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Abstract

In this paper, we discuss methods to assess the interestingness of a query in an environment of data cubes.
We assume a hierarchical multidimensional database, storing data cubes and level hierarchies. We start
with a comprehensive review of related work in the fields of human behavior studies and computer science.
We define the interestingness of a query as a vector of scores along different aspects, like novelty, relevance,
surprise and peculiarity and complement this definition with a taxonomy of the information that can be
used to assess each of these aspects of interestingness. We provide both syntactic (result-independent)
and extensional (result-dependent) checks, measures and algorithms for assessing the different aspects of
interestingness in a quantitative fashion. We also report our findings from a user study that we conducted,
analyzing the significance of each aspect, its evolution over time and the behavior of the study’s participants.

1. Introduction

How interesting is a (data cube) query? What
are the fundamental characteristics that make a
(data cube) query interesting for a user?
Assessing query interestingness is important for

at least two common scenarios: (a) a-priori inter-
estingness prediction, and, (b) a-posteriori interest-
ingness evaluation.

• A-priori prediction of query interestingness oc-
curs in the case where a recommender system
is in the process of automatically generating
candidate queries, in order to provide the user
with an overview of the information space, as
well as with suggestions on how to explore it,
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or how to follow up on previous query in an
on-going query session.

• A-posteriori evaluation of query interesting-
ness is relevant in the case where a large num-
ber of queries have already been issued (pos-
sibly by other users too), they are cached and
readily available, and we need to pick the ones
that seem the most significant either in order
to recommend them to a user, or, because they
highlight best the user actions and goals in the
query session.

We note that both scenarios are very relevant to
the recent trend in the data management commu-
nity of automating the exploration of datasets (see
e.g., [1, 2, 3, 4]). Being able to accurately score the
interestingess of an action over the data (in partic-
ular, a query) is instrumental to automatically pro-
ducing explorations, i.e., sequences of actions over
the data. Doing so can be done either by predicting
interestingness in an a-priori fashion, or evaluating
many potentially interesting queries and picking the
best in an a-posteriori fashion. The above are by
no means an exhaustive enumeration of cases where
the evaluation of query interestingness is impor-
tant. The common thread in both cases, however,
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is that both for reasons of efficiency and computa-
tional overhead, and for reasons of cognitive load
of the person who is involved in the process, it is
imperative that a small subset of queries, out of a
large number of candidates, are picked for further
processing.

In our deliberations, we focus on data organized
in cubes due to (a) their extreme relevance to the
problem, as analysts explore data in query sessions
via Business Intelligence tools, (b) their simplic-
ity – as the simplest possible database setting in
terms of how data are presented to the end-users,
(c) their most focused setup, also due to the sim-
plicity of the underlying schema, but also because
the queries follow a pattern of filtering and group-
ing with very specific joins between the dimension
and fact tables, and, (d) the richness of informa-
tion content, due to the presence of hierarchically
structured dimensions that allow manipulating, ex-
amining and understanding the data from multiple
layers of abstraction. In other words, cubes are rel-
evant to the problem, simple, allow focused query
sessions to take place and demonstrate information
richness. This last property is also what differenti-
ates cube queries from regular, relational ones: the
presence of a hierarchical multidimensional space
allows comparisons at multiple levels of granular-
ity that would otherwise be extremely difficult to
express or detect in a relational environment. 2

Therefore, in our work, we assume an OLAP en-
vironment, consisting of cubes, dimensions, levels,
and aggregate cube queries posed in the context of
user sessions. We will also assume the ability to
register, extract, or simply approximate user goals,
beliefs and profiles.

What is then the assessment of interestingness
for cube queries? To address the question, we will
first frame the assessment aspect: we regard as-
sessment as the process where an assessor (person
or software) examines specific properties of an ob-
ject that is evaluated (in our case: cube queries),
within a certain context (in our case, as we will
demonstrate, the multidimensional space, the query
history, the goals, beliefs and interests of the user),
for its degree of support/fulfillment of a property

2The observant reader might have already forecasted that
after having successfully addressed the problem in such a set-
ting, generalizing it to arbitrary database schemata, queries
and user intention is the next step; the simile is like solv-
ing the problem in vitro in a lab, before addressing it in an
industrial factory.

(in our case: interestingness aspects) via a method
that objectively quantifies the above degree of sup-
port via a numerical score or label that is inter-
pretable via a reference scale of assessment.

Intuitively speaking, we need to establish the dif-
ferent facets of interestingness and introduce algo-
rithms to numerically assess the objects of study
(cube queries) for their “performance” with respect
to these properties, in the context of a specific user
(with their own characteristics) and a specific ses-
sion.

A multitude of interestingness measures have
been proposed in several science domains (see
e.g., [5] for pattern mining or [6] for recommender
systems). As Section 2.2 will show, the literature
is huge and not homogeneously covered, with
many facets being largely studied while others
are little-known, and the terminology is some-
times ambiguous. In addition, many existing
measures concern specific situations and usages
and frequently apply only in specific contexts.
For instance, in query recommendation (see e.g.,
[7]), the foresight measure, defined in [8], is
specific to the context of OLAP exploration of
multidimensional data. For a given use case, it
is necessary to choose the more appropriate facets
and measures, and possible extend and personalize
them to fit the use case. Indeed, interestingness
is both multi-faceted and context-dependent, and
the selection and adaptation of adapted measures
is a challenging problem.

In this paper, we provide a systematic taxonomy
of several aspects of interestingness, and their
relationship with the case of data cubes in hierar-
chically structured multidimensional spaces, and,
we propose specific measures and algorithms for
assessing the different aspects of query interesting-
ness in a quantitative fashion.

Our taxonomy is based on fundamental aspects of
assessing interestingness, specifically, (a) the knowl-
edge of (a1) the data and schema that we have,
(a2) the history of past queries and sessions, and
(a3) the user beliefs, goals and interests; (b) the
internal workings of the interestingness assessment
algorithms on how they exploit the aforementioned
input information; and, (c) what is the nature of
the output of the assessment. The framework, be-
ing based on core concepts is general and applica-
ble to several facets of interestingness, allowing the
systematized introduction of algorithms according
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to these fundamental characteristics. Moreover the
framework allows personalization, by taking user
characteristics into account.
Coming to what we mean by the term ‘inter-

estingness’ in this paper, based on the study of
the related literature, both in the area of psychol-
ogy, and in the area of computer science, we have
concluded that interestingness is not a single en-
tity, but rather, a vector of scores along several
facets [9]3. In order to make a solid case for our
taxonomic framework, out of the multitude of pos-
sible facets of interestingness that we encountered,
we decided to focus on four of them that seemed to
be fundamental in the bibliographic search, relevant
to Exploratory Data Analysis and Business Intelli-
gence and reasonably feasible to measure:

• Relevance: the extent to which a piece of in-
formation (here: the results of the query) is re-
lated to the overall information goals and pref-
erences of the user.

• Surprise: the extent to which the result of the
query contradicts and revises the user’s prior
beliefs.

• Novelty : the extent to which the information
presented to the users is new, and previously
unknown to them.

• Peculiarity : the extent to which the query is
different, and not in accordance with the pre-
vious queries of the session or history.

The facets that we choose to explore are funda-
mental, important and grounded on the respective
literature both of computer science and psychology,
as the survey of the related work will soon demon-
strate. This, does not imply, by any means, that
other facets are not present or significant. Thus,
we would like to clarify here, that by no means,
do we claim a completeness result, but rather, we
would like to take the opportunity to assert the
possibility of several more facets to interestingness.
We make a related discussion when presenting
roads for future work in the end of the paper.

3To make concepts clear, we adopt the plain term di-
mension for OLAP dimensions, the terms facet and aspect
for the different aspects of interestingness (called dimensions
in [9]), and the term taxonomic dimension for the different
aspects of the problem definition.

Contributions and Roadmap. The contribu-
tions of this paper, and the way they are laid out
in this document are as follows:

• In Section 2, we perform a comprehensive re-
view of related work. We do not just survey the
related work in the field of computer science,
but lay the foundations of our work from the
literature in the field of psychology and studies
of human behavior. Thus, foundational con-
cepts like interest, curiosity, novelty and sur-
prise act as the starting point for our deliber-
ations.

• In Section 3, we provide a formal framework of
the data space within which we operate, along
with a reference example, to be used through-
out the paper.

• We define the interestingness of a query as
a vector of scores along different dimensions,
which we call aspects, like novelty, relevance,
surprise and peculiarity. To assess these scores,
we need metrics and algorithms. Before pre-
senting such tools, however, in Section 4, we
provide a taxonomy of what information can be
exploited, or, equivalently, is needed, for each
of the aspects of interestingness.

• In the context of the aforementioned taxon-
omy, for all the interestingness aspects, we pro-
vide both syntax-based (result-independent)
and extension-based (result-dependent) mea-
sures and algorithms, structured as follows:
novelty is discussed in Section 5, relevance in
Section 6, peculiarity in Section 7, and, sur-
prise in Section 8.

• We have assessed the proposed framework in
terms of effectiveness and efficiency. Concern-
ing the efficiency of the proposed metrics, a
detailed experimental evaluation has already
been presented in [10] and [11]. Concerning
the effectiveness of the framework of interest-
ingness aspects, in Section 9, we present the
results of a user study that we conducted, ana-
lyzing the significance of each aspect, its evolu-
tion over time and the behavior of the study’s
participants. We demonstrate that although
no particular aspect dominates the overall in-
terest for a query, surprise and relevance seem
to be more significant. Novelty seems to gain
some significance later in the user delibera-
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tions, whereas surprise progressively loses sig-
nificance as the time progresses.

• Finally, we conclude our deliberations in the
final section, with points for future work.

2. Related work

In this Section, we start by surveying the different
aspects of interestingness in the field of psychology
and the study of human behavior. Then, we move
on to survey how computer science has attempted
to address the issue.

2.1. Interestingness from the viewpoint of the study
of human behavior

How can we define interestingness? In this sub-
section, we frame an answer to this question from
the viewpoint of the study of human behavior.

Interest. To the best of our knowledge, there is no
formal definition of interestingness. We define in-
terestingness as the property of an object, event or
piece of information to be of interest to an individ-
ual. Of course this delegates the definition to the
task of defining interest.
Online Definitions. Online definitions of inter-

est return “the feeling of wanting to know or learn
about something or someone.”4, “the feeling of
wanting to give your attention to something or of
wanting to be involved with and to discover more
about something”5, “a: feeling that accompanies or
causes special attention to an object or class of ob-
jects; concern; b: something that arouses such at-
tention; c: a quality in a thing arousing interest”6

- in other words, it appears that interest is mostly
characterized by the urge of learning more about a
subject. Our exploration of Wikipedia7 revealed a
consistent definition of interest as “Interest is a feel-
ing or emotion that causes attention to focus on an
object, event, or process. In contemporary psychol-
ogy of interest, the term is used as a general concept
that may encompass other more specific psycholog-
ical terms, such as curiosity and to a much lesser

4https://en.oxforddictionaries.com/definition/

interest
5https://dictionary.cambridge.org/dictionary/

english/interest
6https://www.merriam-webster.com/dictionary/

interest
7https://en.wikipedia.org/wiki/Interest_(emotion)

degree surprise”. Practically, this means that the
interestingness of a piece of information is
the degree to which this piece of information ig-
nites the emotion of curiosity (which in terms,
means the desire to acquire more knowledge on
the issue), or (less importantly) surprise (i.e.,
the detection -and adaptation to- a discrepancy
between newly acquired information and pre-
existing cognitive schemas).
Interest from the viewpoint of psychology. In

more technical terms, psychology characterizes in-
terest along similar aspects. In [12], interest is char-
acterized as an emotion whose function is to moti-
vate learning and exploration. The author explains
that it is hard to structure characteristics of in-
terest due to between-people variability (different
people are interested in different things) and within-
person variability as interest changes over time. As
emotions come from appraisals, i.e., the way peo-
ple evaluate events, the author argues that inter-
est comes from two appraisals: (a) the evaluation
of an event’s novelty, complexity and surprise
(“Intuition and decades of research (Berlyne, 1960)
show that new, complex, and unexpected events can
cause interest”) and (b) the evaluation of the com-
prehensibility of an event.

In [13], the authors provide a definition of interest
from the viewpoint of psychology:“We define inter-
ests as trait-like preferences for activities, contexts
in which activities occur, or outcomes associated
with preferred activities that motivate goal-oriented
behaviors and orient individuals toward certain en-
vironments.” The definition highlights two aspects
of interests: (a) they are trait-like and (b) they
are contextualized, because of an object or activ-
ity of interest. According to the authors, interest
not only determines choices that people make, but
also the success they achieve. In [14], a new the-
ory combines two aspects. On the one hand, inter-
est, referred to as situational interest, is defined as
“momentary feelings of curiosity, fascination, and
enjoyment triggered by an environment or a task”
along with “cognitive evaluations of the value or im-
portance of the environment or task”. On the other
hand, interests are also traits, referred to as dispo-
sitional or individual interests. The authors show
how the two aspects can be combined and empha-
size the contextualization of interest, i.e., the need
for an object of interest in relation to an environ-
ment.

On the basis of the aforementioned aspects of in-
terest, we further explore the related concepts of
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novelty, curiosity and surprise, in order to deter-
mine more concretely what interest is all about. In
the context of these deliberations, peculiarity also
emerges as an important factor too.

Curiosity. Are you hungry for new information?
According to [15], “curiosity may be defined as the
desire to know, to see, or to experience that mo-
tivates exploratory behaviour directed towards the
acquisition of new information”. [15] gives a vivid
presentation of how antagonizing theories on cu-
riosity can converge to a unifying model. Specifi-
cally, the curiosity-drive theory treats curiosity as
a need to acquire information in order to close a
knowledge gap between information that is known
and information that is unknown to them. This is
inline with one of the most highly cited works in
the area [16]. The optimal stimulation theory sug-
gests that the exploration for information that takes
place concerns pleasurable states of arousal. The
combination of these two models into a single, “in-
terest/deprivation” model (where curiosity stems
from ‘deprivation of information’ or from ‘interest’
(towards pleasing emotions)) is also discussed. [15]
also makes a connection of this unifying model to
the different neural circuits of wanting and liking
which are correlated but distinct and discusses the
issue of indifference/boredom/lack of curiosity.
So how is curiosity related to a person’s interest

after all? Depending on whether we are hungry to
eliminate our ignorance, or simply enjoying learn-
ing something new, the answer can differ. In the
first case, when the ‘wanting’ of information is in-
tense, a concrete answer to an underlying question,
the ‘solving of a puzzle’ and, in summary, the clos-
ing of the knowledge gap, are the issues that
have to be addressed. In the second case, novelty
via new and unusual stimuli (‘tell me some-
thing I don’t know’) seems to be the answer (and
esp., the cure for boredom when both the ‘wanting’
and ‘liking’ motives are low).
We refer the interested reader to [17] for a re-

cent survey on the developments in the area of un-
derstanding curiosity; [16] albeit older gives a nice
categorization of the efforts encountered up to its
time (including a historic overview starting from
Aristotle and St. Augustine, to Bentham, Kant,
Freud and Pavlov) and also offers the information
gap theory which seems to withstand criticism up
to now.

Novelty. [18] discusses novelty from the viewpoint

of psychology with respect to when people char-
acterize events as novel, and how the mental pro-
cessing of these events takes place. Interestingly,
people are predominately correlating positive feel-
ings to the opposite of novelty, familiarity. Yet, this
does not necessarily mean that novelty is correlated
with negative feelings; in fact, it appears that both
our attraction/aversion to a novel event, as well as
the characterization of the event itself as novel or
not, depend on several other factors (predisposition
being a major one).

Novelty occurs when an event (in our case:
demonstrated information) does not fit existing
mental categories. People are not necessarily nega-
tively predisposed to such a situation, due to their
inherent ‘motive to know’ (as already mentioned
for curiosity, closing knowledge gaps can produce
pleasant feelings). Then, people try to understand
it and in order to do so, they apply a typical mental
reaction: they try to relate it to events or informa-
tion with which they are already familiar. Prac-
tically this means that people try first to abstract
the incoming input and categorize it in larger, pre-
existing mental categories (practically searching for
similarities with these larger categories). If this at-
tempt fails, the focus is shifted to details and dis-
similarities from more detailed mental categories,
on the grounds of detailed aspects. Notably, the
above process is not followed in the case of threat,
where people immediately focus to the details, as
typically happens when self-protective motives pre-
dominate.

Overall, novelty is strongly correlated to curios-
ity and occurs when a person fails to include the
demonstrated information / event / object into a
pre-existing mental category. The processing
of novel information starts from trying to align it
with high-level, abstract phenomena that promote
the detection of commonalities, and later, esp.,
if the commonalities are not there, with a drilling
into the details that cause dissimilarities.

Surprise. Surprise is the third aspect of interest
that we discuss. [19] defines surprise as “A pecu-
liar state of mind, usually of brief duration, caused
by unexpected events of all kinds . . . (via) . . . an
evolved mechanism whose function is (a) to de-
tect discrepancies between cognitive schemas and
newly acquired information, and (b) if they are de-
tected, to instigate processes that enable the short-
and long-term adaptation to them.” Practically
speaking, the main idea is that our beliefs about
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objects, events and their sequences are structured
in so-called ‘schemas’ and whenever a significant
discrepancy (above a certain threshold) is detected
between the underlying belief schema and a new
input (new information, in our case), the surprise
mechanism elicits a surprise reaction that involves
(a) analysis and evaluation of the event, (b) the
possible reaction to it, and (c) the revision and
adaptation of the schema, to remove the discrep-
ancy. Therefore, surprise occurs when our previ-
ous beliefs are disconfirmed or contradicted. In fact,
there are two types of surprise depending on what
kind of belief is challenged: (a) misexpected events
occur when a belief is directly challenged (e.g., I
originally believed that sales in Athens are approx-
imately 100K and they turn out to be less than
50K, which I deem as an important discrepancy),
and, (b) unexpected events occur when an implied
belief is challenged, due to the challenging of back-
ground or contextual beliefs (e.g., I expected to see
a drop in the sales of wine, because the price had
gone up, but instead consumption turned out to be
steady).
Surprise is different from novelty: whereas sur-

prise involves new information that challenges the
things we already know, novelty involves new in-
formation concerning things that we did not previ-
ously know.
An important lesson coming from the study of

the mechanisms of surprise is that when attempt-
ing to enrich our data exploration systems with a
forecasting of what can be surprising for the user,
it is important to (a) try to structure the beliefs
of the users (practically: the values they expect
to see) for the explored data in a structured schema
(which can include rules, inferences, probabilities,
. . . , based on factual data, the history of what they
have seen before, explicitly stated assumptions that
the users make, etc.), and, (b) to incorporate mech-
anisms of adapting this schema to new information,
as it progressively demonstrates itself.
In the context of these deliberations, peculiarity,

novelty and relevance also emerge as important fac-
tors too, both collaborating towards satisfying the
analyst’s curiosity.

