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Abstract

Characteristic sets (CS) organize RDF triples based on the set of properties
associated with their subject nodes. This concept was recently used in indexing
techniques, as it can capture the implicit schema of RDF data. While most
CS-based approaches yield significant improvements in space and query perfor-
mance, they fail to perform well when answering complex query workloads in
the presence of schema heterogeneity, i.e., when the number of CSs becomes
very large, resulting in a highly partitioned data organization. In this paper, we
address this problem by introducing a novel technique, for merging CSs based
on their hierarchical structure. Our method employs a lattice to capture the
hierarchical relationships between CSs, identifies dense CSs and merges dense
CSs with their ancestors. We have implemented our algorithm on top of a re-
lational backbone, where each merged CS is stored in a relational table, and
therefore, CS merging results in a smaller number of required tables to host the
source triples of a data set. Moreover, we perform an extensive experimental
study to evaluate the performance and impact of merging to the storage and
querying of RDF datasets, indicating significant improvements. We also con-
duct a sensitivity analysis to identify the stability and any possible weaknesses
of our algorithm, and report on our results.

1. Introduction

The Resource Description Framework1 (RDF) and SPARQL Protocol and
RDF Query Language2 (SPARQL) are W3C recommendations for representing
and querying data on the semantic web and are widely used for the management
of knowledge graphs. In light of this, RDF data management methods are calling
for improvements in the performance of RDF storage and querying engines, as
has been discussed in recent works, where state-of-the-art RDF engines are
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found to be very efficient in simple workloads, but not efficient enough when it
comes to more complex query workloads [1][2][3][4][5][6][7].

In response to this limitation, recent works have shown that extraction and
exploitation of the implicit schema of the data can be beneficial in both stor-
age and SPARQL query performance [3][4]. In order to organize on disk, index
and query triples efficiently, these efforts heavily rely on two structural compo-
nents of an RDF dataset, namely (i) the notion of characteristic sets (CS), i.e.,
different property sets that characterize subject nodes, and (ii) the join links
between CSs. Formally, given an RDF dataset D, and a subject node s, the
characteristic set cs(s) of s is defined as follows [8]:

cs(s) = {p | ∃o : (s, p, o) ∈ D}

In plain words, a CS is the set of attributes (or RDF properties) of a given
subject node. Abstracting from RDF triples to their CSs, an RDF graph can
be represented on the structural level by a graph containing CSs as nodes, and
links between CSs as edges, where a link between two CSs exists whenever a
link between two subject nodes exists in the original RDF graph. Due to the
ability to represent all of the properties of a subject node with a single set,
rather than multiple triples, CSs have been thoroughly used as a means to
optimize query planning, storage, indexing and query processing [3, 2, 4, 8, 9].
In their most general form, they are used as the basis for mapping RDF to a
relational structure, where each CS forms a relational table. An illustration
of this mapping can be seen in Figure 1. There are two entities, Alice and
Claire, each represented in an RDF graph as a node. The properties of these
two nodes are (a) their type, (b) the company for which they work and (c) their
supervisor. The set of these tree properties, {rdf:type, worksFor, supervises},
forms the characteristic set for these two nodes. The direct representation as a
relation is depicted at the bottom of Fig. 1, with the characteristic set becoming
the attributes of the relation.

However, a mapping from RDF to the relational space is not always straight-
forward, as the structural looseness that is allowed in the RDF world can
translate to multiple, heterogeneous CSs that represent skewed distributions
of triples. For example, instead of the homogeneity of the graph in Figure 1,
where all of the nodes share the structure, i.e., the same CS, consider the case
of Figure 2(a) where nodes are described by four different CSs. In fact, fre-
quently there exist many different CSs within the same dataset, representing
varying internal structure for the nodes of the source graph. This schema het-
erogeneity in loosely-structured datasets is indeed frequently found in the real
world (e.g., Geonames contains 851 CSs and 12136 CS links), imposing large
overheads in the extraction, storage and disk-based retrieval[1][3]. For reference,
some well established RDF datasets along with their associated numbers of CSs
(first column) are shown in Table 1.

In these cases, we end up with a lot of CSs, each of which may actually
represent very few nodes. There are two antagonizing approaches in creating
a relational schema from a set of CSs. (i) Creating a relational table for each
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Figure 1: A simple RDF graph consisting of a single characteristic set, c1, and its resulting
table.

Table 1: RDF datasets along with their number of CSs and links between CSs.

Dataset # Tables (CSs) # of CS joins
Reactome 112 346
Geonames 851 12136

LUBM 2000 14 68
WatDiv 100 5667 802

Wordnet 779 7250
EFO 520 2515

DBLP 95 733

different CS would result in a large numbers of relational tables with few tuples
in each of them, as shown in Figure 2(b), that require a very large number of
joins to answer queries; (ii) on the other hand, creating a single, ”universal”
table, accommodating the CS’s of all the nodes of the graph would create a
very wide relation, as in Figure 2(c), which is practically overly empty (i.e., too
many NULL values) and space inefficient, due to the fact that different tuples
would have very different cells populated.

The problem is both open and hard to solve. This is due to the
following reasons.

A design-driven solution is not applicable. One could possibly wonder ”why
not splitting the universal relation in the traditional manner?”. Unfortunately,
the traditional decomposition via functional dependencies is neither available, or
enforceable to the source data. It is very possible that the incoming data to be
stored are not necessarily accompanied by metadata descriptions that prescribe
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(a) Four subject nodes, s1, s2, s3, s4 with their properties and their CSs
(left) and the resulting CS hierarchy graph (right).

(b) Edge case where each CS becomes a relational table. No NULL
values exist in any of the tables.

(c) Edge case where all CSs become one universal table. NULL
values exist in this table.

(d) Merging c1, c3, c4 together and leaving c2 unmerged.

Figure 2: Example of four CSs coming from different source datasets, and their respective
CS hierarchy graph. Examples of the two edge cases (all tables vs one table), as well as the
merging case can be seen. In the figure, the CSs can be seen as derived from data instances
(nodes s1, s2, s3, s4). It can generally be assumed that are more instances belonging to these
CSs, not shown in the figure.
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functional dependencies. Even if a DBA would design them, it is also possible
that the data violate them. Thus, in the context of this paper, we proceed with
an automated design that assumes that no functional dependencies are available
and all schema dependencies are online detected by the incoming data.

State of the art is not addressing the problem. Second, the current ap-
proaches to address the problem do not avoid the problems that we have men-
tioned before and include approaches to store data generically as triples, as prop-
erty tables (practically one table per CS) or as attribute value pairs as vertical
partitions (see Section 2 for a detailed discussion). All these solutions are found
in the extremes of the dilemma between empty space and query performance
without achieving a ”sweet” compromise between the two forces. Therefore, the
state of practice and the state of the art provide room for improvement, and in
fact, to the best of our knowledge, this is the first effort to address the problem.

The problem requires finding a sweet spot. At the same time, the problem
is hard to solve: as we show in Section 5, the complexity is exponential, and
therefore, brute force methods are not adequate. The problem is driven by the
opposing forces of space consumption and query efficiency. Depending on the
underlying relational storage scheme, the translation of a SPARQL query to
SQL requires completely different joins and self-joins, with very different table
sizes being involved. We elaborate on this via an illustrative example in Section
4. Practically, we need a balance in the following two factors that push the
solution to different edges of a spectrum:

• One possible edge of the spectrum is to define one table for each CS. In
this case, the penalty to pay is that the number of unions of joins needed
to answer queries that will be posed to the dataset reaches its maximum.
Thus, we need to push towards merging CSs into the same relational
storage (which is actually the driving force for our solution).

• The other end of the spectrum is that we define a single ”universal” table
for all the data set, with the union of all properties as its attributes. In
this case we pay the price of a largely empty table, with a large number
of NULL values and unnecessary space consumed. Thus, we need to con-
strain the tendency to merge CS’s with a stopping force that prevents the
creation of very few, ultra-big, NULL-filled merger tables.

