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Abstract

In this paper we demonstrate that it is possible to enrich query answering with
a short data movie that gives insights to the original results of an OLAP query.
Our method, implemented in an actual system, CineCubes, includes the follow-
ing steps. The user submits a query over an underlying star schema. Taking
this query as input, the system comes up with a set of queries complementing
the information content of the original query, and executes them. For each of
the query results, we execute a set of highlight extraction algorithms that iden-
tify interesting patterns and values in the data of the results. Then, the system
visualizes the query results and accompanies this presentation with a text com-
menting on the result highlights. Moreover, via a text-to-speech conversion the
system automatically produces audio for the constructed text. Each combina-
tion of visualization, text and audio practically constitutes a movie, which is
wrapped as a PowerPoint presentation and returned to the user.

1. Introduction

Can we answer user queries with data movies? Why should query results
be treated simply as sets of tuples returned by the DBMS as if they would
be visualized in an orange CRT of the 70’s? So far, database systems assume
their work is done once results are produced, effectively prohibiting even well-
educated end-users to work with them. Can we do something better?

In this paper, we revise the traditional assumptions of query answering in
order to raise the issue of insight gaining. We serve the purpose of insight
gaining in two ways, by demonstrating that

• it is possible to produce query results that are (a) properly visualized, (b)
textually exploitable, i.e., enriched with an automatically extracted text
that comments on the result, (c) vocally enriched, i.e., enriched with audio
that allows the user not only to see, but also hear, and,
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• it is possible to come up with a working, extensible method that accompa-
nies a query result with the results of complementary queries which allow
the user to contextualize and analyze the information content of the orig-
inal query.

Interestingly, an insightful sequence of related queries that provide context and
depth to the original query, “dressed” with the appropriate visualization and
sound, ends up to be nothing else but a data movie where cubes star.

Motivation Yet, what does insight mean? In a recent approach, Dove and
Jones [1] combine the definitions from the communities of Information Visualiza-
tion and Cognitive Phycology: whereas the InfoVis community defines insight as
”something that is gained” (after the observation of data by a participant), psy-
chologists define it as an ”Aha!” moment which is experienced. Interestingly,
the two definitions can be combined in a common view, where once the user
works with information, starting with an original state of mind on the current
state of affairs, there is an ”Aha!” moment, where the user suddenly realizes a
new way of looking at the data, resulting in a new mental model for the state
of affairs, or else, new understanding [1].

In order to facilitate the ”Aha!” moment that creates insight, the scien-
tific community is spending more and more effort nowadays in the area of data
analysis. In a recent SIGMOD keynote speech in 2012 [2], Pat Hanrahan from
Stanford University and Tableau Software makes a case for visual analytics as
the best way to support the data analysis process; whereas the former involves
the automatic extraction of information accompanied by the appropriate visu-
alization, the latter can be summarized as follows: ”get the data, deliver them
in a clean usable form, contextualize them, extract relationships and patterns
hidden within them, generalize for insight, confirm hypotheses and errors, share
with others, decide and act”.

Our goal with the CineCubes system is to provide an extensible tool that acts
as the platform that supports the insight generation of the data analysis lifecycle
(contextualization, pattern extraction, insight) by producing small stories that
make an impression ”in a memorable way” to the data enthusiast or the data
worker who performs data analysis.

Key contributions. Then, the question arises: And how can we do that?
In a nutshell, our main result is the introduction of a fully automated and
extensible method that allows the generation of a data movie, over an OLAP
database, with a simple user query as starting point. In detail, our individual
assumptions and contributions can be listed as follows:

• We start with a realistic assumption that empowers us with the ability
to address the challenge in a clear setting. We assume the existence of a
star schema with clean, reconciled hierarchies of reference data; we also
assume that the end users are interested in working with OLAP queries
over these data.

• We demonstrate how to complement the original query with additional
queries that allow the contextualization and analysis of the original result.
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To provide contextualization, we exploit the defining values (i.e., selection
conditions) of the original query and automatically generate complemen-
tary queries that compare its results with the results of queries having
similar values. Practically, this exploits OLAP hierarchies and compares
sibling values within the same hierarchy. For example, if the user has
scoped the data of interest with selection conditions Continent = North
America andGender = Male, we accompany the original query with queries
that compare North America to other continents and men to women. To
provide further analysis of the results, we drill in the grouping levels of
the original result to see the breakdown of its (aggregate) measures and
understand its internal structure. So, for example, if the user originally
aggregates information by 10 Y ear intervals and Continent, we provide
details by drilling-in to 5 Y ear intervals and Country.

• Whereas the above actions produce a first step towards supporting the
contextualization and analysis of the data, we have also implemented a
fully automated mechanism for producing patterns and trends within each
of the above results. To this end, we introduce highlight extraction meth-
ods, that operate on the result of a query and discover interesting findings
(like e.g., the fact that a column contains a large share of the highest or
lowest values of a result, or that a row systematically has higher/lower
values than another). These highlights serve also the visual presentation
of the data via appropriate coloring of important values.

• Automatic highlight generation is a key contribution and not only for vi-
sualization purposes. In this paper, we also demonstrate how to automate
the generation of text describing the aforementioned highlight findings (by
accompanying each type of highlight with a template text) and how to
convert this text to audio (via publicly available text-to-speech conversion
software).

• Much like movies, we organize our stories in acts, with each act including
several episodes all serving the same purpose. We demonstrate that all
the above can be packaged with small programming effort in a Power-
Point presentation, practically presenting a small movie to the user. The
emphasis on small programmatic effort is intended: an important goal of
this paper is to demonstrate that the technical barrier for someone who
would be interested to conduct research on this problem is low. Existing
API’s for the construction of PowerPoint presentations [3] and for text
to speech conversion [4] allow us to produce a PowerPoint presentation
programmatically: each query can have a slide where its result is neatly
visualized; the slide’s notes can contain the text explaining the result and
the slide’s audio can be produced via text-to-speech conversion.

• Quite importantly, and orthogonally to the above, we have intentionally
built our system in a way that is both fully automated and extensible.
Extensibility has been a cornerstone of our approach and it is best demon-
strated by two extensibility mechanisms, (i) one concerning the generation
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of the complementary queries to the original question, and, (ii) another
concerning the automatic identification of interesting highlights within the
results of each query. In this paper, we discuss the points of extensibility
of CineCubes in detail.

Target audience and added value. Who can benefit from CineCubes?
There are many kinds of people that currently work with data in order to deliver
a report, a live or a self-running presentation, an on-line talk, or a journal article,
and who would all benefit from such a system. Business users with particular
questions in mind, are a first such case [2]. People creating self-running presen-
tations [5] (i.e., presentations publicly available for mass audiences without the
presenter being involved), either in a film-clip or a slide-show can benefit from
a system giving both insights and visual representations. Collaborative work in
small groups [5] can benefit from CineCube presentations as they provide the
basis to broaden the scope of the original search and lead to new questions to
be answered. Journalists nowadays are more and more preparing data-driven
articles that involve working with data and using infographics to make a case
(see [6] for a large list of examples – typically, New York Times, Washington
Post and the Guardian are reference news media for infographics).

Overall, we claim that any data worker creating a report summarizing find-
ings and insights based on data can benefit from CineCubes in many ways: au-
tomated highlight extraction, auxiliary query results, automatically generated
text, audio and visual highlight do not only work together to generate contex-
tualization, analysis, probes for further exploration, and ultimately, insight, but
also provide a reusable means of precanned text and visual graphics that can
speed-up the compilation of the desired report. The results of a user study that
we have conducted (Section 5.4) reveal that improvements come in two ways,
and specifically, (a) better quality and (b) faster creation of the report.

Novelty. We believe that despite the vast amount of work (plz., refer to
Section 6) in the areas of data visualization, query recommendation, pattern
mining, and, to a lesser extent, text generation from query results, this paper
makes a disruptive contribution by raising the issue of gaining insight from the
data via small data movies (as opposed to traditional, simple query answering)
and providing an automated solution to it via (a) auxiliary queries and (b) au-
tomated highlight extraction. The idea of a data movie has been a driver for the
compilation of individual techniques in a single, fully automated and extensible
packaging: a movie requires episodes in its structure, visual effects and audio;
these needs have produced the solution of query sequences, automatic highlight
extraction, as well as automatic text and audio generation via simple program-
matic APIs. Thus, one should not regard the individual parts of the method as
the novel contribution of the paper; it is their principled and extensible bundling
in a single, extensible tool that creates a research opportunity and practically
new research ground to explore.

Roadmap. In Section 2, we give an overview of the method as well as a
reference example. In Section 3, we discuss our method’s internals. In Section 4
we present the software architecture of CineCubes with special emphasis on the
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extensibility aspect and explain the low technical barrier of the method, too.
In Section 5, we show experimental results in terms of efficiency and usability.
In Section 6, we discuss related work. We conclude with a presentation of open
issues in Section 7.

2. Method Overview

2.1. Constructing a CineCube Story

A really useful characteristic of cubes is that dimensions provide a context for
facts [7]. This is especially important if combined with the fact that dimension
values come in hierarchies; therefore, every single fact can be simultaneously
placed in multiple hierarchically structured contexts, providing thus the ability
to analyze sets of cats from multiple perspectives. At the same time, hierarchies
allow the comparison of their members with (a) ancestors, (b) descendants and
(c) siblings (children of the same parent). Assume a basic, detailed cube C
defined (a) over a set of dimensions D = {D1, . . . , Dn} and (b) over a measure
M . A query Q in our context exploits the multidimensionality of the cube space
and can be considered as a quintuple Q=(C,D,Σ,Γ, γ(M)) where:

• Σ is a conjunction of dimensional restrictions of the form Di.Lj = valuei –
i.e., constraints that focus the context of the query to certain dimensional
values.

