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Abstract—Modern data analysis applications require the ability to provide on-demand integration of data sources while offering a

flexible and user-friendly query interface. Traditional techniques for answering queries using views, focused on a rather static setting,

fail to address such requirements. To overcome these issues, we propose a fully-fledged data integration approach based on graph-

based constructs. The extensibility of graphs allows us to extend the traditional framework for data integration with view definitions.

Furthermore, we also propose a query language based on subgraphs. We tackle query answering via a query rewriting algorithm based

on well-known algorithms for answering queries using views. We experimentally show that the proposed method yields good

performance and does not introduce a significant overhead.

Index Terms—Data integration, data wrangling, GLAV mappings
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1 INTRODUCTION

DATA wrangling is defined as an iterative data explora-
tion process to enable analysis [1]. In contrast to data

warehousing approaches, where data are materialized in a
target schema tailored to a specific kind of analysis, virtual
data integration systems play a key role on the exploration of
a wealth of data that is yet to be integrated [2]. Traditionally,
virtual integration systems have aimed to expose a single
mediated relational schema. Alternatively, given that
graphs are widely accepted as a convenient data model to
represent real-world abstractions and their relationships [3],
the community has proposed different solutions grounded
on this formalism. However, as the popularity of wrangling
systems grows, non-technical users face high-entry barriers
on interacting with them, requiring queries to be written in
technical languages such as Datalog [4] or SPARQL [5].
Additionally, the vast number of available heterogeneous
and independent datasets on the web pose several chal-
lenges for contemporary wrangling demands [6]. Hence,
the development of flexible and easy-to-use data integration
systems remains an open research topic [7], [8].

We distinguish virtual integration proposals according to
(a) the data model/query language, and (b) the kind of
mapping used to connect the sources and the global schema.
A summary of the main approaches is presented in Table 1.
Regarding data model and query language, we identify the
classical (relational) database (DB) approach, and the

knowledge representation (KR) one. The former, aims to
expose a single relational schema as the integrated database,
while the latter relies on well-behaved fragments of descrip-
tion logics to reason about data and incorporate new facts
[9]. Regarding mappings, we have: global-as-view (GAV)
characterizing the target schema in terms of queries over
the sources; local-as-view (LAV) characterizing sources in
terms of queries over the target schema; and the most
generic global-local-as-view (GLAV) characterizing queries
over the sources in terms of queries over the target schema.

Nonetheless, DB-based integration systems require users
to explicitly state shared join variables in, commonly con-
junctive, queries (e.g., a Datalog query like Rðx; yÞ; Sðy; zÞ).
This requires an accurate understanding of the schema in-
use as well as the query language. Alternatively, KR-based
systems expose a graph-based data model enabling expres-
sive visual query paradigms to non-expert users [24]. KR-
based systems adopting GAV mappings are limited by the
management of evolution in the sources (i.e., adding or
modifying the structure of a source might require revisiting
multiple mapping definitions). This limitation is lifted by
LAV/GLAV-based systems. However, these approaches
are inherently more complex than those in the DB category
due to the embedded reasoning capabilities. To this end, the
goal of this paper is to provide a single, coherent, all-encom-
passing virtual data integration model of (a) schemata, and
(b) queries, in a way that facilitates (i) easy registration of
sources under a global schema, (ii) easy (visual) query for-
mulation without the need for expressing joins, (iii) auto-
matic translation of queries over the global schema to
queries over the sources at runtime, and (iv) absence of any
reasoning mechanism. In order to contribute towards this
goal, we build and extend previous work [25], where we
presented an ontology for query answering over linear and
acyclic queries. Here, we present a novel and fully-fledged
approach to virtual integration using graphs as canonical
data model for the whole process. Precisely, we present a
framework for query answering over graphs mediating a
set of heterogeneous data sources connected via GLAV
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mappings. The proposed graph-based framework (i.e., the
integration graph) takes as building blocks Seth and Larson’s
reference architecture for federated database systems [26],
and adapts its components to Lenzerini’s data integration
framework [27]. As depicted in Fig. 1, an integration graph
contains all the metadata constructs representing a feder-
ated system.

The main novelty of our approach is a query language
based on coverings, or contours, of a graph representing the
global schema. The proposed language does not require
users to define join conditions, a task delegated to the
rewriting algorithm. This, enables a visual representation of
the query. Furthermore, as opposed to classic methods,
where different data structures are maintained for schemata
and mappings, our framework is entirely grounded on
graphs as unique data structure for all constructs. Besides
the flexibility and ease of use that bring to the wrangling
process, using graphs to represent data integration systems
brings performance benefits. Encoding all required meta-
data (i.e., global schema, source descriptions, mappings and
queries) in a single data structure simplifies the interopera-
bility among them. This allows rewriting algorithms to
query such metadata structures (e.g., mappings), bringing
the ability to efficiently identify the relevant sources con-
taining a query posed over the global schema. Our approach
is theoretically and experimentally validated, proving its
soundness and showing its practical efficiency.

Contributions.We summarize our contributions as follows:

� We propose a novel graph-based framework for vir-
tual data integration with GLAV mappings.

� We introduce the notion ofminimally-sound andmini-
mally-complete rewriting algorithms, which guarantee
to yield the maximally-contained rewritings of a query.

� We present a query rewriting algorithm, satisfying
the above properties, that reformulates graph-based
queries into maximally-contained rewritings. A dis-
tinguishing feature of our approach is that, by con-
sidering the composition of sources, we yield more
results than the alternative methods with no perfor-
mance overhead.

Outline. The rest of the paper is structured as follows. In
Sections 2 and 3 we related work and formalize our frame-
work. In Section 4, we present the rewriting algorithm, fol-
lowed by an analysis of its computational complexity and a
theoretical validation in Section 5. In Section 6, we experi-
mentally validate our approach. We finally conclude our
paper and present future work in Section 7.

2 RELATED WORK

The problem of answering queries using views has set the
theoretical underpinnings for several data integration

approaches [28]. As shown in Table 1, we distinguish two
families of systems: those exposing a relational schema as
integrated database (DB), and those exposing an ontology
(KR) as mediator. Here, we review related work for each
family distinguishing on the kind of used mappings.

