
A Safari for Deviating GoF Pattern
Definitions and Examples on the Web

Apostolos V. Zarras(B) and Panos Vassiliadis

Department of Computer Science and Engineering, University of Ioannina,
Ioannina, Greece

zarras@cs.uoi.gr

Abstract. The Gang of Four (GoF) patterns have been around for many
years now. People use them to solve object-oriented design problems. The
main source to consult for the GoF patterns is the seminal book pub-
lished by Gamma, Helm, Johnson, and Vlissides in 1994. However, today
there is also a large amount of information about the GoF patterns on
the Web. There, the developers can find pattern definitions and code
examples.

In this paper, we assess the compliance of pattern definitions and
examples found on the Web to the original GoF pattern definitions. We
study a corpus of definitions and examples, gathered from 4 well-known
sites. According to our findings, most of the provided pattern defini-
tions comply with the original GoF pattern definitions. However, there
are some intent deviations that result in incorrect definitions. There are
also a few deviations that concern missing and incomplete participants.
When it comes to the patterns examples, the situation is quite different.
Deviations in the examples are much more frequent and include missing
participants, incomplete participants, and erroneous participants. The
paper concludes with a discussion of the practical implications of our
findings for the developers.

Keywords: GoF design patterns · deviating definitions · deviating
examples

1 Introduction

In the mid-nineties, Gamma, Helm, Johnson and Vlissides introduced the Gang
of Four (GoF) patterns catalog [8]. The GoF catalog documents reusable object-
oriented solutions to common development problems. The authors employ a uni-
fied form for the specification of the patterns. A pattern specification includes the
name of the pattern, the intent of the pattern, a motivating scenario, a discussion
of the pattern applicability, a diagrammatic description of the pattern struc-
ture, the responsibilities of the participants (i.e., classes or interfaces) involved
in the pattern structure, a description of how the participants collaborate to
carry out their responsibilities, the consequences of the pattern, implementation
guidelines, sample code, known uses of the pattern, and, a discussion concerning
other related patterns. The patterns are divided in three different categories:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. P. A. Almeida et al. (Eds.): ER 2023, LNCS 14320, pp. 181–197, 2023.
https://doi.org/10.1007/978-3-031-47262-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47262-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-47262-6_10


182 A. V. Zarras and P. Vassiliadis

creational patterns that deal with the creation of objects, structural patterns
that concern the composition of classes or objects and behavioral patterns that
focus on the interaction between objects and the distribution of responsibilities.

Nowadays, the GoF catalog is a significant part of object-oriented design the-
ory and practice. Many people like students, junior developers and more expe-
rienced developers search on the Web for information about the GoF patterns,
for a variety of reasons. Popular Web sites provide definitions of the patterns
and examples that illustrate instances of the patterns in specific contexts. The
patterns definitions range from brief statements of the patterns intent to more
detailed ones that specify the patterns structure and other details.

The story behind this paper starts a couple of years ago, when an undergrad-
uate student came to complain about his grade on a software engineering quiz.
Specifically, the student claimed that his answer to a question about a design
pattern was correct. While discussing the issue, the student said that he had
studied the pattern very well and that he had also used in his study additional
sources that he found on a Web site. When we looked again at the information
given about the pattern on that site we found out that both the definition and
the examples of the pattern deviated from the original GoF pattern definition. In
fact, we discovered that several examples were entirely wrong!

So, sometimes the information we find on the Web about the GoF
patterns deviates from the original definitions of the patterns that are
given in the GoF catalog.

This observation is the main motivation of this paper. The overall research
goal of the paper is to assess the compliance of pattern definitions and
examples that we find on the Web to the original GoF pattern defini-
tions. To this end, we study a corpus of pattern definitions and examples, gath-
ered from four different well-known Web sites. At first, we identify the kinds of
deviations that occur in the pattern definitions and examples. To highlight
the issues that arise from the different kinds of deviations, we discuss in detail
characteristic examples. Then, we study the amount of deviations, the per-
centage of deviating definitions and examples, and the density of deviations
in the patterns definitions and examples. Finally, we discuss the implications of
our findings for the developers who seek information about GoF patterns on the
Web.