• The point is to find a sweet spot between the two extremes that compro-
mises the different costs.

Contribution. In this paper, we tackle the problem of mapping heteroge-
neous RDF datasets to a relational schema with the aim to facilitate the pro-
cessing of complex analytical SPARQL queries, by automating the decision of
which tables will be created in order to host the incoming data, such that there
are no overly empty tables and extremely large numbers of joins.

In our approach, we introduce an algorithm to automate the design process.
We start by considering that each CS is a single table and by exploiting their
hierarchical relationships, we merge related CSs into the same table. Moreover,
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we define a density-based cost function that help us stop the merging process
for CSs that contain a large numbers of triples. In this way, we achieve merging
of CS based on the structural similarity as well as the number of triples they
contain. We follow a relational implementation approach by storing all triples
corresponding to a set of merged CSs into a separate relational table and by
executing queries through a SPARQL-to-SQL transformation. Although alter-
native storage technologies can be considered (key-value, graph stores,etc), we
have selected well-established technologies and database systems for the imple-
mentation of our approach, in order to take advantage of existing relational
data indexing and query processing techniques that have been proven to scale
efficiently in large datasets and complex workloads. To this end, we present a
novel system, named raxonDB, that exploits these hierarchies in order to merge
together hierarchically related CSs and decrease the number of CSs and the links
between them, resulting in a more compact schema with better data distribu-
tion. RaxonDB, built on top of PostgreSQL, provides significant performance
improvements in both storage and query performance of RDF data with respect
to the state of the art techniques presented in Section 2. We also conduct a sen-
sitivity analysis that allows us to evaluate how sensitive the proposed algorithm
is to the density threshold that it employs, as well as to small fluctuations of
the relational schema.

In short, our contributions are as follows:

• We formulate the problem as a lattice reduction problem and introduce a
novel CS merging algorithm that takes advantage of CS hierarchies;

• We present our implementation, raxonDB, an RDF engine built on top
of a relational backbone that takes advantage of this merging for both
storing and query processing (which we detail in length);

• We perform an experimental evaluation that indicates significant perfor-
mance improvements for various parameter configurations.

• We perform a sensitivity analysis on the robustness of our proposed algo-
rithm.

An earlier, condensed version of this paper has appeared in [10].

Roadmap. In Section 2, we present the background and related work for this
paper. In Sections 3 and 4, we provide preliminary definitions and delineate
the problem, and in Section 5 we present algorithms towards its solution. In
Section 6, we discuss how query processing takes place in our RDF engine, whose
architecture is presented in Section 7. In Section 8, we discuss the experimental
evaluation of the paper. In Section 9 we perform a sensitivity analysis of our
method and report on our results. We conclude the paper in Section 10, with a
summary of our findings and a discussion of future work.
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2. Related Work

The recent survey [5] presents a most complete list of RDF systems; it cate-
gorizes them based on the underlying storage technologies, the querying capabil-
ities as well as the nature of processing (centralized vs distributed approaches).
Due to the tabular structure that tends to implicitly underlay RDF data, some
of these recent works for RDF data management systems have been implemented
in relational backbones. They generally follow three storage schemes, namely
(a) triples tables, (b) property tables, and, (c) vertical partitioning. A triples
table has three columns, representing the subject, predicate and object (SPO)
of an RDF triple. This technique replicates data in different orderings in or-
der to facilitate sort-merge joins. RDF-3X [11] and Hexastore [12] build tables
on all six permutations of SPO. Built on a relational backbone, Virtuoso [13]
uses a 4-column table for quads, and a combination of full and partial indexes.
These methods work well for queries with small numbers of joins, however, they
degrade with increasing sizes, unbound variables and joins.

Property Tables places data in tables with columns corresponding to prop-
erties of the dataset, where each table identifies a specific resource type. Each
row identifies a subject node and holds the value of each property. This tech-
nique has been implemented experimentally in Jena [14] and DB2RDF [15],
and shows promising results when resource types and their properties are well-
defined. However, this causes extra space overhead for null values in cases of
sparse properties [16]. Also, it raises performance issues when handling complex
queries with many joins, as the amounts of intermediate results increase [17].

Vertical partitioning segments data in two-column tables. Each table cor-
responds to a property, and each row to a subject node [16]. This provides
great performance for queries with bound objects, but suffers when the table
sizes have large variations in size [18]. TripleBit [19] broadly falls under verti-
cal partitioning. In TripleBit, the data is vertically partitioned in chunks per
predicate. While this reduces replication, it suffers from similar problems as
property tables. It does not consider the inherent schema of the triples in order
to speed up the evaluation of complex query patterns.

In distributed settings, a growing body of literature exists, with systems
such as Sempala [20], H2RDF [21] and S2RDF [22]. However, these systems
are based on the parallelization of centralized indexing and query evaluation
schemes.

Due to the high heterogeneity in the schema during the integration and
analysis of multiple RDF datasets, latest state of the art approaches rely on
implicit schema detection in order to index/store triples based on their schema.
In previous works [3],[23], we defined Extended Characteristic Sets (ECSs) as
typed links betwen CSs, and we showed how ECSs can be used to index triples
and greatly improve query performance. In [1], the authors identify and merge
CSs, similar to our approach, into what they call an emergent schema. However,
their main focus is to extract a human-readable schema with appropriate rela-
tion labelling and they do not use hierarchical information of CSs, rather they
use semantics to drive the merging process. In [2] it is shown how this emergent
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schema approach can assist query performance, however, the approach is lim-
ited by the constraints of human-readable schema discovery. In our work, query
performance, indexing and storage optimization are the main aims of the merg-
ing process, and thus we are not concerned about providing human-readable
schema information or any form of schema exploration.

In [4], the authors use CSs and ECSs in order to assist cost estimation for
federated queries, while in [9], [24], the authors use CSs in order to provide better
triple reordering plans. Then, [25] targets the problem of query containment
in SPARQL and proposes a graph index for accelerating containment checking.
These approaches can be combined with our work to provide fast results to
specific classes of queries over an RDBMS. To the best of our knowledge, this
is the first work to exploit hierarchical CS relations in order to merge CSs and
improve query performance.

We would like also to highlight that the core research question of this paper
is not to contrast relational with triple-store technology, but assuming that the
relational storage is given, how we can make it more efficient for managing RDF
data. RDBMS are super-mature software products, building their ecosystem of
tools, robustness, scalability and availability upon a mature technology of al-
most half a century. Clearly, triple stores, as a domain-specific solution, come
with all the benefits that the so-called “dinosaurs” don’t have: they are specif-
ically adapted to the problem at hand and can apply optimizations to their
code that the general-purpose RDBMSs cannot. However, assuming that the
general-purpose RDBMSs will be completely obliterated or not used for storing
triples is a rather extreme scenario in our opinion. This is not only due to the
tools, expertise and stability properties that they carry, but also due to the sim-
ple social fact that developers might stick to technology they already master.
Finally, stressing and exploring the limits of relational technology in the service
of storing triples and answering questions is also a valid research topic.

The earlier version of this paper [10] is extended here via a detailed discussion
of the problem formulation, the detailed exposition of our query processing
method for raxonDB, the presentation of the system architecture as well as a
detailed sensitivity analysis.

3. Preliminaries

RDF triples consist of a subject s, a predicate p and an object o. An RDF
dataset is represented as a directed labelled graph where subjects and objects
are nodes, and predicates are labelled edges. Formally, let I, B, L be infinite,
pairwise disjoint sets of URIs, blank nodes and literals, respectively. Then,
(s, p, o) ∈ (I ∪B)× (I)× (I ∪B∪L) is a triple. RDF does not enforce structural
rules in the representation of triples; within the same dataset there can be
largely diverse sets of predicates emitting from nodes of the same type [3, 1, 8].
Characteristic Sets (CS)[8] capture this diversity by representing implied node
types based on the set of properties they emit. Formally, given a dataset D, and
a subject node s, the characteristic set cs(s) of s is cs(s) = {p | ∃o : (s, p, o) ∈
D}, and the set of all CSs is denoted with C. In what follows, we present basic
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definitions for CSs and their more generalized form of Property Sets. Intuitively,
a property set is a set of RDF predicates p1 . . . pn. Therefore, a CS is also a
property set. As we are interested in creating property sets by merging CSs, we
use this more general form (i.e., property set instead of CS) in order to denote
sets of attributes that are not necessarily CSs in the original dataset, but are
used after merging several CSs as the basis for a relational table.