DB-Based Approaches. GAV-based integration systems
such as TSIMMIS [10], Garlic [11] or MOMIS [12] pioneered
the field of data integration. With the bloom of web sources
the community started paying attention to LAV mappings
due to their expressive power for heterogeneous sources.
Rewriting LAV mappings is equivalent to the problem of
answering queries using views [28]. In data integration, it is
common to seek maximally-contained rewritings, being the
bucket algorithm [13], the inverse rules algorithm [14] and the
MiniCon algorithm [15] the most prominent techniques. Yet,
several methods have been proposed paying special atten-
tion to the scalability of the rewriting process. [29] proposes
to use graphs to represent distinguished and existential var-
iables as intermediate data structure in the rewriting pro-
cess. This allows to detect common access patterns across
sources and generate a compact representation, showing
scalability results up to 10.000 views. Extensions of this
model have also been proposed focusing on the chase algo-
rithm [30]. Regarding GLAV mappings, these were origi-
nally designed for data exchange [16]. Query answering
consists on computing the chase over instances of the source
schema, generating new facts until all dependencies are sat-
isfied. However, the scalability of this method is still a major
drawback [31].

KR-Based Approaches. The ontology-based data access
(OBDA) approach is the main representative of graph medi-
ation. OBDA systems implement a virtual integration
approach using ontologies [32]. To this end, they adopt the
DL-Lite family of description logics as foundation, a well-
behaved fragment capturing a fair portion of conceptual
modeling formalisms, and guarantee first-order rewritability
of queries [9]. The ontology can be leveraged to complement
query results with further knowledge via reasoning, thus
being able to compute the certain answers. Most approaches
adopt GAV mappings, and thus the query answering task is
reduced to unfolding mappings [33]. Popular GAV-based
OBDA systems are Ontop [5], Morph [18] and Mastro [19].
Besides the popularity of GAV-based OBDA systems, LAV
[20], [21], [22] and GLAV [17], [34] mappings have also been
studied for description logics. Recently, new approaches to

TABLE 1
Overview of Approaches w.r.t. Data Model and Query
Language (rows) and Kind of Mappings (columns)

GAV LAV GLAV

DB [10], [11], [12] [13], [14], [15] [16], [17]
KR [5], [18], [19] [20], [21], [22] [4], [23]

Fig. 1. Building blocks in an Integration Graph, adapted from Sheth &
Larson (1990).
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OBDA using GLAV mappings have been proposed to com-
binedly query the ontology and its instances [23].

As conclusion, we acknowledge that, to the best of our
knowledge, there is no work considering the intersection of
our problems of interest (i.e., query answering over graphs
without reasoning). Hence, our approach is complementary
to those presented, and fills a gap in scenarios where users
are non-technical and inference is not required.

3 PRELIMINARIES

In this section, we introduce the formal background of our
approach, which allow to define the necessary conditions
for correct query rewriting algorithms.

3.1 Data Source Model and Queries

Relations and Wrappers. A schema R is a finite nonempty set
of relational symbols fr1; . . . ; rmg, where each ri has a fixed
arity ni. Let A be a set of attribute names, then each ri 2 R is
associated to a tuple of attributes denoted by attðriÞ. Hence-
forth, we will assume that 8i; j : i 6¼ j! attðriÞ \ attðrjÞ ¼ ;
(i.e., relations do not share attribute names), which can be
simply done prefixing attribute names with their relation
name. Let D be an infinite set of values, a tuple t in ri is a
function t : attðriÞ ! D. For any relation ri, tuplesðriÞ
denotes the set of all possible tuples for ri. A wrapper w is
an element in R with a function execðwÞ that returns a set of
relational tuples T � tuplesðwÞ. In practice, wrappers can be
implemented via any black box program as long as there
exists a mapping function from their specific data model to
first normal form (1NF).

Conjunctive Queries. A conjunctive query (CQ) is an
expression of the form

Q ¼ py w1 � . . .� wnÞj
m̂

i¼1
PiðziÞ

 !
;

where w1; . . . ; wn are distinct wrappers; P1; . . . ; Pn are equi-
join predicates respectively over z1; . . . zn; and both

S m
i¼1zi

and y are subsets of
S n

i¼1attðwiÞ. Throughout the paper, we
might refer to a CQ as a 3-tuple Q ¼ hp;ffl;Wi respectively
denoting the sets of projected attributes, equi-join predicates
and wrappers of Q. We might also refer to binary equi-join
predicates as pairs of the form p ¼ ha1; a2i, noting that
ha1; a2i ¼ ha2; a1i. Next, we define the functions attðQÞ,
wrapðQÞ, predðQÞ and predattðQÞ respectively denoting the
sets of projected attributes p, wrappers W , equi-join predi-
catesffl , and attributes contained in the equi-join predicates
of Q. We define the composition of two CQs (Q ¼ Q1 �Q2)
as Q ¼ hattðQ1Þ [ attðQ2Þ; predðQ1Þ [ predðQ2Þ; wrapðQ1Þ [
wrapðQ2Þi. Note the presented syntax of CQs does not
include filters (e.g., w1:age > 30). Without loss of generality,
it is always possible to push down unary selection predi-
cates on top of every wrapper. We use execðQÞ to denote the
execution of a CQ Q, a function returning a set of tuples T �
ftuplesðw1Þ � . . .� tuplesðwnÞg over y, where w1; . . . ; wn 2
wrapðQÞ. We also use Q1 v Q2 to denote a CQ Q1 is con-
tained in another CQ Q2. Additionally, Q1 is maximally-con-
tained in Q2 if there does not exist any Q3 such that
Q1 v Q3 v Q2. We refer the reader to [35] for the formal
semantics on the evaluation of CQs and query containment.

A union of conjunctive queries (UCQ) is an expression of
the form

Q ¼ Q1 [ . . . [Qn;

where Q1; . . . ; Qn are union-compatible CQs. Two CQs Q1

and Q2 are union-compatible if there is a bijective function
between their attributes. From now on, we will interpret a
set of CQs as a UCQ. We use execðQÞ to denote the set of
tuples resulting from evaluating the UCQ (i.e.,
execðQ1Þ [ . . . [ execðQnÞ). Finally, recall that, given a UCQ
Q and a CQ Q0, then Q0 v Q if and only if there is an 1 � i �
n such that Q0 v Qi.

3.2 Integration Graph

An integration graph I is a 4-tuple of edge-labeled directed
graphs hG;S;M; Ei, whose components we describe next.
Hereinafter, we assume all operations are applied over a
fixed instance of I .