• Γ is a set of grouper dimensional level (practically comprising the GROUP
BY attribute set in a SQL query), over which the information will ulti-
mately be grouped.

• γ(M) is an aggregate function applied to the measure of the cube; again,
we restrict ourselves to a single measure.

Given a query Q and its result Q.RS, we can create a short ”data story” by
seeking for answers to the following questions:

0. A first assessment of the current state of affairs. Practically, this re-
quirement refers to the execution of the original query.

1. Put the state in Context. Are the results of γ(M) good? What does
“good” mean in this case? Typically, we would expect to compare the
result of the query Q to the results of similar queries over siblings of the
values that appear in the filter list Σ.

2. Analysis of why things are this way. Given a certain cuboid that is the
result of a query, we would like to provide some more insight on the pre-
sented results; one way to achieve this is to show the breakdown of the con-
tributions of the detailed values to the overall, aggregate value. Practically
speaking, this involves drilling-down for each of the involved groupers and
presenting the analysis of the internal breakdown for each of the groupers.
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Clearly, this set of complementary queries that a story comprises is exten-
sible; existing and novel results in query recommendation (see Section 6) can
be progressively plugged in our method in order to produce more informative
CineCube movies.

2.2. Running Example

To demonstrate our approach we use an example from the well known Adult
(a.k.a census income) dataset referring to data from 1994 USA census. There
are 7 dimensions (Age, Native Country, Education, Occupation, Marital status,
Work class, and Race) in the data set and a single measure, Hours per Week.
We will use a uniform terminology to refer to the dimensions’ levels, (L0, L1,
..). Also, the ragged dimensions are complemented with values identical to their
parent, to make them balanced and fit to the model of [8].

We start with an original query where the user has fixed Education to ’Post-
Secondary’ (at level L3), and Work to ’With-Pay’ (at level L2) and requests
the Avg of HrsPerWeek grouped by Education at level 2, and Work at level 1.
We depict these two dimensions in Fig. 2. We arrange the presentation of the
result in columns (Education) and rows (Work). In Fig. 1, in the slide with
the indication ¶, one can also see the actual presentation as a 2D matrix, the
visualization interventions (highlighting high and low values with color) and
the text accompanying the visual presentation. The text is (a) part of the
slide’s notes (so that the user can reuse it) and (b) orally voiced as an audio
file accompanying the slide. The slide’s text is delivered via a set of highlight
extraction methods that search the 2D matrix for prominent features (high and
low values, rows or columns dominating some of these indicatory values, etc).

Once the originally query has been answered, we move on to put it in context.
Act I of the CineCube movie, including slides · and ¸ (dressed in blue color),
performs the following analysis: since there is a selection condition with two
atoms (Education.L3 =’Post-Secondary’ and Work.L2 =’With-Pay’), we com-
pare each of the defining values with its sibling. So, slide · presents a compar-
ison between the siblings of ‘Post-Secondary’ at level L3 of Education (specifi-
cally, the single value ‘W/O post secondary’). The analysis shows that in 3 out
of 3 cases people with Post-Secondary education work more (see 1 at top right
for the respective text). Similarly, in slide ¸ we relax the constraint on Work
and compare the value ‘With-Pay’ with its siblings at level L2 of Work (again
the single value ’W/O Pay’). The results are inconclusive; for lack of space we
omit the respective text from 1. In both these cases, we did two things: (a) we
took a single atomic formula from the selection condition of the original query
and replaced it by fixing the defining value to the parent of the original value,
and (b) we put the grouping level to the level of the replaced value.

Then, we detail the results of the original query in Act II of the CineCube
movie. In slides ¹ and º (dressed in red color) we present the results of drilling-
down one level per grouper value. Observe slide ¹ as an example (slide º is
similar): for each of the values in the rows of the original query (at level L1

of dimension Work) we drill-down one level (at level L0 that is) and group-by
accordingly. For each aggregated cell of the result we also show the number of
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Figure 1: An excerpt of a CineCubes story over the Adult data set
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Figure 2: Dimensions Workclass and Education

Figure 3: A snapshot of the internal structure of the CineCube movie

detailed tuples that correspond to it, in parentheses. The text is constructed
similarly with the previous act and includes a discussion of trends for high and
low values along columns and rows.

In the actual presentation that we generate, the set of information-carrying
slides is also enriched with transition slides among the acts, explaining the
intuition behind them as well as with a summary of the key highlights in the
end (see Fig. 3).

One can find information about CineCubes at its web page (http://www.cs.uoi.gr/
∼pvassil/projects/cinecubes/) and test its functionality by posing queries at a
demo site (http://snf-56304.vm.okeanos.grnet.gr/).
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2.3. Internal Structure of the CineCube Movie

A typical movie story is structured in approximately 3 acts [9]: the first
providing contextualization for the characters as well as the incident that sets
the story on the move, the second where the protagonists and the rest of the
roles build up their actions and reactions and the third where the resolution of
the film is taking place. Each act is composed of sequences of scenes: each scene
involves a change in the status of the plot (typically oscillating this status in
order to keep viewers interested) and a sequence drives a subset of the plot to
a major status update [9].

Figure 4: Extensibility mechanism for CineCubes

We follow this traditional structure of a movie in our effort. We are clearly
avoiding the temptation to automate a 90’ movie; on the contrary, we wish
to keep the story short and limited, as we anticipate users will explore several
CineCube stories before gathering their results and discoveries from exploring
the data. We organize Acts in Episodes: each episode practically corresponds
to a pptx slide (although, we can envision extensions to other formats – e.g., it
could be a section in a document).

This result-based structure of the CineCube movie (left-hand side of Fig. 4) is
accompanied by a procedural-based structure, with a set of classes that actually
get the job done (right-hand side of Fig. 4). Specifically, the generation of
queries (and slides) within each Act is delegated to the abstract class Task. For
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reasons of extensibility, Task is an abstract class: therefore, we materialize it
differently for each kind of Act (in Fig. 4 we depict two such materializations,
for Act I and Act II). The crux of the approach is that each episode comes with
(typically one, but sometimes more) queries in its background; therefore, each
Act generates SubTasks, with each Subtask carrying and being responsible for
the execution of a query that gathers the data (that are ultimately visualized in
the main part of the slide). An Episode can have several SubTasks to compute its
contents. Since each SubTask carries its own query depending on the Act/Task,
the above mechanism is extensible by appropriately constructing the method
generateSubTasks() for each materialization of Act.

Moreover, the determination of key findings, or Highlights within each Episode
is performed by the homonymous class. We fundamentally consider the presen-
tation of results as a 2D matrix on the screen2; to this end, we have structured
several methods that scan a 2D matrix and isolate interesting cells (top-k max or
top-k min values, domination of a class of values by a column or row, etc). The
class Highlight is a point of extensibility where methods for result extraction
can be added to search for more results within the answer of a query.

For more information on the internal structuring of CineCubes, we refer the
interested reader to Section 4, where we discuss the software architecture as
well as the two aforementioned extensibility mechanisms in more detail. Before
that, however, our next step is to present the essence of our method along with
its formal foundations.

3. Foundations and Method Internals

In this section, we start with a short description of the model for cubes
and cube queries and then we move on to describe (a) acts, as the means for
collecting data via complementary queries and (b) highlights as the means for
automatically detecting some important findings within query results and the
means for text construction. We also provide the basic steps of our method for
the creation of CineCube movies.

3.1. Formal Background

We base our approach on an OLAP model that involves (a) dimensions
defined as lattices of dimension levels, (b) ancestor functions, mapping values
between related levels of a dimension, (c) detailed data sets, practically modeling
fact tables at the lowest granule of information for all their dimensions, and (d)
cubes, defined as aggregations over detailed data sets. We follow the logical
cube model of [8], accurately summarized in [11], which we provide here too for
completeness.

Domains. We assume four countable pairwise disjoint infinite sets exist:
a set of level names (or simply levels) UL, a set of measure names (or simply

2Of course, other forms of visualization can accompany the result; however, it is our con-
viction that the actual data should definitely be part of the answer [10].
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measures) UM, a set of dimension names (or simply dimensions) UD and a set
of cube names (or simply cubes) UC . The set of attributes U is defined as U =
UL ∪ UM. For each A ∈ UL, we define a countable totally ordered set dom(A),
the domain of A, which is isomorphic to the integers. Similarly, for each A ∈
UM, we define an infinite set dom(A), the domain of A, which is isomorphic
to the real numbers. We can impose the usual comparison operators to all the
values participating to totally ordered domains { <,>,≤,≥ }.

Dimensions and levels.A dimension D is a lattice (L,≺) such that:

• L = {L1,. . . ,Ln}, is a finite subset of UL.

• dom(Li) ∩ dom(Lj)= ∅ for every i 6= j.

• ≺ is a partial order defined among the levels of L.

• The highest level of the hierarchy is the level D.ALL with a domain of a
single value, namely ’D.all’.

Each path in the dimension lattice, beginning from its upper bound and
ending in its lower bound is called a dimension path.