Although each real world measurement can have its very own characteristic
set, for all practical purposes, the information stored in RDF triples typically
refers to recurring concepts and their features. Thus, some co-occurrences of fea-
tures are common, e.g., to triples coming from the same source and representing
”records” pertaining to the same ”concept” (e.g., triples for events, pertaining to
the concept Event come with the same set of features like datetime and descrip-
tion. All event instances from the same source are likely (albeit not obliged) to
carry overlapping subsets of these features. At the same time, despite the com-
monalities, there are differences too, typically produced by the heterogeneity of
data sources and the lack of structural restrictions in RDF data. For example,
an RDF dataset containing information about people, is likely to associate a
name property for each instance of a Person class, while a isFatherOf property
would not be associated with all instances for obvious reasons. Thus, there is
a possibility to define subset relationships between the features of similar con-
cepts. To this end, we introduce the notion of subsumption and the notion of
hierarchy of subsumed property sets.

Definition 1. Property Sets and Property Tables. In its more general
form, a CS is a property set Pi, i.e., a set of RDF predicates and the set of
all property sets is denoted with P . A Property Table (also: CS Table) Ti

for a given property set Pi is a relational table comprising an identifier sid for
the subject node s and |Pi| columns, where Pi = {pi,1, pi,2, . . . , pi,n} are the
predicates emitting from s. Ti contains the set ri of tuples that instantiate the
values of the properties for sid, i.e., Ti = (sid ∪ Pi, ri). A tuple can hold values
for the predicate columns in I ∪B ∪ L ∪NULL, i.e., each cell in the relational
table can either have a standard value of an RDF triple object, or NULL when
the subject node identified in sid does not have a property in any of its triples.
Intuitively, a table can be used as storage for a CS if it has one column for each
of the properties of the CS, as well as an extra column for a primary key sid.
Then, all subjects of the CS can be stored into the table (and as we will see right
next, all subjects of CSs that have a subset of the properties of the CS under
discussion – therefore the need for NULL in the above discussion). In Figure
2(a), four subject nodes, s1, s2, s3, s4, are shown. These have four different CSs
based on their property sets, namely c1, c2, c3, c4.

Definition 2. CS Subsumption . Given two CSs, ci and cj , then ci sub-
sumes cj , or ci � cj , when ci is a subset of cj , or ci ⊂ cj .

For example, consider c1, c2 that describe human beings, with c1 = {type, name}
and c2 = {type, name,marriedTo}. It can be seen that c1 ⊂ c2 and therefore
c1 subsumes c2. In the example of Figure 2(a), the four CSs exhibit strong
subset-superset relationships between their properties, For instance, c1 and c2
have property sets that are supersets of both c3 and c4, while c3 also subsumes

9



c4. The set of all parent-child relationships defines a CS hierarchy.
Definition 3. CS Hierarchy and Inferred Hierarchy . CS subsumption

creates a partial hierarchical ordering such that when ci � cj , then ci is a parent
of cj . Formally, a CS hierarchy is a graph lattice H = (V,E) where V ∈ C and
E ∈ (V × V ). A directed edge between two CS nodes c1, c2 exists in H, when
c1 � c2 and there exists no other ci such that c1 � ci � c2. The directed edge
stems from the parent node and arrives at the child node.

Figure 3: (a) A CS hierarchy graph with dense nodes colored in deep purple, (b) the connected
components derived by cutting off descendants from dense nodes, (c) a connected component
with dashed lines representing inferred hierarchical relationships, (d) all possible assignments
of dense nodes to non-dense nodes.

In the case of the aforementioned c1 = {type, name} and c2 = {type, name,
marriedTo}, a directed edge starts from the ancestor node c1 towards the de-
scendant node c2. Hierarchies in our context have no relationship with hier-
archies in other domains, like e.g., OLAP. If the reader prefers, she can think
of them in terms of type hierarchies, where children types extend parent types
with extra attributes. Practically, as we will also see next, a descendant CS,
if translated to a relational table in terms of storage, it can also host all its
ancestral CS’s in its relational table, with NULL values for the columns that
the ancestors lack. CS subsumption relationships can also be seen in Figure
3(a) as directed edges between nodes. An example CS hierarchy can be seen in
Figure 3(a).

Given a hierarchy H, we denote the hierarchical closure of H with Hc, so
that Hc extends H to contain inferred edges between hierarchically related nodes
that are not consecutive, e.g. a node and its grandchildren. Intuitively, for every
set of features c that describes some concept in the dataset, we introduce a node
in our graph. Every strict superset of features of c is a descendant of c, and
every strict subset of features of c is a superset of c. In the remainder of this
paper, we refer to Hc as the inferred hierarchy of H. The lattice resembles the
traditional OLAP cube lattice (see [26]), although in our case, the construction
is ad-hoc, depending on the available CS’s, and serves a different purpose.

An example inferred hierarchy can be seen on the right of Figure 2(a), with
the inferred relationships in dashed lines as well as in Figure 3(c) for a sub-graph
of the graph in Figure 3(a).

Definition 4. CS Ancestral Sub-graphs. Given an inferred hierarchy
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Hc = (V,E), a CS cbase, a set of CSs c1, . . . , ck, and a sub-graph Hanc
cbase

=

(V
′
, E

′
) with V

′ ⊆ V and E
′ ⊆ E, we say that Hanc

cbase
is an ancestral sub-graph

over cbase when ∀i ∈ [1..k], it holds that ci � cbase and (ci, cbase) ∈ E
′
.

Intuitively, any set of ancestors of a node cbase forms an ancestral sub-graph.
More than one ancestral sub-graphs can be defined over cbase, as any subset of
its parents is considered an ancestral sub-graph over cbase. For instance, in
Figure 3(c), nodes c7, c4, c2 form an ancestral sub-graph over c7. Similarly,
nodes c6, c4, c2 and c6, c5, c2 form ancestral sub-graphs over c6.

Having defined the hierarchy of characteristic sets and the respective graph,
we are now ready to provide the foundation for the core of the problem of this
paper. Basically, the goal is to find a way to store data in a way that balances
two antagonizing goals: (a) the number of NULL values and the unnecessary
space increase, vs., (b) the resulting decrease in query processing time that
would result from the fragmentation of stored data in multiple nodes and the
need to join them. To address this issue, we can attempt to merge different
nodes into one, paying the price of empty space to avoid the price of joins.
There exist two edge cases here, namely (i) assign a table to each CS in the
incoming data, resulting in as many tables as CSs, and (ii) assign one universal
tables for all CSs. This table would contain all of the properties found in the
input dataset. The two edge cases for the running example of Fig. 2 can be
seen in Fig. 2(b,c).

Definition 5. Hierarchical CS Merge . Given an ancestral sub-graph a =
(V

′
, E

′
), where V

′
= {c1, c2, . . . , ck} as defined above, and the set of property

tables T (V
′
), then hier merge(a, T (V

′
)) is a hierarchical merge of a that results

in a single table Ta = (cbase, ra). As cbase is the most specialized CS in a, the

columns of Ta are exactly the properties in cbase, while ra =
k⋃

i=1

r
′

i is the union of

the records of all CSs in V
′
, where r

′

i is the projection of ri on the properties in

cbase. Consequently, r
′

i contains NULL values for all the non-shared properties
of cbase and ci.

