.cgi/ensembl/sql/table.sql?root=ensembl&view=log

MediaWiki 322 8 Y, 10 M, 6 D 17 50 100 318 0,100 59%
https://svn.wikimedia.org/viewvc/mediawiki/trunk/phase3/main

tenance/tables.sql?view=log

OpenCart 164 4 Y, 4 M, 3 D 46 114 292 731 0,104 47%
https://github.com/opencart/opencart/blob/master/upload/inst

all/opencart.sql

phpBB 133 6 Y, 7 M, 10 D 61 65 611 565 0,055 82%
https://github.com/phpbb/phpbb3/blob/develop/phpBB/install/

schemas/mysql_41_schema.sql

TYPO3 97 8 Y, 11 M, 0 D 10 23 122 414 0,030 76%
https://git.typo3.org/Packages/TYPO3.CMS.git/history/TYPO3_6-

0:/t3lib/stddb/tables.sql

http://atdaq-sw.cern.ch/cgi-bin/viewcvs-atlas.cgi/offline/Trigger/TrigConfiguration/TrigDb/share/sql/combined_schema.sql�
http://atdaq-sw.cern.ch/cgi-bin/viewcvs-atlas.cgi/offline/Trigger/TrigConfiguration/TrigDb/share/sql/combined_schema.sql�
http://atdaq-sw.cern.ch/cgi-bin/viewcvs-atlas.cgi/offline/Trigger/TrigConfiguration/TrigDb/share/sql/combined_schema.sql�
https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql�
https://github.com/biosql/biosql/blob/master/sql/biosqldb-mysql.sql�
http://sourceforge.net/p/coppermine/code/8581/tree/trunk/cpg1.5.x/sql/schema.sql�
http://sourceforge.net/p/coppermine/code/8581/tree/trunk/cpg1.5.x/sql/schema.sql�
http://cvs.sanger.ac.uk/cgi-bin/viewvc.cgi/ensembl/sql/table.sql?root=ensembl&view=log�
http://cvs.sanger.ac.uk/cgi-bin/viewvc.cgi/ensembl/sql/table.sql?root=ensembl&view=log�
https://svn.wikimedia.org/viewvc/mediawiki/trunk/phase3/maintenance/tables.sql?view=log�
https://svn.wikimedia.org/viewvc/mediawiki/trunk/phase3/maintenance/tables.sql?view=log�
https://github.com/opencart/opencart/blob/master/upload/install/opencart.sql�
https://github.com/opencart/opencart/blob/master/upload/install/opencart.sql�
https://github.com/phpbb/phpbb3/blob/develop/phpBB/install/schemas/mysql_41_schema.sql�
https://github.com/phpbb/phpbb3/blob/develop/phpBB/install/schemas/mysql_41_schema.sql�
https://git.typo3.org/Packages/TYPO3.CMS.git/history/TYPO3_6-0:/t3lib/stddb/tables.sql�
https://git.typo3.org/Packages/TYPO3.CMS.git/history/TYPO3_6-0:/t3lib/stddb/tables.sql�

Hecate: SQL schema diff viewer
● Parses DDL files
● Creates a model for the parsed SQL elements
● Differentiates two version of the same schema
● Reports on the diff performed with a variety of

metrics
● Exports the transitions that occurred in XML

format

https://github.com/DAINTINESS-Group/Hecate

120

https://github.com/DAINTINESS-Group/Hecate�
https://github.com/DAINTINESS-Group/Hecate�
https://github.com/DAINTINESS-Group/Hecate�
https://github.com/DAINTINESS-Group/Hecate�

48

53

58

63

68

73

1 11 21 31 41 51 61 71 81
17
19
21
23
25
27
29

1 5 9 13 17 21 25 29 33 37 41 45

5

10

15

20

1 11

21

31

41

51

61

71

81

91

10
1

11
1

10

30

50

70

1 42

83

12
4

16
5

20
6

24
7

28
8

32
9

37
0

41
1

45
2

49
3

40

60

80

100

120

1 17

31

45

59

73

87

10
1

11
5

12
9

14
3

15
7

58

60

62

64

66

1 12

23

34

45

56

67

78

89

10
0

11
1

12
2

13
3

9

14

19

24

1 10 19 28 37 46 55 64 73 82 91

10

20

30

40

50

1 26

51

76

10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

Schema Size (relations)

121

0

50

100

150

0

50

100

150

0

5

10

15

20

0

100

200

300

0

200

400

600

800

0

50

100

150

200

0

50

100

150

0

50

100

150

200

Change over time

122

ATLAS Trigger

BioSQL

Coppermine

Ensembl

0

50

100

150

0

50

100

150

0

5

10

15

20

25

0

100

200

300

OpenCart

phpBB

TYPO3

MediaWiki

0

200

400

600

800

0

50

100

150

0

50

100

0

50

100

150

Change over version

123

Main results
Schema size (#tables, #attributes) supports the assumption of a feedback mechanism
• Schema size grows over time; not continuously, but with bursts of concentrated

effort
• Drops in schema size signifies the existence of perfective maintenance
• Regressive formula for size estimation holds, with a quite short memory

Schema Growth (diff in size between subsequent versions) is small!!
• Growth is small, smaller than in typical software
• The number of changes for each evolution step follows Zipf’s law around zero
• Average growth is close (slightly higher) to zero

Patterns of change: no consistently constant behavior
• Changes reduce in density as databases age
• Change follows three patterns: Stillness, Abrupt change (up or down), Smooth

growth upwards
• Change frequently follows spike patterns
• Complexity does not increase with age

124

Grey for results
requiring further
search

OBSERVING THE EVOLUTION OF O/S DB
SCHEMATA AT THE MICRO LEVEL

Vassiliadis, Zarras, Skoulis. How is Life for a Table in an Evolving
Relational Schema? Birth, Death & Everything in Between.
To appear in ER 2015

125

Statistical study of durations

• Short and long lived
tables are practically
equally proportioned

• Medium size durations
are few!

• Long lived tables are
mostly survivors (see on
the right)

126

One of the fascinating revelations of this measurement was
that there is a 26.11% fraction of tables that appeared in
the beginning of the database and survived until the end.
In fact, if a table is long-lived there is a 70% chance (188
over 269 occasions) that it has appeared in the beginning
of the database.

Tables are mostly thin
• On average, half of the

tables (approx. 47%) are
thin tables with less than 5
attributes.

• The tables with 5 to 10
attributes are
approximately one third of
the tables' population

• The large tables with more
than 10 attributes are
approximately 17% of the
tables.

127

The $Gamma$ Pattern:
"if you 're wide, you survive"
• The $Gamma$ phenomenon:

– tables with small schema sizes can
have arbitrary durations, //small size does
not determine duration

– larger size tables last long

• Observations:
– whenever a table exceeds the critical

value of 10 attributes in its schema, its
chances of surviving are high.

– in most cases, the large tables are
created early on and are not deleted
afterwards.