A family of functions ancL2

L1
is defined, satisfying the following conditions:

1. For each pair of levels L1 and L2 such that L1 ≺ L2, the function ancL2

L1

maps each element of dom(L1) to an element of dom(L2).
2. Given levels L1, L2 and L3 such that L1 ≺ L2 ≺ L3, the function ancL3

L1

equals to the composition ancL2

L1
◦ ancL3

L2
. This implies that:

• ancL1

L1
(x) = x.

• if y = ancL2

L1
(x) and z = ancL3

L2
(y), then z = ancL3

L1
(x).

• for each pair of levels L1 and L2 such that L1 ≺ L2, the function
ancL2

L1
is monotone (preserves the ordering of values). In other words:

∀ x,y ∈ dom(L1): x < y ⇒ ancL2

L1
(x) ≤ ancL2

L1
(y), L1 ≺ L2

Schemata and data sets. A schema S is a finite subset of U . Normally,
we will represent a schema as divided in two parts: S = [D1.L1, . . ., Dn.Ln, A1,
. . ., Am], where:

• {L1,. . . ,Ln} are levels from a dimension set D = {D1,. . ., Dn} and level
Li comes from dimension Di, for 1 ≤ i ≤ n.

• {A1,. . ., Am} are attributes, i.e. measures and levels.

A detailed schema S0 is a schema whose levels are the lowest in the respective
dimensions. When we refer to a level L as the lowest in the dimension, it means
that there does not exist any other level L’, such that L’ ≺ L.

A tuple t over a schema S = [D1.L1, . . ., Dn.Ln, A1, . . ., Am] is a total and
injective mapping from S to dom(L1) × . . . × dom(Ln) × dom(A1) × . . . ×
dom(Am), such that t[X] ∈ dom(X) for each X ∈ S.

A data set DS over a schema S = [D1.L1, . . ., Dn.Ln, A1, . . ., Am] is a finite
set of tuples over S such that:
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• ∀ t1, t2 ∈ DS, t1[L1,. . ., Ln] = t2[L1, . . ., Ln] ⇒ t1 = t2.

• for no strict subset X ⊂ {L1, . . . , Ln}, the previous also holds.

In other words, A1, . . ., Am are functionally dependent (in the relational
sense) on levels {L1,. . . ,Ln} of schema S. A detailed data set DS0 is a data set
over a detailed schema S0.

A star schema (D,S0) is a couple comprising a finite set of dimensions D
and a detailed schema S0) defined over (a subset of) these dimensions.

Selection filters. An atom is true, false, (with obvious semantics) or an
expression of the form x θ y, where x and y can be one of the following: (a)
a level L1 (i.e., not a measure); (b) a value l; (c) an expression of the form
ancL2

L1
(L1), where L1 ≺ L2; (d) an expression of the form ancL2

L1
(l), where L1 ≺

L2 and l ∈ dom(L1). θ is an operator from the set {>,<,=,≥,≤, 6=}.
A selection condition φ is a formula involving atoms and the logical connec-

tives ∧, ∨ and ¬.A selection condition is always applied to a data set such that
all the level names occurring in the selection condition – either in the form (a) or
(c) – belong to the schema of the data set. Let DS be a data set over schema S.
The expression φ(DS) is a set of tuples X belonging to DS such that when, for
all the occurrences of level names in φ, we substitute the respective level values
of every x ∈ X, the formula φ becomes true. A detailed selection condition φ0

is a selection condition where all participating levels are the detailed levels of
their dimensions.

Cube queries. The user can submit cube queries to the system. A cube
query specifies (a) the (basic) cube over which it is imposed, (b) the selection
condition that isolates the records that qualify for further processing, (c) the
aggregator levels, that determine the level of coarseness for the result, and (d)
a list of aggregations over the measures of the underlying cube that accompany
the aggregator levels in the final result. More formally, a primary cube c (over
the schema [L1, . . ., Ln, M1, . . ., Mm]), is an expression of the form:

c =(DS0, φ, [L1, . . ., Ln, M1, . . ., Mm], [agg1(M0
1 ), . . ., aggm(M0

m)]),

where:

• DS0 is a detailed data set over the schema S =[L0
1, . . ., L0

n, M0
1 , . . . ,M0

k ],
m ≤ k.

• φ is a detailed selection condition.

• M1, . . . ,Mm are measures.

• L0
i and Li are levels such that L0

i ≺ Li, 1 ≤ i ≤ n.

• aggi ∈ {sum,min,max, count, avg}, 1 ≤ i ≤ m.

The semantics of a primary cube in terms of SQL over a star schema are:

SELECT L1,...,Ln, agg1(M0
1 ),..., agg1(M0

m)
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FROM DS0 INNER JOIN D1 ...INNER JOIN Dn
WHERE φ
GROUP BY L1,...,Ln

We also make the following assumptions for the query class of the supported
cube queries:

• We work with cube queries that involve a single measure.

• We assume strictly two aggregator levels for the result; this allows a
straightforward tabular representation of the result in a 2D screen.

• We assume that the selection condition is defined as the conjunction of a
set of atomic formulae, one per dimension, each of which is of the form
L = v, with L being a dimension level and v being a valid value for this
level.

In the rest of our deliberations, we will assume that the users submit to the
system cube queries that we denote as:

q = (DS0, φ1 ∧ . . . ∧ φk, [Lα, Lβ ], agg(M))

A note on data presentation is due at this point. Although there are several
ways that we can employ to visualize results, like for example scatter plots on
a 2D space or bar charts with multiple data series, we would like to stress once
again that any such visualization methods are complementary to the actual data
[10]. So, in the rest of our deliberations, we treat the results of a cube query of
the above form as being visualized in tabular format with the values of Lα as
rows and the values of Lβ as columns. Expanding the method for more than
two dimensions (via the typical nesting of dimensions in rows and columns) is
part of future work.

3.2. Act I: Putting Things in Context – or “How good is the original cube com-
pared to its siblings?”

In this subsection, we deal with the first of the acts. The main purpose
of the first act is to provide a context for the original query. So, we compare
the marginal aggregate results of the original query to the results of “sibling”
queries that use “similar” values in their selection conditions (to be explained
right next).

Method. We assume an original query and we want to compare its results
with similar queries. We define a sibling query as a query with a single difference
to the original: instead of an atomic selection formula Li =vi, the sibling query
contains a formula of the form Li ∈ children(parent(vi)).

Formally, given an original query

q = (DS0, φ1 ∧ . . . φx ∧ . . . ∧ φk, [Lα, Lβ ], agg(M)), φi: Li = vi, i = 1, . . ., k

a new query qs is a sibling query if it is of the form
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qs = (DS0, φ1 ∧ . . . φ∗x ∧ . . . ∧ φk, [Lα, Lβ ], agg(M)), φi: Li = vi, i=1,. . .,

x-1, x+1, . . ., k, φ∗x: Lx+1 = anc
Lx+1

Lx
(v)

Naturally, if q originally has k atomic selections, it also has k sibling queries.
To compare the results of the original query to the ones of its siblings, one

would need to lay out all the k sibling queries on the same screen and visually
inspect their differences. This becomes too hard to exploit as k increases – in
fact, even with a very small k (e.g., k=2) it can be too hard to be able to visually
compare the results. So we, need to resort to auxiliary comparisons that provide
the context needed. To this end, we introduce two marginal sibling queries,
one for each aggregator. Each time, we keep one of the two aggregators, and
the other becomes Lx. If we combine this with the fact that the new selection
condition φ∗x restricts Lx to the siblings of the original value v, then the resulting
2D matrix has one of the original aggregators in one of its two dimensions and
the siblings of v on the other. This way, the marginal values of the original
query on one of the two aggregators are compared to the respective marginal
values of the siblings.

Formally, given an original query

q = (DS0, φ1 ∧ . . . φx ∧ . . . ∧ φk, [Lα, Lβ ], agg(M)), φi: Li = vi, i = 1, . . ., k

its two marginal sibling queries are

qsα = (DS0, φ1 ∧ . . . φ∗x ∧ . . . ∧ φk, [Lα, Lx], agg(M)), φi: Li = vi, i = 1, . . .,

x-1, x+1, . . ., k, φ∗x: Lx+1 = anc
Lx+1

Lx
(v)

qsβ = (DS0, φ1 ∧ . . . φ∗x ∧ . . . ∧ φk, [Lx, Lβ ], agg(M)), φi: Li = vi, i = 1, . . .,

x-1, x+1, . . ., k, φ∗x: Lx+1 = anc
Lx+1

Lx
(v)

Example. The original query is expressed as:

q = (DS0,W .L2 = ’With-Pay’ ∧ E.L3 = ’Post-Sec’, [W .L1, E.L2], avg(Hrs))

In the reference example, slides · and ¸ involve the two marginal subqueries
– see for example the former with the selection set to parent(’With-Pay’) and
the grouping to the level of ’With-Pay’(i.e., L3):

q2 = (DS0, W .L2 =’With-Pay’ ∧ E.L4 = ’ALL’, [W .L1, E.L3], avg(Hrs))

3.3. Act II: Explaining Variation – or “Drilling into the breakdown of the orig-
inal result”

The purpose of Act II is to help the user understand why the situation is
as observed in the original query. In order to shed some more light to what is
happening, we drill in the details of the cells of the original result in order to
inspect the internals of the aggregated measures of the original query.

