
TimeVizBench : An Interactive Platform for
Evaluating Techniques for Efficient Large Time

Series Visualization

Vassilis Stamatopoulos⋆1,2[0000−0002−9044−796X]bstam@athenarc.gr,
Stavros Maroulis1[0000−0003−2816−4368]stavmars@athenarc.gr,

Christos Pantoleon3[0000−0002−2312−5143]chr.pantoleon@aueb.gr,
George Papastefanatos1[0000−0002−9273−9843]gpapas@athenarc.gr, and
Panos Vassiliadis2[0000−0003−0085−6776]panos.vassiliadis@cs.uoi.gr

1 ATHENA Research Center, Athens, Greece
2 University of Ioannina, Ioannina, Greece

3 Athens University of Economics and Business, Athens, Greece

Abstract. Interactive time series visualization is essential in domains
like IoT monitoring but is often constrained by latency and scalability
challenges. Various methods have been proposed to address these issues,
each with different trade-offs between efficiency, interactivity, and vi-
sualization accuracy, making systematic evaluation crucial. Traditional
benchmarking approaches, however, fail to capture user-perceived re-
sponsiveness and accuracy in real-world exploration scenarios. To bridge
this gap, we introduce TimeVizBench, an interactive evaluation plat-
form for scalable time series visualization methods across performance
and accuracy dimensions. TimeVizBench enables users to configure dif-
ferent methods, explore visual outputs interactively, and dynamically as-
sess performance and accuracy. It also provides a standardized interface
for integrating and comparing additional methods.

Keywords: Interactive Visualization · Time Series · Approximate Vi-
sualization

1 Introduction

Visualizing large-scale, multivariate time series data presents unique challenges
due to the sheer volume, high dimensionality, and dynamic nature of the data. In
domains such as IoT monitoring, financial analysis, and anomaly detection, users
rely on interactive visual exploration performing operations like panning, zoom-
ing, and pattern highlighting. Achieving interactive response times is essential
for effective real-time analysis, while ensuring visualization accuracy is critical
to avoid misleading or incomplete insights. However, the latency associated with
fetching, processing, and rendering such data often hinders interactivity.

⋆ Corresponding author: bstam@athenarc.gr



Approaches for Scalable Time Series Visualization. Various methods have
been proposed to address the challenges of large-scale time series visualization.
Traditional techniques, such as sampling and aggregation, reduce data volume
to improve performance but often distort visual representation and affect visu-
alization accuracy. Visualization accuracy is typically assessed at the pixel level
rather than in the data domain, measuring how closely the rendered visualiza-
tion aligns with the expected output from raw data. Metrics like the Structural
Similarity Index Measure (SSIM) [12] quantify visual differences by evaluating
structural and perceptual similarities, making them suitable for assessing visu-
alization accuracy.

Visualization-aware methods, such as M4 [6], account for visualization pa-
rameters (e.g., width and height of the chart canvas) to ensure accurate repre-
sentations. M4 aggregates data into pixel-wide intervals, preserving the visual-
ization’s shape with 100% accuracy. However, it requires querying all relevant
data for each interaction, increasing latency and reducing interactivity.

Progressive approaches, like OM3 [11], incrementally refine visualizations
through a precomputed multi-level representation, eventually achieving an error-
free visualization. However, OM3 lacks error guarantees for intermediate visual-
izations, requiring users to wait until full convergence for accuracy assurances.

To improve interactivity, caching-based methods have emerged. MinMax-
Cache [9] reduces latency in time series visual exploration while ensuring ac-
curacy. It dynamically aggregates and caches data at granularities optimized
for visualization, considering user-defined accuracy constraints, enabling efficient
reuse of cached results during panning and zooming. This approach minimizes re-
dundant data fetching while maintaining pixel error-bound guarantees, ensuring
accurate visual representations with low latency. Unlike precomputation-based
methods, MinMaxCache adapts dynamically to user exploration and supports
streaming data, making it well-suited for interactive scenarios.

Other methods, such as MinMaxLTTB [3], integrate min-max preselection
with downsampling techniques like Largest Triangle Three Buckets (LTTB) to
improve scalability while maintaining visual quality. However, they lack explicit
error quantification relative to fully accurate references.

Challenge and Main Beneficiaries. Comparing and systematically evalu-
ating these methods remains challenging. Existing evaluation practices often
rely on controlled experiments or algorithm reimplementations, which are labor-
intensive and fail to capture the dynamic, user-driven nature of modern visualiza-
tion tools. Interactive visualization scenarios also demand careful consideration
of user experiences—particularly perceptions of latency and accuracy—which
directly influence both utility and usability. Addressing these needs requires
an interactive experimentation platform that enables the evaluation of diverse
methods across various metrics, facilitating the addition of new ones. Such a
platform should enable its key beneficiaries, i.e., researchers, and software engi-
neers to accomplish real-time exploration of trade-offs, systematically evaluate
visualization techniques, and provide built-in support for measuring key metrics
through a well-defined interface, ensuring ease of use and extensibility.