Global Graph. The global graph G ¼ ðVG; EGÞ is an
unweighted, directed edge-labeled graph where self loops
are allowed. VG is partitioned into two disjoint sets C (con-
cepts) and F (features). The set F itself is further partitioned
into four disjoint subsets, distinguishing derived/base fea-
tures, and ID/non-ID features. Hence, Fid

d and Fid
b refer,

respectively, to the sets of ID derived and base ID features,
while Fd and Fb refer, respectively, to the sets of non-ID
derived and base features. Next, labels in EG contain the
domain L of the user (i.e., any business concept) as well as
the set of semantic annotations A. Semantic annotations are
system specific labels, for instance to drive the query rewrit-
ing process. Note that A and L must be disjoint. For now,
we focus on the semantic annotation hasFeature, relating
concepts and their features. Hence, we formalize the edge
set EG as the union of (a) C � L� C, assigning labels in L
between concepts; and (b) C � fhasFeatureg � F , linking
concepts and their features. We restrict features to be linked
to at most one concept. Hence, given a feature f , we use
concðfÞ to refer to its associated concept. Conversely, for a
given concept c, we use featðcÞ to refer to c’s set of features.
Regarding IDs, in the spirit of composite primary keys, we
allow concepts to have more than one ID feature. Moreover,
for each concept c, we assume functional dependencies
from IDs to non-IDs (i.e., fFid

d [ Fid
b g ! fFd [ Fbg).

Global Graph Instances. Let V be a countably infinite set of
node IDs, v an element in V , and D an infinite set of values.
An instance of a concept c with features f1; . . . ; fn is a graph
Gc ¼ ðVc; EcÞ, where Vc ¼ fv; d1; dng, with di 2 D, and Ec ¼
fhv; fi; diiji ¼ 1::ng, where fi 2 featðcÞ. Intuitively, this is a
graph with exactly one node ID that is connected to values
using edges labeled with feature names. Then, a global
graph instance GI from G with n concepts, is a graph Gc1 [
. . . [Gcn , such that, for each pair of concepts ci; cj in G con-
nected with label ‘, it satisfies that vi and vj are connected in
GI with label ‘. We denote GI the set of all possible global
graph instances.

Global Queries. A global query ’ is a connected subgraph of
G disregarding edge directions. We say a graph G1 ¼
ðV1; E1Þ is a subgraph of G2 ¼ ðV2; E2Þ (i.e., G1 � G2) if
V ðG1Þ � V ðG2Þ and EðG1Þ � EðG2Þ. We use featð’Þ to
denote the set of features contained in ’. The semantics of a
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global query are based on graph homomorphisms, the cus-
tomary for graph databases [36]. Precisely, given two
directed edge-labeled graphs G ¼ ðV;EÞ and G0 ¼ ðV 0; E0Þ, a
homomorphism from G to G0 is a function f : V ! V 0 such
that for each pair u; v 2 V , ðu; vÞ 2 E implies ðfðuÞ; fðvÞÞ 2
E0. Thus, we will consider as instances of ’ the set of graph
instances ’I � GI such that, for each GI 2 ’I , there exists a
homomorphism from ’ to GI .

Example 1. Fig. 2, depicts a global graph with three con-
cepts. The global query ’1 asks for all features from A
and B.

Source Graph. The definition of the source graph S is anal-
ogous to that of G. Intuitively, the source graph encodes in a
graph manner wrappers and their schema. Here, however,
the vertex set VS is composed of ðW [AÞ, respectively the
set of wrappers and attributes (recall that S is a graph-based
representation of the wrappers and their attributes). Here,
we introduce the semantic annotation hasAttribute,
meant to connect a wrapper with its attributes. Thus, in S
the edge set ES is composed of ðW � fhasAttributeg �AÞ.

Mappings Graph. The mappings graph M encodes LAV
schema mappings between S and G. Precisely, for a wrapper
w, a LAV schema mapping is a pairMðwÞ ¼ h’;Fi, where ’
is a global query; and F is an injective function F : attðwÞ !
featð’Þ. Intuitively, the mappings graph represents in the
form of a graph schema mappings between the source and
global graphs. Then, we define the functions globðMðwÞÞ
andmapðMðwÞÞ respectively denoting, forMðwÞ, the global
query ’ and the mapping from attributes to features F .
Recall we encode mappings in a graph form, precisely M
contains ’ and F . Thus, we represent ’ via a subgraph of G,
which intuitively identifies the concepts in G covered by w.
To represent F , we extend the set of semantic annotations A
with the sameAs label, linking attributes in S to features in
G. Finally, we consider the inverse correspondence F�1 :
f ! A, in order to identify the set of attributes A that map
to a specific feature f .

Definition 1 (CoveringI ðW; ’Þ). A set of wrappers W covers
a global query ’ if it is a subset of the union of LAV mappings.
Formally, 8w 2W :

S
globðMðwÞÞ 	 ’.

External Graph. The external graph E encodes views
together with the semantics of the expressions to compute
derived features (i.e., operational expression trees). For-
mally, a view V is a triple hf;’; T i, where f is a derived fea-
ture in the set fFid

d [ Fdg 2 VG, ’ is a global query, and T is
an operational expression tree over featð’Þ. We use featðVÞ,
globðVÞ and expðVÞ to, respectively, denote f , ’ and T . We

also use derðfÞ to denote the inverse function of featðVÞ. An
operational expression tree (or just tree) is a function T :
T ! T 0, where T and T 0 are sets of tuples. We denote as
semðT Þ the semantics of T (i.e., the expression it encodes),
which are represented via an alphanumerically ordered
binary search tree ordered on the expression elements.
Expression elements consist of algebraic operators, function
calls, variables and constants. We use T ðT Þ to denote the
evaluation of semðT Þ on the set of tuples T . A view V is rep-
resented in E as a node V , where: featðVÞ is represented via
the semantic annotation derives; globðVÞ is represented
via a subgraph of G identified by V; and expðVÞ is repre-
sented via the withSemantics annotation.

Example 2. Fig. 3, depicts a complete integration graph.