Assume a cube query
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q = (DS0, φ1 ∧ . . . ∧ φk, [Lα, Lβ ], agg(M)), φi: Li = vi, i = 1, . . ., k

and its result, visualized as a 2D matrix. Then, each cell c of this result is
characterized by the following cube query:

qc = (DS0, φ1 ∧ . . . ∧ φk ∧ φc, [Lα, Lβ ], agg(M)), φi : Li = vi, i = 1, . . .,k,
φc: φ

c
α ∧ φcβ = (Lα = vcα ∧ Lβ = vcβ)

For each of the aggregator dimensions, we can generate a set of explanatory
drill in queries, one per value in the original result:

qαi= (DS0, φ1 ∧ . . . ∧ φk ∧ φαi , [Lα−1, Lβ ], agg(M)),

qβi= (DS0, φ1 ∧ . . . ∧ φk ∧ φβi , [Lα, Lβ−1], agg(M)),

with αi and βi being all the values of the original result for the grouper levels.
So, each of the two slides has a set of such queries.

Example. Observe slide ¹ where we drill-down for values Gov, Private and
Self-emp via the explanatory drill in queries for dimension Work.
qgov = (DS0, W .L2 = ’With-Pay’ ∧W .L1 = ’Gov’ ∧ E.L3 = ’Post-Sec’, [W .L0,
E.L2], avg(Hrs))

qprv = (DS0, W .L2 = ’With-Pay’ ∧ W .L1 = ’Private’ ∧ E.L3 = ’Post-Sec’,
[W .L0, E.L2], avg(Hrs))

qs−e = (DS0, W .L2 = ’With-Pay’ ∧ W .L1 = ’s-e’ ∧ E.L3 = ’Post-Sec’, [W .L0,
E.L2], avg(Hrs))

Observe that due to the fact that this is the special case where selection
conditions involve grouper values at finer levels of detail, we have completely
removed the atomic formula of the dimension that we drill-down (W .L2 = ’With-
Pay’).

3.4. Highlights and Text

As already mentioned, the extraction of highlights is orthogonal to the query
that creates the results of a slide. Once the results of the query are computed and
organized in a 2D matrix, we utilize a palette of highlight extraction methods
that take a 2D matrix as input and produce important findings as output. This
way, (a) we can reuse highlight extraction methods to all the query results,
independently of the Act or the query that has been executed, and, (b) we can
gracefully extend the palette of highlight extraction methods with more results.
We have implemented a small number of highlight extraction methods for the
moment that include the highlighting of the top and bottom quartile of values
in a matrix, the absence of values from a row or column, the domination of a
quartile by a row or a column (i.e., when all the values of a quartile appear in a
certain row or column), the identification of min and max values, etc. Clearly,
there is a vast area of enriching this palette (trend analysis, correlations, relative
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relationships of rows and columns, to name just a few); however, implementing
the full spectrum of such techniques can be done with diligence as part of future
work.

Text is constructed by a Text Manager that customizes the text per Act, by
plugging values to a template that comes with each act. Compare the following
excerpt with the text of slide ¹ in Fig. 1.

In this slide, we drill-down one level for all values of dimension <dim> at
level <l>. For each cell we show both the <agg> of <measure> and the number
of tuples that correspond to it . . .

3.5. Creation of CineCubes

Having explained all the individual steps, we now move on to discuss the
overall process for creating a CineCube movie. In its current configuration, a
CineCube movie includes three kinds of acts: the Introductory Act (including
the introductory slide), three Operational Acts including the act involving the
original query and the two acts for the management of complementary queries,
and a Summary Act with a summary slide with all the important highlights of
the previous three acts.

Overall the method includes the following steps:

1. Construct Introductory Act
2. For all the Operational Acts, execute the Construct Operational Act algo-

rithm that calculates the Act’s contents (result visualization, highlights,
text and audio)

3. Construct Summary Act in the end
4. Wrap-up the Acts in a PowerPoint movie

Algorithm Construct Operational Act
Input: the original query over the appropriate database
Output: a set of an Act’s episodes fully computed

1. Create the necessary objects (act, episodes, tasks, subtasks) appropriately
linked to each other

2. Construct the necessary queries for all the subtasks of the Act, execute
them, and organize the result as a set of aggregated cells (each including its
coordinates, its measure and the number of its generating detailed tuples)

3. For each episode

(a) Calculate the visual presentation of cells
(b) Calculate the cells’ highlights
(c) Produce the text based on the highlights
(d) Produce the audio based on the text

Figure 5: Constructing an Operational Act

The first step of the method, the construction of the Introductory Act, is
trivial. The second step, the computation of the contents and presentation of
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the Operational Acts is outlined in the Algorithm of Fig. 5. The third step, which
involves the construction of the Summary Act, is simply a slide with the text of
the highlights copied to it, organized per act. Finally, the fourth step, wrapping-
up the individual acts in a single report, introduces a few programmatic tasks
worth mentioning here. In a nutshell, for every episode, we create a slide, with
its title and contents (i.e., the 2D tables or the text, depending on the type
of slide). This can be done straightforwardly with the programming facilities
provided by the Apache POI. Unfortunately, though, POI does not support the
management of notes, where we actually store the text of each slide, and audio.
This is done by exploiting the open nature of pptx documents (see section 4.1).

4. Software Architecture and the Pledge to Extensibility

In this Section, we start with a description of the employed technologies that
allow the programmatic construction of CineCube movies; we believe this de-
scription can help the interested reader to probe further in the employed API’s
that come with a quite low technological barrier for the new-comer. Second, in
this Section, we describe the software architecture of CineCubes with the main
goal of highlighting the different ways in which CineCubes is extensible. Exten-
sibility is a key feature that should not be underestimated by no means, as it can
allow a system to expand in diverse ways. In fact, in this case, the extensibility-
oriented architecture of CineCubes is the backbone for all the diverse ways in
which future research can be pursued. Readers who are not interested in the
software-related aspects of our method may prefer to jump directly to Section 5
for the experimental assessment of our method; this can be done without a gap
in the understandability of the text.

4.1. Employed Technologies

One of the major goals of this paper is to highlight how we can automatically
construct a CineCube presentation that includes result visualization, text and
audio. So, before elaborating further in the software architecture of CineCubes,
it is worth discussing the programmatic simplicity3 of our method. In this
subsection, we explain the main technologies via which our PowerPoint presen-
tations are programmatically constructed.

Apache POI [3] is a Java API that provides several libraries to create and
modify Microsoft Word, PowerPoint and Excel files. MS Office files obey the
Office Open XML standards (OOXML) and Microsoft’s OLE 2 Compound Doc-
ument format (OLE2). More specifically, XSLF is the Java implementation of
the PowerPoint 2007 OOXML (.pptx) file format in POI.

The automatic manipulation of .pptx files is relatively simple for simple
tasks. See the following excerpt for creating a file and a slide:

3We would insist that simplicity is a strong feature of any method, making it scalable,
extensible and maintainable and fundamentally different to naiveness or superficiality.
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XMLSlideShow ss = new XMLSlideShow();

XSLFSlideMaster sm = ss.getSlideMasters()[0];

XSLFSlide sl= ss.createSlide

(sm.getLayout(SlideLayout.TITLE_AND_CONTENT));

XSLFTable t = sl.createTable();

t.addRow().addCell().setText("added a cell"); ...

Also, we automate the construction of text that characterizes each slide. We
add the text for each slide that we create as a slide’s note. At the same time,
the existence of text can help us create a narrative as audio. We use the API
provided by MARY [4], which is an open-source, multilingual Text-to-Speech
Synthesis (TTS) platform written in Java and allows to generate one audio file
per slide, simply by providing the notes of the slide as input to a method call.

MaryInterface m = new LocalMaryInterface();

m.setVoice(‘‘cmu-slt-hsmm’’);

AudioInputStream audio = m.generateAudio("Hello’’);

AudioSystem.write(audio, audioFileFormat.Type.WAVE, new

File("myWav.wav")); ...

It is worth mentioning here, that unfortunately, the current version of POI
does not support the management of notes, where we actually store the text
of each slide, and audio. Fortunately, the open nature of MS Offuce allows us
to exploit its internal structure. It is noteworthy that each MS Office file is
actually a zipped folder with a rigid structure, within which, XML and media
files are located in a principled fashion. So, to deliver a presentation in the form
that we wish to have it, we proceed as follows (via the appropriate WrapUp
Manager): (i) we unzip the pptx in a temporary folder, (ii) create appropriate
files for the notes in the ppt/notes/ folder, along with the necessary links that
link them to their slide, (iii) do the same for audio at the ppt/media folder, and
(iv) zip the folder again to a .pptx file.

Overall, despite the existence of several nuts and bolts that need fine tuning,
the main lesson learned here is that the packaging of the results of our method,
one by one as slides in a presentation is attainable with neat programming fa-
cilities, already available in the Web.

4.2. Architecture under the prism of extensibility

The architecture of CineCubes is organized in packages, each dedicated in
a specific task. In the rest of this section, we present the functionality and the
points of extensibility of these packages. For the moment, we start by giving a
short overview of the package structure of CineCubes architecture (see Fig. 6
for a diagrammatical representation that also includes the dependencies between
packages).

• The package CubeMgr, consists of two subpackages as shown in Fig. 6,
which are:
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– CubeBase, which includes the classes that we use to represent the
cube model.

– StarSchema, which includes the classes that we use to capture the
star schema of an underlying relational database that hosts all the
data used to answer our queries.

• The package TaskMgr includes the classes which we use in our algorithm
Construct Operational Act for constructing the necessary Task and Sub-
task objects.

• The package StoryMgr contains the classes which we use to construct the
main objects of a Story.

• The package HighlightMgr contains the classes needed to construct the
different highlights for each episode of a Story.