128

0

20

40

60

80

100

0 10 20 30

du
ra

tio
n

schema size@birth

Atlas: duration/ size

266

0

40

80

120

0 5 10 15 20 25

du
ra

tio
n

schema size@birth

Coppermine:
duration

/ schema size

0

50

100

150

200

250

300

350

0 5 10 15 20
du

ra
tio

n
schema size@birth

mwiki: duration /
schema size

129

0

20

40

60

80

100

0 10 20 30

du
ra

tio
n

schema size@birth

Atlas: duration/ size

266

0

10

20

30

40

50

0 2 4 6 8 10

du
ra

tio
n

schema size@birth

Biosql: duration
/ schema size

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

du
ra

tio
n

schema size@birth

Coppermine: duration / schema size

0

100

200

300

400

500

600

0 5 10 15 20

du
ra

tio
n

schema size@birth

Ensembl: duration /
schema size

0

50

100

150

200

250

300

350

0 5 10 15 20 25

du
ra

tio
n

schema size@birth

mwiki: duration /
schema size

top-changers
med_low-changers

0

50

100

150

200

0 20 40 60

du
ra

tio
n

schema size@birth

Opencart: duration/size

0

50

100

150

0 20 40 60 80 100

ch
an

ge
s

schema size@birth

phpbb: duration/ size

top-changers
upper-mid
med-changers
no-changers

0

20

40

60

80

100

120

0 10 20 30 40

du
ra

tio
n

schema size@birth

Typo: duration/ size top-changers
med-changers
no-changers

The Comet Pattern

“Comet “ for change over schema size with:
• a large, dense, nucleus cluster close to

the beginning of the axes, denoting small
size and small amount of change,

• medium schema size tables typically
demonstrating medium to large change
– The tables with the largest amount of change are

typically tables slightly higher the median value of
the schema size axis

• wide tables with large schema sizes
demonstrating small to medium
(typically around the median of the y-
axis) amount of change.

130

0
5

10
15
20
25
30
35

0 10 20 30

ch
an

ge
s

schema size@birth

Atlas: changes / schema size

266

0

5

10

15

20

0 5 10 15 20 25

ch
an

ge
s

schema size@birth

Coppermine: changes / schema
size

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20

ch
an

ge
s

schema size@birth

mwiki: changes /
schema size

http://visual.merriam-webster.com/astronomy/celestial-
bodies/comet.php

131

0
5

10
15
20
25
30
35

1 4 16 64 256

ch
an

ge
s

schema size@birth (log)

Atlas: changes / size

0

5

10

15

20

25

0 2 4 6 8 10

ch
an

ge
s

schema size@birth

Biosql: changes / schema size

0

5

10

15

20

0 5 10 15 20 25

ch
an

ge
s

schema size@birth

Coppermine: changes / schema size

0

20

40

60

80

100

0 5 10 15 20

ch
an

ge
s

schema size@birth

Ensembl: changes / schema size

0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25

ch
an

ge
s

schema size@birth

mwiki: changes / schema size

top-changers
med_low-changers

0

10

20

30

40

50

0 20 40 60

ch
an

ge
s

schema size@birth

Opencart: changes/size

0

20

40

60

80

100

120

0 20 40 60 80 100

ch
an

ge
s

schema size@birth

phpbb: changes / sizetop-changers

upper-mid

0
10
20
30
40
50
60
70

0 10 20 30 40

ch
an

ge
s

schema size@birth

Typo: changes / size top-changers
med-changers
no-changers

http://spaceplace.nasa.gov/comet-nucleus/en/

The inverse $Gamma$
pattern
• The correlation of change and

duration is as follows:
– small durations come necessarily

with small change,
– large durations come with all kinds

of change activity and
– medium sized durations come

mostly with small change activity
(inverse $Gamma$).

132

0
5

10
15
20
25
30
35

0 50 100

ch
an

ge
s

duration

Atlas: changes / duration

0

5

10

15

20

0 40 80 120

ch
an

ge
s

duration

Coppermine: changes
/ duration

0
5

10
15
20
25
30
35
40
45

0 50 100 150 200 250 300 350

ch
an

ge
s

duration

mwiki:
changes / duration

133

0
5

10
15
20
25
30
35

0 20 40 60 80 100

ch
an

ge
s

duration

Atlas: changes / durationvery active
surv, med change
surv, no change
dead, active

0

5

10

15

20

25

0 10 20 30 40 50

ch
an

ge
s

duration

Biosql: changes / duration
very active
surv, lowchange
surv, no change
dead, active
dead, mild change
sudden death