Satisfying the Analyst’s Curiosity. Both [16] and
[17] discuss the efforts of D.E. Berlyne [20] to es-
tablish a taxonomy on curiosity. The taxonomy
classifies curiosity as perceptual (typically encoun-
tered in animals) vs epistemic (mostly encountered
in humans, aimed at acquiring knowledge) on the

one hand, as well as specific (targeted at a particu-
lar piece of information) vs diversive (not associated
with specific rewards or punishments). Diversive
curiosity - which is not part of the above-mentioned
aspects of interestingness – has been heavily criti-
cized as concerns its essence as curiosity or not (see
[16] for a discussion), yet it reveals a new possibil-
ity, the one of seeking information beyond a spe-
cific task, the one that [15] tries to unify into a sin-
gle theory with the closing of an information gap.
[17] makes an interesting observation on informa-
tion tradeoff tasks: “The optimal strategy requires
adjudication between exploration (sampling to im-
prove knowledge and, therefore, future choices) and
exploitation (choosing known best options). Sam-
pling typically gives a lower immediate payoff but
can provide information that improves choices in
the future, leading to greater overall performance.”
In other words, the idea of sampling the informa-
tion space for a broader understanding of what lies
in it, might provide delayed rewarding, but overall
greater performance. This view is further enhanced
by the authors discussing how a longer time horizon
strengthens the propensity of subjects to explore, as
opposed to behaviors in the knowledge that the con-
text will dramatically change soon, in which case
subjects opt for more immediate rewards.

Thus, investing into understanding the informa-
tion space in its entirety seems to be an inherent
aspect of curiosity. Curiosity per se is a trait of the
analyst’s mind and not an aspect of query inter-
estingness; however, to translate curiosity to query
interestingness aspects on the basis of the aforemen-
tioned discussion, we employ relevance, novelty
and peculiarity. Whereas relevance is targeting
towards pursuing a specific, exploitative goal, pe-
culiarity and novelty aim to strengthen the under-
standing of the broader information space: novelty
in terms of information not previously known, and
peculiarity in terms of information significantly dif-
ferent than what is already known.

2.2. Earlier proposals of interestingness measures

Various interestingness measures were proposed
in the different areas of data exploration. In this
subsection we discuss interestingness measures pro-
posed for (i) pattern mining, (ii) recommendation,
and, (iii) interactive exploration of multidimen-
sional datasets.
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2.2.1. Interestingness criteria for pattern mining

In [5], the authors point out that interestingness
is a broad concept and identify from the literature
9 criteria to determine whether or not a pattern is
interesting: conciseness, generality/coverage, relia-
bility, peculiarity, diversity, novelty, surprisingness,
utility and actionability/applicability. Specifically:

• Conciseness. A pattern is concise if it contains
relatively few attribute-value pairs, while a set
of patterns is concise if it contains relatively
few patterns.

• Generality/Coverage. A pattern is general if it
covers a relatively large subset of a dataset.

• Reliability. A pattern is reliable if the relation-
ship described by the pattern occurs in a high
percentage of applicable cases.

• Peculiarity. A pattern is peculiar if it is far
away from other discovered patterns according
to some distance measure.

• Diversity. A pattern is diverse if its elements
differ significantly from each other, while a set
of patterns is diverse if the patterns in the set
differ significantly from each other. Diversity
is a common factor for measuring the interest-
ingness of summaries.

• Novelty. A pattern is novel to a person if he or
she did not know it before and is not able to
infer it from other known patterns.

• Surprisingness. A pattern is surprising (or un-
expected) if it contradicts a person’s existing
knowledge or expectations. The difference be-
tween surprisingness and novelty is that a novel
pattern is new and not contradicted by any
pattern already known to the user, while a sur-
prising pattern contradicts the user’s previous
knowledge or expectations.

• Utility. A pattern is of utility if its use by a
person contributes to reaching a goal.

• Actionability/Applicability. A pattern is ac-
tionable (or applicable) in some domain if it
enables decision making about future actions
in this domain.

In [5], the authors categorize these criteria in 3
groups: i) objective measures, based only on the

raw data (generality, reliability, peculiarity, diver-
sity, conciseness), like for instance the classical sup-
port, ii) subjective measures, considering both the
data and the user (surprise and novelty), like for
instance the informational content [21], and iii) se-
mantic measures, based on the semantics and expla-
nations of the patterns (utility and actionability),
like for instance measures based on user preferences
[22].

According to De Bie [21], subjective interest-
ingness is particularly well adapted for exploratory
data mining, whose goal is to pick patterns that will
result in the best updates of the user’s belief state,
while presenting a minimal strain on the user’s re-
sources. The data mining process consists of ex-
tracting patterns and presenting first those that are
subjectively surprising, and then refining the belief.
De Bie [21] introduced a formal framework for defin-
ing measures of surprise for exploratory data min-
ing, using an information-theoretic approach. The
framework consists of quantifying the interactive
exchange of information between data and user, ac-
counting for the user’s prior belief state. Of course,
in this context, one challenge is how to define and
update the belief of the user. Approximating the
belief that the user would attach to the result being
expected is modeled as a background distribution,
namely, a probability measure over the exploration
results. This background distribution, which ini-
tially can e.g., be uniform over all the exploration
results, is updated after each result is presented to
the user.

On a final note, we would like to point out that
peculiarity is of particular importance in data min-
ing. Assume a set of objects X = {x1, . . . , xn} of
any kind. When is an item x peculiar? The typical
answer to the question, which is pretty much the
definition of outlierness, is that x is peculiar when-
ever it differs a lot from X - {x}. In particular, [23]
provides the following definition for outliers: “An
outlier is an observation which deviates so much
from the other observations as to arouse suspicions
that it was generated by a different mechanism.”

To assess the outlierness, or peculiarity of a data
value, [23] suggests a few nice ideas, including a
convex hull algorithm and a K-th nearest neigh-
bor (kNN) distance algorithm. Quoting from [23]:
“Because outliers are defined as data points that
are far away from the “crowded regions” (or clus-
ters) in the data, a natural and instance-specific
way of defining an outlier is as follows: “The
distance-based outlier score of an object O is its
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distance to its kth nearest neighbor. ”

2.2.2. Interestingness criteria for recommendations

There is a long discussion about interestingness
in the area of evaluating recommender systems
[24, 25, 6]. We mention [6] as an excellent recent
survey on the topic. The survey presents 4 crite-
ria (diversity, serendipity, novelty, and coverage),
in addition to the traditional accuracy, for evaluat-
ing the quality of a recommendation.

• Diversity. The average/aggregated pairwise
distance between items in the recommendation
list, according to some distance measure.

• Serendipity. It refers to the process of “finding
valuable or pleasant things that are not looked
for”. It consists of two components: surprise
and relevance. A common practice is to com-
pare the generated recommendations with rec-
ommendations produced by a primitive base-
line system, as the goal of a serendipitous rec-
ommender is to suggest items that are difficult
to predict.

• Novelty. A novel recommended item is one
that is previously unknown to the user.

• Coverage. It reflects the degree to which the
generated recommendations cover the catalog
of available items.

[6] defines novelty for recommender systems as
“A novel recommended item is one that is previ-
ously unknown to the user” and then moves one to
discuss the difference of novelty with (a) serendip-
ity (a serendipitous item must be both novel and
surprising) and (b) unexpectedness (an unexpected
item does not have to be novel to the user, but
only relevant and different from the user’s expec-
tations of what would be recommended to them).
Recently, [26] provides an alternative perspective
where structural similarity is used to recommend a
new query to the user, based on the user’s query
session and a history of sessions over the database.

Query recommendation techniques (see e.g., [7,
8]) are usually evaluated with interestingness mea-
sures coming from the literature on recommender
systems exposed above. We mention the more
OLAP-specific foresight measure [8], that quanti-
fies how distant is the recommendation from the
current point of exploration.

2.2.3. Interestingness criteria for interactive explo-
ration of multidimensional datasets

Started with the seminal papers by Sunita
Sarawagi et al. [27], various interestingness criteria
have been proposed to qualify an interesting prop-
erty or pattern for a subset of the data in a dataset,
often called insight, highlights, findings, discoveries,
etc., typically characterized by an interestingness
score [28, 29, 1, 2, 3]. Two works addressed the
classification of these criteria [5, 9].

In [5], the authors also review interestingness
measures for what they call summaries, i.e., aggre-
gated cross-tabs corresponding to the result of an
OLAP query, where numeric values (i.e., measures)
are aggregated by several criteria (i.e., dimensions).
Out of the 9 criteria defined for pattern interesting-
ness, 4 are adapted to summaries:

• Diversity. Whether a summary is diverse is
determined by two factors: the proportional
distribution of classes in the population, and
the number of classes.

• Conciseness and Generality. Concise sum-
maries are easily understood and remembered,
and thus more interesting than complex ones.
Then, a summary is more concise if it is more
general (i.e., aggregated).

• Peculiarity. A cell in a summary is peculiar if
it is differs from the other cells in the summary.

• Surprisingness/Unexpectedness. A summary
is surprising if it deviates from user’s expecta-
tions. For example, variance can be calculated
by replacing observed probabilities by expected
probabilities.

According to the classification of [5], the first
three criteria are objective and the last one is sub-
jective.

In our previous work [9], we have previously iden-
tified four main aspects that differ in what is con-
trasted to generate interestingness: (i) peculiarity
(P): the similarity of a cube query to a user’s history
is assessed (either at the level of the query expres-
sion or at the level of the query results); (ii) novelty
(N): a cube query is contrasted to a user’s explo-
ration history; (iii) relevance (R): a cube query is
contrasted to a user’s exploration goal; and (iv) sur-
prise (S): the result of a cube query is contrasted
to a user’s belief. We adopt this classification to re-
view the various interestingness measures proposed.
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Peculiarity. It appears that peculiarity has at-
tracted most of the attention in the literature. The
main measures defined in this aspect concern either
(i) the significance, (ii) the coverage, or (iii) the co-
herency of the insights.
The significance of an insight [30, 31, 32, 33,

34, 35] allows to quantify its importance among its
peer data. This importance is often related to the
data distribution. [33] performs a preliminary ad-
hoc attempt to measure significance via the differ-
ence in z-scores of the data obtained in two con-
secutive exploration steps. Recently, a trend is to
turn insights into hypothesis testing [31, 32, 35],
which has many advantages: (i) using the p-value
for the insight significance, (ii) defining false dis-
coveries (type-1 errors, e.g., visualizations support-
ing a non-significant insight) and false omissions
(type-2 errors, e.g., visualizations not supporting
a significant insight), (iii) defining credibility (e.g.,
percentage of visualizations supporting an insight).
However, since the risk of type-1 error increases as
more than one hypothesis are considered at once, a
correction is needed in the statistical test to ensure
that non-spurious insights are reported [31].
Discovery-driven analysis [36, 28, 27, 37] for mea-

suring cell interestingness in the context of cube
exploration is mostly based on peculiarity-related
measures for individual cells. Discovery-driven
analysis guides the exploration of a datacube by
providing users with interestingness values for mea-
suring the peculiarity of the cells in a data cube,
according to statistical models, e.g., based on the
maximum entropy principle, and leveraging the in-
trinsic structure of multidimensional information.
From an initial user query, the system automat-
ically calculates 3 kinds of interestingness values
for each cell in the query result: (i) SelfExp mea-
sures the difference between the observed and antic-
ipated values (the latter are calculated statistically
by computing the mean of subsets of attributes),
(ii) InExp is obtained as the maximum of SelfExp
over all cells that are under this cell (those that re-
sult from a drill down), and (iii) PathExp is cal-
culated as the maximum of SelfExp over all cells
reachable by drilling down along a given path. The
DIFF, INFORM and RELAX advanced OLAP op-
erators proposed in [36, 28, 37] use such interesting-
ness values to recommend relevant cells for explain-
ing drops or increases, or for recommending areas
of a cube that should surprise the user, based on
their history with the cube.
Klemettinen et al. [38] use skewness, as a pecu-

liarity measure of asymmetry in data distribution,
for discovering interesting paths and guiding the
navigation in a data cube. Given a cuboid, the
possible drill-downs are explored, measuring skew-
ness and generating skew-based navigation rules for
the more significant paths. Skewness is computed
observing the underlying facts (the raw data that
is aggregated), looking for outliers or substantial
differences with other facts. Based on skewness,
Kumar et al. [39] propose interestingness measures
based on the unexpectedness of skewness in navi-
gation rules and navigation paths.

Fabris and Freitas [40] defined interestingness
measures for attribute-value pairs in a data cube:
the I1 measure reflects the difference between the
observed probability of an attribute-value pair and
the average probability in the summary and the
I2 measure reflects the degree of correlation among
two attributes. Both measures can be seen as value-
based conciseness.

Two also recent works [41, 42] are concerned with
detecting the validity of insights gained by users
when examining query answers. As with other
works measuring peculiarity by leveraging the na-
ture of OLAP cubes, this is again achieved by sta-
tistical tests comparing data at different levels of
detail.

Measuring the coverage of the insight consists of
quantifying how the subject of an insight represents
the entire dataset [30, 32, 43]. In most cases, anti-
monotonic conditions are checked to prune insights,
like, for instance: if the subject of insight A is a
superset of the subject of insight B, then the impact
of A should be no less than the impact of B.

Characterizing the coherency of an insight com-
pares the insight with others in the exploration ses-
sion, to check whether a given exploratory opera-
tion is coherent at a certain point. For instance, in
[2] heuristic classification rules are used to express
general properties of the operations sequence (e.g.,
a group-by on a continuous, numerical attribute
is incoherent) or on the input dataset’s semantics
(e.g., if the user focuses on flight delays, aggregat-
ing on the “departure-delay time” columns is pre-
ferred). Other works use distances between explo-
ration actions to measure how coherent a sequence
of actions is; for instance, in [35] a weighted Ham-
ming distance of relational query parts is used.

Novelty. Interestingness measures of the novelty
aspect are used to characterize data in terms of ei-
ther being new observations or operations in terms
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of favoring going further in the exploration. In its
simplest expression, novelty can simply be mea-
sured as a Boolean indicating whether some data
have already been seen [33]. However, more ad-
vanced definitions exist. For instance, in [3], a di-
versity measure is computed as the minimal Eu-
clidean distance between the current observation
and all the previous displays obtained. In [44], cu-
riosity is inversely proportional to the number of
times a result is encountered.

Relevance. Interestingness measures of the rele-
vance aspect are used to characterize data in terms
of the user being familiar with them. This aspect
seems to be the one that attracted less attention. In
[44], a familiarity measure is defined as the concen-
tration ratio of target objects in a set. It is imple-
mented as a variant of the Jaccard index between
objects encountered during the exploration and a
given target set of familiar objects. This measure
is expected to increase as the exploration of the
dataset goes on, to avoid over-exploiting a set of
familiar objects.

Surprise. Chanson et al. [45], propose a way to
measure subjective interestingness for exploratory
OLAP, inspired by De Bie’s work [21]. The user
belief is inferred based on the user’s past interac-
tions over a data cube, the cube schema and the
other users’ past activities. This belief is expressed
by a probability distribution over all the query parts
potentially accessible to the user. Surprise is then
measured as in De Bie’s work. Francia et al. [33]
propose to measure surprise as the proportion of
values that have not been seen frequently, presented
in models (e.g., clustering) extracted from the data
under observation. In a quite different setting, Sin-
tos et al. [46] use the term surprise to refer to the
extent of the incorrectness of a value in a data set –
practically measuring the amount of false informa-
tion of two values before and after a data cleaning
procedure.

Combining interestingness measures. Many works
combine various interestingness measures, often
measures from different aspects. As to how they
are combined, there is no consensual approach. For
instance a ratio is used in [21], a weighted sum is
used in [2, 33, 44], and a product is used in [30, 35].
Djedaini et al. [47, 48] use supervised classifica-
tion techniques for learning two interest measures
for OLAP queries: focus, that indicates to what ex-
tent a query is well detailed and related to other

queries in an exploration, indicating that the user
investigates in details precise facts and learns from
this investigation [47], and contribution, that high-
lights to what extent a query is important for an
exploration, contributing to its interest and quality
[48].

2.3. Comparison to related work

There are several axes of comparison to related
work for this paper.

What is it so important that makes cube queries
special?. As already mentioned in the introduc-
tion, the presence of multidimensional spaces with
dimensions that are hierarchically structured pro-
vides a very specific environment, where cubes at
different levels of detail can be related, although
potentially defined with different schemata or se-
lection conditions. This facilitates the assessment
of all the different aspects of interestingness at a
much deeper level, as we can relate cube queries
that would otherwise be unrelated.

Given the fact that there is so much previous lit-
erature in the field of data and knowledge manage-
ment on interestingness, why is there a need for
a new paper?. A second point that differentiates
our work from the rest of the literature has to do
that we follow a basic-principles approach, starting
from the fundamentals of interest and its aspects
in psychology, to establish the ground upon which
our modeling takes place. Moreover, in Section 4
we also provide a structured taxonomy of how the
analysts’ goals, beliefs and interests as well as the
computational environment relates to the evalua-
tion of the different aspects of interestingness. To
the best of our knowledge, this is the first time that
such a structuring (also involving the multi-level hi-
erarchical dimensions of the data space) takes place.

Comparison to our own previous work. Compared
to our previous work on cell interestingness [9],
apart from the basic aspects of interestingness, the
two papers have very little to share. In [9], we deal
with the problem of evaluating interestingness of
individual cells rather than queries, which means
we are restricted to the coordinates of the cells,
rather than taking into consideration the seman-
tics of the queries. However, a query is much more
than a composition of its result cells, esp., if the
interestingness of the query is to be assessed be-
fore deciding if we will execute it. To answer the
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reasonable question on why a recommender system
might a-priori generate several candidate queries,
we believe it is sufficient to mention that different
queries rank differently according to different in-
terestingness aspects: therefore, several candidate
queries may qualify based on different criteria. A
trade-off of performance and interestingness might
also affect the recommendation of queries.