• The package TextMgr includes the classes which construct the text for
each episode of a Story.

• The package AudioMgr includes the classes which convert the text to
audio.

• The package WrapUpMgr include the classes which create the final result
for the user.

In the following, we provide more information for the classes of the above pack-
ages.

Figure 6: Structure of CineCubes’ Packages

The package CubeMgr. As already mentioned, the package CubeMgr
contains two subpackages, CubeBase and StarSchema that are responsible for
representing the cube model, as an object model in main-memory and the star-
schema model which is the mapping of the cube model in relational terms (and
provides the metadata for translating cube queries to SQL queries). All the
classes for the cube model (Dimension, Cube, Hierarchy, Level, Measure and
CubeQuery among others) are part of the former subpackage, whereas classes
like FactTable, DimensionTable, Table, Attribute and SQLQuery are part of
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the latter. Notably, our implementation has conveniently been based on cube
queries that can be automatically translated to SQL queries due to the simplicity
of the star schema. These SQL queries are the ones that are ultimately executed
in order to collect the results.

The package TaskMgr. The package TaskMgr contains the necessary
classes which help us to create a new kind of Act. Here we have a TaskMgr class
to manage the tasks. A first point of extensibility of our method involves the
creation of tasks: the Task class is abstract to facilitate the creation of a different
type of task for each new kind of Act v ia the appropriate materialization – e.g.,
in our implementation we have created two subclasses for Act I and Act II and
one subclass to implement the original request. Another point of extensibility,
with an eye to future work, is located in the abstract class ExtractionMethod
which is used in order to provide us with results. Currently, we materialize
this class via SqlQuery to get the result from a relational database; however, in
future we can materialize it differently to get data from different sources e.g.,
XML or SPARQL files. Class Result keeps the query result in a 2D matrix
and implements a set of functions to manipulate this matrix.

Figure 7: Class Diagram for Package TaskMgr

The package StoryMgr. In the package StoryMgr, we host the main
classes needed to create a Story. This package has the class StoryMgr to manage
the story and the Story class. Also, it has the classes which implement the acts,
the episodes of each act and the visualization of an episode.
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Figure 8: Class Diagram for Package StoryMgr

There are several points of extensibility here:

• The implementation of the episodes of Act is performed via an abstract
class Episode, which in our approach is materialized as PptxSlide, although
in the future one can materialize it in other ways too, to create different
types of episodes (e.g., frames in .wmv file).

• In a similar fashion, the Story class relates to the abstract class FinalRe-
sult, currently materialized as PptxSlideshow in our method and also open
to extensions (such as .wmv file), in the future.

• The Visual class is an abstract class, currently materialized by the Tabular
class, which visualizes the result as a pivot table; again, in the future we
can create new kinds of visualization (such as a charts of all kinds).

Episodes are key for managing results: observe how the Episode class is
associated with the Highlight, the Audio, the Visual class and the Subtask class
(of package TaskMrg, not depicted here) and glues all these together.

The package HighlightMgr. One of the strongest points of extensibility
and key to the operation of CineCubes is the enrichment of each slide with the
possibility of extracting highlights from the data that it hosts. The package
HighlightMgr hosts an abstract class Highlight, which is open to extension for
finding highlight in episodes. In our current implementation, we have created the
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Figure 9: Class Diagram for Package HighlightMgr

six following subclasses, all of which implement a method execute() that takes
a 2D matrix of values as input and creates lists of values where the findings are
stored:

• HighlightCompareRow, to compare one row with the other rows

• HighlightCompareColumn, to compare one column with the other columns

• HighlightMax, to find the top quartile of the values in a matrix

• HighlightMin, to find the bottom quartile of the values in a matrix

• HighlightDominationRow, to test the domination of a quartile (top or bot-
tom) by a row

• HighlightDominationColumn, to test the domination of a quartile (top or
bottom) by a column

We utilize a dedicated Highlight Manager class to extract Highlights.
Text and Audio packages. Each of these two packages implements its

homonymous functionality. Note that for the case of audio, we have experi-
mented with more than one TTS systems (MaryTTS and FreeTTS) and thus,
it is already implemented in an extensible way via the materialization of an
abstract class by a concrete class, one per TTS system.

The package WrapUpMgr. The package WrapUpMgr serves the purpose
of packaging all the different parts computed by the previous packages in a
single, final result delivered to the user. Again, this package is constructed in
an extensible way as it contains the abstract class WrapUpMgr which, then,
has to be materialized by a subclass in order to construct the proper format for
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a story. Currently, we create the subclass PPTXWrapUpMgr which returns to
the user a Microsoft PowerPoint presentation, although one can think of several
ways of representing stories (as Word documents, as .wmv files, and so on) in
the future.

4.3. Extending the set of Acts

In this subsection, we present the sequence of steps needed in order to extend
the system with a new Act, along with its constituents. We will use the existing
acts that we have already implemented as reference cases for this discussion.
To create a new act for our current method we must implemented one new
class which materializes the class Task. Moreover, the new class must imple-
ment the two abstract methods of class Task : (a) the generateSubTask() and
(b) conctructActEpisodes(). Also, we must add a new method in class TextEx-
tractionPPTX such that to extract the proper contextual description added at
each slide of new act. For example, for Act I of our approach we materialized
the class TaskActI which implements the two aforementioned abstract methods
along with the method createTextForAct1(). Similarly, for Act II, we material-
ized the class TaskActII which implements the two abstract methods and the
method createTextForAct2().

4.4. Extending the set of Highlight Extraction Methods

To have the ability to create different highlights we create an abstract class
Highlight which has an abstract method with name execute(). In our current
implementation, we have created six subclasses which help us to create the
different highlights for our episodes. In Fig. 9, we can observe that all the sub-
classes of Hightlight implement the abstract function execute(). In addition,
every time we want to add a new kind of Highlight we must add a new method
in class TextExtractionPPTX such that to extract the proper text for new high-
light. We conclude that in order to enter a new highlight we must create a new
class (which materializes the Highlight class), to implement the abstract method
execute(), and to add a new method to class TextExtractionPPTX.

4.5. Assessing the Extensibility of our framework

In Fig. 10, we present the programming effort which was needed in order
to extend the current approach of our method for adding Act II. As already
mentioned, adding a new kind of Act requires to create one new class and to
implement three methods. Moreover, in order to create a new kind of highlight,
we must create one new class and implement two methods. We believe that
in summary, the programming effort to extend our method in each flavor of
extensibility is too low.

5. Experiments

In this section, we describe our experimental assessment of the CinceCubes
tool.
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Figure 10: Assessment of the Extensibility Effort for CineCubes

5.1. Experimental Setup

For all our experiments, we have experimented with the Adult (a.k.a cen-
sus income) dataset referring to data from 1994 USA census. The dataset
in its cleansed version (after uncertain and NULL values are removed) com-
prises 30162 tuples of the 1994 USA census. There are 8 dimensions (Age,
Native Country, Education, Occupation, Marital status, Work class, Gender,
and Race) in the data set and a single measure, Hours per Week. The hierar-
chies for the dimensions Education and Work class are depicted in Fig. 2. The
hierarchies for the dimensions Occupation, Marital status, Gender, and Race are
depicted in Fig. 11 and the hierarchy of dimension Native Country, except the
level 0 (which includes too many values), is depicted in Fig. 12. The dimension
Age is organized in years, 5-year intervals, 10-years intervals, 20-year intervals
and *.

Figure 11: Dimensions Occupation, Marital Status and Race

In terms of efficiency, what we are interested to discover is where we spend
more time during the generation of a CineCubes movie. As the generation of
the pptx file advanced, we have carefully monitored all the individual steps of
the method. Therefore, we are able to discuss the time costs of the method from
two points of view: (i) concerning the individual parts of the method (results
/ highlight / text and audio generation etc) and (ii) concerning the different
acts of the method. To provide a thorough evaluation, we have worked with
a variant number of two, three, four or five atomic selection conditions in the
WHERE clause of the original query. This results in an increase in the number
of slides in Act I as the number of atomic selections in the WHERE clause
increases: since Act I compares with sibling values of the selection values, each
selection condition adds two extra slides, where the siblings of the involved value
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Figure 12: Dimension Native Country (the most detailed level L0 is not depicted due to its
large number of instances

Figure 13: Number of slides for different numbers of atomic selection conditions
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are grouped for the two groupers (Fig. 13). Instead, the slides of Act II remain
in all cases constant, which is consistent to the essence of the method, which
drills down the grouping levels of the original query. All experiments have taken
place in a conventional PC running Windows 7 over an Intel Core Duo CPU at
2.50GHz, and with 3GB main memory.

5.2. Analysis of Results per Part of the Method

Our first experimental goal has been to assess the amount of time taken by
each of the parts of our method. We have measured the time needed to perform
each part of the method in milliseconds. The individual steps of the method
have been grouped in 5 parts that are executed for each slide as follows:

I. Result Generation. Result generation involves the construction and
execution of queries to the underlying database. Specifically, this part involves
the following individual tasks:

• Produce Cube Query : in this step, we create a Cube Query from the
original query.

• Produce SQL Query : in this step, we convert a Cube Query to SQL query.

• Execute SQL Query : in this step, we perform the query to the database
and take the result back.

II. Highlight Generation & Visualization. This part involves the shap-
ing of the presentation of the results, as well as the identification of important
highlights.

• Tabular Creation: in this step, we format the result of query execution as
a pivot table.

• Highlight Creation: in this step, we calculate the highlights over the pivot
table (such as row domination, largest values etc)

• Color Table Creation: in this step, we add color to each cell of pivot table.