0

5

10

15

20

0 20 40 60 80 100 120

ch
an

ge
s

duration

Coppermine: changes
/ duration

0
10
20
30
40
50
60
70
80
90

0 100 200 300 400 500 600

ch
an

ge
s

duration

Ensembl: changes / duration
Alive-n-kicking
surv, mild change
surv, no change
dead, avg tran change > 10%
dead, mild change
sudden deaths

0

10

20

30

40

50

0 100 200 300

ch
an

ge
s

duration

mwiki: changes / durationsurv, med update
surv, quiet
sudden death
dead, quiet

0

10

20

30

40

50

0 50 100 150

ch
an

ge
s

duration

Opencart: changes/duration

surv, hot
surv, quiet
rigid
sudden death

0

20

40

60

80

100

120

-10 40 90 140

ch
an

ge
s

duration

phpbb: changes / durationsurv, hot
surv, quiet
rigid
dead, active
dead, quiet

0
10
20
30
40
50
60
70

0 20 40 60 80 100

ch
an

ge
s

duration

Typo: changes / durationsurv, hot
surv, quiet
rigid
dead, active
dead, quiet
sudden death

Quiet tables rule, esp. for mature db’s

Non-survivors
• Sudden deaths mostly
• Quiet come ~ close
• Too few active

134

Survivors
• Quiet tables rule
• Rigid and active then
• Active mostly in “new” db’s

Mature DB’s: the pct of active tables drops significantly

Longevity and update
activity correlate !!

Too many top changers
are born early

Top changers
live long

Deleted tables
are born early &

last short

Birth rate drops
over time

• Remember: top
changers are defined
as such wrt ATU, not
wrt sum(changes)

• Still, they dominate
the sum(changes)
too! (see top of
inverse Γ)

• See also upper right
blue part of diagonal:
too many of them
are born early and
survive => live long!

135

Longevity and update
activity correlate !!

Too many top changers
are born early

Top changers
live long

Deleted tables
are born early &

last short

Birth rate drops
over time

The few top-changers (in
terms of ATU) ….

• are long lived,
• typically come from the

early versions of the
database

• due to the combination
of high ATU and
duration => they have
high total amount of
change, and,

• frequently start with
medium schema sizes
(not shown here)

136

Empty space: high
change rates are

only for early born
& long lived

An empty triangle: no deleted
tables with large or even

modest durations

Deleted tables
are born early &

last short

Deleted tables last
short & do not change

a lot

Empty space: high
change rates are

only for early born
& long lived

Die young
and suddenly

• There is a very large
concentration of the
deleted tables in a
small range of newly
born, quickly
removed, with few or
no updates…

• …. resulting in very
low numbers of
removed tables with
medium or long
durations (empty
triangle).

137

High durations are
overwhelmingly blue!
Only a couple of
deletions are seen here!

Too rare to see
deletions!

Survive long enough &
you ‘re probably safe
It is quite rare to see
tables being removed at
old age
Typically, the area of
high duration is
overwhelmingly
inhabited by survivors
(although each data set
comes with a few such
cases)!

138

All in one

139

Top changers
are born early

Top changers
live long

An empty triangle: no deleted
tables with large or even

modest durations

Deleted tables
are born early &

last short

Deleted tables last
short & do not change

a lot

Empty space: high
change rates are

only for early born
& long lived

Birth rate drops
over time

Sudden deaths per period

• [Early life of the db] There a very large
concentration of the deleted tables in a small
range of newly born, quickly removed, with few
or no updates, resulting in very low numbers of
removed tables with medium or long durations.

• [Mature db] After the early stages of the
databases, we see the birth of tables who
eventually get deleted, but they mostly come
with very small durations and sudden deaths.

140

Early stages of the db life are more
active

• Moreover, early stages of the database life are
more "active" in terms of births, deaths and
updates, and have higher chances of
producing deleted tables.

• After the first major restructuring, the
database continues to grow; however, we see
much less removals, and maintenance activity
becomes more concentrated and focused.