The rest of this paper is structured as follows. In Sect. 2 we discuss related
work. In Sect. 3 we provide details regarding the setup of this study. In Sect. 4,
we report the different kinds of deviations that occur in pattern definitions and
examples. In Sect. 5, we assess the compliance of the pattern definitions and
examples to the original GoF patterns. In Sect. 6, we conclude with the practical
implications of our findings.

2 Related Work

Design patterns have been an active area of research and practice for decades.
The state of the art is vast with dedicated communities and venues for researchers



A Safari for Deviating GoF Pattern Definitions and Examples on the Web 183

and practitioners1,2. An interesting systematic mapping of the state of the art
is provided by Mayvan et al. [10]. According to this study, research efforts in the
area of design patterns can be divided in 5 major sub-areas that concern pattern
development, specification, usage, mining, and quality evaluation.

Our study falls in the area of pattern quality evaluation. This area includes
efforts that investigate the impact of pattern usage on software quality and efforts
that assess the soundness of pattern instances.

The impact of design pattern usage in software quality has been the subject
of several interesting empirical studies. For instance, Prechelt et al. [12] found
that the use of design patterns provides flexibility, which facilitates maintenance.
In another study, Prechelt et al. [11] observed that the use of design patterns,
along with specialized comments related to these patterns is helpful towards
performing maintenance tasks. According to Vokac [14], the use of patterns by
itself does not guarantee few defects. Bieman et al. [4] observed that pattern
classes are prone to changes. Aversano et al. [3] observed that pattern classes are
more prone to changes than classes that depend on the pattern classes. Walter
and Alkhaeir [15] and Alfadel et al. [1] observed that classes participating to
design patterns are less prone to code smells than classes not participating to
design patterns. A detailed systematic literature review of works that concern
the relation between design patterns and code smells has been performed by
Almadi et al. [2].

Regarding the soundness of design patterns, Izurieta and Bieman [9] intro-
duced the notions of design pattern rot and grime. Design rot is the breakdown
of the structural integrity of a design pattern instance, as a result of changes in
subsequent software releases. Design pattern grime is a decay due to unrelated
features added in classes that participate in a design pattern instance. These
features do not jeopardize the intent of the pattern. In a study of 3 software
systems, Izurieta and Bieman did not find evidence of design rot. However, they
found evidence of design pattern grime. In further studies, Dale and Izurieta [5]
observed that certain kinds of design grim results in higher technical debt, while
Reimanis and Izurieta [13] investigated possible correlations between different
kinds of grime. In a study of five software systems, Feitosa et al. [7] found a
linear accumulation of design grime that depends on the design patterns and
the developers, while in a subsequent study [6] the same authors observed corre-
lations between the accumulation of grime and decreased performance, security
and correctness.

Still, regarding the soundness of design patterns, Zarras [17] observed fre-
quent mistakes in the usage of the Command pattern, during the project of a
software engineering course. The observed mistakes concern the configuration
of command objects and invalidate the benefits of the Command pattern. The
author further introduced a pattern for the proper configuration of command
objects. In a similar effort, Zarras [16] reported mistakes in the usage of Strat-
egy pattern and introduced respective solutions in the form of patterns.

1 hillside.net.
2 www.europlop.net.

https://hillside.net/
www.europlop.net


184 A. V. Zarras and P. Vassiliadis

Going beyond the state of the art, this paper evaluates the compliance of
patterns definitions and examples found on the Web to the original GoF pattern
definitions in a study that involves a large number of definitions and examples
gathered from different sites.

3 Setup of the Study

Our study considers four popular Web sites that provide information for several
software development topics like refactoring, UML, design principles and pat-
terns. In particular, we focus on pattern definitions and examples from Source
Making3, Refactoring Guru4, Tutorials Point5 and Java T Point6.