3.3 Querying the Wrappers via the Integration
Graph

Source Queries. A source query c is a (potentially discon-
nected) subgraph of S. We denote attðcÞ and wrapðcÞ
respectively the attributes and wrappers in c. Source
queries are isomorphic to CQs for a given integration graph
I , hence we define the isomorphism hI : C! Q from the
set C of source queries to the set Q of CQs. We denote h�1I
its inverse. Precisely, hI ðcÞ yields a CQ hattðcÞ; P; wrapðcÞi,
where P are pairs of attributes that map to the same feature
in G. Henceforth, we will only consider equi-join predicates
among ID features, formally defined as 8p 2
predattðhI ðcÞÞ9w 2 wrapðcÞ : mapðMðwÞÞðpÞ 2 Fid. Con-
tainment of source queries is equivalent to CQ containment,
hence, for two source queries c1 and c2, we say c1 is con-
tained in c2 (c1 v c2) if and only if hI ðc1Þ v hI ðc2Þ.

Definition 2 (CoveringI ðc;’Þ). A source query c covers a
global query ’ if CoveringI ðwrapðcÞ;’Þ is satisfied.

Definition 3 (MinimalI ðc;’Þ). A source query c is minimal
w.r.t. a global query ’ if removing any wrapper from wrapðcÞ
yields a non-covering set of wrappers. Formally,
@w 2 wrapðcÞ : coveringI ðwrapðcÞnw; ’Þ.

Semantics of Source Queries. The semantics of source
queries is analogous to that of CQs over the wrappers. Yet,
evaluating c one would expect to obtain a graph structure
instead of a set of tuples. Hence, we consider a homomor-
phism gI ;’ : T’ ! GI from the set of tuples T’ resulting
from execðhI ðcÞÞ, to the set of global graph instances GI .
Let T be a set of tuples such that T � T’, then for each t 2
T , gI ;’ðtÞ yields a graph G such that: (a) for each pair of con-
nected concepts ci; cj 2 ’ with a label e, G connects the
unique node IDs vi; vj with the label e (i.e., for each tuple
and concept, a new unique node ID is generated); and (b)
for each concept c linked to a feature f , G connects the node
ID ci to f’s corresponding value in t using the label f .

Definition 4 (ContainmentI ðc;’Þ). A source query c is
contained into a global query ’ (i.e., c v ’) if all tuples result-
ing from the execution of hI ðcÞ are instances of ’. Formally,
8t 2 execðhI ðcÞÞ : gI ;’ðtÞ 2 ’I . c is maximally-contained in
’ if there does not exist a source query c0 6¼ c such that
c v c0 v ’.

Fig. 2. Global graph and a query. Doubly circled features denote IDs. For
the sake of clarity, some hasFeature edges have been omitted.
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Example 3. Fig. 4 depicts a contained source query c of ’1

(from Fig. 2). Applying the isomorphism hI , after remov-
ing redundant attributes, we obtain the same query in its
CQ form. Below, we present exemplary tuples from
execðhI ðcÞÞ, followed by the global graph instance form
of t1 (i.e., gI ;’ðt1Þ).

Rewriting Algorithm. A rewriting algorithm is a function
RI : f! C from the set f of all global queries to the set C
of sets of source queries, such that 8’ 2 f, RIð’Þ consists
only of rewritings of ’. We define the notions of minimally-
sound and minimally-complete rewriting algorithms.

Definition 5 (Minimally� soundðRIÞ). A rewriting algo-
rithm RI is minimally-sound if 8’ 2 f and 8c 2 RIð’Þ, then
minimalI ðc;’Þ is satisfied.

Definition 6 (Minimally� completeðRIÞ). A rewriting
algorithm RI is minimally-complete if 8’ 2 f and every c

such that it is a rewriting of ’ and minimalI ðc;’Þ is satisfied,
it holds that c 2 RIð’Þ.

Theorem 1. Let ’ be a global query, and let RI be a rewriting
algorithm. Each source query c in the set C ¼ RIð’Þ is maxi-
mally-contained in ’ (i.e., c v ’), if and only if RI is mini-
mally-sound and minimally-complete.

Proof. Let C ¼ fc1; . . . ;cng be the set of source queries
resulting from RIð’Þ. We first show that each ci v ’

showing that each tuple t 2 execðhI ðciÞÞ is contained in
the set of instances of ’. In other words, let G be the graph
generated by applying the homomorphism gI ;’ðtÞ, then
we must show that G is an instance of ’, which reduces to
show there exists a homomorphism from ’ to G. The if
can be shown relying on the fact that RI is minimally-
sound (i.e., t is the result of a covering source query). In
this case, the number of edges in ’ will be less or equal
than the number of edges in G, guaranteeing the existence
of the homomorphism. This is not the case under the
assumption that RI is not minimally-sound. We

Fig. 3. An exemple integration graph. Doubly circled features denote IDs. The bottom colored graphs represent mappings (i.e., subgraphs of G) for
each wrapper dashed with the same color.

Fig. 4. Contained source query, execution and global instance of the
global query from Fig. 2.
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additionally reason that each ci v ’ is maximally-con-
tained in ’, using the assumption that RI is minimally-
complete. This guarantees there does not exist a source
query c0 =2 C such that CoveringI ðc0;’Þ. tu

Problem Statement. The problem of rewriting queries ’

over an integration graph I reduces to finding a minimally-
sound and minimally-complete rewriting algorithmRI .

4 REWRITING CONJUNCTIVE QUERIES

In this section, we present REWRITECQ, a three-phase mini-
mally-sound and minimally-complete rewriting algorithm.
We detail each of its phases, and later present a discussion
on its computational complexity and properties.

Algorithm 1 depicts the main method that rewrites
global queries ’. It starts unfolding the GAV mappings in E,
and encoding the computation of derived features as virtual
wrappers. Then, LAV mappings are used to find equi-join
conditions among wrappers to yield a contained UCQ Q.
REWRITECQ is inspired by the bucket algorithm for LAV medi-
ation [13], which finds rewritings for each subgoal in the
query, and stores them in buckets. Then, it finds a set of con-
junctive queries such that each of them contains one con-
junct from every bucket. In our case, concepts are analogous
to buckets, however equi-join conditions must be automati-
cally discovered. Hence, we will first separately find rewrit-
ings that cover the requested concepts in ’ to later find all
possible minimal combinations among them.

Algorithm 1. REWRITECQ

pre: I is an integration graph, ’ is a global query
Post:C is a set of source queries
1: function rewriteCQI ;’
2: I0  unfoldðI ; ’Þ
3: G generateRewritingsðI 0;’Þ
4: C combineRewritingsðGÞ
5: returnC

Throughout this section, we will exemplify our approach
using the global query depicted in Fig. 5.