Related Work. While many techniques support interactive, low-latency, scal-
able visualization, the lack of standardized evaluation frameworks limits sys-
tematic comparison. The need for benchmarking in visualization has been well
established [1], highlighting the importance of performance evaluation in inter-
active data systems. Generic benchmarks like TPC-H focus on backend perfor-
mance metrics, while domain-specific benchmarks, such as those for time series
data [7], provide specialized evaluation frameworks. While effective for assessing
generic query performance and scalability, these benchmarks do not address the
interactivity and accuracy requirements of visualization systems. Visualization-
specific benchmarks, such as the Visual Analytics Benchmark Repository [10],
focus on analytical effectiveness but offer limited support for evaluating system
performance during interactive operations. More recent efforts include interac-
tive data exploration benchmarks [2,4], which provide systematic approaches for
gaining insights into query execution and system-level performance for interac-
tive exploration and visualization. While these benchmarks enable standardized
evaluation of system performance, they do not explicitly target timeseries visual-
ization methods and often fail to capture the real-time user experience, including
user-perceived latency, visual accuracy, and the critical trade-offs between us-
ability and performance essential in interactive scenarios.

Contribution. In this work, we introduce TimeVizBench, an extensible plat-
form for evaluating methods designed to enhance the interactivity and scalability
of time series visual exploration, focusing on key dimensions such as performance
and visualization accuracy. TimeVizBench supports state-of-the-art approaches
like MinMaxCache [9] and M4 [6], while offering a flexible framework for in-
tegrating alternative algorithms. Method-specific parameters are declaratively
defined and translated into user interface controls, enabling effortless experi-
mentation. Users can interactively explore multivariate time series data through
operations like pan and zoom, while comparing the efficiency and effectiveness of
different methods in real time. The platform measures key performance metrics,
including query time, network transfer, and rendering time, while also assessing
visualization accuracy via SSIM and tracking data reduction efficiency based on
the amount of retrieved data.

Fig. 1. TimeVizBench Platform Architecture



2 TimeVizBench Architecture

Figure 1 presents the architecture of the TimeVizBench system, designed for
evaluating methods that support interactive, large-scale time series visualization.
The platform is composed of a web-based UI and a backend API responsible for
executing the evaluated methods and interacting with the database.

The UI allows users to select datasets, configure various parameters, and
compare the visualizations generated by different methods. Each query specifies
the method to execute, the datasource to query, the date range, measures to
visualize, and any required parameters for the selected method. Additionally,
many visualization-aware methods require parameters such as the width and
height of the visualization canvas, which are automatically included. Query re-
sults include the data points (e.g., timestamps and values) to visualize for one or
more variables, performance metrics (e.g., query time and total response time),
and visualization quality metrics (e.g., SSIM).

The backend is orchestrated by the Execution Manager, which manages
query evaluation, method execution, and benchmarking. To evaluate a new
method, developers must implement a standardized interface and annotate it
with @VisualMethod, giving it a name and a description. This annotation mech-
anism automatically registers the method with the system, making it available
to both backend and frontend components.

Parameters for each method are defined using the @Parameter annotation.
A built-in boolean field in the annotation setup, distinguishes initialization
parameters, which are set once during method instantiation and query-time
parameters, which are specified at runtime for each query (e.g., the accuracy
constraint in MinMaxCache). When a method is initialized, any necessary pre-
computed data can be loaded within the initialize() routine.

When a user selects a method in the UI, the frontend dynamically queries the
backend for its parameter definitions. These are extracted by introspecting the
annotated Java fields, so the UI can render the appropriate configuration options
without manual intervention. Outputs are always returned using standardized
classes to ensure compatibility with frontend requirements.

The Method Execution Module processes the configured methods, gen-
erating and executing queries through the Datasource Connector. This con-
nector retrieves data as needed from the specified datasource. Processed results,
including time series data and computed metrics, are returned to the Bench-
marking Module, which evaluates method performance across multiple dimen-
sions. TimeVizBench reports metrics for three key evaluation dimensions:

– Performance is measured by query time, which captures the time taken
by the database to evaluate the query, network time for data transfer, and
rendering time for visualizing the results.

– Accuracy is assessed using the Structural Similarity Index Measure (SSIM),
quantifying how closely a method’s visualization matches the reference vi-
sualization.