Table 1. Corpus of patterns definitions and examples.

During the data-gathering process we visited each Web site. For each GoF
pattern, we looked for the pattern definition and examples that illustrate the
usage of the pattern. We downloaded local copies of the pattern definition and
examples. At the end of the gathering process, we reviewed the retrieved defini-
tions and examples to make sure that we did not omit any relevant definitions
and examples.

3 sourcemaking.com.
4 refactoring.guru.
5 www.tutorialspoint.com/design pattern.
6 www.javatpoint.com/design-patterns-in-java.

https://sourcemaking.com/
https://refactoring.guru/
www.tutorialspoint.com/design_pattern
www.javatpoint.com/design-patterns-in-java


A Safari for Deviating GoF Pattern Definitions and Examples on the Web 185

The corpus of our study consists of 90 pattern definitions and 409 examples
that concern a variety of programming languages. The corpus and the raw data
of the compliance evaluation are available online7

Table 1 provides further details concerning the corpus. More specifically,
Source Making provides definitions for all of the GoF patterns and a total number
of 144 examples. There is at least one example for every GoF pattern. Most of the
examples are in Java and C++. However, there are also several examples in Del-
phi, PhP and Python. Refactoring Guru covers all, but the Interpreter pattern.
Therefore the corpus includes 22 definitions and 220 examples. The examples
are in Pseudo code, Java, C#, C++, PhP, Python, Ruby, Swift, Typescript,
and Go. Tutorials Point and Java T Point focus only on Java. Tutorials Point
covers all of the GoF patterns, while Java T Point covers all but the Visitor pat-
tern. Thus, Tutorials Point and Java T Point add 23 and 22 patterns definitions
and examples to the corpus, respectively.

To assess the compliance of a set of pattern definitions (respectively exam-
ples) to the original GoF pattern definitions we rely on three basic statistics:

– The number of deviations that occur in the examined set.
– The percentage of deviating pattern definitions (respectively, examples) in the

examined set.
– The density of deviations in the examined set, defined as the number of

deviations, over the cardinality of the examined set.

In all our deliberations, the diagrams that we use are made by us, for copy-
right purposes, with respect to the diagrams that accompany the GoF pattern
definitions, the diagrams that accompany the pattern definitions of the sites and
the source code of the pattern examples given in the sites.

The deviation analysis that concerns pattern definitions relies on the combi-
nation of text and diagrams of the site contrasted to the GoF definition text and
diagrams. The comparison protocol involves the following sequence of checks:

– The first check concerns whether the intent of the pattern definition given in
the site is inline with the intent of the GoF pattern definition.

– The second check concerns whether the participants specified in the GoF
pattern definition are present in the pattern definition of the site.

– The third check concerns whether the participants specified in the pattern
definition of the site provide the methods of the corresponding participants
of the GoF pattern definition.

The deviation analysis that concerns the pattern examples is based on the
text and the source code of the pattern examples given in the sites, contrasted
to the GoF definition text and diagrams. The comparison protocol involves the
following steps:
7 Due to their volume, data are available in a non-monitored, anonymous google

drive (https://drive.google.com/file/d/1vAn58ul7whaXM01TMFcj1er5UcCSzrYN/
view?usp=sharing), to become eponymously public at github upon acceptance of
the paper.

https://drive.google.com/file/d/1vAn58ul7whaXM01TMFcj1er5UcCSzrYN/view?usp=sharing
https://drive.google.com/file/d/1vAn58ul7whaXM01TMFcj1er5UcCSzrYN/view?usp=sharing


186 A. V. Zarras and P. Vassiliadis

– The first check concerns whether the participants specified in the GoF pattern
definition are present in the pattern example.

– The second check concerns whether the participants in the pattern example
provide the methods of the corresponding participants of the GoF pattern
definition.