4.1 Unfolding Derived Features

The first phase (see Algorithm 2) of the rewriting algorithm
consists on computing the derived features contained in ’.
The unfolding process consists on the generation of an inte-
gration graph I0 where there are no views associated to
derived features in ’. To this end, the first part of the algo-
rithm consists on, for each view V (line 4) associated to

every derived feature f in ’, obtaining a UCQ Q (line 6)
from the global query globðVÞ. Executing such UCQ (line 7)
yields a set of tuples T , which will be used in the computa-
tion of the derived feature via the operational expression
tree expðVÞ.

The second part is devoted to generate a virtual wrapper
wv (line 8) with the result of computing the derived feature
over Q. This is achieved taking a query in Q (line 9) to
extract its schema (recall that queries in Q are union-com-
patible, hence all have the same schema). Then, the loop in
line 10 deals with the population of attðwvÞ with fresh (i.e.,
new) attribute names avoiding repeating equivalent attrib-
utes (line 12). The loop also populates the mapping. Next,
we also add a new attribute for the derived feature (line 17)
and its mapping. The set of tuples returned by wv is defined
as those from Q including an extra computation for the
derived feature. Finally, with some abuse of notation in
order to extend the isomorphism hI to wrappers, wv is
added as a new wrapper to I0, while V is removed.

Algorithm 2. Unfold Derived Features

pre: I is an integration graph, ’ is a global query
Post: I0 is an integration graph where all features covered by ’

in I have been unfolded
1: function unfoldI ;’
2: I0  I
3: for f 2 featð’Þjf 2 fFid

d [ Fdg do
4: V  derðfÞ
5: ’d  globðVÞ, T  expðVÞ
6: Q rewriteCQðI 0;’dÞ
7: T  execðQÞ
8: wv  newWrapperðÞ
9: Q takeAnyðQÞ
10: for w 2 wrapðQÞ do
11: for a 2 attðQÞja 2 attðwÞ do
12: if @a0 2 attðwvÞjmapðMðwÞÞðaÞ ¼ mapðMðwvÞÞða0Þ

then
13: an  freshAttributeNameðÞ
14: attðwvÞ [¼ an
15: mapðMðwvÞÞ [¼ han ! mapðMðwÞÞðaÞi
16: ad  freshAttributeNameðÞ
17: attðwvÞ [¼ ad
18: mapðMðwvÞÞ [¼ had ! fi
19: globððMðwvÞÞ  ’d [ hconcðfÞ; hasFeature; fi
20: execðwvÞ  T [ T ðT Þ
21: I0 [¼ h�1I ðwÞ
22: I0 n¼ V
23: return I0

Example 4. Recall that feature c4 in the running example
depicted in Fig. 5 is a derived feature. After unfolding its
corresponding view, the integration graph I0 would contain
a wrapper wv, where attðwvÞ ¼ fi; j; k; lg resulting from the
computation of the query pu;v;w;T ððW3 �W4Þjw ¼ xÞ.

4.2 Generating Rewritings

This second phase (see Algorithm 3) receives as input an
integration graph I and a global query ’, where all features
covered by ’ in I have been unfolded. Here, the objective is
to generate sets of rewritings for each concept in concð’Þ. To

Fig. 5. Global query ’ used as running example.

514 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

Authorized licensed use limited to: University of Ioannina. Downloaded on January 08,2023 at 17:27:40 UTC from IEEE Xplore.  Restrictions apply. 



this end, we define the rewritings graph Gc ¼ ðVc; EcÞ, an
auxiliary graph data structure such that vertices Vc are sets
of source queries C. Intuitively, the rewritings graph will
encode, for each concept c in concð’Þ, all rewritings that are
covering and minimal with respect to c and its queried fea-
tures. The output of Algorithm 3 is a graph Gc.

For each concept c covered by ’, Algorithm 3 populates
the set of attributes A such that have mapping to some que-
ried feature (lines 4-6). Then, it searches for candidate source
queries (line 7). This is, CQs containing all attributes that
map to some queried feature in featðcÞ for a wrapper (lines
8-12). The last step, consists of systematically processing the
set of candidate source queries in order to generate rewrit-
ings (i.e., covering source queries that only use IDs on equi-
joins) (lines 14-17). To this end, the method COVERINGCQS is
leveraged. Finally, the rewritings graph Gc is constructed
preserving the original edge labels in ’. This is achieved, for
each edge e not labeled hasFeature, obtaining its source
node (i.e., fromðeÞ) and its target node (i.e., toðeÞ).

Algorithm 3. Generate Rewritings

pre: I is an integration graph with no derived features, ’ is a
global query
Post: Gc is a rewritings graph
1: function generateRewritingsI ; ’
2: Gc  empty rewritings graph
3: for c 2 concð’Þ do
4: A ;
5: for f 2 featð’Þjf 2 featðcÞ do
6: A [¼ F�1ðfÞ
7: Ccandidates  ;
8: for ai 2 A do
9: Q hfaig; ;; fwrapðaiÞgi
10: for aj 2 Ajai 6¼ aj ^ wrapðaiÞ ¼ wrapðajÞ do
11: attðQÞ [¼ aj
12: Ccandidates [¼ h�1I ðQÞ
13: Ccovering  ;
14: whileCcandidates 6¼ ; do
15: c takeAnyðCcandidatesÞ
16: I  ðfcg � fhasFeatureg � featð’ÞÞ
17: Ccovering [¼ composeðI;c;ccandidatesÞ
18: V ðGcÞ [¼Ccovering

19: for e 2 Eð’ÞjlabelðeÞ 6¼ hasFeature do
20: EðGcÞ [¼ hfromðeÞ; e; toðeÞi
21: return G

Composing Source Queries into Rewritings. The process of
generating rewritings (see Algorithm 4) is a recursive task
that given an input source query c and a set of candidate
source queries, incrementally generates covering combina-
tions (i.e., rewritings). Ultimately, each of this generated
combinations must cover the graph I. Here, I represents the
graph induced by the concept c and its queried features. It
is important to note that this method finishes when compos-
ing a new rewriting would not yield new features, which
ensures minimality. Generating the combination of two
source queries might entail discovering join conditions
among them (see method FINDJOINS in Algorithm 5).