• Combine Pivots in the SameSlide: this action is performed only on Act II,
as the slides of this act contain more than one subqueries (and therefore,
pivot tables) which have to be combined in a single slide.

III. Text Creation: in this part, we produce the slide’s text from the
calculated highlights.

IV. Audio Creation: in this part, we pass the produced text to the text-
to-speech conversion API, in order to create the audio file.

V. Put all in pptx: in this part, which is the only one that takes place for
the entire presentation, we wrap up all the above to a slideshow presentation.

As already mentioned, our experimental method involves varying the number
of atomic selection conditions within the WHERE clause. Remember that as
the number of selection conditions rises, each time we have two extra slides at
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Act I for every extra atomic selection condition. We depict all the results in
Fig. 14 (the number of slides of each try is depicted in parentheses at the header
of the table of values in Fig. 14).

Clearly, the audio generation dominates the entire process, being several
orders of magnitude larger than anything else and presenting a clear case for
improvement. As the number of slides slowly increases, the time needed to
generate text slowly increases too. Concerning the rest of the parts of the
process, we see that query generation and execution takes up two orders of
magnitude more than the other two tasks; therefore, being prudent with the
number of slides (and thus, executed queries) is also necessary – esp., if someone
would decide to exclude audio generation from the process.

A very interesting observation is also that, so far, both text creation and
highlight extraction are extremely fast, and thus, provide the potential for en-
richment with more algorithms that try to find interesting highlights and create
representative textual descriptions for them.

5.3. Analysis of Results per Act

The second goal of our study was to find out how time is divided within the
acts of the story. Again, we have measured the time needed to produce each
Act of the story (measured in milliseconds). We depict our findings in Fig. 15.

As the number of selection conditions rises, each time we have two extra
slides at Act I (the number of slides of each try is depicted in parentheses at
the header of the table in Fig. 15). Clearly, we can observe that the time of
each Act is increasing as the number of atomic selection conditions increases.
Moreover, the construction of Act I in three of the four cases takes more time
than the construction of the others – only in the case when we have two atomic
selection conditions, the construction of Act II takes about 90 msec more. In
addition, the time needed to create Act II is practically stable, independently
of the number of atomic selection conditions in the WHERE clause.

In Fig. 15, observe that as the number of slides increases (2 extra slides each
time) Act I increases with significant rate; the Summary Act behaves similarly,
albeit with a lower increase. Both these effects are mainly due to the text and
audio generation (as already mentioned). The linearity of the increase for Act I
can safely be attributed to the cost of the extra slides that are added each time
to the Act (in fact, this is also corroborated by the detailed measurements per
individual slide that are not included here).

Also in Fig. 15, we can observe that the Summary Act needed more time
than the Act II in three of the four cases. This happens because the Summary
Act, as described in Chapter 2, has all the highlights of the story (i.e., all the
text for these highlights) which must be also converted to sound. Once again
the text to speech API dominates the time of our result.

Why does the Summary Act increase with a smaller rate than Act I? This
happens because the Summary Act has only the highlights of all episodes (and
not the entire text). Due to the text that dresses and contextualizes the high-
lights in each slide, Act I has always more words to be converted to sound from
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Figure 14: Time breakdown (msec) for the method’s parts
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Figure 15: Time breakdown (msec) for the method’s acts
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Summary Act (Table 1). It is noteworthy (observe Fig. 16) that the difference
in number words between Act I and Summary Act, in each case, is linearly
related to the extra time needed each time; the bond is extremely strong with
a Pearson correlation of 0.999.

# atomic selections in WHERE clause
2 (10 sl.) 3 (12 sl.) 4 (14 sl.) 5 (16 sl.)

Act I 244 499 764 1069
Summary Act 200 298 357 424

Table 1: Count of words for Act I and Summary Act

Figure 16: Difference in words and execution time for Act I and Summary Act

5.4. Effectiveness assessment via a user study

We have conducted a user study to verify the effectiveness of our approach
and assess its benefits and shortcomings. In the sequel, we present the experi-
mental setting and method, and then we move on to present our findings.

5.4.1. Experimental method

The epicenter of the effort was to assess the effectiveness of CinecCubes com-
pared to simple querying in the presence of dimension hierarchies. To this end,
we constructed a simple system answering aggregate queries in OLAP style to
compare it against CineCubes. Both systems had the same user interface that
allows users to construct queries by point-n-click without having to actually
write them in SQL. The users that participated in the study were 12 PhD stu-
dents from our Department, all of which were experienced in data management
and statistics.

The user study consisted of four phases.
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Phase 0 (warm-up). In the first phase, the users were familiarized with the
data set and the tools. To this end, we presented the data set, its dimensions
and levels. We also gave a demo of how to pose queries to the systems. We
explained to the users that they could use any combination of (a) slideshow,
(b) browsing through the slides, and (c) reading a printout of a query result
or a CineCubes report. All users were given a pamphlet reminding the basics
of the above. Then, the users returned to their offices, where they all had
ample networking, computing and printing facilities to work with the next of
the phases.

Phase 1 (simple OLAP functionality). The first part of the evaluation was
to ask the users to prepare a report on a specified topic. The report should
contain (a) a bullet list of key, highlight findings, (b) a text presenting the
overall situation and, (c) optionally, any supporting statistical charts and figures
to elucidate the case better.

Phase 2 (CineCubes functionality). We assigned the same task to the users,
but now, they had CineCubes available. Both the simple querying system and
CineCubes were at the disposal of the users in order to pose auxiliary requests
for simple queries or CineCubes reports. To speed up the process, we also
provided a link with a version of Cinecubes without audio.

Phase 3 (Questionnaire completion). Once the users had used the two sys-
tems, they were asked to complete a questionnaire, where they would comment
on the usage of the two systems. The questionnaire prompted the users to com-
plete information for the time needed to complete their reports, an assessment
in a scale of 1 to 5 of the usefulness of the different acts of the CineCubes re-
port, as well as of the textual parts and the voice features of CineCubes and an
overall assessment of the two reports after having produced both of them.

5.4.2. Evaluation of Cinecube’s parts

In this part of the questionnaire, the users were asked to provide an assess-
ment of the usefulness of the parts of CineCubes in a scale of 1 to 5, with 1
being the worst value and 5 being the best. In Fig. 17 we depict the frequencies
of the scores assigned by the users.

The figures reveal that the users appreciated differently the different acts
and parts of the system – in fact, some of the findings have been surprising. All
features scored an average higher than 3. The most popular feature was Act
II, with the detailed, drill-down analysis of the groupers. The users attributed
this to the fact that it provided them with information they thought interesting
to include in the report, as it enlarged the picture of the situation that was
presented to them. The second most popular feature was the treatment of the
original query (that includes coloring, and highlight extraction compared to the
simple query results given to them by the simple querying system).

It has been quite interesting that the two less appreciated parts were Act
I (which contextualizes the result by comparing it to similar values) and the
summary act (presenting all the highlights in a single slide). Although this
originally came as a surprise to us, with the benefit of the hindsight we reckon
that it should not have been surprising in the first place: users love concise
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Original query Act I Act II

Summary Text Audio (if used)

Figure 17: Evaluation of the usefulness of Cinecubes’ parts, in a scale of 1 (worst) to 5 (best);
x-axis depicts each score and y-axis the number of users that assigned it

Figure 18: Evaluation of the original and the Cinecubes’ report, in a scale of 1 (worst) to 5
(best); x-axis depicts each score and y-axis the number of users that assigned it

reporting of facts and dislike information provided in large volumes to them.
The free-form comments of the users and a post-mortem discussion with them
confirmed this observation. The contextualization and the summary acts pro-
vide too much information (and in fact, too many highlights). So, although
the peak is in the median value (3), the average value for both Act I and the
Summary Act was 3.4 stars and the distribution of values towards the high end,
the phenomenon was not so heavy tailed on the higher values as for Act II and
Act 0. Lesson learned: above all, be concise!

The textual part was quite appreciated by most of the users; at the same
time, out of 5 users that worked with audio, the result was split in half in terms
of likes and dislikes. This is both due to the quality of the produced audio by
the TTS and the quality of the text that is served to it as input. A lesson
learned here is that audio seems to be useful for some users but not for all ; so,
it should be optional, which can provide gains in terms of efficiency without
affecting effectiveness.

5.4.3. Evaluation of the produced reports

The users were also asked to assess the quality of the produced report with
the benefit of the hindsight. The results are depicted in Fig. 18.

Overall, the distribution appears shifted by one star upwards, with the me-
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dian shifting from 3 to 4. The average value was raised from 3 to 3.7 which is a
23% improvement of quality. The free-form comments indicated that the score
would have been higher if the tool automatically produced graphs and charts
(an issue of small research but high practical value).

5.4.4. Time considerations

We asked the users to measure the time they spent for the creation of each
report. In Fig. 19 we depict the actual data as well as their visual representation.
The graphical representation of Fig. 19 compares the benefit in time (x-axis)
over the benefit in stars (y-axis). In other words, does it pay off to spend
more time working with the system for the quality of the report one gets? The
diagonal line splits the plane in two parts: the right, green part is the area where
you get more quality for the time you invest; the left, rose part is an area of
loss. The intensely colored parts of the two areas are parts with two-fold benefit
(more quality for less time) or loss (less quality for more time).