– The third check concerns whether the implementation of the participants in
the pattern example is inline with the behavior of the corresponding partici-
pants of the GoF pattern definition.

4 Kinds of Deviations

In the corpus, we identified four different kinds of deviations. Specifically, we
found intent deviations, missing participants, incomplete participants and erro-
neous participants. In the rest of this section, we discuss each kind of deviations
in more detail, along with respective examples.

Table 2. Intent deviations found in the corpus.



A Safari for Deviating GoF Pattern Definitions and Examples on the Web 187

4.1 Intent Deviations

In the corpus, we identified certain pattern definitions that do not reflect the
purpose of the corresponding patterns, as specified in the GoF catalog. Hereafter,
we call these issues, intent deviations. Obviously an intent deviation is very
important, as it always results in an incorrect definition. Table 2, illustrates the
deviating pattern definitions that we found in the corpus. Specifically, the table
gives the Web site that provides each pattern definition, the deviating intent
of the pattern, and the original intent of the pattern, as specified in the GoF
catalog.

At a glance, in Tutorials Point the intent of Abstract Factory is defined
quite differently from the original definition of the pattern. According to the
original GoF definition, an abstract factory is an interface that defines methods
for creating families of related objects, without having to specify their concrete
classes, while according to the Tutorials Point definition the abstract factory is
an interface that defines methods for creating other factories.

Fig. 1. Command structure, as defined in the GoF catalog.

In the Tutorials Point definition of Builder, the main issue is that there is
absolutely no mention of the separation between the construction process of a
complex object and the different representations of the object, which is the key
benefit of the pattern. The intent of Visitor in the Tutorials Point definition is
also very different from the original definition. According to the Tutorials Point
definition, the purpose of a visitor class is to change the algorithm of another
class, while in the latter the focus is on extensibility, and specifically the addition
of new operations that operate on an hierarchy of objects, without having to
change this hierarchy. Finally, in the Java T Point definition of Observer the
intent of the pattern is incorrect as it refers to one-to-one, instead of one-to-
many, dependencies between subscribers and observers.



188 A. V. Zarras and P. Vassiliadis

4.2 Missing Participants

In the corpus, we encountered pattern definitions and examples that do not
include all the participants, specified in the structure of the original pattern
definitions. Hereon, we use the term missing participants to refer to these
participants. The criticality of missing participants depends on the pattern and
on who these participants are. In some cases, missing participants may result
in incorrect pattern definitions and examples. In other cases, missing partici-
pants may result in incomplete pattern definitions and examples that partially
illustrate the original pattern concepts.

Fig. 2. Command structure, as defined in Source Making.

Figure 1, gives the structure of the Command pattern, as specified in the
GoF patterns catalog. The intent of Command is to “encapsulate a request
as an object, thereby letting you parameterize clients with different requests,
queue or log requests, and support undoable operations”. Command defines a
common interface for executing different commands. ConcreteCommand1 and
ConcreteCommand2 are different classes that implement the Command interface.
Client creates Command objects that belong to the different implementation
classes. Invoker is parameterized with Command objects. To execute a command,
Invoker invokes the execute() method on a particular Command object.

Figure 2, gives the structure of the Command pattern, as defined in
Source Making. In particular, Client, CallbackInterface, CallbackOne
and CallbackTwo, correspond to Client, Command, ConcreteCommand1 and
ConcreteCommand2, in the original pattern structure, respectively. Apparently,
in the Source Making definition, the Invoker participant is missing. The Client
participant creates Command objects and invokes the execute() method to



A Safari for Deviating GoF Pattern Definitions and Examples on the Web 189

execute the corresponding commands. The lack of Invoker is important here
because the pattern definition does not reflect the concept of parameterization
of objects with different commands.

4.3 Incomplete Participants

The corpus includes patterns definitions and examples involving incomplete
participants that do not provide a complete and exact set of methods, as they
should according to the original pattern definitions. Specifically, some methods
may be missing, or some methods may be merged with others in larger methods
that have more responsibilities than they should.