– Data reduction efficiency is evaluated by measuring the amount of data
retrieved from the database for each method. This metric helps assess how
effectively a method reduces the data volume needed to fetch from the data
store, impacting both performance and visualization latency.

These metrics allow users to systematically compare methods and explore
trade-offs between interactivity, accuracy, and data reduction efficiency.

Currently, the platform supports SQL databases and InfluxDB, with the
Datasource Connector enabling metadata retrieval for available datasets and
time series measures. The system is designed for extensibility, allowing new data-
sources to be easily added.

To ensure fair benchmarking, an optional cleaning method is invoked in the
Datasource Connector after executing each query, which clears any cached
results from the underlying database, minimizes the impact of database op-
timizations like caching and ensuring consistent evaluation conditions across
methods. The processed results and benchmarking metrics are sent to the fron-
tend, enabling users to analyze and compare methods across latency, accuracy,
and interactivity dimensions.

Implementation Details. TimeVizBench features a Java 17 backend built
with Spring Boot and a React-Redux frontend. Time series rendering is handled
using D3.js. The source code is available under the MIT license4.

3 TimeVizBench User Interface

This section presents the TimeVizBench interface (Fig. 2), which comprises
three components: the Configuration Panel, Visualization Panel, and Perfor-
mance Metrics Panel.

The Control Panel
(
A1

)
, enables users to set up the parameters for explo-

ration. Users can select a time range through interactive date and time pickers,
though this interval can also be adjusted dynamically via pan and zoom on
the charts. Additionally, users can choose from available datasets and specify
one or more measures to visualize. The interface supports multi-value selection,
enabling analysis of multiple variables simultaneously.

Users can also select different methods for evaluation. Upon selection of a
method, users are prompted to configure the initialization parameters, which re-

main fixed for that method instance throughout the session
(
A2

)
. In contrast,

query-time parameters, such as accuracy thresholds, can be modified dynamically
at any time, even after instantiation. The platform also allows for comparing
multiple instances of the same method by configuring different values for either
the initialization or query-time parameters. This flexibility enables users to sys-
tematically compare methods or explore variations of a single method under
different configurations.

4 The source code is available at https://github.com/athenarc/TimeVizBench



Fig. 2. TimeVizBench User Interface for the interactive evaluation of methods for
large-scale time series exploration. The Control Panel (A1), enables users to set up the
parameters for exploration. Upon selection of a method, users are prompted to configure
the initialization parameters (A2). The Visualization Panel (B) displays time series
line charts for the selected measures and method instances. The Performance Metrics
Panel (C) provides insights into the performance of each configured method and is
organized into two complementary views. A table view (C1) and a chart view (C2).

Furthermore, this panel provides controls for the generated visualization.
When enabled, the Magnifier, displays a circled segment of the time series
in an enlarged overlay for closer inspection. Meanwhile, the Quality Measure
switch overlays an error-free reference series on each chart for comparison against
method-generated visualizations and displays the corresponding Structural Sim-
ilarity Index Measure (SSIM) [12]. Due to the large-scale nature of the data,
fetching raw data to verify accuracy would be prohibitively expensive; however,
M4 has been verified as error-free (SSIM = 1) relative to the actual raw data
[6], making it an ideal reference for measuring how closely each method’s output
matches the baseline.

The Visualization Panel
(
B
)
displays time series line charts for the selected

measures and method instances. Each measure is shown in a separate panel, with
visualizations for all configured methods stacked vertically for direct compari-
son. The visualizations are synchronized, ensuring that user interactions such as
panning or zooming on one chart automatically update all others.

The Performance Metrics Panel
(
C
)
, provides insights into the performance

of each configured method and is organized into two complementary views. A

table view
(
C1

)
lists each query with its time interval, chosen dataset, requested

measures, and all methods used, grouping together the performance metrics (e.g.,
query time, network time, rendering time, and data I/O counts). A chart view(
C2

)
displays the same metrics in bar-chart form, with each bar broken down



to show the contributions of querying, networking, and rendering, alongside a
visualization of data retrieval counts.

Additionally, TimeVizBench provides an export functionality, allowing users
to download query history and corresponding performance metrics in CSV for-
mat. Each exported file includes details such as the time interval, selected dataset,
measures requested, and performance metrics recorded for each method. This
feature facilitates further offline analysis, enabling users to systematically com-
pare different configurations, track performance trends over time, and reproduce
evaluations for consistency.

Availability. The tool and its functionalities can be accessed online5. A video
demonstration is also available6.