In essence, this is an edge contraction operator that merges all tables of the
nodes of an ancestral sub-graph into one and keeps the signature (i.e., the prop-
erties) of the base CS cbase. For instance, assume that V

′
= {c0 = (P0, r0), c1 =

(P1, r1), c2 = (P2, r2)} is the set of vertices of an ancestral sub-graph with three
CSs, with P0 = {pa, pb}, P1 = {pa, pb, pc} and P2 = {pa, pb, pc, pd}. Thus,
c0 � c1 � c2. The output of the merging process for our running example can
be seen in Figure 2(d). Hierarchical merging can be seen in Figure 4.

Definition 6. Merge Graph . Given an inferred CS hierarchy Hc = (V,E),
a merge graph is a graph H

′
= (V

′
, E

′
) that consists of a set of n ancestral

sub-graphs, and has the following properties: (i) H
′

contains all nodes in H
such that V

′ ≡ V , i.e., it covers all CSs in the input dataset, (ii) H
′

contains
a subset of the edges in H such that E

′ ⊂ E, (iii) each node is contained in
exactly one ancestral sub-graph ai, (iv) all ancestral sub-graphs are pair-wise
disconnected, i.e., there exist no edges between the nodes of different ancestral
sub-graphs. Thus, each ancestral sub-graph can be contracted into one node
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Figure 4: Merging the tables of c0, c1 and c2.

unambiguously. Also, the total number of relational tables will be equal to the
number of ancestral sub-graphs in the merge graph.

4. Problem Formulation

The primary focus of this work is to improve the efficiency of storage and
querying in relational RDF engines by exploiting the implicit schema of the
data in the form of CSs. The two extreme approaches – i.e., (a) a separate
table for each CS, on the one end of the spectrum, or, (b) merging all the data
into a universal table with a schema expressed as the union of the individual
features of the different CS’s, at the other end of the spectrum, have the following
drawbacks, respectively: (i) multiple unions of joins of separate tables at query
processing, if many tables are used, and (ii) bad utilization of disk space if nodes
are excessively merged into a very small number of tables (due to excessive
empty space with NULLs).

Illustrative Example. Before formalizing the problem formulation, we
believe it is better to illustrate the problems that pop-up via an illustrative
example. Consider the evaluation of the following SPARQL query on the nodes
of Figure 2(a):

SELECT ?x ?y ? z ?w
WHERE { ?x worksFor ?y .

?x s u p e r v i s e s ? z .
? z hasBirthday ’ 1992−02−24 ’ .
? z isMarriedTo ?w.
?w hasNat i ona l i t y ’GR’ }

Assuming a design with a ”universal” relation (Figure 2c), the query evalua-
tion over the relational schema (see Section 5 for the details on the SPARQL-to-
SQL query evaluation) would require one self-join for each one of the worksFor,
supervises and isMarriedTo query conditions (hasBirthday and hasNationality
conditions are executed as select operations in relational algebra). At the same
time, there is a price of NULL values, too, as (Figure 2c) shows. Assuming a
universal relation RU , the SQL translation of the above SPARQL query would
be requiring the self-join of this very large table to itself more than once:

SELECT x . id , x . worksFor , z . id , w. id
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FROM RU AS x , RU AS z , RU AS w
WHERE x . s u p e r v i s e s = z . id AND

z . isMarriedTo = w. id AND
z . hasBirthday = ’ 1992−02−24 ’ AND
w. hasNat i ona l i t y = ’GR’ AND
x . worksFor IS NOT NULL

Note that the join between ?x and ?y on worksFor is excluded from the
produced joins, as ?y is practically a completely free variable; at the same time,
what is required is that ?x does have a value for property worksFor.

At the other end of the spectrum, in the multiple CS tables case (Figure 2b),
each one of the three join query conditions would require a two-step transla-
tion: (a) detect which tables are candidate for each variable, and use their
virtual union as the virtual table to instantiate the variable, and (b) factor out
the unions and create the Cartesian product of the candidates’ joins. Here, for
example, variable ?x can be populated only by tables having both properties
worksFor, supervises (i.e., R1 and R2); variable ?y by any table; variable ?z
only by tables having both properties isMarriedTo, hasBirthday (i.e., only
R1), and variable ?w by any table having the property hasNationality (i.e.,
R2). Then, the ”join structure” of the SPARQL query (omitting selections and
projections) is:

?x ./supervises ?z ./isMarried ?w

which is translated to the following expression in relational algebra:

(R1 ∪R2 ) ./supervises R1 ./isMarried R2

By factoring out the unions, ultimately, the query is translated to

(R1 ./supervises R1 ./isMarried R2) ∪ (R2 ./supervises R1 ./isMarried R2)

To give an idea of how easy it is to explode the number of produced sub-
queries, the reader might want to consider the following: Had we introduced a
single triple pattern on ?y, it would produce an extra join in the join path and
the need to join all the above subqueries with the union of the candidates to
populate ?y.

Thus, despite its space efficiency, the latter case imposes performance over-
heads due to the large number of unions of joins that the query must perform
to fetch data from multiple tables. This number can become significantly large
in real-world datasets, as shown in the second column of Table 1.

Problem formulation. Assume a data set D which, at the logical level,
is a collection of subject nodes, DL = {s1, . . . sn}. Naturally, many subject
nodes share the same CS. At the physical level, each subject node is stored in
a relational table, so, we assume an underlying relational database DP = { r1
. . . rr }, such that for each s ∈ DL ∃ r ∈ DP suitable to contain all the data
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of s. We define the total function storage: DL → DP (in other words, for each
subject node there exists exactly one table where all its data are going to be
hosted). By abuse of notation we say that storage(DL) = DP .

Similarly to subjects, we can define the same relationships for CSs. A CS is a
representative for a subject, if for each property of a subject, the CS includes it.
A CS is a strict representative of a subject if it contains exactly the properties
of this subject and none other. CSs form hierarchies, which we formally address
as an inferred graph Hc = (V,E), in the sense of Definition 3.

A relation r is a legal placeholder for the data of a subject node when its
schema includes at least (but not obligatorily exactly) an id column for the node
id and a set of columns, one per property of the CS of the subject node. We
formalize this relationship by introducing the function legalHost: DL × DP

→ Boolean, i.e., legalHost(s, r) is true when r is a legal placeholder for s. A
physical-level relational database DP is a legal placeholder for the data of a
data set D with a logical-level set of subject nodes DL when for each subject
node s there exists a table r, s.t., legalHost(s, r). By abuse of notation we say
that legalHost(DL, DP ) is true.

The inverse of function storage is not necessarily a function, and it’s not
necessary that it is total. The idea here is that a relational table might store
data from multiple nodes, with different CSs. For example, we have already seen
that in the case of subsumption, we can store all the properties of subsumed
nodes into the same relation. Thus, we have several alternatives for the storage
function, i.e., several alternative sets of tables DP for the storage of the same
RDF dataset D.

Finally, the problem is reduced to the following: given an inferred CS hi-
erarchy Hc = (V,E), the problem is to find a merge graph H

′
= (V,E

′
) in

the form of a set of disconnected ancestral sub-graphs, that provides a fast way
to merge CS nodes via a merging process of low complexity, while at the same
time, minimizing an objective cost function cost() that penalizes the production
of large merger tables.

5. Hierarchical CS Merging

What makes the problem hard, is the complexity of finding a sweet spot in
the Pareto equilibrium between conciseness of the relational schema (few tables)
and internal density (with respect to the empty space they contain).

Schema conciseness. To start with the arguments in favor of reducing
the number of nodes via merging, we can see that, by reducing the number of
CS, the number of joins between them is also reduced. Furthermore, merging
together CSs leads to a less skewed distribution of data to relational tables.
Ultimately, this results in a drastically decreased disk-based I/O cost, as less
tables are fetched, positively affecting query processing as well.