Fig. 3. Composite structure, as defined in the GoF catalog.

The impact of incomplete participants depends on the methods that are actu-
ally missing. In some cases, the lack of certain methods is very important (e.g.
the lack of certain creation methods in creational patterns), resulting in incorrect
pattern definitions and examples, while in other cases the missing methods result
in incomplete definitions and examples that partially illustrate the concepts of
the original pattern.

Figure 3, shows the original structure of the Composite pattern. The purpose
of the pattern is to “compose objects into tree structures to represent part-whole
hierarchies”. Component is a class that defines a uniform interface for both primi-
tive and composite objects. The interface includes domain-specific methods (like
operation()) and methods for managing the structure of composite objects.
Specifically, add() serves for adding a Component object to a Composite object,
while remove() allows removing a Component object from the Composite object.
The getChild() method allows retrieving a Component object that is part of the
Composite object, based on a given index. The interesting point in the pattern is
that Component not only defines the uniform interface, but also provides default



190 A. V. Zarras and P. Vassiliadis

Fig. 4. Example of Composite from Source Making.

implementations for the defined methods. Leaf represents primitive objects that
do not consist of other objects. Leaf provides its own implementations for the
domain-specific methods and inherits the default implementations of the struc-
ture management methods, defined in Component. Composite represents com-
posite objects. It provides implementations for both the domain-specific methods
and the structure management methods, defined in Component. Client manipu-
lates objects that conform with the aforementioned composite structure, via the
uniform Component interface.

Fig. 5. Builder structure, as defined in the GoF catalog.



A Safari for Deviating GoF Pattern Definitions and Examples on the Web 191

Figure 4, gives an example of Composite from Source Making. AbstractFile,
File and Directory, correspond to Component, Leaf and Composite.
Directory is an incomplete participant because it does not provide methods
for the removal and the retrieval of AbstractFile objects.

4.4 Erroneous Participants

In the corpus, we also found erroneous participants that do not behave as
dictated in the original definitions of the patterns. Typically, the deviations of the
participants’ behaviors are such that they jeopardize the intent of the pattern.
We observed erroneous participants only in the pattern examples. Erroneous
participants have a direct impact on the correctness of the examples in which
they appear. In all cases, the examples are wrong.

Fig. 6. Example of Builder from Refactoring Guru.

Figure 5 gives the original structure of Builder. The intent of this pattern is to
“separate the construction of a complex object from its representation so that the
same construction process can create different representations”. Consequently,
the same construction process can be reused to create objects with different
internal representations. Builder, defines an interface that provides operations
for the creation of the constituents parts of a Product object. ConcreteBuilder,
is an implementation of the Builder interface that constructs and assembles the
parts of the Product object. In general, Builder can have different alternative
implementations that correspond to different internal Product object represen-
tations. ConcreteBuilder further provides a method for retrieving the resulting
Product object. Director, realizes the overall Product object construction pro-
cess, by invoking methods of the Builder interface.



192 A. V. Zarras and P. Vassiliadis

Figure 6 details an example of Builder from Refactoring Guru. In the
example, the Builder interface has two alternative implementations, namely,
CarBuilder and ManualCarBuilder. The products of CarBuilder and
ManualCarBuilder are Car and Manual objects, respectively. The constituent
parts of Car and Manual objects are Engine, Transmission, TripComputer and
GPSNavigator objects. Director realizes the object construction process. How-
ever, the Director class is not correct with respect to the pattern specifica-
tion. The main problem is that the Director class implements three different
construction processes, instead of one. The different construction processes are
similar, in fact they are code clones, and depend on the internal representation
of the objects under construction.

Table 3. Assessing the compliance of pattern definitions.