Moreover, in [11], we have presented a prelimi-
nary version of the present work as a first effort ever
to explicitly handle the issue of assessing the inter-
estingness of cubes and cube queries. The present
paper extends [11] with (i) an extensive review of
related work (the current section), (ii) a taxonomy
of the problem’s parameters, presented in Section 4,
that allows us to clarify the problem and organize
the algorithms assessing cube query interestingness
in a principled way, (iii) several algorithms and met-
rics not mentioned in [11] for lack of space, and,
(iv) a user study, to evaluate the effectiveness of
the proposed algorithms and assess the significance
and evolution over time of the assessed metrics.

A longer version of the current paper is found in
[10] with more metrics and experiments.

3. Formal Background & Reference Exam-
ple

In our deliberations, we assume the formal model
of [49] (practically, extending [50]) for the defini-
tion of the multidimensional space, cubes and cube
queries. We follow a simplified apodosis of the for-
malities here to allow for a concise description.

3.1. Formal Background

Multidimensional space. Data are defined in
the context of a multidimensional space. The mul-
tidimensional space includes a finite set of dimen-
sions. Dimensions provide the context for factual
measurements and will be structured in terms of di-
mension levels, which are abstraction levels that aid
in observing the data at different levels of granular-
ity. For example, the dimension Time is structured
on the basis of the dimension levels Day, Month,
Y ear, All.

A dimension level L includes a name and a fi-
nite set of values, dom(L), as its domain. Follow-
ing the traditional OLAP terminology, the values
that belong to the domains of the levels are called
dimension members, or simply members (e.g., the

values Paris, Rome, Athens are members of the do-
main of level City, and, subsequently, of dimension
Geography).

A dimension is a non-strict partial order of a fi-
nite set of levels, obligatorily including (a) a most
detailed level at the lowest possible level of coarse-
ness, and (b) an upper bound, which is called ALL,
with a single value ‘All’. We denote the partial or-
der of dimensions with ⪯, i.e., D.Llow ⪯ D.Lhigh

signifies that D.Llow is at a lower level of coarseness
than D.Lhigh in the context of dimension D – e.g.,
Geo.City ⪯ Geo.Country.

We can map the members at a lower level of
coarseness to values at a higher level of coarseness

via an ancestor function ancL
h

Ll (). Given a member
of a level Ll as a parameter, say vl, the function

ancL
h

Ll () returns the corresponding ancestor value,

for vl, say vh, at the level Lh, i.e., vh = ancL
h

Ll (vl).
The inverse of an ancestor function is not a func-
tion, but a mapping of a high level value to a set
of descendant values at a lower level of coarseness
(e.g., Continent Europe is mapped to the set of all
European cities at the City level), and is denoted

via the notation descL
l

Lh(). For example Europe =
ancContinent

City (Athens). See [49] for more constraints
and explanations.

Cubes. Facts are structured in cubes. A cube
C is defined with respect to several dimensions,
fixed at specific levels and also includes a number
of measures to hold the measurable aspects of its
facts. Thus the schema of a cube is a set of at-
tributes, including a set of dimension levels (over
different dimensions) and a set of measures that in-
clude factual measurements for the data stored in
the cube. Thus, the schema of a cube schema(C),
is a tuple, say [D1.L1, ..., Dn.Ln,M1, ...,Mm], with
the combination of the dimension levels acting as
primary key and context for the measurements and
a set of measures as placeholders for the (aggre-
gate) measurements. If all the dimension levels
of a cube schema are the lowest possible levels of
their dimension, the cube is a detailed cube, typi-
cally denoted via the notation C0 with a schema
[D1.L

0
1, ..., Dn.L

0
n,M

0
1 , ...,M

0
m]. The results of a

query q is a set of cells that we denote as q.cells.

Each record of a cube C under a schema
[D1.L1, . . . , Dn.Ln,M1, . . . ,Mm], also known as a
cell, is a tuple c= [l1, . . . , ln,m1, . . . ,mm], such that
li ∈ dom(Di.Li) and mj ∈ dom(Mj). The vector
[l1, . . . , ln] signifies the coordinates of a cell. Equiv-
alently, a cell can be thought as a point in the mul-
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tidimensional space of the cube’s dimensions anno-
tated with, or hosting, a set of measures.
A cube c includes a finite set of cells as its exten-

sion, which we denote as q.cells.
Queries. A cube query is a cube too, specified

by (a) the detailed cube over which it is imposed,
(b) a selection condition that isolates the facts that
qualify for further processing, (c) the grouping lev-
els, which determine the coarseness of the result,
and (d) an aggregation over some or all measures
of the cube that accompanies the grouping levels in
the final result.

q = < C0, ϕ, [L1, ..., Ln,M1, ...,Mm], [agg1(M
0
1 ),

...,aggm(M0
m)] >

We assume (again, intentionally simplifying the
model of [50]):

• Selection conditions which are conjunctions of
atomic filters of the form L = value, or in gen-
eral L ∈ {v1, . . . , vk}. Although our theoret-
ical framework covers the latter, as the most
general case, typically, the encountered expres-
sions in practice are of the former, special-
case, format. In any case, what is impor-
tant is the property that selection conditions
of this form can eventually be translated to
their equivalent selection conditions at the de-
tailed level, via the conjunction of the detailed
equivalents of the atoms of ϕ. Specifically, as-
suming an atom L ∈ {v1, . . . , vk}, then L0 ∈
{descL0

L (v1)∪ ...∪ descL
0

L (vk)}, eventually pro-
ducing an expression L0 ∈ {v′1, ..., v′k′} is its
detailed equivalent, called detailed proxy. The
reason for deriving ϕ0 is that ϕ0, as the con-
junction of the respective atomic filters at the
most detailed level, is directly applicable over
C0 and produces exactly the same subset of the
multidimensional space as ϕ, albeit at a most
detailed level of granularity. For example, as-
sume Y ear ∈ {2018, 2019}, its detailed proxy
is Day ∈ {2018/01/01, . . . , 2019/12/31}. We
assume a single atomic filter per dimension.
For a dimension D that is not being explic-
itly filtered by any atom, one can equivalently
assume a filter of the form D.ALL = all.

• We define a grouping level for each dimension
(remember that every dimension D includes a
single-valued level D.ALL, practically signify-
ing the exclusion of the dimension from the

grouping – i.e., we group for all the members
of the dimension).

• Aggregation functions aggi belong to the set
of frequently used aggregate functions like
{sum,max,min, count, ...} with the respective
well-known semantics.

The semantics of the query are:
(i) apply ϕ0, the detailed equivalent of the selec-

tion condition over C0 and produce a subset of the
detailed cube, say q0, known as the detailed area of
the query,
(ii) map each dimension member to its ancestor

value at the level specified by the grouping levels
and group the tuples with the same coordinates in
the same same-coordinate group,
(iii) for each same-coordinate group, apply the

aggregate functions to the measures of its cells, thus
producing a single value per aggregate measure.
A cube query is also a cube under the schema

[L1, ..., Ln,M1, ...,Mm], with the set of cells of the
query result (denoted as q.cells) as its extension.

Signatures and detailed areas. We will use
the term signature to refer to sets of coordinates
that specify an area of interest in the multidimen-
sional space. Specifically:

• The signature of a cell c, denoted as c+, is its
coordinates, that uniquely identify the area of
the multidimensional space that pertains to it.

• The signature of an atomic filter
α : L ∈ {v1, . . . , vk} is the value set
{v1, . . . , vk} and it is denoted as α+.

• The signature of a selection condition of the
form ϕ : α1 ∧ · · · ∧ αn (assuming a single atom
per dimension) is the expression ϕ+ : α+

1 ×· · ·×
α+
n . In other words, we compute the Cartesian

product of the values of the involved atom sig-
natures.

• The signature of a query q, q+ is the set of
coordinates computed as follows: (a) compute
the signature, i.e., the set of coordinates per-
taining to ϕ0, the detailed equivalent of its se-
lection condition; (b) within each of these coor-
dinates, replace the (detailed) value of each di-
mension by its ancestor value at the level of the
schema of the query. This guarantees that the
resulting coordinates will be the coordinates of
the query result.
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The detailed signatures of the above categories
are produced by replacing the respective values
of their regular signatures with the expression
descL

0

L (·), computing the respective set of descen-
dant values and taking their union. The detailed
signature of a query is (simply) the set of coordi-
nates that pertain to the signature of ϕ0.

The detailed proxies of expressions are the respec-
tive expressions transformed at the most detailed
level for each of the involved dimensions. The de-
tailed proxy of a query

q = < C0, ϕ, [L1, ..., Ln,M1, ...,Mm], [agg1(M
0
1 ),

...,aggm(M0
m)] >

is the query (i.e., an expression again)

q0 = < C0, ϕ0, [L0
1, ..., L

0
n,M

0
1 , ...,M

0
m],

[agg1(M
0
1 ), ...,aggm(M0

m)] >

Detailed areas are sets of cells, pertaining to an
aggregate cell, or set of cells, like, e.g., the result of
a query.
The detailed area of a cell c :< v1, . . . , vn > is the

set of descendant cells that can be obtained by re-
placing each of its coordinates, say vi, by descL

0

L (vi)
and taking the Cartesian product of each such value
set.
The detailed area of the query q is the set of cells

of the result q0, q0.cells.

History. A session S is a list of cube queries S =
{q1, ..., qn} that have been recorded. We assume the
knowledge of the syntactic definition of the queries,
and possibly, but not obligatorily, their result cells.
A session history of a user is a list of sessions,

resulting in a list of queries, following the order of
their sessions.
The cell history, or simply, history, of a session

history is the set of cells that belong to the queries
of the session history. The history of detailed equiv-
alents is the set of detailed equivalents of the cells
of the query history.

3.2. Reference Example

In this example, we work with the loan cube from
the PKDD 1999 Discovery Challenge8. The cube

8The example comes from the Discovery Challenge
of PKDD 1999 https://sorry.vse.cz/~berka/challenge/

pkdd1999/berka.htm and now can be found at https://

github.com/sabirakhtar/PKDD-99-Discovery-Challenge

has anonymized data from Czech banks that con-
cern loans that have been granted to customer. The
dimensions of the data cube concern (a) the cus-
tomer Accounts, with a hierarchy of levels: Account
⪯ District ⪯ Region ⪯ ALL, (b) the Status of a
loan, with levels Status ⪯ ALL, and, (c) Date with
a hierarchy Day ⪯ Month ⪯ Y ear ⪯ ALL. For
simplicity, we use a single measure Amt, referring
to the amount of the loan that was granted.

Assume now that at a certain time point, four
queries have been issued already, and a new one, to
which we refer as q, is also submitted to the system.
The desideratum is to compute the interestingness
aspects of the query. Coming back to our opening
remarks in the Introduction, this can occur due to
several possible reasons. In a clear a-priori case,
the new query q is generated by the system, and is
candidate to be recommended to the user for exe-
cution. Before executing it however, and thus with-
out any knowledge of what is included in the result,
the recommender system needs to predict what it
will contribute to the user’s understanding on the
data space. To this end, we need syntactic metrics
and algorithms, that take only the query expression
into consideration, to predict interestingness. In an
a-posteriori case, the result of q has already been
computed. Thus, we can use extensional algorithms
and metrics that exploit this result and compare it
to the cached results of the previous queries in order
to compute its interestingness.

In Figure 1, we visually present the general
setup of the problem. We assume a basic cube
defined at the most primitive levels of detail: C0:
[Account.Account, Status.Status,Date.Day,Amt].
Then, for ease of diagrammatic depiction, we have
all 5 queries of the figure defined at the schema
[Account.District,Date.Month,AvgAmt], prac-
tically expressed via the following formula: qi
= < C0, ϕi, [Account.District, Status.ALL,
Date.Month, AvgAmt], [avg(Amt)] >, with each
ϕi having a different expression, as depicted in the
figure.

The center of Figure 1 depicts a 2D projection
of the space of the basic cube C0 along the 2 di-
mensions of the query schemata, Account and Date
(we omit Status to simplify the figure). Each of
the queries has (a) a detailed proxy q0i = < C0,
ϕ0
i , [Account.Account, Status.Status, Date.Day,

AvgAmt], [avg(Amt)] > and (b) a detailed area
of cells, depicted as a band in the 2D projection
of the multidimensional space. Some detailed areas
are completely contained inside others: for example
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Figure 1: The setup of our reference example. For the non-colorblind readers: each query surrounding the central detailed
cube comes with its own color of cell shading and font. Also, each query is accompanied with a similarly-colored rectangle over
the central detailed cube that identifies its respective detailed area. For both colorblind, and non-colorblind readers: arrows
depict the relationship of query definitions to the respective detailed areas.

q02 is completely contained within q01 . The detailed
area of q, q0, has all sorts of relationships with the
detailed areas of the other queries: (a) q04 is com-
pletely contained within q0, (b) q0 has a partial
overlap with q03 and q01 , (c) there is no relationship
between q0 and q02 , whatsoever. There are no iden-
tical queries, either.

4. Taxonomies for the assessment of cube
query interestingness

In this paper, we propose facets of interestingness
and algorithms to assess them. Specifically, we de-
fine the interestingness of a cube query q, I(q) as a
vector of scores along four fundamental interesting-
ness facets, which we typically refer to as facets –
specifically, (i) novelty, (ii) relevance, (iii) surprise,
and (iv) peculiarity:

I(q) = ⟨novelty(q), relevance(q), surprise(q),
peculiarity(q)⟩

Before proceeding to the individual interesting-
ness facets and the respective algorithms, we pro-
vide taxonomies that allow to mentally structure
the problem and organize the algorithms accord-
ingly. The fundamental reasons for doing so are (a)
a better structuring of the problem of evaluating
query interestingness in terms of the context un-
der which it operates, (b) the possibility of placing
current and future algorithms of the literature in
the framework provided by our taxonomies and (c)
equally, if not more importantly, the possibility of
automating the process of automating the selection
of algorithms for interestingness evaluation. The
taxonomies that we introduce concern:

• The structuring of the output space practically
helps with understanding what is to be ex-
pected from an algorithm as a result. To this
end, in subsection 4.2 we will introduce a tax-
onomy of types of returned scores.

• The structuring of the space of the internal
workings of each algorithm concerns modali-
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Figure 2: The 8 taxonomic dimensions that determine the different levels of information that a system must have in order to
assess the interestingness of a cube.

ties that also affect the selection of algorithms
for alternative contexts – in this case, not with
respect to the input, but rather with respect to
the inner semantics of the algorithms. Two ex-
amples can illuminate this: (a) algorithms can
take advantage of the multidimensional hierar-
chies or not; (b) algorithms can also use only
the query syntax, or the query results too. Al-
gorithms that are not aware of hierarchies are
applicable for flat relations too. Algorithms
that require query results cannot operate as
forecasters of candidate query interestingness.
Subsection 4.3 clarifies the distinctions.

• The structuring of the space of the input pa-
rameters that affect/are required by an algo-
rithm, is, however of the most vital impor-
tance. The combination of the available infor-
mation creates a context for algorithm selec-
tion and execution. Depending on what infor-
mation is available as input, a query interest-
ingness assessment system can automatically
decide algorithms that are applicable for the
particular context under consideration. We be-
gin our deliberations from this last taxonomy.

4.1. Taxonomy of the input information needed to
assess interestingness

We identify 8 fundamental taxonomic dimen-
sions9 of necessary (equiv.: potentially available)
information for our cube query interestingness scor-
ing system to address the goal of automatically

9Terminology-wise: we discriminate between plain OLAP
dimensions for the structuring of data, and taxonomic or
problem dimensions that characterize the different charac-
teristics of the problem.

computing a score of interestingness for a given
cube query. These 8 taxonomic dimensions are fur-
ther organized in 3 major families.

For all families and taxonomic dimensions,
an implicit value of our knowledge is the no-
knowledge value. To avoid repetition, we will not
refer to this level of knowledge again, although it
is quite possible that several dimensions will be of
no-knowledge value in a scoring system in practical
situations.

The Data Family. The Data Family of taxo-
nomic dimensions is concerned with what kind of
information about the underlying data is available
to our scoring system. Specifically, we identify two
taxonomic dimensions of interest, concerning the
hierarchies of the multidimensional space and the
factual cubes that are available.

• Dimension space. The dimension space charac-
terizes our level of knowledge/information on
the dimensions of the multidimensional space
within which the queries are going to be con-
figured and posed. We identify two potential
levels of knowledge (a) knowledge only of the
schema (i.e, dimension & level names, hierar-
chical relationships) of the multidimensional
space, or, (b) knowledge of both the schema
and the values (aka dimension members in the
OLAP literature) of the involved levels.

• (Detailed) Cubes. The detailed cube
space characterizes our level of knowl-
edge/information on the factual data of the
multidimensional space – i.e., the detailed
cubes over which the queries are going to
be posed. We identify two potential levels
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of knowledge (a) knowledge only of the
schema (i.e, dimensions & levels) of the cubes’
schemata, or, (b) knowledge of both the
schema and the values i.e., cube cells of the
involved cubes.

The Query History Family. The Query His-
tory Family of taxonomic dimensions is concerned
with what kind of information about the queries be-
ing and having been issued by the user is available
to our scoring system. Specifically, we identify three
taxonomic dimensions of interest, concerning (a)
the knowledge of the current query being posed, (b)
the knowledge of the user’s current session, and, (c)
the knowledge about the overall history of queries
of the user.

• Current Query. The current query being posed
to the query answering system (e.g., an OLAP
server) can be known by our scoring system
at two levels of information: (a) syntax only,
where only the query specification is available
(e.g., before the query having been answered,
or in order to save space or speed up compu-
tations without using the result cells), or, (b)
both query specification and results are known
to the scoring system.

• Current Session. Similarly to the current
query, the current session comprises a list of
queries that are known to the scoring system.
Like the case of the current query we may ei-
ther know only the syntax of the queries, or
both the syntax and the cells of the session
queries’ results.

• Past Sessions. Similarly to the current session
dimension, the “past sessions” taxonomic di-
mension generalizes it to include previous ses-
sions of the user (or other users, similar to the
one being assessed) too. Again, we may either
know only the syntax of the queries, or both
the syntax and the cells of the queries’ results.

The User Profile Family. The User Profile
Family of taxonomic dimensions is concerned with
what kind of information about the user is avail-
able to our scoring system. Specifically, we identify
three taxonomic dimensions of interest, concerning
(a) the knowledge of the user Key Interests, (b) the
knowledge of the user’s Beliefs about the data val-
ues, and, (c) the knowledge about the current user
Goals that are available to our scoring system.