The findings are quite interesting. A first very interesting observation lies in
the fact that CineCubes did not result in clear time gains, as we would expect.
In fact, there was a large number of people who spent more time with CineCubes
than with the simple querying system! Although this originally did strike us as
a failure, a better look at the data (and the graph) refutes this result. When
we sorted the data by time spent without CineCubes (second column), it was
clear that the users who demonstrated this kind of time loss were the ones who
spent too little time (way less than the rest) for their original report. The
small amount of time devoted to the original report, skyrockets the percentage
deficit (a user who spends 10 minutes for the original report and 20 minutes for
Cinecubes, gets a 100% time penalty). At the same time, this resulted also in
an original report of rather poor quality, and significant improvements in the
quality of the report, too. This also explains why there are no users with dual
loss. Again, the explanation for the time increase is that the users spent extra
time to go through the highlights offered by CineCubes.

A second observation concerns the people who spent less time with CineCubes
than without it. These are people who invested more time working with data
than the previous group. In all but one cases, there was no loss of quality for
this group of users. So, clearly, for the people who would spend at least 30
minutes for their original report, there is a benefit in time gains. In fact, in all
but one cases, the benefit rises with the time spent in the original report (the
relationship between ∆Time and the pct ∆Time for the people with a positive
time gain is almost linear, with a Pearson correlation of 0.940; the same ap-
plies for the correlation of the time spent without Cinecubes and pct ∆Time
with a Pearson correlation of 0.868). It is interesting, that because these users
devoted quite some time working with the data in the first place, they had a
quite satisfactory report in the first place (in all but one cases, no less than 3
stars). Therefore, the improvement in terms of stars is on average half star out
of five (although the distribution of values is clearly biased, as the last column
of the data in Fig. 19 indicates). The speedup however rises on average to 37.5
minutes (or 46.00% as percentage) for these cases.
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Figure 19: Evaluation of the time gains versus the quality gains for the construction of the
report with and without CineCubes
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Lessons learned. For people in need of a fast report, conciseness is key, as
too many results will slow them down; yet, CineCubes allows these people to
create reports of better quality. For people who would be willing to spend more
time to author a report in the first place, CineCubes speeds up their work by a
factor of 46% in average.

6. Related Work

In this section, we discuss related work around the topic of our discourse.
Specifically, research pertaining to our work can be identified in the fields of
query recommendation, advanced OLAP operators, text synthesis from query
results, and data narration. We present each of these categories in the following.

6.1. Query Recommendations

The first area that relates to our work is the area of query recommendation.
Roughly speaking, the general theme of this area revolves around the situation
where the user has submitted a query to the system and the system suggests one
or more related queries to the user as a guide that helps him continue his search.
The suggestion can be based on the user’s profile, history of queries, history of
other users’ queries, or other information. There is an excellent survey on the
topic by Marcel and Negre [12]; thus, here we restrict ourselves to a handful of
characteristic approaches and refer the interested reader to [12] for a broader
discussion.

The query recommendations that are related to our work can be classified
in two orthogonal taxonomies, already found in [12]. In terms of the data
management environment within which query recommendation takes place, we
can distinguish between works in the general field of databases and works in the
specific field of OLAP. In terms of the means employed for the recommendation
of queries, we can discern methods exploiting profiles, methods exploiting query
logs and hybrid methods.

6.1.1. Database-related efforts

Stefanidis, Drosou and Pitoura [13], propose the enrichment of the results
of a query with extra tuples that may have potential interest to the user. The
method is entitled YMAL (“You May Also Like”), and tries to find tuples
in the underlying relational database on the grounds of a principled tuple-
recommendation approach. One of the contributions of [13] is that the authors
suggest a classification of methods for recommendation: (a) current state based,
(b) history based, and (c) based on external sources.

The current-state approach makes use of the current query result and schema
in conjunction to the data of a database to produce the YMAL result. To
implement this approach the authors suggest three kinds of analysis: (i) local,
(ii) global and (iii) hybrid analysis. Local analysis involves finding patterns in
the results of a query and searching the rest of the database in order to add to
the original result extra tuples that abide by the discovered patterns. The global

35



approach searches the database to find values that are correlated to the values
involved in the selection condition of the submitted query; the k most correlated
of these values are selected and tuples that contain them are recommended to
the user. To calculate relevant tuples, the history-based approach uses (i) the
previously submitted queries of the user, and, (ii) similar sessions of other users
that have similar behavior of the current user. The last of these approaches,
involves external sources and does not search the local database for relevant
tuples, but the web or another schema.

Chatzopoulou et al., in [14] propose a recommender system called QueRIE
(Query Recommendations for Interactive data Exploration). The main goal of
this recommender system is to help the common user, who is not familiar with
SQL and database schemata, to find parts of database with useful or interesting
information. To this end, the authors have implemented a system with the
ability of tracking the querying behavior of a user and generating a personalized
query recommendation. The system is built on a simple premise, inspired by
Web recommender systems: if a user A has similar querying behavior to user
B, then they are likely interested in the same data. Hence, the queries of user
B can serve as a guide for user A.

6.1.2. OLAP-related methods

Cariou et al., in [15] describe a method to help user to explore OLAP data.
The proposed method combines OLAP and data mining techniques to facilitate
the process of the exploration of a data cube by identifying the most relevant
dimensions to expand. The implementation of this task is performed in a step
by step approach. In each step, the most relevant dimensions from the current
session of the user are identified and then, the system suggests to the user
which one to explore first. The dimensions are of relatively simple structure
with two levels only (ALL and detailed). The main idea behind the method
is that each dimension takes a degree of interest. Each time the degree of
interest is calculated by the amount of information revealed when including the
details of this dimension in the grouping of the detailed data (remember that
each dimension has only two levels; thus including it in the group by practically
means that the dimension’s detailed values split the grouping space with a factor
equal to their number).

A different approach for suggesting an OLAP query to user is introduced in
the work of Giacometti et al., [16]. Unlike [15], the authors of [16] use the query
log of previous users to find similar queries which can give information to user
that he may not know it is available. The main idea is to recommend to the user
the discoveries detected in former sessions of other users that investigated the
same unexpected data as the current session. To this end, the proposed method
analyzes the query log to discover pairs of cells at various levels of detail for
which the measure values differ significantly. In addition, the method analyzes
the current query, in order to detect if a particular pair of cells for which the
measure values differ significantly can be related to what is discovered in the
log.
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Aligon et al., in [17] work along the same context and provide some very
interesting insights for log-based OLAP sessions. A first major result of [17]
has to do with the fact that the user study conducted in this paper gives a first
account of what users deem interesting in characterizing a query. Apparently,
users think of the selection predicate as the most characteristic feature of a cube
query; other features in decreasing order of importance are the set of groupers
and the set of measures. The paper also gives a detailed survey of similarity
measures for OLAP queries and an experimental verification of which similarity
function seems to capture best the intuition of users for OLAP queries.

6.2. Advanced OLAP operators

Apart from recommending queries to the users, related research has explored
the possibility of providing users with explanations for the results they observe
in an OLAP report. We distinguish the work of Sarawagi in a series of papers
in VLDB and briefly summarize the results.

In [19], we meet the DIFF operator is described with the aim to help the
analyst get a concise set of tuples explaining the reasons for drops or increases
observed at an aggregated level. As input, the operator receives two cells of
a report that are different. As output, the operator returns a set of tuples
that best describe this difference. To achieve this result, the paper proposes a
greedy and a dynamic-programming algorithm. The idea is that the operator
keeps as fixed the common selections that characterize the originally selected
cells (so, it is important that they do have some common selection conditions
for the computation to make sense) and drills-down the levels of aggregation for
the involved hierarchy that is produced by the combination of these common
dimensions. The crux of the approach is that it computes the respective differ-
ence when the data are aggregated for any of the tuples in this multidimensional
space. Every tuple in this multi-level space is compared to its “parent” tuple
(in one level of aggregation higher) and, if selected, it is placed in the top-N
results that will ultimately be displayed to the user. For a tuple to make it in
the top-N it has to contribute a significant percentage of the difference of the
original cells compared to the contribution of its father.

The same author, Sarawagi, in [20], presents a tool that helps users explore
the multidimensional OLAP data using their prior knowledge of the data. This
tool uses a profile that tracks down the areas of the cube that the user has
visited in the past, and thus, it is aware of what the user already knows about
the data. Then, the tool guides the user to unexplored data that he will find
most informative. The author in [20] describes a method that uses the classical
Maximum Entropy principle and a profile per user to recommend to the user the
parts of the cube which contain the most surprising values compared to what
the user has already seen

In [21], Sathe and Sarawagi introduce the operator RELAX which helps
the user of OLAP data to go from a detailed level of information to a more
general one, in order to verify whether a pattern observed at the detailed level
is also present at a more summarized level. The operator reports in a single
step a summary of all possible maximal generalizations along various roll-up
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paths of the observed sub-cube. The goal is to report all possible consistent
and maximal generalizations. The term consistent means that all subsets of
dimensions that are examined also abide by the pattern. On the other hand,
the term maximal means that there is no superset of dimensions that can yield
consistent generalizations. For the implementation of this operator the authors
develop a two stage algorithm. In the first stage, the algorithm finds all possible
maximal generalizations using aggregation queries. In the second stage, the
algorithm uses the results of the first stage and finds summarized exceptions of
the generalizations.

6.3. Text synthesis from query results

In [22], Simitsis et al., propose a method to synthesize a textual answer in
response to a query over a relational database. The authors employ a graph
model with nodes being attributes and relations, edges being part-of relation-
ships and join relationships and labels for relations, attributes and edges (labels
are used to produce a text for a query’s result). The method takes a query as
input, computes its result and tries to produce a sentence for each of the tuples
that appear in the result. This is derived by following specific graph navigation
patterns, each of which produces a different type of text.