The two classes that implement the Builder interface are also incorrect. In
particular, the two classes do not construct the parts of the resulting objects, as
dictated by the pattern. Instead, Director constructs the parts and gives them
to the Builder implementation classes as parameters of respective methods.
Consequently, Director is not independent from the internal representation of
the objects under construction. Overall, the example fails to communicate the
intent of the Builder pattern.



A Safari for Deviating GoF Pattern Definitions and Examples on the Web 193

5 Compliance of Pattern Definitions and Examples

In this section, we assess the compliance of pattern definitions and examples to
the original GoF pattern definitions.

We begin our assessment from the pattern definitions that we consider
in this study. Table 3, summarizes the results of the assessment. Specifically, for
each site the table provides (1) the number of deviations that we observed in
the definition of each pattern, and in total, (2) the density of deviations in the
pattern definitions, defined as the total number of deviations in pattern defini-
tions, divided by the number of pattern definitions, and (3) the percentage of
patterns with deviating definitions. The empty cells in the table concern patterns
for which there are no definitions in the respective sites.

Overall, we observe that patterns with deviating definitions do not
occur very often. In the sites that we examined, the percentage of patterns
with deviating definitions varies from 9.09% to 30.43%. The density of devi-
ations in the pattern definitions is low, ranging from 0.05 deviations per
definition to 0.35 deviations per definition. In practice, this means that most
definitions adhere to the original GoF definitions. In Source Making we observe
the highest density of deviations, followed by Refactoring Guru, Tutorials Point
and Java T Point. In all sites, there are eleven patterns with deviation-free def-
initions.

Next, we investigate the compliance of the pattern definitions that we
consider in our study, in relation to the different kinds of deviations that
occur in the definitions. To this end, for each site, Table 4 gives the number
of deviations of each kind that occur in the definitions, and the density of the
deviations of each kind.

Table 4. Compliance of pattern definitions for the different kinds of deviations.

In the results, we observe a low density of intent deviations in the pat-
terns definitions. In Source Making and Refactoring Guru, there are no intent
deviations. In Source Making and Refactoring Guru, the density of missing
participants is higher than the density of incomplete participants. The
cells that concern missing and incomplete participants in Tutorials Point and
Java T Point are empty because the pattern definitions in these sites are very
brief, consisting only of the intent of the patterns. The structure of the pat-
terns is not part of the provided definitions. The brevity of the definitions is also



194 A. V. Zarras and P. Vassiliadis

the reason for the relatively small number of deviations and the respective low
deviation density values in Tutorials Point and Java T Point. Despite the low
deviation density values, in these two sites we observe the only occurrences of
intent deviations, which result in entirely incorrect pattern definitions. Moreover,
3 of the 11 occurrences of missing participants also result in incorrect pattern
definitions that do not reflect the original purpose of the patterns. The rest of the
deviations, result in incomplete definitions that partially specify the structure
of the original GoF patterns.

Table 5. Assessing the compliance of pattern examples.

We move on to the assessment of the pattern examples that we consider
in our study. The results of the assessment are given in Table 5. In particular,
for each site the table reports (1) the number of examples for each pattern, (2)
the number of deviations that we observed in the examples, (3) the density of
deviations in the examples, defined as the total number of deviations, divided
by the number of pattern examples, and (4) the percentage of patterns with
deviating examples. The empty cells in the table signify the lack of pattern
examples in the corresponding sites.

In the results, we observe that patterns with deviating examples are
quite frequent. Specifically the percentage of patterns with deviating examples



A Safari for Deviating GoF Pattern Definitions and Examples on the Web 195

Table 6. Compliance of pattern examples for the different kinds of deviations.

in the examined sites ranges from 50% to 86.6%. The density of deviating
examples is medium-high, varying from 0.47 to 1.09 deviations per example.
In all sites, there are only three patterns with deviation-free examples. In
three out of the four sites, the density of deviations in the examples is greater
than 0.9. Practically this means that in many pattern examples we have
multiple deviations. Among the sites, Source Making is the one with the
highest density of deviations, followed by Java T Point, Refactoring Guru and
Tutorials Point. In all sites, the percentage of patterns with deviating
examples is higher than the percentage of patterns with deviating
definitions.