• Key User Interests. The user’s recurring in-
terests – as close to a user profile as we can
get– comprise the context for this taxonomic
dimension. The Key Interests can be consid-
ered a static aspect of the user profile and we
will assume they take the form of a set of Key
Performance Indicators(KPIs)[51], which prac-
tically comprise a query and a labeling schema
for the results of a query on the basis of ex-
pected values for them. So practically, every
cell of a KPI query result is mapped to a finite
set of values (e.g., bad/med/good, or a Likert
scale of stars) on the basis of rules that com-
pare it to an expected value and assign a per-
formance score on the basis of the discrepancy
of the actual vs the expected value of the cell.
We discriminate two levels of knowledge the
system can have on the KPI’s of the user: (a)
implicit, i.e., this kind of information is not ex-
plicitly specified by the user, but approximated
and estimated by other information available
to the system like the history of past queries,
that somehow mark a range of preferences on
what interests the user on a regular basis, or,
(b) explicit, directly stated by the user (e.g.,
in this case an explicit specification of KPI’s).

• User Beliefs. The beliefs about the data that
the user has, are captured by this taxonomic
dimension. In other words, assuming a query
is posed, the beliefs of the user is the set of ex-
pected values for the query cells that the user
expects to see. These can be (a) implicitly es-
timated, e.g., derived from the history of past
queries by extrapolating values on the basis of
similar values the user has seen in the past,
or identified by some relevant KPI’s carrying
expected values for certain aggregate cells, or,
(b) explicitly known, e.g., extracted from the
history of past queries, in case a certain cell
has been presented to the user in the (recent)
past.

• User Goals. The user goals are the current in-
formation goals that the user has towards ful-
filling an information need, or exploring the
data space and discovering new information.
The Goals are dynamic characteristics of the
user, temporally local and transient (i.e., they
concern an information need of the current
time) and they are related closely to the in-
tentions of the Intentional model [52] like de-
scribe, explain, analyze, etc. We discriminate
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two levels of knowledge the system can have on
the goals of the user: (a) implicit, i.e., this kind
of information is not explicitly specified by the
user, but approximated and estimated by other
information available to the system, or, (b) ex-
plicit, directly stated by the user (e.g., in case
he is firing intentional queries).

In the sequel, we will give explicit formulations
of how these constructs can be expressed and rep-
resented internally in the system. Specifically, a
belief is a probability for the value a cell’s measure
can take; an information goal is a specification of
the subset of the multidimensional space that is of
interest to the user; a KPI is a set of registered
queries. We stick to fundamental core concepts to
allow our framework to easily incorporate alterna-
tive ways to express these constructs in the future.
We specifically define beliefs in Section 5.2, infor-
mation goals in Section 6 and KPIs in Section 6.2.

How are the aspects of interestingness re-
lated to the taxonomic dimensions of the
problem? Concerning the relationship of the as-
pects of interestingness with the taxonomic dimen-
sions of available knowledge, we can make a few,
first coarse observations:

• Peculiarity is related to the history of past
queries and their results. A query can be pe-
culiar if (a) it does not fit nicely in the set
of previous queries in terms of its syntax (and
thus, of the area of the multidimensional space
that it covers), or (b) if its results show values
quite different than the values one had seen in
previous, similar queries.

• Surprise is related to the beliefs the user al-
ready has. There beliefs can be anywhere in
the range of (a) concrete values of past query
cells, all the way to (b) some probability dis-
tribution on the expected measure values (or
labels) a given cell can have.

• Novelty is affected by the presence of the his-
tory of past queries.

• Relevance is an aspect related to the static pro-
file (KPI’s, preferences, interests) as well as to
the dynamic profile (current goal) of the user.
The static profile refers to what the user is typ-
ically interested in, and is an approximation of
the user needs on a recurring basis, whereas

the current goal is a more to the point descrip-
tion of the specific info need of the user at this
moment in time.

In the rest of our deliberations, unless explicitly
stated otherwise, the system works under the fol-
lowing assumptions:

• the dimensions’ schema and data are both
known;

• the cubes’ schema is known (but not necessar-
ily the data);

• the syntax of the current query is known (but
not necessarily its results);

• the two taxonomic dimensions of the past are
unioned into a single taxonomic dimension,
history; no assumptions can be made for its
knowledge by default;

• similarly, no assumptions are by default made
for the three taxonomic dimensions of the sys-
tem’s information on the user.

4.2. Taxonomy of algorithms with respect to the
type of output they produce

Apart from the aforementioned taxonomy used to
characterize the type of information needed to be
able to assess interestingness (pretty much amount-
ing to the type of input information the assessment
algorithms need), we can also discriminate algo-
rithms with respect to the returned value they com-
pute (practically, the output of the algorithm). We
use the following terminology:

1. Decision vs Enumeration Problem: the deci-
sion problems answer a Boolean check (e.g.,
whether a cube is novel or not), whereas the
enumeration problems report which subsets of
cells are part of a solution (e.g., which part of
a new cube is already covered, or novel). In all
our subsequent deliberations, unless explicitly
specified otherwise, we work on the enumera-
tion problem.

2. Full vs partial Assessment: full assessment
means that the checks made return a true/false
answer on whether a new query is interest-
ing or not; partial assessment means that the
checks return an interestingness score (in fact:
a score for a particular interestingness facet)
as a real number (typically in the interval [0
. . . 1]). Naturally, a partial assessment that re-
turns 1, also implies full interestingness.
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4.3. Internal taxonomy of algorithms

Finally, the algorithms can be discriminated with
respect to the way they perform the checks and po-
tential constraints the algorithms might have (prac-
tically, characterizing the how of the algorithm).

1. Syntactic vs Extensional Assessment: syntac-
tic assessment is based only on query defini-
tions, whereas extensional also assumes the
presence of the cells of the query result(s).

2. Same-Level vs Detailed Assessment: same-
level assessment assumes that two cubes are at
the same level of aggregation; detailed assess-
ment means that the comparison of two cubes
will be done at levels lower than their defini-
tion – typically, we will use the most detailed
level as the common ground upon which the
constituting detailed cells for two cubes can be
compared.

Same-level algorithms are practically unaware
of the hierarchical nature of the multidimensional
space. Thus, they are also directly applicable to
simple relational settings. At the same time, the
hierarchically-aware algorithms –e.g., the detailed
assessment algorithms discussed in this paper– can
take advantage of the level hierarchy and poten-
tially compare queries expressed at different levels,
that would otherwise be incommensurable.
Syntactic vs extensional variants are character-

ized by two different aspects: performance and ap-
plicability in different settings. Syntactic-level algo-
rithms taking into consideration only the syntax of
a query are useful in both a priori and a posteriori
evaluations of interestingness. A priori evaluation
can be useful when a query is to be recommended
for execution to the analyst. In this case, the sys-
tem knows nothing of the result – yet, due to the
query syntax it can say something on the relevance,
novelty, or other facets of the query. A posteriori
evaluation means that the query results have been
computed, and a cell-to-cell –extensional– compar-
ison can be performed. Clearly, the latter is much
more informed than the syntactic one; on the other
hand, it is clearly slower and restricted to a poste-
riori cases only.

4.4. Final note on the taxonomies

As a final note, we would like to highlight that the
three taxonomies (input, output and internal) are
orthogonal to each other. Each has its benefits and
its constraints (more vs less requirements for input,

more or less semantic richness in the output, more
or less adaptability to different situations depend-
ing on the internal workings) – however, the three
taxonomies are orthogonal to each other. We will
see plenty of such combinations in the subsequent
sections; to make things clear, each Section comes
with a table where all the algorithms are character-
ized with respect to all the taxonomies.

Symbol Explanation

D Dimension
L Level
q Query
q.cells Query result for query q
q+ Signature of a query =

coordinates of the query results
q0 The equivalent query of q at the

most detailed level
c A cell. If c abides by the schema

[L1, . . . , Ln,M ], it is a cell of val-
ues c = < v1, . . . , vn,m >

c+ Cell coordinates (dim. values),
c+ = < v1, . . . , vn >

c0 A cell at the most detailed level,
for all its coordinates

Q Set of queries, Q = {q1, . . . , qn}
Q0 Set of the detailed queries of the

queries of Q, Q0 = {q01 , . . . , q0n}
qcov set of cells that are covered

(found also in previous queries)
qnov set of cells that are novel (not

found in previous queries)

Table 1: Table of notation

5. Novelty

Novelty assesses the amount of previously un-
known information delivered to the user via a query.
Due to this inherent characteristic, we need to ei-
ther explicitly know, or at least estimate the prior
knowledge of the data that the user has.

Naturally, a system is not in a position to actually
have knowledge of the user’s memory or knowledge.
Knowledge can come to the user via external chan-
nels, not related to the query answering and thus,
the system necessarily has “knowledge” of just a
subset of the user’s actual knowledge. At the same
time, one should also take account of the effects of
time that erases, hides or distorts the remembrance
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of facts encountered in the past. Although in our
following deliberations we will not directly address
the above problems, we will occasionally offer in-
sights on how to handle some of them. However,
when we use the term “knowledge” we simplify and
approximate the situation, by assuming that the
system knows what the user has seen, or what the
user has explicitly stated that she believes.
Explicit knowledge is primarily attained by

knowing the history of user queries (and assuming
that the user remembers it). A second way to ap-
proximate what the user remembers is to exploit the
registered beliefs of the user that have a low level of
confidence, by making the rational assumption that
since she has expressed practically uncertain beliefs
about some cells, she does not know their values.
Novelty is mostly goal-independent, i.e., it is not

affected by neither the current (goal) or the typical
(key interests) informational needs of the user.
Overall, in terms of our taxonomic dimensions,

novelty is mostly related (a) to history, and, (b)
to registered values for beliefs with confidence below
a certain threshold. We will examine the different
alternatives in the respective subsections. To facil-
itate comprehension, in Figure 3 we summarize the
proposed metrics in terms of our taxonomy, and, in
Section 5.3 we exemplify the discussed metrics and
algorithms.

5.1. Novelty assessment in the presence of a query
history

First, we will assess the novelty of a cube query q
assuming a query history Q = {q1, . . . , qn} exists.

5.1.1. Same-Level Assessment of Novelty

Assume that we only check q against members
of Q whose schema is at the same level with Q.
We also require the same detailed measures and
aggregate functions to be used, otherwise the
comparison is referring to essentially different mea-
sures, and also different numbers, and, therefore,
novelty is guaranteed.

Full Same-Level Syntactic Assessment of
Novelty. In this case, the question to be answered
is: Given q and Q = {q1, . . . , qn}, is there any
qi ∈ Q such that q = qi?

In this case, the solution is a trivial syntactic
check: we iterate through the syntactic definitions
of the queries of Q and check whether there is any
query that is identical to q. Then, Full Same-Level

Syntactic Novelty (FSLSN) is defined as a Boolean
flag, returning false if q ∈ Q and true otherwise
The check is full, syntactic and same-level.

Partial Same-Level Syntactic Assessment
of Novelty. In this case, the question to be
answered is: Given q and Q = {q1, . . . , qn}, can we
identify which part of the results of q is already
covered by the queries of Q without actually
computing them?

The answer to the question is given by Algorithm
ComputePartialSameLevelCubeCoverage in [49] that
takes q and Q as inputs and divides the coordinates
of the result of q in two sets: a set of cell coordinates
that are covered by existing queries, qcov and its
complement, qnov, a set of cell coordinates that are
novel. Then, Partial Same-Level Syntactic Novelty
(PSLSN) is the fraction of novel cells of the total
population of cells of q (which is also the union of
qnov and qcov). At the syntactic level, we only need
the coordinates (signatures) of the cells, without
having to compute their measures. The check is
partial, syntactic and same-level.

PSLSN =
|qnov+ |

|qnov+ |
⋃
|qcov+ |

Partial Extensional Same-Level Assess-
ment of Novelty. In this case, the question
to be answered is the same: Given q and Q =
{q1, . . . , qn}, can we identify which part of the
results of q are already covered by the queries of
Q? However, in this case, we assume that the
results of the queries are available and the check
takes this into consideration.

The premise to the question is given by Theorem
Same-Level-Intersection in [49] that takes two
queries q1 and q2 with the same schema, and de-
cides whether their selection conditions make them
eligible for a check on their intersection. Then,
Algorithm EnumerateSameCellsviaResultComparison
in [49] returns the cells that are covered and the
cells that are not.

A simple adaptation of the Algorithm Com-
putePartialSameLevelCubeCoverage in [49] that
works with signatures, to work with cells produces
the novelty of the new query q. The formula for
Partial Same-Level Extensional Cube Novelty is the
same with the one of Partial Same-Level Syntactic
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Figure 3: List of Novelty algorithms, characterized with respect to the reference taxonomy
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Cube Novelty and the difference is only in efficiency
(which of the two variants is faster is open to ex-
perimental evaluation). The check is partial, exten-
sional and same-level.

5.1.2. Detailed Assessment of Novelty

Assume now that instead of checking cubes
defined at the same level, we compare cubes with
respect to their constituting cells at the most
detailed level.

Full Syntactic Detailed Assessment of
Novelty. In this case, the question to be answered
is: Given q and Q = {q1, . . . , qn}, is there any

qi ∈ Q such that q0
+

i , the detailed signature of
qi (i.e., the coordinates of the most detailed cells

over which qi is computed), is a superset of q0
+

,
the detailed signature of q?

The premise to the question is provided by the
Theorem on Foundational Containment in [49] stat-
ing when a certain query qi can foundationally con-
tain a new query q (denoted qi ⊇0 q). A simple
iteration over the contents of the query set Q can
reveal whether such a query exists or not. Full Syn-
tactic Detailed Novelty (FSDN) determines whether
a query q is novel with respect to a previous query
qi ∈ Q.

FSDN =

{
0 if ∃ qi ∈ Q s.t., qi ⊇0 q

1 otherwise

The check is full, syntactic and detailed.

Partial Detailed Extensional Assessment of
Novelty. In this case, the question to be answered
is: Given q and Q = {q1, . . . , qn}, can we iden-
tify which part of the results of the detailed area
of q0 are already covered by the detailed areas of
the queries of Q?

Algorithm 1 computes the union of the detailed
areas of the queries in the query list and intersects
it with the detailed area of the query under ques-
tion. We remark that only the queries in the his-
tory concerning the same measures and aggrega-
tion functions than q are passed to the algorithm.
The resulting Partial Detailed Extensional Novelty
(PDEN) is the fraction of the detailed not covered
(i.e., novel) cells over the entire detailed area of q.

Algorithm 1: Cell-based extensional enu-
meration of covered detailed cells
Input: A query q; the query history Q

expressed as a set of queries qi, all
with the same aggregate functions
over the same detailed measures

Output: qcov: the subset of the cells of q0

that are also part of the union of
the results of the queries in Q, i.e.,
the union of q0i , and its
complement qnov

Variables: Q0 a collection of all cells
belonging to q0i , i.e., the detailed
equivalents of the queries qi

1 begin
2 produce q0.cells
3 produce q0i .cells for all qi
4 Q0 ←

⋃
i q

0
i .cells

5 qcov
0 ← ∅

6 qnov
0 ← q0.cells

7 forall c0 ∈ q0.cells do
8 if c0 ∈ Q0 then

9 qnov
0

= qnov
0

- c0

10 qcov
0

= qcov
0 ∪ c0

11 end

12 end

13 return qcov
0

, qnov
0

14 end

PDEN =
|qnov0 |

|qnov0 |
⋃
|qcov0 |

The check is (a) partial (practically a normalized
score), (b) extensional (via cells), and, (c) detailed,
i.e., with respect to the detailed levels of the in-
volved cubes.

The complexity of Algorithm 1 is mainly deter-
mined by the cost of answering the detailed queries
in Lines 2 and 3 that produce the cells for q0 and
q0i for both the input query and the query history.
The complexity of these actions is: (a) linear with
respect to the size of the query history, and, (b)
linear with respect to the cube size, assuming that
the cube query is linear with respect to the cube
size. The rest of the algorithm, requires a linear
in-memory pass of the result to populate Q0 and a
linear lookup for each cell of q0.cells to cross-check
if it belongs to Q0. Again, this cost is linear, yet,
we consider it insignificant comparing it to the time
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needed for query answering. Therefore, the overall
cost of the algorithm is linear with respect to the
size of the query history and to the cube size.
Partial Detailed Syntactic Assessment of

Novelty. In this case, the question to be answered
is practically the same, albeit with a different means
to compute the answer, specifically, signatures in-
stead of cells: Given q and Q = {q1, . . . , qn}, can
we identify which part of the results of the detailed
area of q0 are already covered by the detailed ar-
eas of the queries of Q, by comparing solely the
signatures of the queries? The algorithm is similar
to Algorithm 1 , but uses q0

+

and q0
+

i for all qi
instead of the respective detailed cells. The result-
ing Partial Detailed Syntactic Novelty (PDSN) is
the fraction of the detailed not covered (i.e., novel)
cells over the entire detailed area of q.

PDSN =
|qnov0+ |

|qnov0+ |
⋃
|qcov0+ |

The check is partial, syntactic and detailed.

Remark. Observe that, since the check is done at
the most detailed level, the only thing we care about
is that the measures and aggregate functions are the
same. Selection conditions can be arbitrary. The
same applies for the grouper levels: to the extent
that we assess novelty with respect to the detailed
cells, the grouping levels of the compared queries
can be arbitrary.

Remark. It is easy to introduce a weighted varia-
tion of the above algorithm. Observe that the Al-
gorithm 1 computes the union of the detailed areas
of the queries with set semantics. We can produce a
weighted variant if we introduce the following vari-
ations to the algorithm:

• Each cell is accompanied by a counter of its oc-
currences; so, every time we perform the union
ofQ0 with the next q0i .result, for every detailed
cell that is already part of Q0, we increase its
counter by one. Let us denote the number of
occurrences of each cell c with c.weight.

• Given a set of cells, C, we can compute its total
weight, C.weight, as the sum the weights of its
constituent cells.

• Then, WeightedDetailedNovelty (WDN) is

the total weight of qnov
0

over the sum of the
total weights of qnov

0

and qcov
0

.

WDN =
qnov

0

.weight

qnov0 .weight+ qcov0 .weight

This way, cells that are more frequently encoun-
tered count more (thus, increasing the denominator
and reducing the total novelty of the new query, if
it includes such cells in its result). In case qcov

0

is
empty, novelty takes the value of 1.