Join Discovery. Given two source queries ca and cb, the
method FINDJOINS (see Algorithm 5) performs the process of
finding equi-join predicates among them. This is, it finds all

shared IDs covered by wrapðcaÞ and wrapðcbÞ. First, the
algorithm identifies the sets of IDs Fid

a and Fid
b that both

source queries contribute to (line 3-6). Then, for each shared
ID f , it finds pairs of attributes that have a mapping to it,
which will define a new equi-join predicate.

Algorithm 5. Find Joins

pre: ca and cb are source queries
Post: c is a rewriting from the composition hðcaÞ � hðcbÞ with

the necessary equi-joins among them
1: function findJoinsca, cb

2: Fid
a  ;

3: for w 2 wrapðcaÞ do
4: for a 2 attðwÞ dp
5: ifmapðMðwÞÞðaÞ 2 fFid

d [ Fdg then
6: Fid

a [¼mapðMðwÞÞðaÞ
7: Fid

b  repeat lines 3-6 using cb

8: ffl ;
9: for f 2 fFid

a \ Fid
b g do

10: for wa 2 wrapðcaÞ do
11: for aa 2 attðwaÞjaa 2 F�1ðfÞ do
12: for wb 2 wrapðcbÞ do
13: for ab 2 attðwbÞjab 2 F�1ðfÞ do
14: ifmapðMðwÞÞðaaÞ ¼ mapðMðwÞÞðabÞ then
15: ffl[¼ haa; abi
16: Q hðcaÞ � hðcbÞ
17: predðQÞ [¼ffl
18: return h�1ðQÞ

Example 5. On the running example’s global query, the
output of Algorithm 3 would be the graph Gc depicted in
Fig. 6.

4.3 Combining Rewritings

Algorithm 6 combines rewritings covering connected con-
cepts. It receives as input a rewritings graph Gc, and sys-
tematically compacts edges to generate new sets of minimal
source queries. At each iteration, a synthetic node is gener-
ated from compacting the sets of rewritings Ca and Cb,
respectively the from and to nodes of an edge e. The algo-
rithm ends when the graph has no edges. Precisely, the set
of wrappers We identifies wrappers that cover the edge e.
Hence, only combinations containing some wrapper

Algorithm 4. Compose Source Queries
pre: I is the graph to check coverage, c is a source query,

ccandidate is a set of candidate source queries
Post: ccandidate is empty, ccovering contains all potential combina-

tions of covering rewritings with respect to I
1: function composeI, c, ccandidate

2: ccovering  ;
3: if Coveringðc; IÞ then " From Definition 2
4: ccovering [¼ c

5: else if ccandidate 6¼ ; then
6: for c0 2 ccandidate do
7: if c [ c0 provides more features than c then
8: cnew  findJoinsðc;c0Þ
9: composeðI;cnew;ccandidate n c0Þ
10: return ccovering
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covering e will be considered, which reduces the search
space. Note chooseEdge might range from a purely random
selection to an informed heuristic prioritizing early pruning.

Algorithm 6. Combine Rewritings

pre: Gc is a rewritings graph
Post: V ðGcÞ is a set of source queries
1: function combineRewritingsGc

2: while EðGÞ 6¼ ; do
3: e chooseEdgeðGcÞ
4: We  ;
5: for w 2 wrapðfromðeÞÞ do
6: if e 2 globðMðwÞÞ then
7: We [¼ w
8: repeat lines 5-7 using toðeÞ
9: I  is the subgraph of ’ that fromðeÞ and toðeÞ cover,

connected via the edge e
10: C combineðfromðeÞ; toðeÞ;We; IÞ
11: Remove fromðeÞ, toðeÞ from Gc, add a new vertex C

preserving connectivity.
12: return V ðGcÞ

Combining Sets of Rewritings. Given two sets of source
queriesCa andCb, COMBINE (see Algorithm 7) generates their
minimal combinations. Precisely, only pairs in the cartesian
product Ca �Cb covering the edge and minimal will be
considered. Coverage is based on checking if any wrapper
on both ends covers it. Minimality is checked on a graph I,
which denotes the subgraph of the original global query ’

that the synthetic node represents. For instance, at the sec-
ond iteration, after compacting nodes B and C to generate a
new node BC, minimality will still be checked on the origi-
nal subgraph B!BC C (including their queried features).
To generate such combination, the previously described
method FINDJOINS is used (see Algorithm 5).

Algorithm 7. Combine Sets of Rewritings

pre:Ca andCb are sets of source queries,W is a set of wrappers
that cover the edge connecting Ca and Cb in the rewritings
graph, I is the graph to check minimality

Post:C is a set with all valid combinations ofCa andCb

1: function combineCa,Cb,W , I
2: C ;
3: for hca;cbi 2 Ca �Cb dohen
4: if wrapðcaÞ �W _ wrapðcbÞ �W then
5: if minimalðca [ cb; IÞ then " From Definition 3
6: C [¼ findJoinsðca;cbÞ
7: returnC

Example 6. In the running example, Algorithm 6 will per-
form two iterations (i.e., edges AB and BC). The resulting
rewriting is depicted in Fig. 7.

5 ALGORITHM ANALYSIS

In this section, we discuss the computational complexity of
REWRITECQ and show how minimally-soundness and mini-
mally-completeness are satisfied.

5.1 Computational Complexity

To classify REWRITECQ to its complexity class let us first
define a function depðwÞ that returns a set of wrappers w �
W for which w depends on (i.e., they are used as part of the
computation of execðwÞ). Likewise, we also define the clo-
sure dependency operation dep
ðwÞ as the recursion

dep
ðwÞ ¼ ;; if depðwÞ ¼ ;;
dep
ðw0Þ [ w0; for w0 2 depðwÞ otherwise:

�

Then, we say that a wrapper w has a cyclic dependency if w 2
dep
ðwÞ. Particularly, our unfolding algorithm performs a
particular instance of the chase [37]. Hence, for certain inte-
gration graphs where there exist cyclic dependencies there
may not exist a finite chase and the algorithm might fall into
infinite recursion.

Theorem 2. Rewriting a global query is NP-hard in query com-
plexity if all wrappers covering ’ have no cyclic dependencies.