Regarding the different kinds of deviations, Table 6 gives the number of
deviations of each kind that occur in the examples, and the density of deviations
of each kind. Among the different kinds of deviations, missing participants are
the ones that occur more often, followed by incomplete participants
and erroneous participants. In all sites, the number and the density of
missing participants is high. On the other hand, the numbers and the
densities of incomplete and erroneous participants are low. Overall, 60
of the 186 occurrences of missing participants and 20 of the 82 occurrences of
incomplete participants, result in incorrect examples. The same holds for all
the occurrences of erroneous participants. The rest of the deviations, result in
examples that partially illustrate the structure of the original GoF patterns.

Threats to Validity: The retrieval of the examined definitions and examples
has been done manually. The identification of deviations and the compliance
assessment of the retrieved pattern definitions and examples has also been done
manually. This is a possible threat to the construct validity of the study. To
mitigate this risk and reduce the probability of human mistakes the gathering
and the assessment of the data have been done in multiple iterations. Internal
validity, is not an issue in our study because we do not attempt to establish
any particular cause-effect relationships regarding the deviations that occur in
the examined pattern definitions and examples. Regarding external validity, the
scope of our study is pattern definitions and examples that we find on the Web.
In this context, we studied pattern definitions and examples gathered from four
well-known sites. Therefore, we are confident that our findings are representative
of the scope of the study.



196 A. V. Zarras and P. Vassiliadis

6 Takeaway Messages for the Developers

In this paper, we assessed the compliance of the pattern definitions and examples
that we find on the Web, to the original GoF pattern definitions. Our study
brought out the following key messages for the developers:

– The developers should know that the definitions and examples that we find
on the Web deviate from the original definitions.

– The pattern definitions that we find on the Web may involve intent devi-
ations, missing participants and incomplete participants, while the pattern
examples may involve missing participants, incomplete participants and erro-
neous participants.

– The impact of the different kinds of deviations to the correctness of the pat-
tern definition and examples varies. Intent deviations and erroneous partici-
pants always result in incorrect definitions and examples. Missing participants
and incomplete participants may also result in incorrect pattern definitions
and examples. However, most of these deviations do not entirely jeopardize
the involved pattern definitions and examples. Typically, these deviations
result in definitions and examples that partially illustrate the original pat-
tern concepts.

– The developers should be more concerned about deviating examples than
deviating definitions, since the frequency of the former is much higher than
the frequency of the latter.

– Finally, the developers should be aware that the choice of the site in which
they seek information about GoF patterns is important. Certain sites appear
more suitable for developers who are looking for pattern definitions and exam-
ples that fully comply to the original GoF pattern definitions, while other sites
may be more appropriate for developers looking for simplified pattern vari-
ants. In any case, the developers should be very careful and crosscheck the
information they find on the Web with the original Gof pattern information.

Besides the aforementioned takeaway messages, our study opens up a num-
ber of directions for future research. Specifically, a more detailed analysis of the
specific deviations that occur in the definitions and the examples of each pattern
would be interesting for the developers who seek information about specific pat-
terns. Additional studies that involve the assessment of further sites and pattern
collections would also be interesting. Finally, another issue worth investigating in
the future is the (semi)automated validation of pattern definitions and examples
that we find on the Web.