Density. On the contrary, merging tables results in the introduction of
NULL values for the non-shared columns, which can degrade performance.
Specifically, merging CSs with different attribute sets can result in large numbers
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of NULL values in the resulting table. Given a parent CS table T1 = (sid∪c1, r1)
and a child CS table T2 = (sid ∪ c2, r2) with |c1| < |c2| and |r1| >> |r2|,
the resulting |c2 \ c1| × |r1| NULL cells will be significantly large compared
to the total number of r1 + r2 records, thus potentially causing poor stor-
age and querying performance[1].3 For this reason, CS merging must be per-
formed in a way that will minimize the presence of NULL values. The fol-
lowing function captures the NULL-value effect of the merge of two CS tables
Ti = (sid ∪ ci, ri), Tj = (sid ∪ cj , rj) with ci � cj :

rnull(Ti, Tj) =
|cj \ ci| × |ri|
(|rj |+ |ri|)

(1)

rnull represents the ratio of null values to the cardinality of the merged table.
The numerator of the fraction represents the total number of cell values that
will be null, as the product of the number of non-shared properties and the car-
dinality of the parent CS. The denominator represents the resulting cardinality
of the table.

As an example, consider the tables T1=(sid, rdfType, worksFor) with r1 =
1K records and T2=(sid, rdfType, worksFor, supervises, memberOf) with r2 =
9K records; merging T1 to T2 will produce rnull(T1, T2) = 0.2. rnull takes
positive values and increases proportionally to the difference in the number of
columns |c1| − |c2| between the two merged tables and the number of rows |r1|
of the small table. Thus, merging a small table with a bigger one, which have
slight differences in their schemas, results in small values for rnull.

In order to assess an ancestral sub-graph, we use a generalized version of
rnull that captures the NULL value effect on the whole sub-graph:

rgnull(g)|Td
=

∑|g|
i=1 |cd \ ci| × |ri|
|rd|+

∑|g|
i=1(|ri|)

(2)

Here, Td = (cd, rd) is the root of sub-graph g. However, merging a parent to
a child changes the structure of the input graph, as the cardinality of the merged
child is increased. In the previous example, we merge a third table T3=(sid,
worksFor) with r3 = 2K records with T2. Then rgnull(g)|T2

=0.66.
Thus, we define a cost function that works on the graph level, as follows:

cost(g) =

n∑
i=1

rgnull(gi)|cdi (3)

where n is the number of dense nodes, cdi is a dense node and gi is the ancestral
sub-graph with cdi as the base node.

In our running example, instead of T1, we choose T4=(sid, rdfType, worksFor,
supervises) with 12K records to merge with T1 and T3. In that case the cost

3We employ the term \ for set difference in accordance to a long tradition of set theory –
see https://mathworld.wolfram.com/SetDifference.html
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will become rgnull(g)|T4 =0.33, i.e., it is lower than that of T2 acting as a dense
node even though the size of T4 is bigger.

Thus, choosing dense CSs as bases is a seeding process that aims to minimize
this NULL value effect by making sure that a large fraction of the input records
will not be extended with NULL values. This is true because a CS base and
its resulting merged table will have exactly the same properties (columns) and
thus introduction of NULL values will not be needed for the records of the CS
base.

The problem of selecting ancestral sub-graphs for the merge is computation-
ally hard, as mentioned earlier. For this reason, we rely on heuristics in order to
seed the process and provide an initial set of ancestral sub-graph bases for the
final merged tables. The CS bases will be the only relational tables in the out-
put, with the remaining tables merged into them. For this, we identify dense
CS nodes in the hierarchy (i.e, with large cardinalities) and use these nodes
as the bases of the ancestral sub-graphs. While node density can be defined in
many different ways, in the context of this work we define a ci to be dense, if the
cardinality of its relational table is larger than a linear function of the maximum
cardinality of CSs in D, i.e., a function d : N → R, with d(Ti) = m × |rmax|.
Here, m ∈ [0, 1] is called the density factor, and rmax is the cardinality of the
largest CS table in D. By definition, if m = 0, no CSs will be merged (i.e., each
CS will be stored in each own table), while if m = 1, no tables will be created,
as no CS has a cardinality larger than that of the largest CS. With a given m,
the problem is reduced to finding the optimal ancestral sub-graph for each given
dense node.

Given this cost model and a predefined set of dense nodes, Algorithm 1 will
find the optimal sub-graph for each dense node. An inferred hierarchy graph can
be converted to a set of connected components that are derived by removing
the outgoing edges from dense nodes, since we are not interested in merging
children to parents, but only parents to children. An example of this can be
seen in Figure 3(b). For each component, we can compute cost(g) as the sum
of the costs of these components. The main idea is to identify all connected
components in the CS graph, iterate through them, enumerate all sub-graphs
within the components that start from the given set of dense nodes, and select
the optimal partitioning for each component.

It first identifies all connected components of the inferred hierarchy (Line
2) using a standard DFS traversal (not explained in the algorithm). Then, it
iterates each component (Line 3) and generates all possible sub-graphs (Line 6).
For each sub-graph, the cost is calculated and if it is smaller than the current
minimum (Line 7), the minimum cost and best sub-graph are updated (Lines
8-9). Finally, the best sub-graph is added to the final list (Line 11), which is
the output of the algorithm.

To generate the sub-graphs (method generateNextSubgraph ), we do not need
to do an exhaustive generation of 2n combinations, but we can rely on the
observation that each non-dense node must be merged to exactly one dense node.
Therefore, sub-graph generation is reduced to finding all possible assignments of
dense nodes to the non-dense nodes. An example of this can be seen in Figure 3.
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Nodes c2, c4, c5 are non-dense, while nodes c6, c7, c8 are dense. All possible and
meaningful sub-graphs are enumerated in the table at the right of the figure,
where we assign a dense node to each of the non-dense ones. An assignment
is only possible if there exists a parent-child relationship between a non-dense
and a dense node, even if it is an inferred one (e.g. c2 is an inferred parent
of c7). Hence, the problem of sub-graph generation becomes one of generating
combinations from different lists, by selecting one element from each list. The
number of lists is equal to the number of non-dense nodes, and the elements in
each list are the dense nodes that are related to the non-dense node.

Complexity Analysis. Assuming that a connected component g has k
non-dense nodes and d dense nodes, and each non-dense node ki is related to
e(ki) dense nodes, then the number of sub-graphs that need to be enumerated

are
∏k

i=1 e(ki). In the example of figure 3, the total number of sub-graphs is
e(c2)× e(c4)× e(c5) = 3× 2× 1 = 6. In the worst case all k nodes are parents
of all d nodes. Then, the number of total sub-graphs is dk, which makes the
asymptotic time complexity of the algorithm O(dk).

Algorithm 1: optimalMerge

Data: An inferred hierarchy lattice Lc as a adjacency list , and a set of
dense CSs D

Result: A set of optimal ancestral sub-graphs
1 init finalList;
2 connectedComponents← findConnectedComponents(Lc);
3 for each connectedComponent do
4 init min←MAX V ALUE;
5 init bestSubgraph ;
6 while next← connectedComponent.generateNextSubgraph() do
7 if cost(next) < min then
8 min← cost(next);
9 bestSubgraph← next;

10 end
11 finalList.add(bestSubgraph);

12 end
13 return finalList;

5.1. Greedy Approximation

For very small d, k (e.g. d, k < 4), the asymptotic complexity of O(dk) is
acceptable. However, in real-world cases, the number of connected components
can be small, making d and k large. For this reason, we introduce a heuristic
algorithm for approximating the problem, that does not require enumerating
all possible combinations, relying instead on a greedy objective function that
attempts to find the local minimum with respect to the defined cost model for
each non-dense node.
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Figure 5: An example of greedy merging. Dense nodes are coloured in deep purple. At
each step, the non-dense node under examination is coloured with green, while the edge that
minimizes rnull can be seen in bold.