Remark. Variations of the above formula on the to-
tal weight can also be devised, to normalize the
weights of the cells. Also, the same theme can be
applied to (a) signatures and (b) same-level checks,
too.

5.2. Novelty assessment in the presence of belief
statements

Assume we do not have explicit knowledge of the
user history, or key interests, but we do have an
estimation of probabilities for the likely values of
some cells in the multidimensional space.

A belief is the existence of a probability for the
possible values that a measure value of a specific
cell can take.

Although beliefs can be expressed in multiple
ways, the exact expression formalism is practically
orthogonal to the essence of interestingness estima-
tion. In any case, here we provide a concrete syntac-
tic system for expressing beliefs. Assume that for
certain cells, it has been possible to either deduce
or explicitly have the user register probabilities per
expected value for the value m = c.M, of a cell c
and a certain measureM . So, some cells in the mul-
tidimensional space are annotated with a set of cell
expected-value statements, which are statements of
the form

p(M ∈ [li . . . ui]|c) = pi, pi ∈ [0..1], [li . . . ui]

is a range of values of dom(M)

or of the form

p(M ∈ si|c) = pi, pi ∈ [0..1], si

is a discrete finite set of values of dom(M)

For uniformity of notation, to express beliefs, we
will use the syntactic form

p(M ∈ mi|c) = pi

to denote either a range or a finite set of values
for the value-set of the expressed belief. The dis-
tinction makes no difference for the evaluation of
novelty.
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We refer to the set of statements of the above
form for a cell c, the probable active domain of c,
or dompa(c). A well-formed probable active domain
of a cell has the property that all its statements’
probabilities sum up to 1. However, requiring well-
formed probable active domains is too restrictive,
in the sense that maybe some probabilities are un-
known, or hard to evaluate; thus, we do not require
it as a necessary property for the sequel.

We call a cell c to be Π − known if, within the
statements of the probable active domain of c, there
exists a probability pi which is equal or higher to a
threshold Π. Otherwise, if all the probabilities of c
are below Π the cell is called Π− unknown.

The intuition behind this treatment lies on the ob-
servation that if a user has a set of beliefs about the
behavior of a cell, with a high amount of certainty
(i.e., the probability is above a certain threshold),
then we cannot consider the cell to be “unknown”
to the user. The result of a query might be sur-
prising, if it is far from the expected value, but the
existence of this area of the multidimensional space
is not novel to the user.

To give a practical example, assume the following
user beliefs

p(sales ∈ [100..200) | city=Athens, year=2020) = 30%

p(sales ∈ [80..100) | city=Athens, year=2020) = 70%

assuming all other dimensions set to ALL. For a
particular cell therefore, concerning the sales in
Athens for 2020, we have a probability distribution
for the range of its values. Let’s also assume that we
have agreed that if a user has a belief higher or equal
to 50% for a cell’s measure, then she “knows” the
cell; this means setting a value of Π = 50%. Given
the above belief set, and the existence of a belief
with probability 70% (i.e., higher than Π), we can
say that this particular cell is indeed 50%-known,
and thus consider it not novel.

Let B a set of beliefs expressed as cell expected-
value statements for a set of cells CB . Assume now
a query q, and its resulting cells C = q.cells =
{c1, . . . , cn}. Assume also a threshold Π. Then, the
Π− direct novelty of q is the percentage of cells of
q.cells that are Π− unknown. We can distinguish
three cases for computing belief-based novelty, de-
pending on the level that the cells of CB have been
defined.

5.2.1. Same-Level Belief-Based Novelty

In this case, the set of beliefs B is expressed over
a set of cells CB at the same aggregation level as q.
Therefore, we can immediately compare the cells of
the query to the cells of the belief-set. Algorithm 2
performs the computation of novelty.

Algorithm 2: Partial Extensional Same-Level
Belief-Based Enumeration Of Covered Cells
Input: A query q and its result; a set of

beliefs B over a set of cells CB at
the same aggregation level as q; a
threshold Π for deciding if a cell is
eligible for being novel

Output: The subset of the cells of q.result,
say qcov that are also part of the
space the beliefs cover, as well as
its complement qnov

Variables: C⋆ is a set of cells, C⋆ ⊆ CB for
which there exists a known belief
with a probability above or equal
to Π, i.e., {c | c ∈ CB ,∃ p(M ∈
m|c) ∈ B, p(M ∈ m|c) ≥ Π}

1 begin
2 qcov ← ∅
3 qnov ← q.cells
4 compute C⋆

5 forall c ∈ q.cells do

6 if c+ ∈ C⋆+

then
7 qnov = qnov - c; qcov = qcov ∪ c
8 end

9 end
10 return qcov, qnov

11 end

The algorithm, starts by assuming that all cells
are novel and none is covered. The first action of the
algorithm is to isolate the Π − known cells, based
on the input set of beliefs, into a set C⋆. Then, for
each cell of the query, it checks whether its signa-
ture fits with the signature of any of the cells that
belong to C⋆, and if it does, then it considers the
cell to known, adds it to the set of covered cells
and removes it from the set of novel cells. The rea-
son for using signatures here, is that the beliefs are
expressed with respect to signatures and probabil-
ities for the value range of the measure. Thus, the
cell’s measure should not be used for assessing the
presence of the cell in C⋆ (i.e., checking for iden-
tity/equality of the measure is not within the spirit
of using the beliefs in the first place).
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Then, we can compute the Partial Extensional
Same-Level Belief-Based Novelty (PESLBBN) of
the query q as usual:

PESLBBN =
|qnov|

|qnov|
⋃
|qcov|

The check is (a) partial (practically a normalized
score), (b) extensional (via cells), and, (c) same-
level, i.e., with respect to the actual cells of the
involved query. The Syntactic version of the al-
gorithm (as contrasted to the Extensional one) is
quite similar, albeit with the difference that no cells
in the query result are needed and all sets and com-
parisons are performed with respect to the signa-
tures of the queries. The complexity is linear to
the result size (assuming the set CB is fixed) and
linear to the size of the set CB assuming the query
result size is fixed. In the case that only the query
expression is given as input to the algorithm, and
the query result has to be computed, the cost is
dominated by the computation of q.cells, which is
linear to the data cube size.

5.2.2. Detailed Belief-Based Novelty

Another (rather extreme) case, assumes that the
set of beliefs B is expressed over a set of cells CB

at the most detailed aggregation level. Then, we
can compare the cells of q with the cells of CB

by converting them to their detailed equivalents.
The algorithm used, is similar to Algorithm 2, but
used q0.cells, qcov

0

and qnov
0

, instead of q.cells, qcov

and qnov, respectively. Then, we can compute the
Partial Detailed Extensional Belief-Based Novelty
(PDEBBN) of the query q as usual:

PDEBBN =
|qnov0 |

|qnov0 |
⋃
|qcov0 |

The check is (a) partial (practically a normalized
score), (b) extensional (via cells), and, (c) detailed,
i.e., with respect to the most detailed cells of the
data space. The complexity analysis, as well as the
discussion of the Syntactic variant are homologous
to the ones of subsection 5.2.1.

5.2.3. Arbitrary-Level Belief-Based Novelty

In this case, the cells of CB are defined at arbi-
trary levels of aggregation. Thus, it is not straight-
forward to compute novelty. For the cells of CB

that are defined at higher levels of aggregation com-
pared to the ones of q, even for a single dimension

Algorithm 3: Partial Extensional Arbitrary
Belief-Based Enumeration Of Covered Cells
Input: A query q and its result; a set of

beliefs B over a set of cells CB at
arbitrary aggregation levels; a
threshold Π for deciding if a cell is
eligible for being novel

Output: The subset of the cells of q.result,
say qcov that are also part of the
space the beliefs cover, as well as
its complement qnov

Variables: C⋆ is a set of cells, C⋆ ⊆ CB for
which there exists a known belief
with a probability above or
equal to Π, and, all their levels
are lower or equal to the
respective ones of q, i.e.,
{c | c ∈ CB ,∃ p(M ∈ m|c) ∈
B, p(M ∈ m|c) ≥
Π ∧ ∀ dimension D, c.D.Lc ⪯
q.D.Lq}

1 begin
2 qcov ← ∅
3 qnov ← q.cells
4 compute C⋆

5 forall c ∈ q.cells do
6 if c is fully covered by cells of C⋆

then
7 qnov = qnov - c; qcov = qcov ∪ c
8 end

9 end
10 return qcov, qnov

11 end

(i.e., even if there is a single dimension D for which
the cell of CB is at a higher level than the aggrega-
tion level of q), it is clear that we cannot use them
for assessing novelty, as they express a coarser com-
putation than the one of the query. Assume that we
disqualify these cells and stick to the ones that have
their levels at a lower or equal level with respect to
the levels of q. Again, comparison is not straight-
forward; converting all to the detailed equivalents is
not usable, as the knowledge of an aggregate value
does not imply the knowledge of its detailed equiv-
alents. Thus, we need to resort to even stricter
measures.

Of course, Algorithm 3 requires the definition of
full coverage of a higher-level cell by a set of more
detailed cells.
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A cell c, defined at a set of levels Lc, is fully
covered by a set of cells C, all of which are defined
at lower or equal levels that the ones of Lc if:

c0
+ ⊆

⋃
i c

⋆0+

i , for all c⋆ ∈ C

i.e., the cells of its detailed area are a subset of
the detailed cells that correspond to the members
of C. For all practical purposes, this means that
one can compute c from the more detailed levels of
C – thus, “knowing” it. The check requires a full
scan of C for each cell of c and the determination
of coverage.

Remark. Note that non-probabilistic statements
can be treated as having a single cell-expected value
statement per cell with probability 1. Also, other
variants (e.g., weighted) are eligible.

5.3. Reference Example Revisited

Coming back to the reference example of Sec-
tion 3.2, we can start with examples on the novelty
of query q that is assessed over the presence of a
query history Q = {q1, . . . , q4}.

• Concerning the Full Syntactic Same-Level As-
sessment of Novelty (FSLSN), it takes the
value of 1, as we can observe that no query
in the query history has an identical definition
with q.

• The same would apply for the Partial Syntactic
Same-Level Assessment of Novelty (PSLSN).
For the test to apply, we would require the
existence of queries with compatible selection
conditions to the ones of q in order for the re-
sulting coordinates to be comparable. How-
ever, in contrast to the queries of Q, q has no
selection filters, therefore, its syntactic novelty
is also 1. Similarly for the extensional variant
of the same metric.

• Concerning the Full Syntactic Detailed Novelty
(FSDN), to the extent that there is no query
that encompasses the entire q, the novelty is 1.

• Concerning the Partial Detailed Extensional
Novelty (PDEN), if we run the algorithm, we
need to (a) take the union of the detailed areas
of the queries of Q, say Q0, and (b) intersect it

with the detailed area of the q, q0. In practice,
we detect that 70% of the cells of q0 do not
belong to Q0, thus PDEN = 0.7.

Coming now to Belief-based queries, we will also
use the query of the reference example, evaluated
over a set of prior beliefs. For simplicity, let us
assume that the system has registered a single belief
statement for the analyst as follows:

p(AvgLoanAmt ≥ 25K | district=Prague, year=1996 )

= 70%

The query q has 107 tuples as a result and 117
tuples as a detailed result, at the most detailed
level. The tuples that pertain to the combination
< Prague, 1996 > in the query result q.cells are 7.
The detailed tuples in q0.cells are 11. Observe that
the belief statement is expressed with probability
70%. Then:

• Assuming a level of confidence Π = 60%, i.e.,
lower than the 70% confidence of the belief
statement for Prague, all the tuples of the
query result that pertain to Prague in 1996
are considered not novel. Then the Partial
Extensional Same-Level Belief-Based Novelty

(PESLBBN) is 1 -
7

107
= 93%. Had we used

a level of confidence Π = 80%, no tuple for
Prague in 1996 would be considered as novel,
and thus PESLBBN would be 100%.

• In full symmetry to the above, with a level of
confidence Π = 60%, the Partial Detailed Ex-
tensional Belief-Based Novelty (PDEBBN) of

the query would be 1 − 11

117
= 91%, whereas

PDEBBN would be 100% for a confidence level
Π = 80%, where no detailed tuple would qual-
ify for novel.

6. Relevance

Relevance is a facet that pertains to retaining
focus towards a specific information goal (or a set
of them). The facet of relevance ensures that the
data exploration does not wander around areas of
the multidimensional space that are not of interest
to the current information acquisition goal.

This is particularly the case with business intel-
ligence scenarios, where the need to satisfy an in-
formational gap (either on an ad-hoc or a recurring
basis) is the main driver for accessing the database
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for data. This does not mean that the queries are
pre-fixed, however: the quest for an information
goal is very often “open” and an exploration of a
certain sub-space of the data, possibly viewed from
different angles and at different levels of granular-
ity. In [9] we have named this exploration a “walk”
in the multidimensional space.
As the above discussion demonstrates, a founda-

tion for the assessment of the relevance of a query
to an exploratory session or a recommendation to
the use is the existence of an informational goal.
The goal can be an ad-hoc goal for information, or
a recurring one, based on a profile of data that have
to be collected to answer recurring questions of the
analyst. Specifically, we can discriminate between
several cases: (a) the case where the goal is explic-
itly stated, or, (b) the case where the goal is implicit
and has to be inferred from collateral profile infor-
mation.
In the former case of explicitly stated goals, we

will assume that the analyst specifies an area of the
information space via a selection condition (again,
the way this is extracted is orthogonal: it can be ex-
plicitly requested, it can be inferred from a natural-
language expression, it can be part of a query or a
KPI, etc).
In the latter case of implicit goals, the user has

not provided any such information, and the system
has to infer the intended goal from other means –
examples include the history of past actions of the
analyst, or possibly a profile, or a set of registered
KPIs for the analyst.
In any case, independently of how to the system

gets to register user goals, and in the interest of
providing a concrete definition, in the rest of our
deliberations, we will define a goal as a selection
condition ϕG over the multidimensional space. We
remind the reader that selection conditions are con-
junctions of atoms of the form L ∈ {v1, . . . , vk} (see
Section 3).
We examine the different alternatives in the re-

spective subsections. To facilitate comprehension,
in Figure 4 we summarize the proposed metrics in
terms of our taxonomy, and, in Subsection 6.3 we
exemplify the discussed metrics and algorithms.

6.1. Relevance assessment in the presence of an ex-
plicit user goal via a selection predicate

Assuming, then, that the goal is precisely or ap-
proximately specified, the essence of relevance es-
timation answers the question how relevant is the

query to a user’s goal? The main idea here is we for-
malize the user’s declaration (via an explicit state-
ment) that a specific area of the multidimensional
space is of interest to him via a simple selection
condition ϕG that characterizes the user interest.

Algorithm 4: Goal-Based Syntactic Enumer-
ation Of Covered Detailed Cells
Input: A query q and, ϕG, a selection

condition characterizing an area of
the multidimensional space

Output: A pair: (a) qrel
0+

, the subset of
the coordinates of q0 that are also
part of the space the detailed
proxy of ϕG covers, and, (b) its

complement qirr
0+

of irrelevant
cells

1 begin

2 produce q0
+

and ϕ0+

G

3 qrel
0+ ← ∅

4 qirr
0+ ← q0

+

5 forall c0
+ ∈ q0

+

do

6 if c0
+ ∈ ϕ0+

G then

7 qirr
0+

= qirr
0+

- c0
+

8 qrel
0+

= qrel
0+ ∪ c0

+

9 end

10 end

11 return qrel
0+

, qirr
0+

12 end

Algorithm 4 computes the subset of the multidi-
mensional space at the most detailed level, i.e., the
detailed signature, that pertains to the user goal
ϕG. Then, it also computes the detailed signature
of the query q. The algorithm splits the coordi-
nates of the detailed signature of the query in two
subsets (a) the ones relevant to (or covered by) the
detailed signature of the user goal, and (b) the ir-
relevant, non-covered ones, represented by the sets

qrel
0+

and qirr
0+

, respectively.
Then, the Goal-Based Detailed Syntactic Rele-

vance (GBDSR) of a query is the fraction of its
detailed space that overlaps with the user’s goal.

GBDSR =
|qrel0

+

|
|qirr0+ |

⋃
|qrel0+ |

The check is (a) partial (practically a normalized
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Figure 4: List of Relevance algorithms, characterized with respect to the reference taxonomy
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score), (b) syntactical (without using the cells
of the query results), and, (c) detailed, i.e., with
respect to the detailed levels of the involved cubes.
Assuming a fixed goal, and thus a fixed set of
signatures for the goal, the complexity of the
algorithm is linear with respect to the query result
size. Also, to the extent that the test is syntactic,
the data size is irrelevant.

Remark. An extension to a set of multiple goal
statements Φ = {ϕ1, . . . , ϕk} is also possible. The
union of the detailed signatures of the goals can
provide the equivalent of ϕ0+

G for such an exten-
sion. Again, weighted variants can be part of the
score evaluation.

6.2. Relevance assessment implicitly, in the ab-
sence of an explicit user goal

Assume that an explicit goal to study a certain
subset of the multidimensional space is not avail-
able, but instead, the system has access to a set
of KPIs. KPIs are explicit expressions of time-
invariant interests (rather than a current user goal),
so, even if they do not explicate exactly what the
user wants to achieve now, they act as reference
points of relevance for the user’s interest.
In the rest of our deliberations, we assume that

KPIs are expressed as a set of annotated queries Q
= {q1, . . . , qn}, which we call beacon queries, that
implicitly approximate the user interest.
As a side-note, observe that, in extremis, one

could even resort to the user’s history for indica-
tions of relevance. We emphasize that past queries
are last-resort, coarse manifestations of relevance,
as they are only in the past and not necessarily
linked to what the user explores now, or, they could
be erroneous, or playful, or eventually irrelevant,
etc. However, despite all these valid reservations,
it could be the case that this is the only thing that
the system knows about the user’s idea of what is
relevant.

Intuition. What we want to assess is how much
a new query q overlaps with the set Q of beacon
queries. Observe that all the methods that we de-
fine assess the overlap of levels and coordinates be-
tween q and the queries of Q; measures and aggre-
gate functions are not involved in the assessment of
relevance, as the idea is to “highlight” the subset of

the multidimensional space that seems relevant to
the user.
In the rest of this subsection, we simplify the

discussion by avoiding aging factors and possible
weights of the different queries and considering
a single input for the interestingness assessment
algorithm: a set of beacon queries which we
(approximately) deem to be relevant. We will
also use the notion of coverage, already discussed
for novelty, aiming towards finding the overlap of
the area covered by the beacon set and the area
pertaining the current query.