4 Demonstration Outline

In this section, we describe the demonstration scenario for TimeVizBench, where
attendees will explore methods for scalable, low-latency time series visualiza-
tion. The demonstration showcases TimeVizBench’s ability to benchmark visu-
alization methods across performance and accuracy dimensions using real-world
datasets. Attendees will be asked to perform the following tasks:

– Add an example method for benchmarking, implemented via TimeVizBench’s
interface (e.g., a simple averaging method per pixel column).

– Select a dataset from preloaded time series data (e.g., sensor readings from [8]
or electrical power measurements from [5]) and choose one or more measures
for visualization.

– Instantiate and configure visualization methods, with support for multiple
configurations of the same method.

– Interactively explore time series visualizations, with synchronized panning
and zooming across selected methods for direct comparison.

– Analyze performance metrics, including query time, total response time, and
the amount of data retrieved from the database per method.

– Compare visualization accuracy using SSIM to assess differences between
method-generated visualizations and a reference visualization.

– Export session results, including query history, method configurations, and
performance metrics, for further analysis.

By engaging with these tasks, attendees will gain hands-on experience with
TimeVizBench, understanding how different methods balance interactivity, per-
formance, and accuracy in large-scale time series visualization.

Acknowledgments

This work was supported by the ExtremeXP project (EU Horizon program, GA
101093164).
5 http://timevizbench.imsi.athenarc.gr/
6 https://vimeo.com/1070287190



References

1. Battle, L., Chang, R., Heer, J., Stonebraker, M.: Position statement: The
case for a visualization performance benchmark. In: 2017 IEEE Work-
shop on Data Systems for Interactive Analysis (DSIA). pp. 1–5 (2017).
https://doi.org/10.1109/DSIA.2017.8339089

2. Battle, L., Eichmann, P., Angelini, M., Catarci, T., Santucci, G., Zheng,
Y., Binnig, C., Fekete, J.D., Moritz, D.: Database benchmarking for sup-
porting real-time interactive querying of large data. In: Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. p.
1571–1587. SIGMOD ’20, Association for Computing Machinery, New York,
NY, USA (2020). https://doi.org/10.1145/3318464.3389732, https://doi.org/

10.1145/3318464.3389732

3. Donckt, J.V.D., Donckt, J.V.D., Rademaker, M., Hoecke, S.V.: Minmaxlttb: Lever-
aging minmax-preselection to scale lttb (2023), https://arxiv.org/abs/2305.

00332

4. Eichmann, P., Zgraggen, E., Binnig, C., Kraska, T.: Idebench: A bench-
mark for interactive data exploration. In: Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data. p. 1555–1569. SIG-
MOD ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3318464.3380574, https://doi.org/10.1145/3318464.

3380574

5. Jerzak, Z., Heinze, T., Fehr, M., Grober, D., Hartung, R., Stojanovic, N.:
The debs 2012 grand challenge. DEBS pp. 393–398 (2012), https://debs.org/
grand-challenges/2012/

6. Jugel, U., Jerzak, Z., Hackenbroich, G., Markl, V.: M4: a visualization-oriented
time series data aggregation. Proceedings of the VLDB Endowment 7(10), 797–
808 (2014)

7. Khelifati, A., Khayati, M., Dignös, A., Difallah, D., Cudré-Mauroux,
P.: Tsm-bench: Benchmarking time series database systems for moni-
toring applications. Proc. VLDB Endow. 16(11), 3363–3376 (Jul 2023).
https://doi.org/10.14778/3611479.3611532, https://doi.org/10.14778/

3611479.3611532

8. Lab, I.B.R.: Intel lab dataset (2004), http://db.csail.mit.edu/labdata/

labdata.html

9. Maroulis, S., Stamatopoulos, V., Papastefanatos, G., Terrovitis, M.: Visualization-
aware time series min-max caching with error bound guarantees. Proc. VLDB
Endow. 17(8), 2091–2103 (Apr 2024). https://doi.org/10.14778/3659437.3659460,
https://doi.org/10.14778/3659437.3659460

10. Plaisant, C., Fekete, J.D., Grinstein, G.: Promoting insight-based evalua-
tion of visualizations: From contest to benchmark repository. IEEE Trans-
actions on Visualization and Computer Graphics 14(1), 120–134 (2008).
https://doi.org/10.1109/TVCG.2007.70412

11. Wang, Y., Wang, Y., Chen, X., Zhao, Y., Zhang, F., Wu, E., Fu, C.W., Yu, X.:
Om3: An ordered multi-level min-max representation for interactive progressive
visualization of time series. Proceedings of the ACM on Management of Data 1(2),
1–24 (2023)

12. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing
13(4), 600–612 (2004)