Proof. Theorem 2 is proved by reduction from Set Cover [38],
a well-known NP-hard problem defined as: given a set S of
n points and F ¼ fS1; S2; . . . ; Smg a collection of subsets of
S, select as few as possible subsets from F such that every
point in S is contained in at least one of the subsets. The
reduction works as follows. Let us consider a global query
’, where for each point in S we generate a triple pi ¼
hs; ‘; ti 2 ’ (note graph edges can be disregarded and
checked at the end). Then, from the set fS1; . . . ; Smgwe con-
sider the set of all wrappers covering some point in S. We
can see that finding combinations of subsets is equivalent to
finding combinations of wrappers such that the complete
set of attributes in the query is covered. Furthermore, set
cover seeks as few as possible subsets, which is equivalent
to our definition of minimality. As a matter of fact, we are
interested in enumerating all possible solutions of the prob-
lem (i.e., minimally-completeness), while in some instances
of set cover finding one is enough. tu

Fig. 7.Gc generated in Algorithm 6, and isomorphic UCQ.

Fig. 6. Rewritings graph for the global query in Fig. 5.
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Next, we aim to get an accurate cost formula for REWRI-

TECQ. Let W be the average number of wrappers covering
each concept (not including uncovered concepts), F be the
number of features in a global query ’, and C be the number
of concepts covered in ’. Recall that Algorithm 3 generates
all covering source queries per concept, by incrementally
obtaining all different ways to perform equi-joins among
them. Next, Algorithm 6 further finds all combinations of
these sets of rewritings. From the previous rationale, we can
conclude that the complexity of REWRITECQ is Oð W

F

� �CÞ. Its
worst case corresponds to the scenario where each wrapper
only contributes to one queried feature, and thus all possi-
ble combinations are explored.

5.2 Minimally-Sound and Minimally-Complete

Here, we show that REWRITECQ is a minimally-sound and
minimally-complete rewriting algorithm. Precisely, we
show the following invariants: (a) Q does not contain any
non-minimal CQ, and (b) Q contains all minimal CQs. We
assume that the integration graph covered by a query ’ has
no derived features (i.e., all have been unfolded).
Proof. The trivial case occurs when ’ covers a single concept
c. Here, only Algorithm 3 will be executed to generate cov-
ering queries for c. Then, the set Ccandidates contains all can-
didate source queries that cover c and some of its queried
features. Next, Algorithm 4 systematically combines source
queries. Indeed, this process only generates minimal rewrit-
ings (as any combination not contributing with new features
is discarded), which guarantees the first invariant. Regard-
ing the second invariant, it is guaranteed by the recursive
nature of Algorithm 4, which explores all combinations of
candidate source queries to generate rewritings (i.e., with
all possible equi-join conditions).

Querying more than one concept involves Algorithm
6. We assume a rewritings graph Gc with vertices
C1; . . . ;Cn containing sets of minimal rewritings. Given
an edge in Gc, we systematically generate all possible
combinations of rewritings from the from and to verti-
ces. We show that all minimal rewritings are obtained by
reductio ad absurdum. Let us assume the output of Algo-
rithm 6 does not contain a minimal source query c. This
directly contradicts the fact that combining sets of rewrit-
ings in Algorithm 7 checks for minimality (line 5), thus
guaranteeing the first invariant. Then, recall that all com-
binations of rewritings have been computed by a carte-
sian product (line 3 of Algorithm 7). Hence, c has
necessarily been generated here, and thus been added to
the set C if minimality is satisfied. This contradicts the
assumption and guarantees the second invariant. tu

6 EXPERIMENTAL EVALUATION

In this section, we measure the performance of REWRITECQ
and compare it to alternative approaches for answering
queries using views. All details and reproducibility instruc-
tions can be found in the companion website.1

6.1 Experimental Setting

To assess our algorithms and facilitate their comparison to
alternatives, we generate artificial data via a principled
method which is depicted in Algorithm 8. Precisely, we sys-
tematically generate synthetic experimental scenarios with
different characteristics. Each scenario consists of a global
graph, a set of wrappers, mappings, and a global query. To
evaluate our approach under different situations, we cus-
tomize the generation of experimental scenarios using the
following variables: 1) number of features per concept (jF j);
2) number of edges covered by a query (jEQj); 3) overall
number of wrappers (jW j); 4) number of edges covered by a
wrapper (jEW j); 5) fraction of features in a concept covered
by a query (FracQ); and 6) fraction of features in a concept
covered by a wrapper (FracW ).

Then, the process of generating an experimental scenario
consists of obtaining random subgraphs of a large enough
clique playing the role of G, which guarantees the desired
randomness.

Algorithm 8. Generate an Experimental Scenario

pre: G is a clique, jF j, jEQj, jW j, jEW j, FracQ, FracW
Post: ’ is a global query,W is a set of wrappers covering ’

1: function generateExperimentalScenarioG, jF j, jEQj, jW j,
jEW j, FracQ, FracW

2: ’ connected random subgraph of Gwith jEQj edges
3: ’0  with a probability FracQ of appearing, expand ’

with up to jF j features
4: W  ;
5: for i 1 to jW j do
6: w connected random subgraph of ’with jEW j edges
7: w0  with a probability FracW of appearing, expand ’

with up to jF j features
8: W [¼ w0

9: return h’0;Wi

For each combination of experimental variables, we gen-
erate an experimental scenario and invoke REWRITECQ. For
each run, we measure the size of the resulting UCQs (U)
and the processing time (R) in seconds. To account for vari-
ability, we generate three experimental scenarios and mea-
sure the median of R. Experiments were performed on a
GNU/Linux machine with an Intel Core i5 processor run-
ning at 3.5 GHz and with 16 GB of RAM memory. We
implemented a prototype of the rewriting algorithms [39],
which is based on SPARQL. There, each construct is repre-
sented as an RDF graph.

Alternatives. We compare our approach with the follow-
ing state-of-the-art solutions for answering queries using
views, whose source code is openly available: MiniCon [15]
and Graal [22]. The former being a representative of DB-
based approaches and the later of the KR-based ones,
according to the classification used in Section 2. No fine tun-
ing was performed in such systems, running the code as
provided out-of-the-box. To enable a fair comparison of our
approach and the alternatives we convert the output of
Algorithm 8 into a set of Datalog rules. Recall, however,
that our setting does not explicit join variables, hence for
each directed edge between a pair of concepts A;B, we
materialize the ID features of B in A’s variables. Then, for
each concept covered in a query or a wrapper, we generate1. https://www.essi.upc.edu/dtim/odin/
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a subgoal with its corresponding attributes. For the case of
wrappers, we additionally rename attributes using the map-
ping from attributes to features (i.e.,mapðMðwÞÞ).