The special case where all queries are de-
fined at the same level. Assuming all cubes of Q
and q are at the same level, we can assess relevance
via (a) a full syntactic check returning true/false,
as Full Syntactic Same-Level Relevance (FSSLR):

FSSLR =

{
1 if a qi ≡ q exists

0 otherwise

and (b) a partial check returning a Partial Syntactic
Same-Level Relevance (PSSLR) score

PSLSR =
|qcov+ |

|qnov+ |
⋃
|qcov+ |

=
|qcov+ |
|q+|

It is very important to stress that the same-level
relevance can only be applied in the case where all
the cubes are at the same level of abstraction. Over-
all, the idea is that the beacon-set provides a ho-
mogeneous space for query evaluation at the same
level, and thus, we can compute relevance without
having to resort to the detailed space.

The Extensional counterpart of relevance (e.g.,
PartialSameLevelExtensionalRelevance) is de-
fined equivalently, with cells of the query result in-
stead of signatures.

Now, we are ready to move on to the fundamen-
tal definitions of relevance that are based on the
detailed level.

Foundations of history-based relevance as-
sessment. The most fundamental definition for
relevance comes from the space of detailed cells, as
Full Detailed Syntactic Relevance (FDSR).

FDSR = 1− FullDetailedSyntacticNovelty

The most fundamental assessment method of all
is to compare the union of the detailed signatures
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of the queries of Q with the signature of q. The
amount of overlap signifies the relevance of the new
query.
To characterize the cells of the result of q (in fact:

their coordinates) as previously covered vs novel,
we can simply refer to Algorithm 1 this time pass-
ing all the history as argument, i.e., without the
requirement of same measures and aggregate func-
tions. Equivalently, we can use (a) the detailed
proxy of q, q0 and (b) the detailed equivalents of
the queries of Q, q0i , and pass them as input to the
algorithm ComputePartialImmmediateCubeCoverage
of [49]. Observe, that when working at the detailed
level, coordinates and cells are practically of the
same cost, esp., since measures are not taken into

consideration. Then, the sets qcov
0+

and qnov
0+

(re-

spectively, qcov
0

and qnov
0

) are produced. Based on
these sets, we can compute Partial Detailed Exten-
sional Relevance (PDER)

PDER =
|qcov0 |

|qnov0 |
⋃
|qcov0 |

=
|qcov0 |
|q0|

Partial Detailed Syntactic Relevance (PDSR) is
computed via signatures, respectively. The com-
plexity of computing all these formulas is practi-
cally the same with the one of Algorithm 1, and
therefore, linear with respect to query history and
fact table size.

Remark. Interestingly, when the assessment is
history-based, relevance is practically complemen-
tary to novelty. For all variants of syntactic vs
extensional, partial vs full, same-level vs detailed,
when the assessment is history-based, the following
formula holds: relevance + novelty = 1. We can
only emphasize that this is an approximation appli-
cable only to the history-based metrics that we have
introduced here, and by no means do we insinuate
that being relevant precludes being novel. Quite
the opposite: in an exploratory phase, when a con-
crete goal starts to shape in the mind of the analyst,
the early queries are both relevant and novel. But
this, pertains to the case where the analyst has a
concrete goal, against which relevance is assessed.

6.3. Reference Example Revisited

Coming back to the reference example of Sec-
tion 3.2, we can comment on the relevance of the

query q that is assessed over the presence of an ex-
plicit user goal, say ϕG : district =′ Brno−mest′.
We can assess the Goal-Based Detailed Syntactic
Relevance (GBDSR), as follows. The signature of
the query q would involve the Cartesian product of
all 57 districts of the cube over the 12 months of a
single year, 1996. The user goal involves only one

district. Thus, GBDSR =
1

57
= 0.018.

Assuming no gal was ever stated, we can still
comment on the relevance of the query q that is
assessed over the presence of a query history Q =
{q1, . . . , q4}. Basically, the explanations given for
the case of novelty, in Section 5.3, also cover the
discussion for relevance.

Given that the syntactic checks give a novelty of
1, then, as one would expect, syntactic relevance
takes a value of zero. So, Full Syntactic Same-Level
Assessment of Relevance (FSSLR), Partial Syntac-
tic Same-Level Assessment of Relevance (PSSLR),
and Full Syntactic Detailed Relevance (FSDR)
are all zero. Concerning the Partial Detailed
Extensional Novelty (PDER), however, it takes the
value of 0.3, to the extent that it is the complement
of its Novelty counterpart that took the value of 0.7.

7. Peculiarity of a query

How peculiar is a query? To understand pecu-
liarity we must understand that its essence lies in
discriminating a particular object (in our case: a
query) from its peers (in our case: a session, his-
tory, or just collection of other queries, to be used
as the context for the assessment of peculiarity).
Beliefs, Key Interests and Goals are not explicitly
treated here. However, peculiarity can be evaluated
on the grounds of whichever entities can be implic-
itly represented by queries; to the extent that at
least Key Interests can be expressed as queries, pe-
culiarity can be implicitly related to them.

Therefore, in the rest of our deliberations, we as-
sume that every query q is going to be assessed
against a collection of queries Q = {q1, . . . , qn}.
This generic setup can cover two alternative situa-
tions: (a) a set of KPIs, each expressed via a query,
collectively describing a set of static key interests
of the user, and, (b) a set of queries in the history
(be it the current session, or the history of previous
sessions).

We examine the different alternatives in the re-
spective subsections. To facilitate comprehension,
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in Figure 5 we summarize the proposed metrics in
terms of our taxonomy, and, in Section 7.3 we ex-
emplify the discussed metrics and algorithms.

7.1. Syntactic Peculiarity

Assume the query q and a collection of queries Q
= {q1, . . . , qn}. How different is q from the collec-
tion Q?

Fundamentally, the question boils down to an-
swering the assessment of the distance of two
queries. To support our discussion in the sequel
we assume two queries over the same data set in a
multidimensional space of n dimensions.

qa = DS0, ϕa, [La
1 , . . . , L

a
n,M

a
1 , . . . ,M

a
ma ],

[agga1 (M
a0

1 ), . . . , aggam(Ma0

ma)]

and

qb = DS0, ϕb, [Lb
1, . . . , L

b
n,M

b
1 , . . . ,M

b
mb ],

[aggb1(M
b0

1 ), . . . , aggbm(M b0

mb)]

To solve the problem of computing the distance
of two queries, we use the syntactic formula from
[49], which, in turn, is based on results from (see
[53], [54], [55]).
The syntactic distance of the two queries is ex-

pressed by the weighted sum of structural distances
between their selection conditions, their grouping
levels, and the measures they employ, as:

δ(qa, qb) = wϕδϕ(qa, qb)+wLδL(qa, qb)+wMδM (qa, qb),

such that the sum of the weights wi adds up to
1. We follow [55] and recommend the following
weights: wϕ: 0.5, wL: 0.35, wM : 0.15.10

Given, then, the [49] method for computing dis-
tance of two queries δ(qa, qb), the computation of
the distance of a new query q to a pre-existing col-
lection of queries Q can be computed via several
possible methods, out of which we highlight a cou-
ple of prominent ones:

1. A simple statistic over the distances
of the query to the set members,
δ(q,Q) = γ(δ(q, qi)), qi ∈ Q, γ ∈
{min,max, average,median}.

10For the particularities of the different components of the
formula, we refer the interested reader to [49], Sec. “Query
Distance”.

2. k-nn distance of the query to the set, δ(q,Q)
= k-th smallest δ(q, qi), qi ∈ Q. Practically,
this entails ranking all the distances of q to
the elements of Q in ascending order and take
the k-th one.

The check is (a) partial (practically a normalized
score), (b) syntactical (without using the cells of
the query results), (c) depending upon the statistic
or function that determines the final value of the
metric, and, (d) indifferent to the schema levels
of the involved cubes. We can define a Partial
Syntactic Cube Peculiarity based on which method
we pick for the determination of the final value,
e.g., Partial Syntactic Average Cube Peculiarity
uses the average query distance to determine the
peculiarity of the measured query. To the extent
that we refer to syntactic checks, data size is
irrelevant for the complexity of the algorithm.
However, the algorithm requires a linear pass
from all the queries of the history and a pairwise
computation of distance at its first phase, as well
as the determination of the final peculiarity (again
requiring at most a linear past of all distances):
therefore, the complexity is linear with respect to
the size of the collection Q.

7.2. Value-based Peculiarity

When we address the issue of value-based pecu-
liarity assessment, we base the result of the assess-
ment on the actual values of the cells of the result
of the query. Then, we treat each query as a set
of cells (each cell primarily identified by its coordi-
nates).

The general setup of value-based peculiar-
ity. The general setup of the value-based query
peculiarity problem is as follows. Assume a set of
background queries Q = {q1, . . . , qn} (either due to
the history of a session, or, due to the existence of
a set of KPI’s). Assume also a new query q that is
also submitted to the system.

Algorithm 5 provides the generic recipe for com-
puting query peculiarity. Depending on the setup
of individual design choices, we can have several
configurations of the algorithm.

The combination of the query distance function
δq and the aggregate function fagg

p can determine
the peculiarity of the query. As we will present in
the sequel, the two prominent methods for assessing
the cube query distance δq are the Hausdorff and
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Figure 5: List of Peculiarity algorithms, characterized with respect to the reference taxonomy

Algorithm 5: The general setup of value-
based query peculiarity assessment

Input: A set of background queries Q =
{q1, . . . , qn}; a new query q to be
assessed over Q for its peculiarity; a
distance function δq for computing
the distance of two queries, an
aggregate function to compute the
query peculiarity fagg

p

Output: The value-based peculiarity of the
query q

Variables: V : the bag of distance values of
q over members of Q

1 begin
2 V = ∅
3 forall qi ∈ Q do
4 V = V

⋃
δq(qi, q)

5 end
6 q.peculiarity = fagg

p (V )

7 return q.peculiarity

8 end

the Closest Relative methods, whereas the fagg
p ag-

gregate function can be serviced by any aggregate
function like min, max, k-NN, etc.
The check is (a) partial (to the extent that δq

returns a score ), (b) extensional (using the cells
of the query results), (c) depending upon the
aggregate function that determines the final value
of the metric, and, (d) indifferent to the schema
levels of the involved cubes. We can define a
Partial Extensional Value-Based Peculiarity based

on which method we pick for the determination
of the final value, e.g., Partial Extensional Haus-
dorff/ClosestRelative Average/k-NN/Minimum
Peculiarity if we use (a) the Hausdorff or the Clos-
est Relative method for the determination of query
distance, and, (b) the average/k-NN/minimum
query distance to determine the peculiarity of
the measured query. The algorithm requires
a linear pass from all the queries of the input
query set, as well as the determination of the
final peculiarity (again requiring at most a linear
past of all distances): therefore, the complexity is
linear with respect to the size of the collection Q.
To the extent that we use query results, we can
assume that the size of the query results affects
the execution time of the algorithm.

7.2.1. The closest relatives of Hausdorff

Cell-based Query Distance. How then, do we
compute the distance of two queries? Assume we
want to assess how distant are the queries qa and
qb with

qa.cells = {ca1 , . . . , cana} vs. qb.cells = {cb1, . . . , cbnb}

Earlier works about comparing queries through
their sets of cells, such as [56], have shown that the
distance of these two sets of cells is not straight-
forward to assess. The reasons can be identified as
follows:

• It is not straightforward how to map the cells
of the one query to another; this is especially
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true if the cardinality of the two queries is not
the same;

• It is possible that the two queries are defined
at different levels of aggregation, which means
that they are not directly comparable;

• Even if the above problems are not present,
deciding a mapping from the cells of qa to the
cells of qb is not a straightforward task.

If we want to exploit the query results, i.e., as-
suming the cells of the query results are available,
we can reuse the results of [53] to derive query dis-
tances. The main idea of [53] was to assess al-
ternative ways of computing the distance of two
cubes on the basis of their contents. Two formulae
eventually came out as the possible winners of the
benchmark, specifically the Closest Relative and
Hausdorff formulae. Before discussing these alter-
natives, however, we will introduce a cell distance
formula, which is necessary for performing the re-
spective cube distance calculations.
Cell distance. How distant are two cells? [53]

performs a thorough analysis of several alterna-
tives, out of which, the experimental assessment
clearly discriminated the Weighted Sum of Value
distances based on the Least Common Ancestor
(LCA) method as the most appropriate one.

Assume two members of a dimension D, say v
and v′, not necessarily at the same levels. Assume
also vLCA is their least common ancestor (could
be one of them if they are related with an anc()
relation). Then, the distance of two values of the
same dimension is

dist(v, v′) =
path(v, vLCA) + path(v′, vLCA)

2× path(ALL,L0)

where path is the number of hops (edges) in the
hierarchy between the respective values(levels, re-
spectively).
What is the distance of Athens to Canada in fig-

ure 6? The least common ancestor is the All value
in level ALL and has distance (number of inter-
vening edges) to Athens equal to 3 and distance
to Canada equal to 2. The edges between L0, i.e.,
City, and ALL is 3. Then, dist(Athens, Canada)
is (3 + 2)/(2 · 3) = 5/6.

To simplify [53], the distance of two cells over
the same dimensions is the weighted sum of the
distances of their respective values. Given two cells
c :< v1, . . . , vn > and c′ :< v′1, . . . , v

′
n > their dis-

tance is:

Figure 6: A sample geographical dimension

dist(c, c′) =
1

n

∑
1≤i≤n

dist(vi, v
′
i)

Closest Relative distance of two cube
queries. The closest relative distance of two cubes
[53] is based on mapping the cells of the two cubes
in pairs with the minimum distance and taking their
average distance. Specifically, the method to com-
pute the closest relative distance of two cube queries
q and q′ includes the following steps:

1. For each cell c of query q, find the cell c′ in q′

with the minimum distance;

2. Add the respective distance to a bag of values
Bd;

3. Once done with all cells of q, return the mean
value of Bd

The intuition of the formula is very simple: we
take the average distance between the cells of the
two cubes as the distance of the two cubes.

Hausdorff distance of two cube queries. As
mentioned in [53], the Hausdorff distance between
two cube queries q and q′ can be defined as:

H(q, q′) = max(h(q, q′), h(q′, q)), where

h(q, q′) = maxc∈q.cells(minc′∈q′.cells(δ(c, c
′))) and

δ(c, c′) is the distance of any two cells

Function h(q, q′) is called the directed Hausdorff
distance from q to q′, and it is not necessarily sym-
metric. Practically, to compute h we have to per-
form the following steps: (a) for every cell c ∈ q,
we find the cell c′ ∈ q′ with the minimum distance
(effectively pairing each cell of cube q to its closest
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counterpart in q′); (b) out of all these distances,
we select the maximum one. Then, we do the sym-
metric computation for the h(q′, q) and we take the
maximum of the two h(·) values.

7.2.2. Jaccard-based resolution via cell comparison
at the detailed level

A possible answer to the problem is to address
the issue by referring to the detailed cells that per-
tain to the aggregate cells that constitute the results
of the compared queries. Remember that we refer
to the set of cells that produce an aggregate cell
as the detailed area of the cell; the detailed area
of a set of aggregate cells is defined respectively.
Let q01 .cells be the detailed area of q1 over C0 and
q02 .cells be the detailed area of q2 over C0. Then,
we can compute the Jaccard similarity of the two
detailed areas. The distance of the two queries is:
distance(q1, q2) = 1 -

JaccardSimilarity(q01 .cells, q
0
2 .cells).

Algorithm 6: Partial Extensional Detailed
Jaccard-Based (Value-based) Cube Peculiarity

Input: A new query q, the query history Q,
and an integer k for picking the k-th
neighbor

Output: pec(q|Q): the Partial Extensional
Detailed Jaccard-Based Cube
Peculiarity

Variables: L = a list of Jaccard distances
1 begin
2 L = ∅
3 Compute q0

4 forall qi ∈ Q do
5 Compute q0i

6 Compute JDi = 1 -
|q0i

⋂
q0|

|q0i
⋃

q0|
7 L = L ∪ JDi

8 end
9 Ls = Sort L ascending into a sorted list

10 return pec(q|Q) = Ls[ k ]

11 end

The intuition of Algorithm 6 is based on the idea
that the peculiarity of a query is based on how much
overlap its detailed cells have with the detailed cells
of the queries in the history. The check is (a) par-
tial (practically a Jaccard distance), (b) extensional
(with the use of the cells of the query results), and,
(c) detailed, i.e., with respect to the detailed levels

of the involved cubes.Thus, we define the Partial
Extensional Detailed Jaccard-Based Cube Peculiar-
ity (for short: Value-based Peculiarity) as the result
of Algorithm 6.

The execution cost is dominated by the execution
of the detailed queries for both the reference queries
and the queries of the history Q. The complexity
of the algorithm is obviously linear with respect to
the history size, since there is a single detailed query
q0i to be executed per member of Q. Also, the in-
memory check between the results of the queries is
also linear with respect to the history size. At the
same time, the complexity is also linear with respect
to the cube size, assuming that the execution cost
for all the queries linearly depends on the cube size
(i.e., all the involved queries have their execution
time scale linearly with the same scale factor over
the cube size).

Remark. A point worth mentioning here, is that the
form of peculiarity we have been discussing so far,
is signature-based, i.e, defined with respect to the
area of the multidimensional space it refers to. As
part of future work, research might address pecu-
liarity via a more value-based approach, where the
comparison of the queries is more based on values
than on signatures. The extent of the issue is vast,
since we need to synthesize the combined peculiar-
ity of a query on the basis of its cells, and, to this
end, we need dedicated studies on the topic, on how
users perceive derived value-based peculiarity. The
extent of the problem is such that it places it out
of the scope of this paper.

7.3. Reference Example Revisited

Partial Syntactic Cube Peculiarity. The dis-
tances of the new query q from the rest of the
queries of the history are depicted in Table 2. Then,
it is easy to pick either the Partial Syntactic Aver-
age Cube Peculiarity (as depicted in the Table), or
any other aggregate value over the individual dis-
tances (e.g., the k − th one).