141

OPEN ISSUES

142

svn/git for db schemata
• The versioning tale says: keep the history of previous

schemata available, as this can allow the automation of
query/application migration/forward-engineering and the
translation of old data to a new structure.

• When it comes to software, svn/git paradigm is the
undisputed champion:
– You make branches for concurrent development
– Collisions are automatically detected
– Different versions can be merged
– You can refer to a particular version of the code easily

• How does this apply to databases and application
development for databases?

• Is it really worth the trouble?

143

Schema curation and preservation

• Data curation and preservation is a very large topic on
its own

• If we focus only at the schema part, and assuming we
want to support history management for database
schemata, how do we implement it?

• SMO’s can be the key for altering a db schema in a way
that history can be replayed backwards / forward
– Catch: meta information and functional dependencies are

key to these methods. Need to pay the price for them.
• But how can we handle the data efficiently then?

144

Current trends in data management

• How will the area of schema evolution be
affected by the trends in the area of data
management?

• First, we need to agree on how the future will
look like…

• Open for discussion

145

What about DW evolution?

• Largely depends on how different / unique
DW’s will be contrasted to
– what they look like now
– what databases will be in the future

• Open for discussion

146

Are there “laws” of schema evolution?

• Collect more test cases
• Tools for the automation of the process

– Extract changes & verify their correctness (what happened)
– Link changes to expressed user req’s / bugs / … (why it

happened & by whom)
– Extract sub-histories of focused maintenance (how it happened

& when)
– Co-change of schema and code (what is affected in the code)
– Visualization

• Consolidate the fundamental laws that govern evolution

&& forecast it (what will change)

147

Management of ecosystems’ evolution

• Can we find these constructs that are most sensitive
to evolution?
– Metrics for sensitivity to evolution?

• Automation of the reaction to changes

– self-monitoring
– impact prediction
– auto-regulation (policy determination)
– self-repairing

148

Thank you!
Q&A

http://www.cs.uoi.gr/~pvassil/

DB Schema Evolution
Data sets, Code, Results

publications/2014_CAiSE/
publications/2015_ER

Architecture Graphs &&
Hecataeus’

projects/hecataeus/
149

https://github.com/DAINTINESS-Group/

http://www.cs.uoi.gr/~pvassil/�
http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/�
http://www.cs.uoi.gr/~pvassil/publications/2015_ER�
https://github.com/DAINTINESS-Group/Hecate�
http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/�

	Schema evolution for traditional databases and data warehouses��Panos Vassiliadis
	Database Evolution: why and what
	What evolves in DBMS...
	Why is (schema) evolution so important?
	Evolution taxonomy
	Evolution taxonomy: areas
	… To probe further …
	Roadmap
	View adaptation
	Views
	Views
	Traditional research problems with views
	Oracle 11g and Materialized Views
	View adaptation
	Gupta et al @ Inf. Systems, 26(5), 2001
	A “taxonomy” of atomic changes to SPJ and SPJG+ views
	Example: Adding an atomic selection to the WHERE clause
	Important notes
	Nica et al., EDBT 1998
	Meta Knowledge Base
	View annotation
	Complex View Synchronization algorithm
	Data warehouse evolution
	Early days (late ‘90s)
	Bellahsene (DEXA’98, KAIS02)
	Quix @ DMDW ‘99
	… and then came dimension buses and multidimensional models …
	Slowly Changing Dimensions
	Slowly Changing Dimensions
	Hurtado, Mendelzon and Vaisman @ DOLAP99, ICDE’99
	Hurtado, Mendelzon and Vaisman @ DOLAP99, ICDE’99
	Blaschka, Sapia and Höﬂing @DaWaK’99
	… and then came �versioning…
	Eder and Koncilia @ DaWaK 2001
	Eder and Koncilia @ DaWaK 2001
	Eder, Koncilia and Mitsche @ DaWaK’03, CAiSE’04
	Golfarelli, Lechtenbörger, Rizzi and Vossen @ DKE 2006
	Golfarelli, Lechtenbörger, Rizzi and Vossen @ DKE 2006
	Golfarelli, Lechtenbörger, Rizzi and Vossen @ DKE 2006
	Golfarelli, Lechtenbörger, Rizzi and Vossen @ DKE 2006
	Golfarelli, Lechtenbörger, Rizzi and Vossen @ DKE 2006
	Golfarelli, Lechtenbörger, Rizzi and Vossen @ DKE 2006
	Wrembel and Bebel @ JoDS’07
	Wrembel and Bebel @ JoDS’07
	Wrembel and Bebel @ JoDS’07
	Wrembel and Bebel @ JoDS’07
	Wrembel and Bebel @ JoDS’07
	Wrembel and Bebel @ JoDS’07
	A case study Of DW evolution
	Context of the Study
	Internals of the monitored scenario
	PL/SQL to graph transformation
	Method of assessment
	Graph modeling of a data-intensive ecosystem
	Relations – Attributes - Constraints
	Queries & Views
	Modules: relations, queries, views
	Zooming out to top-level nodes (modules)
	Metrics: Node Degree
	Metrics: Transitive Node Degree
	Strength: Zooming out to modules
	Metrics: Node Entropy
	Macroscopic view
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Schema size and module complexity as predictors for the vulnerability of a system
	Summary & Guidelines�
	Impact assessment
	Data intensive ecosystems
	Evolving data-intensive ecosystem
	Evolving data-intensive ecosystem
	The Hecataeus tool & method.�Here: a map of Drupal
	What happens if I modify table search_index? Who are the neighbors?
	What happens if I modify table search_index? Who are the neighbors?
	In the file structure too…
	How to handle evolution?
	Slide Number 88
	Architecture Graph
	Policies to predetermine reactions
	How to handle evolution?
	Impact assessment & rewriting
	Internals of impact assess. & rewriting
	Conflicts: what they are and how to handle them (more than flooding)
	Played an impact analysis scenario: delete attr. ‘word’ from search_index
	Other efforts
	Maule et al. @ ICSE’08
	Prism/Prism++
	Prism/Prism++ motivation
	SMO’s and ICSMO’s�
	Answering old queries to new schemata without user noticing it
	Empirical studies
	What are the “laws” of database schema evolution?
	What are the “laws” of database (schema) evolution?
	Why care for the “laws”/patterns of schema evolution?
	Imagine if we could predict how a schema will evolve over time…
	Why aren’t we there yet?
	Timeline of empirical studies
	Our take on the problem
	Timeline of empirical studies
	Timeline of empirical studies
	Timeline of empirical studies
	Timeline of empirical studies
	Timeline of empirical studies
	Timeline of empirical studies
	Timeline of empirical studies
	Schema evolution for o/s db’s at the “macro” Level
	Datasets
	Data sets
	Hecate: SQL schema diff viewer
	Schema Size (relations)�
	Change over time�
	Change over version�
	Main results
	Observing the evolution of o/s db schemata at the micro level
	Statistical study of durations
	Tables are mostly thin
	The $Gamma$ Pattern: �"if you 're wide, you survive"
	Slide Number 129
	The Comet Pattern
	Slide Number 131
	The inverse $Gamma$ �pattern
	Slide Number 133
	Quiet tables rule, esp. for mature db’s�
	Longevity and update �activity correlate !!�
	Longevity and update �activity correlate !!�
	Slide Number 137
	Slide Number 138
	All in one
	Sudden deaths per period
	Early stages of the db life are more active
	Open issues
	svn/git for db schemata
	Schema curation and preservation
	Current trends in data management
	What about DW evolution?
	Are there “laws” of schema evolution?
	Management of ecosystems’ evolution
	Thank you! �Q&A