The main idea behind Algorithm 2 is to iterate the non-dense nodes, and
for each of them, to calculate rnull and find the dense node that minimizes
this function for the given non-dense node. Then, the cardinalities will be
recomputed and the next non-dense node will be examined. In the beginning,
the algorithm initiates a hash table, mergeMap, with an empty list for each
dense node d (Lines 1-4). Then, the algorithm iterates all non-dense nodes,
denoted via k (Line 5), and for each dense child dk of k, it calculates the cost rnull
of merging k with this dense child (Lines 5-13), keeping the current minimum
cost and dense node. In the end, the current non-dense node is added to the list
of the dense node that minimizes rnull (Line 14). Notice that we do not need
to split the hierarchy into connected components in order for greedyMerge to
work. Figure 5 shows an example of greedy merging.

Complexity Analysis. Given k non-dense nodes and d dense nodes, where
each non-dense node ki has e(ki) dense children, the greedyMerge algorithm

needs
∑k

i=1 e(ki) iterations, because it requires iteration of all e(ki) nodes for
each ki. In the worst case, every ki is related to all d dense nodes, requiring
kd iterations. Assuming a constant cost for the computation of rnull, then the
asymptotic complexity of the greedy algorithm is O(kd), which is a significant
performance when compared to the exponential complexity of optimalMerge.

This process does not necessarily cover all CSs of the input dataset. For
example, some CS nodes might not have any dense children. Given this, the
percentage of the dataset that is covered by this process is called dense CS
coverage. The remainder of the CSs are aggregated into one large table, Trest,
containing all of their predicates. If the total coverage of the merging process
is large, then Trest does not impose a heavy overhead in query performance, as
will be shown in the experiments. Finally, we load the data in the corresponding
tables.

6. Query Processing over Relational CSs

In this section, we present the algorithms used to process SPARQL queries,
via their translation to SQL queries, over the schema that has been produced by
the greedy algorithm of the previous section. We refer to Table 2 as an example
of a SPARQL query and the relational tables over which it is evaluated.

Processing a SPARQL query on top of the relational database of CSs entails
(i) parsing the SPARQL syntax, (ii) retrieving the CSs that are candidates to
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Algorithm 2: greedyMerge

Data: A hash table p mapping non-dense CSs to their dense
descendants, a set of dense CSs D, and a set of non-dense CSs K

Result: A hash table mapping dense CSs to sets of non-dense CSs to
be merged

1 init mergeMap;
2 for each d ∈ D do
3 mergeMap.put(d, newList());
4 end
5 for each k ∈ K do
6 min←MAX V ALUE;
7 init bestDense;
8 for each dk ∈ p.get(k) do
9 cost← rnull(k, dk);

10 if cost < min then
11 min← cost;
12 bestDense← dk;

13 end
14 mergeMap.get(bestDense).add(k);

15 end
16 return mergeMap;

Table 2: A sample database over which the SPARQL is evaluated

Tables Columns
c1 rdfType, worksFor, supervises
c2 worksFor, supervises, isFriendOf
c3 rdfType, hasBirthday, isMarriedTo
c4 rdfType, hasNationality
c5 supervises, hasNationality

SELECT ?x ?y ? z ?w
WHERE { ?x worksFor ?y .
?x s u p e r v i s e s ? z .
? z hasBirthday ’ 1992−02−24 ’ .
? z isMarriedTo ?w.
?w hasNat i ona l i t y ’GR’ }

instantiate the query variables and the joins between them, (iii) formulating the
SQL syntax of the query by looking up the dictionary and mapping CS to tables
in the database, and finally, (iv) executing the query for producing the results.

Typically, a SPARQL query like the one just mentioned, is translated to an
SQL query that contains UNIONS of subqueries, with each subquery including
as many joins as the joins between SPARQL variables. Several times, the same
table participates in different subqueries, and in fact, possibly in different roles.

Main idea and terminology. In fact, the idea behind this translation is
as follows:

1. For each subject variable of the SPARQL query (i.e, for every variable s
that participates in a statement s p o within the SPARQL query), we have
to create a list of candidate CS’s, and consequently, find their host tables
that would possess all the properties needed for the particular query, in
a list of candidate data providers of the variable. To facilitate the identi-
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fication of candidate CSs, we create a set of required properties for each
subject variable. Assuming s is the subject variable under investigation,
the union of all properties pi of any statement within the query of the
form s pi oi, represents the set of all properties that a CS must have in
order to provide valid instantiations for the variable. For every subject
variable s, we call the set of these properties subject variable property set,
or variable CS for short.

2. For each join of two variables of the query, we have to create the Cartesian
product of the candidate data providers of the two variables; then, iterate
the creation of the respective Cartesian product for all the joins of the
SPARQL query variables.

3. Each member of the Cartesian product, is a candidate subquery with
joins between them and the result is produced as their union. In the
rest of our deliberations, we will use the term subquery to refer to these
subquery members of this Cartesian Product. Practically speaking, the
produced SQL query is a UNION query of several subqueries, with each
subquery containing the appropriate join between candidate CSs, one for
each variable of the join.

Algorithmic steps. In Algorithm 3, the algorithm that produces the SQL
translation of an incoming SPARQL query is presented. The algorithm first
retrieves the list of Properties PD, the list of characteristics sets CSD and the
joins ECSD between the CSs from the data dictionary (Lines 2 ). It then parses
and validates the SPARQL syntax and extracts the triple patterns TQ contained
in the WHERE clause (Line 3 ). We consider simple SPARQL queries that contain
triple patterns of the following 3 forms, covering the fundamental types of data
in RDF:

{? var2 p r e d i c a t e ? var2}
{? var2 p r e d i c a t e URI}
{? var2 p r e d i c a t e l i t e r a l }

i.e., we do not consider variable in the predicate part or any OPTIONAL and
FILTER expressions.

In Lines 4,6, the algorithm creates the collections that are used for building
the SQL expression of the query. It first creates the list of variables CSs for
the variables of the query. To speed up the process, instead of using a bag
of variable CS’s for a query, we use a map (without duplicates, that is) such
that identical work is avoided in the subsequent steps. The extraction of a CS
involves identifying the common subsets of properties in TQ, and mapping them
to the list PD. The resulting collection CSQ contains the different variable CS
extracted from the query. Then, the algorithm extracts triples that contain
projected variables ProjectQ as well as restrictions RestrQ and assigns them
to CSs, in order to construct the SELECT and WHERE clauses, respectively. A
restriction is a triple whose object is bound to a URI or a literal – practically,
selections in terms of relational algebra.
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Algorithm 3: SQL Query Building Algorithm

Data: An SPARQL query Q
IDs of properties in the db dictionary PD

The list of CSs in the data CSD

The list of ECS in the data ECSD

Result: A string sql with the syntax of the SQL query
1 sql ← ∅ ;
// load dictionaries from database

2 (PD, CSD, ECSD)← dbLookup();
// extract the triple patterns t of Q

3 TQ[t]← parse(Q);
// extract variable CSs from Q

4 CSQ(v, p[])← extractCS(TQ, PD);
// extract triples with projected variables or restrictions

and map them to variable CSs

5 ProjectQ(v, t[])← extractProjections(TQ, CSQ);
6 RestrQ(v, t[])← extractRestrictions(TQ, CSQ);
// extract pairs of variables with joins in q

7 ECSQ(vi, vj)← extractECS(TQ, CSQ) ;
// map variable CS to CS in the data

8 CSMap(v, cs[]) ← MapCS(CSQ, ECSQ, CSD, ECSD);
// create lists of CSs that will form join subqueries

9 subqueries(cs[]) ← getSubqueries(CSMap);
// create SQL syntax

10 sql ← createSQL(CSMap, RestrQ, CSQ, subqueries, ECSQ, PD);
11 return sql;
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The next step in the query processing method (Line 7) is to identify pairs
of variable CSs in the query, which are called Extended Characteristic Sets
ECSQ [3]. ECSs are pairs of CSs for which at least one subject-object re-
lationship exists between their variables – practically, the equivalent of re-
lational joins. In our reference example, the SPARQL query contains three
CSs, vx = {worksFor, supervises}, vz = {hasBirthday, isMarriedTo}, vw =
{hasNationality}, two ECSs (vx,vz) and (vz,vw), and finally two restrictions,
?z hasBirthday ’1992-02-24’ and ?w hasNationality ’GR’. The step aims
at the construction of chain patterns, i.e., linked lists of CSs in the query that
form subsequent subject-object joins. We use the list ECSQ to identify links
between ECSs; a link between two ECSs exists when the CS acting as the pair
value of one ESC is the CS acting as the pair key of another ECS, i.e., (vi, vj)
→ (vj , vk). These links are used to create CS chains, which represent the way
CS tables in the database will be synthesized in joins. In our query example,
the only chain derived is (vx → vz → vw), due to the triples ?x supervises ?z
and ?z isMarriedTo ?w.