Partial Extensional Detailed Jaccard-Based Cube
Peculiarity. The basic ingredient for determining
the Jaccard based distance is the computation of

the quantity
|q0i

⋂
q0|

|q0i
⋃

q0| . Assuming we take the k = 2

distance, the Partial Extensional Detailed Jaccard-
Based Cube Peculiarity (for short: Value-based Pe-
culiarity) of q is 0.94.
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q vs δϕ δL δM δ
q1 1.0 0.0 0.0 0.5
q2 1.0 0.0 0.0 0.5
q3 1.0 0.0 0.0 0.5
q4 0.67 0.0 0.0 0.33
avg 0.46

Table 2: Syntactic distances of q from the rest of the queries
in the reference example. We use the following weights: wϕ:
0.5, wL: 0.35, wM : 0.15.

8. Surprise

Surprise is an interestingness facet that depends
mainly (if not only) on prior beliefs. The main idea
about assessing surprise is to evaluate how far from
the beliefs of the analyst do the actual values lie.
The two problems that one has to handle are: (a)
what kind of beliefs can we express, and how?, and,
(b) assuming these beliefs have, somehow, been ex-
pressed, how can we compute surprise on their ba-
sis?

8.1. Expressing beliefs

We can express beliefs in a variety of ways: spe-
cific values, expected intervals, probabilities; we can
even label results and give probabilities for the la-
bels, too. Is it necessary, however, for the analysts
to express beliefs manually? In the case of KPIs
that label performance, this is explicitly done. In
the general case, all analysts work with some form
of predictions that are automatically derived via
methods in the spectrum from a simple regression
over past values to elaborate statistical models that
economists use.

8.2. Computing surprise: the overall setup

We start with the second problem and assume
that for certain cells in the multidimensional space,
we can register or compute their expected values for
specific measures (several alternatives are discussed
in the rest of this section). So, for such a cell, for

q vs |q0i
⋂

q0| |q0i
⋃

q0| J JD
q1 11 190 0.06 0.94
q2 0 137 0.00 1.00
q3 21 123 0.10 0.90
q4 2 117 0.02 0.98
2-NN 0.94

Table 3: Jaccard distances of q from the rest of the queries
in the reference example. We list the number of cells in the
intersection and union of the detailed areas of the involved
queries, their fraction J , and the Jaccard distance.

each of these measures, we have (a) the actual value
m, and, (b) the expected value me.

Then, the questions that we need to answer are
(a) how do we assess the surprise for a specific cell
over a specific measure, (b) how do we assess the
surprise for a specific cell, with respect to all its
measures (assuming multiple such measures exist),
and, (c) how do we assess the overall surprise of
a query result (which, of course, includes a set of
cells)?

Let us start with a single measure for a single
cell. Fundamentally, surprise is a function of how
far the expected from the actual value lies. There-
fore, surprise(c.M) = (distance(m,me)) – for ex-
ample, surprise(c.M) = |m−me|.
Assuming now a set of measures per cell, the to-

tal surprise of a cell is an aggregate measure com-
puted over the set of surprise values for the var-
ious measures of a cell (e.g., the number of mea-
sures indicating a non-zero amount of surprise, or
maybe the maximum, or the average surprise). For-
mally: surprise(c) = fagg

cell (surprise(c.Mi)), f
agg
cell ∈

{count, sum,mean,median,max,min, ...}
Finally, now that we can compute the surprise

for each individual cell, we can proceed in com-
puting the surprise for a set of cells, e.g., a query
result. The surprise of a set of cells, say C =
{c1, . . . , cn} is surprise(C) = fagg(surprise(ci)),
fagg ∈ {count, sum,mean,median,max,min, ...}

One possible concern here is what happens if
there is no expected value registered for a measure
of a cell. Then, there are two ways to handle the sit-
uation: (a) this particular measure value does not
participate in the rest of the computation, or, (b) a
mechanism for computing a derived expected value,
against which we will perform the comparison (e.g.,
the average of the expected values, an interpolation
over certain criteria, etc), is introduced. Unless ex-
plicitly mentioned otherwise, the former policy of
excluding the respective measure value from any
computation will be our reaction of choice.

We examine alternatives for handling surprise in
the following subsections. To facilitate comprehen-
sion, in Figure 7 we summarize the proposed met-
rics in terms of our taxonomy, and, in Section 8.5
we exemplify the discussed metrics and algorithms.

8.3. Value-based average cell surprise

The most simple implementation of the assess-
ment of surprise is to follow the general setup and
(a) compute a simple distance of the actual and
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Figure 7: List of Surprise algorithms, characterized with respect to the reference taxonomy (underline: implemented, bold:
experimented)

the expected value per measure, and per cell, (b)
aggregate the measures’ surprise per cell, and (c)
aggregate the different cell surprises to compute the
surprise of the set of cells.
Algorithm 7 provides the general recipe for com-

puting the surprise according to the general setup.
This generic algorithm can be specialized by fix-
ing the involved functions to specific choices. For
example, to compute the Partial Extensional Aver-
age Value-Based Surprise, Algorithm 8 works on a
single-measured cube, with absolute distance as the
distance function to assess how far the actual and
the expected measures are, and averaging over all
cells with surprise to produce the aggregate cube
surprise.
The complexity of the algorithm is linear with

respect to the result size for the query, assuming a
fixed set of expected values E.
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Algorithm 7: The general setup of value-based surprise assessment

Input: A cube C including a set of cells {c1, . . . , cn} with a set of measures M; a set of tuples
registering the expected values for each cell E = {e1, . . . , en}, with each ei being a tuple of
expected measures ei =< me

1, . . . ,m
e
m >; a distance function δM for each measure, for

computing the distance of the actual from the expected value of a cell’s measure; an
aggregate function to compute a cell’s surprise fagg

cell ; an aggregate function to compute the
cube’s surprise fagg

Output: The surprise carried by the cube C
Variables: The bag of surprise values for the entire cube C: C.S; The bag of surprise values for a

specific cell c: c.S
1 begin
2 The bag of surprise values for C, C.S = ∅;
3 forall c ∈ C do
4 The bag of surprise values for this cell c.S = ∅;
5 forall M ∈ M do
6 if ∃ an expected value c.me

j for c.mj, both over measure M then
7 c.S = c.S

⋃
δM (c.mj , c,m

e
j);

8 end

9 end
10 c.surprise = fagg

cell (c.S);
11 C.S = C.S

⋃
c.surprise;

12 end
13 C.surprise = fagg(C.S);
14 return C.surprise;

15 end

Algorithm 8: Value-based surprise assessment for a single measured cube by absolute distance for
expected values and averaging of cell surprise

Input: A cube C including a set of cells {c1, . . . , cn} with a single measure M , a set expected values
for each cell E = {me

1, . . . ,m
e
n}

Output: The (average) surprise carried by the cube C
1 begin
2 countOfCellsWithSurprise = 0;
3 C.surprise = 0;
4 forall c ∈ C do
5 c.surprise = null;
6 if ∃ an expected value c.me for c.m then
7 c.surprise = |c.m− c.me|;
8 countOfCellsWithSurprise++;
9 C.surprise += c.surprise;

10 end

11 end
12 if countOfCellsWithSurprise ̸= 0 then
13 C.surprise = C.surprise/countOfCellsWithSurprise;
14 else
15 C.surprise = null;
16 return C.surprise;

17 end
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8.4. Expressing expectancy via probabilities of ex-
pected values

Whereas in the previous section we have assumed
that a specific value is available as the expected
measure of a cell, in this Section we follow a differ-
ent approach and register expected values by anno-
tating the expectation for a value to appear via a
probability of appearance, and then, measure sur-
prise on the basis of this probability. We will refer
to the surprise metrics that are produced by the al-
ternatives introduced in this Section, as belonging
to the category of Partial Probability-Based Sur-
prise. In [10], we also discuss the case of label-based
expectancy.

8.4.1. Probability of values

Assume a cell c and a certain measure M (for
ease of comprehension, we simplify by using just
a single measure per cube). Apart from the pre-
viously mentioned value-based evaluation, another
possibility for assessing surprise is to register prob-
abilities per expected value for the value m = c.M .
So, we annotate each cell with a set of statements
of the form:

p(c.M = m) = pm, pm ∈ [0..1]

In the above expression, by abuse of notation,
we use the term c to refer to the coordinates of the
cell c+. In all our deliberations, p(< expression >)
expresses the probability of appearance of the pa-
rameter of the function p(·). For example, in a 2-
dimensional cube over geography and time, we can
have:

p(sales = 100 | city = Athens, year = 2020) = 20%

p(sales = 80 | city = Athens, year = 2020) = 70%

p(sales = 70 | city = Athens, year = 2020) = 10%

Assuming the actual value of the measure is m,
the strict surprise of the cell for a value m is the
sum of the probabilities of all the other values m′

that are different than m.

c.StrictSurprise =
∑

m′ ̸=m p(c.M = m′)

In the example above, assuming the actual value
is 70, the surprise is 20% + 70% = 90%.
The result of applying Algorithm 7 with exact

probabilities for the cells’ measure will be referred
to as Partial Exact Probability Surprise.

8.4.2. Interval-based probability definition

A more realistic approach in terms of how we
express the probabilities, is that instead of identi-
fying probabilities for individual values, we can as-
sign probabilities to intervals of values. Thus, the
statements take the form:

p(c.M ∈ [low . . . high]) = pm, pm ∈ [0..1]

For example, one could express the statement

p(sales ∈ [100..200] | city = Athens, year = 2020)
= 20%

In the above expression, and in contrast to the
setting of the previous subsection, the probability
is expressed for a range of measure values, rather
than a single one. To facilitate the registration of
such expected values, a similar trick can be done,
in terms of expression, for the cell coordinates. So,
instead of saying

p(sales = 100 | city = Athens, year = 2020) =
20%

one could possibly say

p(sales = 100 | city = Athens, year ∈ [2018..2020])
= 20%

or even

p(sales ∈ [100..200] | city = Athens, year ∈
[2018..2020]) = 20%

It is important to note, however, that these ex-
pressions are no more than syntactic-sugar state-
ments on how we express the fundamental state-
ment of assigning probabilities of the form p(M =
m | c) = p. Therefore, the method for computing
surprise does not change, effectively. Specifically,
assuming the actual value of the measure is m, the
strict surprise of the cell for a value m is the sum of
the probabilities of all the expressions with ranges
r′ that do not include m.

c.StrictSurprise =
∑

r′ ̸∋ m p(M ∈ r′|c)

The result of applying Algorithm 7 with proba-
bility intervals for the cells’ measure will be referred
to as Partial Interval Probability Surprise.
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8.5. Reference Example Revisited

Value Based Surprise. Suppose that we have a set
of expected values for the measures of loan amounts
regarding the city of Olomouc, as shown in Table 4.
For the computation of the Value Based Surprise of
the new query q, the absolute distance of measure
value of each cell of the results of q that is also
found in the expected values is calculated and from
all the absolute distances, an average value distance
occurs. Finally, in order for the algorithm to always
return a result in the scale of 0.0 - 1.0, the average
value distance is normalized.

District Name Month Measure
Olomouc 1998-01 22512
Olomouc 1996-09 20048
Olomouc 1998-09 46666
Olomouc 1997-05 53212
Olomouc 1995-07 60005
Olomouc 1997-10 78696
Olomouc 1996-12 155616
Olomouc 1996-05 161496
Olomouc 1996-07 187104
Olomouc 1994-05 193968
Olomouc 1995-12 263355
Olomouc 1995-09 309552
Olomouc 1997-12 465506

Table 4: Expected values for the measures of loan amounts
regarding the city of Olomouc, with the respected month
that the loan was granted.

In Table 5, the cells of the results of q that are also
found in the expected values are presented. The
table also presents the absolute distance of each cell
measure value to the respected one in the expected
values. Finally, the table also provides the total
and average absolute distance, i.e., average Value
Surprise, along with the normalized Value Surprise
that is returned from the algorithm.

District Absolute
Name Month Measure Distance
Olomouc 1996-09 29448 9400
Olomouc 1996-12 155616 0
Olomouc 1996-05 161496 0
Olomouc 1996-07 187104 0
Sum of Absolute Distances 9400
Average Absolute Distance 2350
Value Based Surprise 2350 - 0 / 9400 - 0 = 0.25

Table 5: Results of the new query q that are also found in
the expected values as shown in Table 3.

The Valued Based Surprise result as shown in the
last row of Table 5, occurs as the normalized Aver-
age Absolute Distance of the values of cells of the
results that are also found in the expected values.
The normalized distance is calculated by deducting
the minimum absolute distance of a cell (here, 0)
from the average absolute distance (2350) and by
dividing it to the maximum absolute distance of a
cell (9400) minus the minimum absolute distance
(0). The result of this calculation in our example is
0.25, as Table 5 shows.

Let us turn now to Partial Probability-Based Sur-
prise. In Fig. 8, we provide an example based on a
subset of the results of query q. Suppose we have
the following three beliefs for the average monthly
amount of loans given in the area of Prague in 1996:

b1 : p(AvgMonthlyLoanAmt ≤ 45K | dis-

trict=Prague, year=1996 ) = 60%

b2 : p(AvgMonthlyLoanAmt ∈ [45K..85K) | dis-

trict=Prague, year=1996 ) = 30%

b3 : p(AvgMonthlyLoanAmt ≥ 75K | dis-

trict=Prague, year=1996 ) = 10%

In Fig. 8, we depict some cells of the result of q
concerning the area of Prague, for the months of
1996 that had loans. For each such cell, for each of
the three beliefs, we measure the amount of surprise
induced by their violation. Since the beliefs cover
the entire space of values for the average monthly
amount of loans, each time, one of them is satisfied,
therefore inducing zero surprise, and the rest are vi-
olated. The sum of the probabilities of the violated
beliefs produces the measure of surprise for the re-
spective cell. Take for example the cell for October
1996: the value of 83120 belongs to the range of b2.
Thus, the surprise for this cell is calculated as the
sum of surprise due to b1 and b3, i.e. 70% overall.

Once all cells have their surprise computed, we
can compute the Partial Extensional Average Prob-
ability Interval Surprise as the average value of the
surprise of each cell. In this case the average such
measure of surprise amounts to 77%.

The discussed mechanism is quite flexible, over-
all. Observe that the same mechanism works in the
same spirit for exact probabilities. Moreover, the
mechanism also works for probabilities that do not
explicitly cover the entire space of values.
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Figure 8: An example of interval probability surprise

9. A User Study on the interestingness
facets

The proposed metrics have to be evaluated with
respect to their effectiveness and their efficiency.
First, in Subsection 9.1, we describe our exper-
iments for evaluating efficiency, summarizing our
main findings. The remaining of this section is de-
voted to detailing the evaluation of effectiveness,
via a user study that we conducted in order to eval-
uate how do the introduced interestingness facets
relate to the behavior of people working with cubes
and cube queries. From the effectiveness point of
view, a user study is indeed the way to assess the
relevance of a proposed theory to the actual behav-
ior of human agents. To the best of our understand-
ing, this is the first study on cube interestingness
ever conducted.
All the material of the study, along with our find-

ings, are available via a public repository11.

9.1. Efficiency of different algorithms

Concerning the efficiency of the proposed met-
rics, an experimental evaluation has already been
presented in [10] and is also available with more
details at [11].

11https://github.com/OLAP3/

2023InterestingnessUserStudy

In a nutshell, we have evaluated the efficiency
of several algorithms, via their execution time, by
stress-testing them in terms of fact table size, query
result size and history size, wherever applicable.We
tested 7 algorithms among the ones presented in
previous sections, covering all interestingness as-
pects and varied information in terms of the tax-
onomies. Specifically, we have evaluated Partial
Detailed Extensional Novelty, Partial Extensional
Detailed Belief-Based Novelty, Partial Same Level
Extensional Cube Relevance, Partial Detailed Ex-
tensional Cube Relevance, Partial Syntactic Aver-
age Cube Peculiarity, Partial Extensional Detailed
Jaccard-Based Peculiarity, and Partial Extensional
Value-Based Surprise. Hereafter, we describe our
main findings.

We highlight that most algorithms exhibit a lin-
ear increase of execution time w.r.t. the evaluated
criteria, which agree with the complexity analysis
of the algorithms. Nevertheless, there is one ex-
ception: Partial Extensional Value-Based Surprise
(comparing actual values in the query results with
expected values in a user model), even being quite
fast, do not achieve the theoretical lineal increase
with respect to the result size. We attribute the
variation to the probability of hitting an expected
value when the query result size is larger, which
results in extra CPU time for computing surprise.

39



In absolute terms, of course, algorithms only
based on syntactic aspects (cube schema) run much
faster than those taking advantage of instances, his-
tory or user models. In particular, the computation
of detailed area can be quite time consuming (al-
most 100 seconds for 10 million facts). Of course,
same-level comparisons, or belief-based are faster
than detailed comparisons, due to the sheer size of
the latter.

9.2. Goal and Research Questions

The goal of the study has been to identify
whether there are significant influences by partic-
ular interestingness facets, as well as patterns of
behavior related to these facets, when users inter-
act with cubes and cube queries.
To solidify this goal, our user study was based on

the following research questions:
RQ1. Can we rank the interestingness facets in

terms of significance to the overall interestingness
of a cube query? Is there any interestingness facet
that dominates the determination of the overall in-
terestingness of a cube query?
RQ2. As a session progresses, does the sig-

nificance of the interestingness facets change over-
time?
RQ3. Do participants demonstrate a consistent

behavior with respect to the ranking of their inter-
estingness facets?
RQ4. Are there patterns of behavior concern-

ing interestingness facets? Can we form clusters of
users based on their preferences?
To answer these questions, we constructed and

executed the experimental protocol that is detailed
in the sequel.

9.3. Experimental Protocol

The user study we conducted was based on ask-
ing participants to assess how interesting a query
result appeared to them, without giving them any
details on how the query ranked in terms of the
four interestingness facets, namely Relevance, Nov-
elty, Peculiarity and Surprise.
Material. We created a set of cube querying ses-

sions. For all the cube querying sessions, we have
used the Adult dataset which is a census dataset
that has 8 dimensions (Age, Native Country, Ed-
ucation, Occupation, Marital Status, Work Class,
Gender and Race) and a single measure, Work
Hours Per Week.
Each session was constructed as a PowerPoint

presentation that was given to the participants.

The presentation started with a set of slides giving a
description of the dataset structure and semantics.
Then, the participants were given the goal of finding
out which are the categories of working people with
the significantly higher and lower average working
hours per week, depending on a set of data dimen-
sions of the data set, like education, occupation,
work class, age, and in the context of this task, we
were giving them pre-computed queries along with
their results to help them determine the answer to
the task.