Differences on Query Rewriting Semantics. There exist some
circumstances where the query rewriting semantics of our
approach and the alternatives might differ. We next list the
three situations we consider using Datalog notation:

� Equivalent views, where different views contain the
same subgoals and their head variables fully overlap
(i.e., they are the same).

� Intra-relation composition, where different views con-
tain the same subgoals but the head variables par-
tially overlap. All subgoals in the views correspond
to the same relation.

� Inter-relation composition, where different views con-
tain the same subgoals but the head variables par-
tially overlap. Additionally, there is at least one view
projecting attributes from two different relations.

Table 2, depicts, for such different scenarios the behavior of
the different approaches using an exemplary set of views. Pre-
cisely, when managing equivalent views, for the exemplary

set of views all approaches would return the union of w1 and
w2. However, when dealing with subsets of attributes, either
all from the same subgoal or from different subgoals, both
MiniCon and Graal do not consider their composition joining
via the shared attributes. Oppositely, in both scenarios we
would join w1 and w2 usingA under the assumption thatA is
tagged as an ID feature. Precisely, the process of composing
source queries deals with the intra-relation composition sce-
nario (see Algorithm 4), while the combination of rewritings
deals with the inter-relation composition (see Algorithm 6).
Note that we, additionally, have validated that the solutions
generated by the alternatives are always contained in ours.

6.2 Experimental Results

The results showed a high correlation between the size of
the resulting UCQs U and the processing time R (i.e., a Pear-
son correlation coefficient of r ¼ 0:997), thus, for space rea-
sons, we only report on R.

Evolution of Response Time Based on Wrappers.We first ana-
lyse how R evolves based on the number of wrappers. To
this end, we plot, in a logarithmic scale, its evolution for dif-
ferent values of jW j. As depicted in Fig. 8, there is an expo-
nential trend for R as the number of sources (i.e., wrappers)
grows. Nonetheless, we can see our approach can efficiently
deal with a large number of sources (i.e., 128) while the
number of edges in the query is relatively small. With an
increased number of covered edges in ’, the cost also grows
exponentially, as occurs on algorithms for answering
queries using views. The limitation on number of wrappers
is observed as the number of edges covered by the query
(i.e., jEQj) grows. We also observe that, on average, rewrit-
ing performance decreases when wrappers cover a large
fragment of G (i.e., FracW ¼ 0:9). Precisely, as shown in
Fig. 8 top-right corner, such worst case is observed when
the query covers a small fragment of G (i.e., FracQ ¼ 0:3)
but the wrappers cover a large fragment (i.e., FracW ¼ 0:9).
As expected, this case might generate many combinations
of wrappers composing the same concept to cover all

TABLE 2
Comparison of Approaches Based on Different

Kinds of Query Rewriting Semantics

The second column, depicts an exemplary minimal set of Datalog rules
scenarios.

Fig. 8. Evolution of R (y-axis) w.r.t. jW j (x-axis) and jEQj (legend), for jF j ¼ 20 and jEW j ¼ 2. Missing data points denote that the program ran out of
memory due to the size of intermediate results.
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requested features (i.e., the intra-relation composition seman-
tics). Contrarily, with lower values of FracW , it is harder to
find combinations covering the requested features, and
hence the rewriting time significantly decreases.

Evolution of Response Time Based on Query Size. In this sec-
ond experiment, we are concerned with studying the impact
of the size of the query on the time to perform a rewriting.
To this end, we plot the evolution of R for different values
of jEQj and jEW j. Here, we focus on an intermediate case
and hence we fix FracQ and FracW to 0.6. As depicted in
Fig. 9, the cost of rewriting is linear in spite of some variabil-
ity. This shows that the only exponential factor on query
rewriting is the number of sources (i.e., jW j), a well-known
bottleneck in query rewriting algorithms.

Comparison to Alternatives on Query Rewriting. In previous
experiments, we observed that both the size of the query and
thewrappers (i.e., jEQj and jEW j) have nomajor performance
impact (i.e., they are not an exponential factor) for our rewrit-
ing process. Hence, here we fix EQ ¼ 2 and EW ¼ 2 to focus
on comparing a varying number of wrappers against the
alternatives. Furthermore, as presented in Table 2, the only
meaningful comparisonwith the alternatives occurswhen no
intra or inter-relation composition is required. Precisely, fol-
lowing Algorithm’s 8 notation, this corresponds to the case
when both FracQ ¼ 1 and FracW ¼ 1. We compared the run-
time for small values of jF j, as our tests showed that the alter-
natives struggled to manage a large number of features (e.g.,
15�20). In order to control the execution time of the alterna-
tives, we set a timeout value equal to 10x the time we take to
run Algorithm 8 and rewrite the query. We believe this is a
large enough value to demonstrate the better performance of
our method, while at the same time avoid too lengthy execu-
tions of the alternatives. Then, Fig. 10, depicts the runtime
comparison. Note that, missing data points correspond to
execution timeouts. First, we can observe that both alterna-
tives have a much steeper exponential trend than ours. While
we efficiently deal with 64 wrappers, MiniCon only manages
to successfully execute around half of them.

Graal fails to manage more than 10 wrappers. We believe
the major performance drawback of such methods is the

number of intermediate results they manage (i.e., candidate
queries). Indeed, we have observed an exponential number
of existential rules in their executions. Under these circum-
stances, exploration of the search space in a breadth-first
search manner, as Graal does, becomes extremely costly.
Oppositely, and considering we generate more solutions due
to our rewriting semantics, thanks to the ability of querying
themappings, which are stored as graphs, we can select only
relevant views in an incremental andmore efficientmanner.

7 CONCLUSION

In this paper, we have presented a framework for data inte-
gration entirely based on graphs. In the proposed approach
all classical constructs such as schema, queries and mappings
are represented using graphs. We advocate that such unique,
and widely accepted, data management formalism allows
non-technical users to perform exploratory tasks, such as data
wrangling. On top of that, the flexibility of graphs enables the
extensibility of the current rewriting algorithm. For example,
to jointly consider aggregations when running the rewriting
algorithm. We have additionally presented solid foundations
for the design of rewriting algorithms that preserve desired
query containment properties Our experimental results show
that there is no significant overhead for join discovery, and
that, as usual on algorithms for answering queries using
views, the major source of complexity is the number of data
sources. Despite this, and the fact that our rewriting semantics
are richer, the performance of our approach is superior to that
of alternativemethods for answering queries using views.
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