Function MapCS (Line 8 ) involves matching each variable CS to the under-
lying tables by using CSs definitions in the dictionary. Each variable CS vi
matches with all CSs produced from the data set and stored in relational tables
whose property sets are supersets of the property set of vi. A variable CS can
match with more than one table in the database. In our case, vx → {c1, c2},
vz → {c3} and vw → {c4, c5}.

1 Function MapCS(CSQ, ECSQ, CSD, ECSD):
2 CSMap ← ∅ ;
3 for each (vi, vj) ∈ ECSQ do
4 for each (csi, csj) ∈ ECSD do
5 if (csj ⊆ vj)&(csi ⊆ vj) then
6 CSMap.add(vi, csi) ;
7 CSMap.add(vj , csj) ;

8 end

9 end
// do the same for CS that do not participate in Joins

10 for each v ∈ CSQ do
11 if !(v ∈ ECSQ) then
12 for each cs ∈ CSD do
13 if cs ⊆ v then
14 CSMap.add(v, cs) ;

15 end

16 end
17 return CSMap ;

Due to the multiple matches between a variable CS and available CSs (i.e.,
tables) in the data, each join in the SPARQL query creates a set of SQL sub-
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queries of table joins that need to be evaluated. For pruning the number of
subqueries, the process first tries to match variable CSs with CSs of the data
via the ECSD index and then looks up remaining variable CSs (ones that do
not participate in a Join condition) in the full list of CSs in the data dictionary.
Assume, that by looking up the ECSD, we derived that the links (c1, c3), (c3, c4)
and (c3, c5) exist, i.e., they correspond to joins in the data. That means, that vx
only matches with c1 (c2 is not considered), while vz and vw match with c3 and
c4, c5, respectively. Then, (c1, c3, c4), (c1, c3, c5) are only valid subqueries that
must be processed. The identification of the different subqueries is performed
in function getSubqueries() (Line9). It iterates over the mappings in CSMap
and produces the cartesian product between the CSs matched for each variable.
In our example, the chain (vx → vz → vw) will produce the following subqueries
c1 ⊗c3 ⊗(c4, c5).

Two main strategies can be employed here.

• The first is to join the UNIONs of the matching tables for each vi, i.e.,
vx ./ vz ./ vw → c1 ./ c3 ./ (c4 UNION c5).

• The second is to process each identified subquery separately and union
the results, i.e., (c1 ./ c3 ./ c4) UNION (c1 ./ c3 ./ c5).

Given the filtering performed by the ECS indexing approach, the first ap-
proach would impose significant overhead and eliminate the advantage of ECS
indexing. Therefore, we have implemented the second approach, that is, form a
separate query for each subquery.

1 Function getSubqueries(CSMap):
// different combinations of joins between CS in the data

2 subqueries ← ∅ ;
3 for each vi ∈ CSMap do
4 csi[]← CSMap(vi);
5 subqueries.addAll(subqueries ⊗csi[]) ;

6 end
7 return subqueries ;

For creating the SELECT clause, we parse the SELECT part and examine
the projected variables: (i) if the variable is a subject variable then we include
in the projection list the id column of the matched CS table (e.g., c1.id); (ii)
otherwise, if the variable is an object, we project the name of column, which
corresponds to the predicate having as object this variable and belongs to the
CS table of the subject (e.g., c1.worksFor).

The final step is to construct the WHERE clause based on the RestrQ collec-
tion. Each restriction is translated to a filter condition; conditions involving
multi valued properties use the ANY expressions. Also, due to the existence of
NULL values in the merged tables, the process adds explicit IS NOT NULL condi-
tions for all properties in the tables in the FROM clauses, which are contained in
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1 Function CreateSQL(CSMap(), RestrQ, CSQ, subqueries, ECSQ,
PD):

2 where←′ Where′ ;
3 select←′ Select′ ;
4 from←′ From′ ;

// for each subquery create a separate FROM clause

5 for each {cs1, cs2, ..., csn} ∈ subqueries do
6 from← cs1 ./ cs2 ./ ... ./ csn ;

// create SELECT from projections in q
7 for each v ∈ CSMap do
8 for each t ∈ ProjectQ(v) do
9 if (t.var is subject) then

10 select←′ id′ ;
11 else
12 select←′ t.p′ ;
13 end

14 end
// create WHERE clause from restrictions in q

15 for each p ∈ CSQ(v) do
16 if (p ∈ RestrQ(v).t[]) then
17 where←′ p = t.object′ ;
18 else
19 where←′ p is not null′ ;
20 end

21 end

22 end
23 sql← select + from + where ;
24 sql← sql + union ;

25 end
26 return sql ;
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the initial SPARQL query and are not part of a restriction. The query formula-
tion is provided by the function CreateSQL(). The final SQL for the database
and SPARQL presented in the beginning of this section is presented below.

SELECT x . id , x . worksFor , z . id , w. id
FROM c1 AS x , c3 AS z , c4 AS w
WHERE x . s u p e r v i s e s = z . id AND

z . isMarriedTo = w. id AND
z . hasBirthday = ’ 1992−02−24 ’ AND
w. hasNat i ona l i t y = ’GR’ AND
x . worksFor IS NOT NULL

UNION
SELECT x . id , x . worksFor , z . id , w. id
FROM c1 AS x , c3 AS z , c5 AS w
WHERE x . s u p e r v i s e s = z . id AND

z . isMarriedTo = w. id AND
z . hasBirthday = ’ 1992−02−24 ’ AND
w. hasNat i ona l i t y = ’GR’ AND
x . worksFor IS NOT NULL

Next we provide the cost analysis and a short discussion on the correctness
of Algorithm 3.

Complexity analysis: Let t be the number of triple patterns in the WHERE

clause of the SPARQL query, v ≤ t the number of variable CSs in the query,
i.e., |CSQ|, a ≤ t the number of CS pairs that participate in joins, i.e., |ECSQ|,
and r and j are the numbers of CSs and ECSs in the data, i.e. |CSD| and
|ECSD|, respectively. Lines 1-3 come at a minimum cost, as they initialize the
dictionaries in memory (performed once on server startup) and parse the query
syntax. Lines 4-7 perform one pass on t query’s triple patterns for populating
the lists CSQ, ProjectQ, RestrQ and a second pass for finding the ordered pairs
in ECSQ, i.e., O(2 ∗ t). For the cost of Line 8: MapCS function, a pairs of CSs
will be compared to j pairs in the data; i.e., a ∗ j and any remaining CS will
be matched against the r records. In the worst case, a = t (all query triples
involve CS joins), and the cost for assessing MapCS becomes t∗j, i.e., every query
triple is compared against the ECSs in the database. Next, the getSubqueries

function (Line 9) produces a cross products of all CSs matched in the data.
Let m be the average number of matching tables per variable (i.e., the average
size of CSMap collection), then the cost for producing the subqueries is ma+1.
In the worst case, all v variable CSs are matched to all r CSs in the database
and a = t, i.e., O(rt+1). Finally, the cost of the SQL syntax formulation (Line
14) is determined by the |subqueries|, i.e, ra+1. Also, for each variable CSs,
a lookup is made in the ProjectQ and RestrQ lists (each takes O(1) and the
total is 2 ∗ v) to formulate the SELECT and WHERE clauses of the SQL query.
Overall, the maximum cost is O(2 ∗ t +t ∗ j + rt+1 + rt+1 ∗ v), which is bound
by O(t ∗ j+rt+1 ∗ v). However, in practise v, a < t, and the cost is better
approximated by O(a ∗ j+ma+1 ∗ v).