References

1. Alfadel, M., Aljasser, K., Alshayeb, M.: Empirical study of the relationship between
design patterns and code smells. PLoS ONE 15, e0231731 (2020)

2. Almadi, S.H.S., Hooshyar, D., Ahmad, R.B.: Bad smells of gang of four design
patterns: a decade systematic literature review. Sustainability 13, 10256 (2021)



A Safari for Deviating GoF Pattern Definitions and Examples on the Web 197

3. Aversano, L., Canfora, G., Cerulo, L., Grosso, C.D., Penta, M.D.: An empirical
study on the evolution of design patterns. In: Proceedings of the 6th Joint Meet-
ing of the European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC-FSE),
pp. 385–394. ACM (2007)

4. Bieman, J.M., Straw, G., Wang, H., Munger, P.W., Alexander, R.T.: Design pat-
terns and change proneness: an examination of five evolving systems. In: Proceed-
ings of the 9th IEEE International Software Metrics Symposium (METRICS), pp.
40–49 (2003)

5. Dale, M.R., Izurieta, C.: Impacts of design pattern decay on system quality. In:
Proceedings of the 8th ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement ESEM, pp. 37:1–37:4 (2014)

6. Feitosa, D., Ampatzoglou, A., Avgeriou, P., Nakagawa, E.Y.: Correlating pattern
grime and quality attributes. IEEE Access 6, 23065–23078 (2018)

7. Data are available at https://drive.google.com/file/d/
1vAn58ul7whaXM01TMFcj1er5UcCSzrYN/view?usp=sharing

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)

9. Izurieta, C., Bieman, J.M.: A multiple case study of design pattern decay, grime,
and rot in evolving software systems. Softw. Qual. J. 21(2), 289–323 (2013).
https://doi.org/10.1007/s11219-012-9175-x

10. Mayvan, B.B., Rasoolzadegan, A., Yazdi, Z.G.: The state of the art on design
patterns: a systematic mapping of the literature. J. Syst. Softw. 125, 93–118 (2017)

11. Prechelt, L., Unger, B., Philippsen, M., Tichy, W.F.: Two controlled experiments
assessing the usefulness of design pattern documentation in program maintenance.
IEEE Trans. Softw. Eng. 28(6), 595–606 (2002)

12. Prechelt, L., Unger, B., Tichy, W.F., Brössler, P., Votta, L.G.: A controlled experi-
ment in maintenance comparing design patterns to simpler solutions. IEEE Trans.
Softw. Eng. 27(12), 1134–1144 (2001)

13. Reimanis, D., Izurieta, C.: Behavioral evolution of design patterns: understanding
software reuse through the evolution of pattern behavior. In: Peng, X., Ampat-
zoglou, A., Bhowmik, T. (eds.) ICSR 2019. LNCS, vol. 11602, pp. 77–93. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-22888-0 6

14. Vokác, M.: Defect frequency and design patterns: an empirical study of industrial
code. IEEE Trans. Softw. Eng. 30(12), 904–917 (2004)

15. Walter, B., Alkhaeir, T.: The relationship between design patterns and code smells:
an exploratory study. Inf. Softw. Technol. 74, 127–142 (2016)

16. Zarras, A.: The strategy configuration problem and how to solve it. In: Proceedings
of the ACM European Conference on Pattern Languages of Programs (EuroPLoP),
pp. 9:1–9:11. ACM (2021)

17. Zarras, A.V.: Common mistakes when using the command pattern and how to avoid
them. In: Proceedings of the ACM European Conference on Pattern Languages of
Programs (EuroPLoP), pp. 4:1–4:9. ACM (2020)

https://drive.google.com/file/d/1vAn58ul7whaXM01TMFcj1er5UcCSzrYN/view?usp=sharing
https://drive.google.com/file/d/1vAn58ul7whaXM01TMFcj1er5UcCSzrYN/view?usp=sharing
https://doi.org/10.1007/s11219-012-9175-x
https://doi.org/10.1007/978-3-030-22888-0_6

	A Safari for Deviating GoF Pattern Definitions and Examples on the Web
	1 Introduction
	2 Related Work
	3 Setup of the Study
	4 Kinds of Deviations
	4.1 Intent Deviations
	4.2 Missing Participants
	4.3 Incomplete Participants
	4.4 Erroneous Participants

	5 Compliance of Pattern Definitions and Examples
	6 Takeaway Messages for the Developers
	References