The following parts of the presentation given to
the participants included a warm-up slide and 3
slides of 4 queries. The single warm-up slide con-
tained query results that give a broad description
of how work hours are related to the various dimen-
sions that we use in that specific querying session.
This served as a contextualization of the partici-
pants in the data of in the data set. To make the
participants pay attention to these data, we also
asked them to write a short memo of what their
original impression was on who works more.

Subsequently, the report contained 3 slides and,
in each of these 3 slides, 4 queries were presented.
The queries of each slide of the session were ex-
pressed in natural language and were presented
along with their resulting tuples, without any ad-
ditional information about interestingness facets or
values (Fig 9).

We asked the participants to rank the queries
that they faced in each slide on a scale of 1 to 4, with
1 being the most interesting and 4 being the least
interesting. The ranking was based on the users’
personal criteria, with respect to the specific target
that we gave them, i.e., to find out which are the
characteristics of people that work the most and the
least in a week time period. To avoid any bias, we
never referenced any of the interestingness facets to
the participants. Thus, they were fully ignorant of
the overall goal of the study and the underlying as-
sessment that we were making. To make the users
pay more attention to the data, we also asked them
to write a short memo per slide on their rationale.

The trick, unknown to the participants was that
each of the 4 queries maximized the value of an
interestingness facet. Thus, by ranking queries,
the participants also ranked interestingness facets
without knowing. Practically, in each slide we
had 4 queries-representatives of the interestingness
facets. In simpler words, in each slide we presented
to the user a highly Relevant, a highly Novel, a
highly Peculiar and a highly Surprising query at
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Figure 9: A slide as presented to the participants

a random order. The score of each interesting-
ness facet for each query was the result of an algo-
rithm that we selected to run as the interestingness-
facet-representative. Specifically, for each query, we
selected to run Partial Detailed Extensional Rele-
vance, Partial Detailed Extensional Novelty, Par-
tial Detailed Jaccard-Based Extensional Peculiarity
and Partial Extensional Value Based Surprise.

The final step of the process was that once they
had worked with the presentation and made their
decisions and comments, the participants had to
record them in a Google Form whose link was also
given to them, along with the instructions and the
presentation. The participants were given the fairly
large time interval of an entire day to conduct the
experiment. The results were collected from the
Google Form’s back-stage spreadsheet for further
processing.

Remark. A point worth mentioning here, is that the
algorithms used “under the hood” of each slide are
all partial (i.e., return a score) and extensional (i.e.,
based on the query results). We did not require any
input from the participants, other than the report
ensuring that they paid attention to the warm-up
queries. The evaluation of novelty, relevance and

peculiarity are all history-based, i.e., based on the
queries of the previous slides that the participants
had seen in the slides prior to the one evaluating, at
any given slide. Concerning surprise, we exploited
the warm-up queries to assess surprise. Specifically,
we used the fact that the warm-up queries were (in-
tentionally) expressed at higher level of the dimen-
sion hierarchies, to extrapolate expected values for
the subsequent slides; the difference between ex-
pected and actual value quantified the amount of
surprise.

Population. The participants of the experiment
were 25, and specifically, 7 PhD and 11 MSc stu-
dents, all trained in the concepts of cubes, dimen-
sions and business intelligence, as well as 7 under-
graduate students with significantly less exposure
to BI concepts. All participants were volunteers
from France and Greece. Interestingly enough, in
the subsequent study of the collected data, we did
not observe any particular differentiation between
the educational levels. The simplicity of the multi-
dimensional model, as well as the textual descrip-
tion of queries have obviously made the data anal-
ysis work smooth. Therefore, we report all the re-
sults collectively, independently of the educational
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level.
We would also like to point out that no assump-

tion is done about user beliefs, in particular, with
respect to students background or education level.
All students discovered the data set within the ex-
periment. They all had the same set of warming
queries, that allows to model both the query his-
tory and a simple representation of user beliefs.
Anti-Bias and Integrity measures. To pre-

serve the integrity of the study, several measures
were taken.

• To randomize the experiment, we grouped the
participants at random in one of the two ses-
sions that we had previously constructed.

• To forestall any technical difficulties impeding
any student whatsoever, all the query expres-
sions were presented in natural language.

• To involve participants in the data set, we
asked them to construct short memos per slide,
which we later checked. We found no frivolous
behavior from the part of the participants.

• To avoid any ordering bias, we shuffled the po-
sition of the queries in the slides.

• By asking each user to rank 12 queries overall,
we addressed the issue of volume, too.

9.4. Research Question: significance of individual
interestingness facets

After collecting the participants’ responses, the
analysis phase begun. The first task to address was
to answer the question on the significance of indi-
vidual interestingness facets to the overall interest-
ingness of an individual query.
The input to the analysis was a matrix where

for every participant, for every slide and for every
query in the slide, there was a rank between 1 to
4. We had instructed participants to avoid ties,
and indeed we had a clean vote from this respect.
To synthesize the results, we resorted in a Borda
scoring of the ranks. A Borda count [57] is a simple
process for synthesizing ranking preferences. The
idea is that you have N candidates, and voters rank
them. Then, for every rank, you give a score which
is produced by the formula score = N+1 - rank. For
example, with 4 candidates to be voted per slide,
the query with rank 1 gets 4 points, whereas the
query with rank 4, gets 1 point. Then, the scores
are simply summed up per candidate.

Here, the candidates are the interestingness
facets, hidden behind the queries that are voted.
Once we added all the scores, the results were
demonstrating a layering of preferences.

Int. Dim Borda score
Peculiarity 151
Novelty 183
Relevance 203
Surprise 213

Table 6: Borda score for the different facets of interesting-
ness, after composing individual rankings in our user study

The results suggest that no particular interest-
ingness facet drives the overall interest single-
handedly. However, there are differences, with Sur-
prise and Relevance being most significant, Novelty
coming third at a distance, and Peculiarity being
the least significant.

Surprise came first and Relevance second, with
close distance to one another. Surprise was the
facet that was ranked (i) first most times than any
other facet, and, (ii) last, less than any other facet.
Closely following Surprise, Relevance ranked typ-
ically first or second, and rarely third or fourth.
So, this practically instructs us that if recommend-
ing queries to users a-priori, or assessing them
a-posteriori, surprise and relevance seem stable
choices.

Int. Dim 1 2 3 4
Peculiarity 7 14 27 27
Novelty 20 16 16 23
Relevance 19 28 15 13
Surprise 29 17 17 12

Table 7: Occurrence per rank, for each of the interestingness
facets (position 1 is the most appreciated, position 4 the less)

On the other hand, Novelty is practically equally
distributed in all ranks (as we will see, not equally
over time though). We believe that this is a re-
sult closely related to the setup of the study: users
were given a specific task, as well as a contextualiza-
tion warm-up, meaning that there was not a phase
of exploring without any particular focus in search
for interesting pieces of information. But, what we
learn on the other hand, is that in these occasions,
where a clear focus has been set early on, novelty
is not so important as we originally expected. Fi-
nally, peculiarity went particularly low in terms of
preferences. Again, we relate this to the previous
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discussion on novelty: digressions from the central
task are not particularly appreciated once the focus
has been set.
Interestingly, a statistical analysis of correlation

between the measurements found a couple of inter-
esting anti-correlations. We measured the pairwise
Pearson correlation for all the four interestingness
facets. Surprise is anticorrelated with Novelty, with
a score of -0.62 and Relevance is anticorrelated with
Peculiarity with a score of -0.50. The effect for the
rest of the pairs was weaker.

9.5. Research Question: does interest change over
time?

Another question we asked was if participants
appreciated the interestingness facets differently as
time passes. To the extent that we have a set of
slides ordered over time, we assess the effect of time
via the position of the respective slides. A caveat
here, is of course, that the length of our sessions is
short, therefore, the results should not be arbitrar-
ily generalized. In Figure 10, we depict the average
rank per slide, for each of the interestingness facets.
Beware these are ranks, not scores: so, in the Fig-
ure, the higher the bar, the less appreciated a facet
is.
Unsurprisingly, Surprise and Relevance seem

rather unaffected from the position of the slide, al-
though as time passes, surprise becomes slightly less
of importance. Peculiarity also seems to lose inter-
est as time passes, especially between slides 1 and
2. What is most revealing, though, is the sharp de-
cline of Novelty in rank over time. At the begin-
ning, Novelty is not that interesting, ranking top
(thus, least appreciated) among all interestingness
facets. From slide 2, though, Novelty starts being
more appreciated by the participants. Novelty was
probably considered out-of-scope at the beginning,
right after contextualization had taken place, but
later, it picked up in stature.

9.6. Research Question: Do participants demon-
strate a consistent behavior with respect to the
ranking of their interestingness facets?

The next research question concerned the exis-
tence of a constant behavior of the participants
with respect to how they ranked the different in-
terestingness facets. We will broadly use the term
consistency to refer to the tendency of a participant
to place the same rank to the same interestingness
facet in different slides.

Ranking Data and Comparisons. Before
proceeding with the definitions of the metrics used
to quantify consistency, let us briefly summarize
the available data. Remember that each partici-
pant gives 4 rankings for each slide, in the range 1
- 4, one per interestingness facet. Since there are 3
such slides, eventually each participant comes with
a vector of 12 rankings.

Moreover, there are 3 comparisons to be made:
(i) slides 1 and 2, (ii) slides 1 and 3, and, (iii) slides
2 and 3. This is important as we have a vector of 12
comparisons for the rankings given by the partici-
pants: 4 comparisons (one per facet) for each of the
cases (i) - (iii). We call this vector the comparison
vector.

Definitions. To address this question, we re-
sort to two different metrics, point-based and score-
based consistency. To be able to define them, we
define the following metric:

Average Point-based Consistency is the total
number of comparisons where the participant gave
the same rank to the same interestingness facet in
the two compared slides, normalized by the number
of comparisons.

To define score-based consistency, we need a cou-
ple of auxiliary metrics:

Score inconsistency is the absolute difference of
two rankings of the same interestingness facet in a
comparison - practically the absolute value of a cell
in the comparison vector.

Normalized comparison score-based inconsistency
is the normalized sum of the 4 cells of the com-
parison vector that pertain to a comparison be-
tween two specific slides. We sum the inconsisten-
cies for the four different measures and normalize by
8 which is the maximum amount of inconsistency
for the 4 rankings within a slide. Thus, we have
3 normalized inconsistency scores, one per case (i)
- (iii). Normalized comparison score-based consis-
tency is defined as its complement: 1 - normalized
comparison score-based inconsistency.

Then, Average score-based consistency is the av-
erage of the three normalized comparison score-
based consistencies for cases (i) - (iii).

Intuition. Practically speaking, the two met-
rics handle consistency from two different points of
view.

Point consistency is a “Boolean”-based metric: if
the participant gave the same ranking to the same
facet, it raises a true flag, otherwise a false one.
Practically, we count how many times there was a
coincidence of rankings. We normalize the count
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Figure 10: Average Rank of interestingness facets per Slide

of coincidence occasions by the number of compar-
isons (here: 12) and we get a score within 0 and
1 (1 meaning the participant gave always the same
rankings).

Score-based consistency goes one step further, as
the value of the rank is used. Assume you compare
novelty in slide 1 with novelty in slide 3. If the
participant gave a rank of 1 to the former and a
rank of 4 to the latter, this is more inconsistent
compared to the case where the participant gave 2
and 3, respectively.

Evaluation. When it comes to evaluating the
consistency of individual users the situation is de-
picted in Figure 11.

Both scatterplots demonstrate a similar behav-
ior of points randomly spread in a band of values.
The two plots provide a different evaluation of the
situation however. When we assess consistency in
a strict, Boolean way, the participants find them-
selves spread in a band between 0.1 and 0.4 (with
the exception of a single user with a consistency
of exactly 1). This is an indicator that more often
than not, the rankings of the same interestingness
facet are different.

At the same time, the score-based consistency
tells us that they are not entirely different after all:
the band of points lies between 0.2 and 0.7, with
13 participants below 0.5 and 12 participants above
0.5. In other words, although they may not coincide

exactly, the rankings used are not that far.
In summary: the participants did not exhibit a

strong bias towards a particular ranking of the in-
terestingness facets, although the rankings are not
completely arbitrary.

9.7. Research Question: Are there any clusters of
participant behavior?

Another test we applied was to attempt and clus-
ter participants on the basis of their behavior. We
employed two methods of clustering: (a) k-Means
and (b) Louvain clustering on the grounds of two
versions of the measurements: (i) the original 12
rankings given by each user, and, (ii) the average
value of each interestingness facet per user (thus,
with a vector of 4 values per user instead of 12, in
an attempt to reduce dimensionality).

The results are quite indicative on the absence of
clusters. All clustering methods returned low Sil-
houette coefficients (0.252 for the k-means cluster-
ing of the original and 0.323 for the k-means clus-
tering of the averaged data), and their Silhouette
plots indicate that clusters are not very cohesive.

9.8. Threats to validity

In this section, we discuss threats to the validity
of our study.
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Figure 11: Consistency scatterplots: The horizontal axis refers to the participant id (thus, each point is a different participant),
and the vertical axis to the average point-based and score-based consistency of the participant

Construct Validity. We have taken care to
check that the answers given by the participants
were valid. We had no violations of the scoring
constraints and the memos returned by the users
demonstrated a valid level of engagement to the
study. We made sure that the true purpose of the
study was not revealed to the participants. There-
fore, when they ranked queries, they had no idea
about interestingness facets that could affect their
scoring. Based on the above, we can state that the
ranking of queries in terms of overall interestingness
was valid.

At the same time, a potential threat might ap-
pear from the hiding of the facets behind queries.
With the exception of relevance, we made sure that
each query that secretly represented a facet was ei-
ther on very high values of the respective metric,
or with significant difference for this metric against
the others. For relevance this was not possible, as
we explore a fairly well “fenced” area of the multi-
dimensional space. However, the queries with high
relevance were very low in all other metrics, which
means that if selected, only relevance could be the
reason for selecting them. Based on the above, we
can claim that the rank of a query can be validly
mapped to a rank of the respective interestingness
facet.

Internal validity. Internal validity refers to
cause-and-effect relationships. We do not measure
any interventions, so we do not search for hidden
variables that can override the effect of an inter-
vention, as typical internal validity checks should
do.

We attribute the significance assessment of the
different facets to the scope of the study (see also
external validity). Other factors that could influ-
ence the behavior of the participants towards spe-
cific facets might be applicable, although we cannot
think of any. The same applies for the behavior of
Novelty over time.

The effect of time has to be considered under the
prism of the session length of the study. Although
we see a clear behavior for the time length that
we observe, it is possible that longer sessions might
demonstrate different characteristics.

The lack of extreme consistency and clusters of
participants is probably a good rather than a bad
sign towards the integrity of the study: the popu-
lation demonstrated variability in behaviors which
means there is no threat of bias of some sort. Ap-
parently, although some difference in significance
exists, overall, all facets play a role. Interestingly, a
potential threat to the internal validity of the study
involves other facets, that we have not thought of,
that might coexist with the ones we study.

External validity. What is the scope of the
study? How generalizable are our findings? The
existence of 25 participants is not overwhelming,
but still adequate enough to allow the drawing of
conclusions.

Is the use of students as participants a problem?
We believe we satisfy the most important properties
of [58] that supports accepting the validity of tests
with students: students were trained in the context
of the study, and were adequately well equipped
to perform the study, and, at the same time, both
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our positive and negative results are novel and a
starting point for further research.
Concerning the scope, we have to be clear that

the study did not have an exploratory nature: the
participants were given query descriptions and re-
sults around a very specific topic. Therefore, our re-
sults are restricted in the case of focused assessment
of information around a specific topic and task.

10. Conclusions

In this paper, we have addressed the problem of
assessing the interestingness of a cube query in the
context of a hierarchical multidimensional database
with cubes and level hierarchies. We have per-
formed an extensive survey of the related work,
both in the area of computer science and in the area
of the study of human behavior. We have focused
the discussion on 4 interestingness facets, specif-
ically, relevance, surprise, novelty, and peculiarity.
For these facets of interestingness, we have also pro-
posed specific measures and algorithms for assess-
ing them in a quantitative fashion. We take care to
discriminate between result-based algorithms, after
the query has been executed and syntax-based al-
gorithms, before the query is executed. Finally, we
have conducted a user study to determine the sig-
nificance, as well as the evolution over time, of the
different interestingness facets.
Future work can continue in different roads.

First, although the facets of interestingness that
we discuss in this paper provided a principled and
well-founded setup of how interestingness can be
handled, one can only expect that a deeper study
– esp., of the fundamentals, in the area of hu-
man behavior– can reveal more perspectives to the
essence of interestingness. Once again, we would
like to clarify that we make no completeness claim
on the possible facets of interestingness. Several
other facets are open to exploration:

• Conciseness in one such facet, although de-
fined at a meta-level: the shorter the query
description and the query result are, the more
easy to comprehend them. The effect of con-
ciseness and aggregation level (which can go
hand-in-hand with the size of the query result)
has not been studied either.

• Another notable facet concerns the expression
aspect, in which data are contextualized with
respect to the medium used to expressed it

(and not displayed) – e.g., a cube can be de-
scribed by the set of cells, or by a query, or by
a visualization, etc.

Moreover, even for the presented facets, it is clear
that the presented algorithms are only a first attack
to the problem. More algorithms and metrics are
possible for the aforementioned facets. We have
been particularly interested in syntactic checks in
this paper, as they allow the prediction of the in-
terestingness of a query without actually executing
it. More value-based algorithms, however, are cer-
tainly possible. The role of time (but also space,
and in general, dimensional context) is also worth
pursuing: what is interesting now for an analyst,
might be indifferent some time later. Aging, de-
cay factors can be introduced in the assessment of
interestingness when queries are compared to the
history of the user, or, other users as a matter of
fact.

Data quality and non-multidimensional issues
have also been absent from this paper. We as-
sume an OLAP-style structuring of the data in neat
star-schema like structures with the joins, drill-
downs, and value translations being straightfor-
ward. OLAP-style data also mean that the data
re clean and conforming to the dimension bus. The
presence of arbitrary schema structures and arbi-
trary values in the data can also be a part of future
work in the assessment of query interestingness.

Personal profiles, crowd-wisdom and log mining
can be employed to best model user beliefs. We
refer the interested reader to [59, 21] for a start-
ing point, but of course, the problem of belief es-
timation is a large research territory that can fit
gracefully with our taxonomical framework.

The scope of our user study has not studied
highly interactive user sessions. The extent that
interactivity affects the assessment of interesting-
ness is yet another unexplored territory for future
research.
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