6.4. Data Narration, Narrative Visualization and Visual Analysis

Last but not least, a research area that is closely related to our approach
involves data narration. Whereas data visualization involves depicting data
to the user in a way that allows the user to extract interesting information
easily, data narration tells the story of data, i.e., gives context, explanations
and, fundamentally, appropriate visualizations. Due to the close relationship of
visualization and narration, the area is also referred to as narrative visualization.

In an interesting article [5], Kosara and McKinley, researchers in Tableau
Software, highlight how storytelling can be the next step for visualization, and
-as we add here- for gaining insights into the observed data. To quote the
authors ”Humans have always tied facts together into stories, effectively pre-
senting information and making a point in a memorable way”. The connection
between data and stories is being elevated only very recently; however, it is clear
that a story supported by data gains in authority and trust, and at the same
time, data-based insights are way more memorable when successfully blended
in a story. It is only natural, then, that data storytelling is becoming more
and more popular these days, with sites and tools like GapMinder, ManyEyes
and Tableau Software allowing people to work with data and gain insights, but
also with newspapers and mass media (like New York Times, Washington Post
and The Guardian) using infographics to express stories in both a vivid and
data-driven, convincing way.

In a highly cited paper, Segel and Heer [6] provide a survey and classification
of narrative visualization techniques, along with a very long list of examples
that demonstrate actual cases of narrative visualization, mainly in newspapers.
The authors reviewed a vast number of examples to come up with a taxonomy
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for the design space of narrative visualization. The taxonomy organizes the
characteristics of visualizations in seven groups, organized in three families. The
first family-group concerns the genre of the visualization (e.g., slide show, comic
strip, poster, film, etc). The second family concerns the techniques used for the
visualization of a story. The first group in this family concerns the structure
of the visualization (consistent visual platforms, progress indication, etc), the
second group concerns visual highlight features (zoom, motion, audio, etc), and
the third group concerns the way transitions among visualized information is
made (e.g., via continuity principles, or animation). The third family concerns
the structuring and interactivity of a visual presentation. The first group in this
family concerns the order of the presentation’s parts, the second group concerns
the modes of interactivity via which the user can interact with the visualization
(e.g., hovering tooltips, tacit tutorials, navigation buttons, etc) and the third
group concerns the messaging tools employed to inform the user on important
parts of the presentation (e.g., captions, annotations, summaries, etc). One
typical difference between traditional storytelling and data narration that [6]
highlights concerns the potential for interactivity in the latter. In fact, one
of the main problems of data narration is built around the interactivity issue:
how does one balance (a) a certain amount of control that the author needs to
preserve and impose in order to manage to tell the story in the end, versus (b)
the need of the users to go through alternative explorations, pose verification or
explanatory questions, and in any case, work with the data in ways not already
present in the linear storytelling of the author. The authors highlight three
ways of interacting with the users. First, the Martini Glass principle, where
the presentation starts with a user-centric part for the exploration of data,
continues with a strict, non-interactive sequence to convey its core message and
concludes with a large number of choices for follow-up exploration by the user.
The Interactive Slideshow principle follows a typical slideshow format (i.e., a
sequence of author-driven ”slides”) but allows some degrees of interaction within
each slide, allowing thus the user to interact with the data mid-narrative. The
Drill-Down Story principle, gives the most degrees of interaction to the user, by
presenting a central theme as a portal for interactive data exploration.

In a similar trend, Hullman and Diakopoulos [23] conduct a similar study
to provide a taxonomy of techniques (”rhetoric”) used to illustrate or obscure
information. Information access rhetoric methods concern which data to include
or exclude, and at what level of aggregation or abstraction. Provenance rhetoric
methods concern ways to highlight or obscure the source of information and the
uncertainty involved in the reporting of facts and estimations. Mapping rhetoric
concerns techniques like visual metaphors, contrast, color coding etc, used to
map data to a visual representation that conveys a message. Linguist-based
rhetoric methods are focused on the textual level and concern how the presenter
uses text to make a point or make the user be involved.

A central role in data narration is played by interactive visual analytics that
facilitate the extraction of information from data via interactive visualization
and automated information mining. Ben Shneiderman gave the the famous
”Visual Information Seeking Mantra” back in 1996 [24], as the foundation of
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visual design: Overview first, zoom and filter, then details-on-demand. Fifteen
years later, in [25], Heer and Schneiderman provide a taxonomy of visual tools
that facilitate the interaction of a user with data, in what the authors call
”analytic dialogues”. The taxonomy consists of 12 typical task types grouped in
categories as follows: (a) data and view specification (visualize, filter, sort, and
derive), practically facilitating the setup and focus of a data visualization task,
(b) view manipulation (select, navigate, coordinate, and organize), practically
covering the part where a user explores the presented data interactively, and (c)
analysis process and provenance (record, annotate, share, and guide), covering
the part where the user has gained insight and is preparing his data-driven
story’s presentation.

6.5. Relationship of our work with the state of the art

Concerning all the above works, our method comes with an extensible ar-
chitecture that is especially constructed with a mindset of being able to plug
in more and more of them, both at the part where new queries can be added
and in the part where new analyses can be performed over their results. Our
Act II resembles the DIFF operator to a certain extent, in the sense that it
tries to explain the reasons of the originally observed result. DIFF goes one
step further, in providing maximal explanations by picking the most profitable
rows. Although DIFF can be integrated in our tool, the emphasis so far has
been in coming up with a prototype that can provide a reasonable CineCube
movie; research results like DIFF can be integrated in the tool in subsequent tool
extensions and revisions. The same applies for all the other advanced OLAP
operators.

Concerning text synthesis, we avoid describing the result of a query row-by-
row, as [22] does. On the contrary, we provide an extensible architecture where
each highlight extraction method comes with a generic text to describe the
detected highlights. Of course, improvements on the produced text are clearly
part of future work.

We would also like to highlight that our method is synchronized with the
key findings of [17], as (a) the main criterion that we use for suggestions in Act
I is what [17] identified as the key characteristic feature of cube queries, i.e., the
selection condition and (b) the key feature for explaining results in Act II is the
second most characteristic feature, groupers.

6.6. Relationship to our previous work

A first version of this paper has appeared in [26]. In the present version of the
paper, we extend [26] in the following ways. We provide a detailed explanation
of the internal architecture and the extensibility mechanisms of CineCubes. We
also provide an assessment on the effort needed to extend CineCubes. We discuss
in detail the results of our experimental study, both in terms of the anatomy
of the time spent in the different tasks and acts and in terms of usability, via
a user study. We accompany these extensions, with explanations, an extended
discussion of our motivations, and a detailed survey of the related literature
that were not present in the short version of this paper.
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7. Discussion

In this paper we have introduced CineCubes, a system that allows the auto-
matic generation of a CineCube movie, over an OLAP database, with a simple
user query as starting point. To produce a movie, we need several ”episodes”,
text, and voice. To this end, we have automated (a) the process of complement-
ing the original query with additional queries that provide contextualization (by
comparing its results to the results of queries carrying similar information) and
(b) the process of extracting meaningful relationships within the data, as we
search for interesting patterns in the results of all these queries. Moreover, we
have also automated the generation of text describing these findings and their
conversion of this text to audio. Finally, we have shown that all the above can
be packaged in a PowerPoint presentation, practically presenting a small data
movie to the user.

We believe that our method creates new research ground, by bundling all the
individual steps in a single-yet-extensible framework that allows data workers
gain insights. This is -in our point of view- the core contribution of this paper.
Naturally, as typically happens in science, this new research ground can be
further expanded in a systematic way. In the following, we list a few important
problems and opportunities.

Extensibility. Cinecubes comes with an extensible architecture that is es-
pecially constructed with a mindset of hosting more and more techniques both
from existing and foreseeable research results in the areas of knowledge extrac-
tion, query recommendation, text analysis, trend prediction, and data visualiza-
tion. We firmly believe that this extensibility can and should be exploited via
a synergy with the research community in order to further enhance the benefits
of this approach.

Efficiency. Scaling with data size and complexity, let along with user needs,
in user time, is also necessary for an effort like this to succeed. Techniques like
multi-query optimization have a good chance to succeed, especially since we
operate with a known workload of queries as well as under the divine simplicity
of OLAP.

Can I be the director? Interactively maybe? Personalization and
interactivity are two clear paths for extending the approach mentioned here.
Interactivity, i.e., the possibility of allowing the user to intervene and semi-
automatically guide the query generation can be served in many ways (e.g., the
Martini Glass and the Interactive SlideShow of [6]). This user-driven interaction
can be aided by incorporating extra knowledge into the report generation –
e.g., via user profiles or user logs, like in [16]– that guide the users in their
explorations around the basic results that they see in a CineCubes movie.

Be compendious; if not, at least be concise! The single most impor-
tant challenge that the research problem of answer-with-a-movie faces is the
identification of what to exclude. The problem is not to add more and more
recommendations or findings (at the price of time expenses): this can be done
both effectively (too many algorithms to consider) and efficiently (or, at least,
tolerably in terms of user time). The main problem is that it is very hard to

41



keep the story both interesting and informative and, at the same time, automate
the discovery of highlights and findings. To address this task, a clearly impor-
tant topic of research involves the automatic merging, ranking and pruning of
highlights.
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