

Parallel Lives Diagrams for Co-Evolving Communities and their Application to Schema Evolution Fanis Giachos, Nikos Pantelidis, Christos Batsilas, Apostolos Zarras, and Panos Vassiliadis

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/

Dep. of Computer Science & Engineering University of Ioannina - Greece <u>www.cs.uoi.gr</u>

Context and problem formulation

How do we represent, and visualize, the way different entities of a community evolve together over time?

- How do tables of a relational schema evolve together over time?
- How do classes of an object-oriented program evolve together over time?
- How do functions and data structures of a C program evolve together over time?
- How do entities, controllers and views of Web application evolve together over time?

- A conceptual model that represents the lives of coevolving entities along:
 - A timeline, and a set of peer entities, forming a two dimensional space and context for the common life of a community, and,
 - quantifiable measures of activity for each of them.
- A tool (Plutarch's Parallel Lives) that is based on the model and allows a quick understanding (and reporting) of how the life of the community has evolved.
- The facilitation of the fully automated identification of highlights, or patterns, over the PLD.

The model

Time Concepts

- **Beat**: individual time point granule
 - Seconds, milliseconds, commits, etc.
- **Timeline**: sequence of beats.
- Phase: period of time points, to allow time zoom out.
 - Roll-up of time to e.g., days or months, years, etc.

Community Concepts

- **Entity**: individual, granular, elements.
 - A relation, a class, a function, etc.
- Community: set of entities, evolving together.
 - A schema, a software project, etc.
- Entity group: group of related entities, to allow community zoom out.
 - A package, a module, etc.

Measurement Concepts

Measurement Type: individual, granular, measurement of change

- Number of attributes injected, deleted, updated over their data type, etc.
- Number of lines ins/del/upd is a file.
- Number of methods/attributes/... ins/del/upd in a class.
- Measurement: the number measured.

Relations between Concepts

- **TimeEntityMeasurement** (**TEM**): relates a measurement of a certain type with a combination of entity and beat.
 - The total number of attributes changed for table Employee in 1st June 2023 was 0. (assuming day to be the time granule)
- GroupPhaseMeasurment: aggregate measurement for a zoomed-out context
 - The <u>total number of attributes</u> <u>changed</u> for <u>table Employee</u> in <u>June 2023</u> was <u>2</u>. (roll-up time to month)

Parallel Lives Diagrams

Time * Community create a 2D space. Each TEM is a point (aka "cell") in the 2D space. We visualize it as a **Parallel Lives Diagram**

We can tell the story of a community with a simple, intuitive, single image !!!

TEM's have states

Birth: marks the first appearance of e in t he community.

Active: e is a member of the community and evolves overtime

Disappearance: e leaves community for some time.

Inactive: e is not a member of the community for some time.

Rebirth: e appears again in the community.

Death: e leaves the commu nity permanently.

The highlights

- In a PLD we can have "areas of interest" and "highlights (patterns)" in the 2D space depending on what we are looking for.
- We provide an extensible set of patterns, as well as algorithms to compute them.

Several Highlights

Extensible set of Algorithms

A study over 195 FOSS schema histories

	Total #	Total #	# Columns	# Rows In	%Col's	%Rows	#Total	#Births	#Deaths	#Upd.	#Stairs
	Columns	Rows	In Patterns	Patterns	in	in	Patterns	Patterns	Patterns	Patterns	Patterns
					patterns	patterns					
MAX	516	283	36	253	1	1	33	10	4	16	3
MIN	2	1	0	0	0	0	0	0	0	0	0
SUM	2796	2872	410	2545	38.30	112.04	319	148	26	97	48
AVG	14.34	14.73	2.10	13.05	0.20	0.57	1.64	0.76	0.13	0.50	0.25
COUNT	195	195	195	195	195	195	195	195	195	195	195
Median	4.00	6.00	1.00	5.00	0.12	0.85	1.00	1.00	0.00	0.00	0.00
StdDevP	44.61	30.33	3.95	29.01	0.22	0.46	3.12	1.03	0.50	1.62	0.57
Mode	2	1	0	0	0	0	0	0	0	0	0
Count	195	195	120	120	120	120	120	109	18	41	38
Non Zero							(62%)	(56%)	(09%)	(21%)	(19%)

Patterns in 62% of the schemas,

- Mostly massive birth patterns (56%) due to big-bang schema creations.
- Deletions are rare.
- Progressive expansion and massive maintenance is not very frequent.

Summary

- A conceptual model that involves entities, timelines, measurements to capture how the different entities of a community co-evolve.
- The model allows:
 - The **visualization** and intuitive **understanding** of the community evolution in a simple, but also powerful, way.
 - the mining of interesting highlights of change that highlight important points and members in the evolution of the community.

Future research:

- Easier zoom-in/out with more flexible / predefined / ... hierarchies
- Pattern generalization e.g., of birth staircases and massive updates to a "x changes soon after y" pattern is a simple example.
- Automated reporting.

Thank you!

Everything is online!

Our group's git page

https://github.com/DAINTINESS-Group/

has links to **Data sets**

https://github.com/DAINTINESS-

Group/Schema Evolution Datasets/tree/ master/SchemaEvolutionDatasets2020

and Code

- ... for computing differences (Hecate)
- ... visualizing schema lives (Plutarch Par. Lives)
- ... visualizing the structure of FK's (Parmenidian Truth)
- ... handling the impact of evolution (Hecataeus)

Schema_Evolution_Datasets

https://github.com/DAINTINESS-Group/

Forked from giskou/EvolutionDatasets Collections of schema histories, to be studied for their schema evolution.

sql relational-databases schema-evolution

PLSQL V 2 2 3 0 0 10 Updated on Jan 23

Hecate

Forked from giskou/Hecate Diff visualization between 2 SQL schemas

java relational-databases schema-evolution

🕒 Java 🍈 AGPL-3.0 🛛 😚 6 🏫 1 🕕 0 🎲 0 Updated on Dec 10, 2020

ParmenidianTruth

Visualizes the story of a database's schema as a pptx presentation ● Java 😵 0 ☆ 0 ① 0 1 0 Updated on Oct 10, 2018

Hecataeus

Forked from pmanousis/Hecataeus Database evolution what-if analysis too

🛑 Java 🛯 💁 GPL-3.0 🛛 😵 3 😭 1 🕕 0 🎝 0 Updated on Mar 17, 2018