Correctness: How do we guarantee that the sparql-to-sql rewriting of the
above algorithm is correct, i.e., both queries return the same results when evalu-
ated over an RDF graph or the relational equivalent database? Recall that, our
relational representation of an RDF graph maps CSs to tables, subject nodes
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to relational records (with ID the URI of the node), edges to relational columns
and object nodes to single or composite values.

Regarding the WHERE clause of a SPARQL query, a triple pattern can be one
of the forms (?s p ?o) or (?s p URI | literal). A subject node is bound to a
node on the rdf graph, which emits an edge with the type of the predicate p
(i.e., properties) and references a node with the value of the object o. In our
equivalent SQL query, i) each subject variable is mapped to (v1, v2, ..., vn) tables
whose schema contain all the properties referenced by the variable; the UNION of
these tables contain the candidate entities of the query. We filter the recordset
by ii) mapping all (?s p URI | literal) triples (called restrictions in the algorithm)
to the conjunction of (vi.p = URI | literal) condition expressions. Next, for each
(?s p ?o) triple, we produce iii) a filter (vi.p IS NOT NULL) condition, for fetching
those records with a not-null value for this property; iv) a join (vi.op = uj .id)
condition between the UNION of vi tables of the subject and the UNION of uj

tables of the object and v) the expressions vi.id or vi.p in the SELECT clause
of the SQL query for each subject or object variable included in the SELECT

clause of the SPARQL, respectively. For producing the final FROM clause, we
rewrite the join of unions (v1 ∪ v2 ∪ ...vn) ./ (u1 ∪ u2 ∪ ...um) as unions of join
subqueries; i.e., (v1 ./ u1) ∪ (v1 ./ u2) ∪ ...(v1 ./ um) ∪ ...(vn ./ um). Note
that, the filter and join expressions formulated in the WHERE clauses refer to the
tables via aliases and thus they are not affected from the rewriting within each
subquery. The correctness of the above rewriting is based on the properties of
relational algebra regarding the semantics of the UNION and JOIN operators and
it can be generalized to union and joins between multiple tables.

7. System Implementation

We have implemented raxonDB as a storage and querying engine that sup-
ports the relational schema design for RDF data through hierarchical CS merg-
ing. The engine is built in Java and can be deployed on top of any RDBMS
which offers support for non-scalar array types (SQL:1999). The architecture
of raxonDB can be seen in Figure 6. The basic modules are the Schema Op-
timizer, which parses the input file, determines and optimizes the relational
schema, the Relational Schema Instantiator, which constructs the schema and
loads the data into the RDBMS; the Database which stores the data in rela-
tional tables, and maintains indexes and the dictionary; and finally the Query
Engine, which translates a SPARQL into an SQL query and executes it over the
database.

Schema Optimizer. The Schema Optimizer includes the Data Parser, the
CS Extractor, and the CS Optimizer. The Data parser parses an input datafile
which contains RDF triples in .nt format, validates the input, and represents all
URI strings as integers, for reducing the memory footprint and computational
overhead during processing of the data as well as the space needed for their
storage. All triples are kept in memory in an array of integers. Next, the CS
Extractor extracts the list of CSs; it first sorts the array on the subject column,
and identifies the different sets of properties that are emitted from a subject
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Figure 6: Architecture of raxonDB.

node. For each different combination of properties, a new CS is constructed
and the respective triples are assigned to it. Operating on the list of CSs,
the CS Optimizer computes the inferred CS hierarchy graph (i.e., the different
connected components) and applies the algorithm of Section 5 for finding the
best merging paths and constructing the final CSs.

Relational Schema Instantiator.The Relational Schema Instantiator builds
the SQL CREATE commands for each CS and creates the tables in the database.
In addition, it loads the data in the tables and builds the indexes and the dic-
tionary tables.

Database Storage and Indexing. Each CS produced by the Data Loader
is stored in a separate Data Table CSi (i is an index given by the Data Loader
during CS merging) with the following schema CSi = (s, p1, p2, ..., pn). The first
column contains the subject identifier (primary key), while all other columns
correspond to the properties of the CS. For multi-valued properties, for which
the same subject-property refers to multiple objects (e.g., (Alice, supervises,
Claire) and (Alice, supervises, Nick) of input data in Fig. 6), we use an SQL
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Figure 7: Example of tables constructed by raxonDB.

array data type (e.g., we store in the property column an array with all objects
corresponding to the same subject, [Claire,Nick]), in order to avoid duplication
of the rows. For space efficiency, all columns, including the subject column, store
the integer representation instead of the actual URIs. The Dictionary tables
keep all necessary metadata about the CSs, such that incoming SPARQL queries
can be properly translated to the various data tables and values. First, the dic-
tionary keeps the schema of all CSs, i.e., the property columns comprising each
table. It also keeps the mappings of the integer representation of the subjects,
properties and objects to the URIs. It, finally, contains the list of multi-valued
properties and the CS tables they belong to, such that SQL-translated queries
can employ array semantics in their syntax. The tables constructed by raxonDB
for the example input dataset are shown in Fig. 7. Note that data tables ac-
tually store integer values instead of URIs (strings), which are resolved via the
subject-object dictionary. For clarity, we have included the original URIs of the
triples in the input file.

In addition to the data and dictionary tables, the database contains a set of
indexes used for enabling fast query evaluation over the data. As mentioned,
we build a primary key index on the subject column of each CS table. Next,
we use standard B+trees for indexing single-valued property columns, while we
use PostgreSQL’s GIN indexes, which apply to array datatypes for indexing
multi-valued properties.

We also build a join table for holding the ECS, i.e, object-subject links
between triples in different CSs. For example, if CS1 contains the triple (Al-
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ice, supervises, Claire) and CS2 the triple (Claire,isMarriedTo,Bob), then we
store the reference of the CS2.subject column to the CS1.supervises column.
This enables fast access to CS chain queries, i.e., queries that apply successive
joins for object-subject relationships (e.g., the query pattern ?x, supervises, ?z.
?z, isMarriedTo, ?w of the SPARQL query in Fig 6).

We store these links on the schema level as a separate table, which contains
all CS pairs that are linked with at least one object-subject pair of records. In
the above example, the index keeps a record with the CS1 and CS2 as well as all
the properties they contain. Their use for query optimization of chain queries
has already been shown in Section 6. With the ECS index, we can quickly filter
out CSs that are guaranteed not to be related, i.e., no joins exist between them,
even if they are individually matched in a query’s CSs.

Query Engine. The query engine part implements the steps and algor-
tihms described in Section 6.The Query Parser validates the SPARQL syntax
and extracts the triple patterns contained in the WHERE clause. Next the Query
CS Extractor identifies the common sets of properties emitted by variables act-
ing as subjects in the query’s triple patterns and maps them to variable CSs,
denoted as v1, v2, ..., vn. It also identifies joins between the extracted variable
CSs, projected variables and finally maps restrictions to CSs.

The SQL Query Builder tries to match the variable CSs to the underlying ta-
bles by using CSs definitions in the dictionary. Finally, a rewriting is performed
by the Query Rewriting module, which also adjusts the SQL syntax applying
any other necessary conditions expressed in the initial SPARQL query. Also,
due to the existence of NULL values in the merged tables, the Query Rewriting
module adds explicit IS NOT NULL conditions for all the properties that are
contained in a matched CS and are not part of a restriction or filter in the
original query.

8. Experimental Evaluation

We implemented raxonDB on top of PostgreSQL4. As the focus of this pa-
per is to improve RDF storage and querying efficiency in relational settings,
we rely on existing mechanisms within PostgreSQL for I/O operations, physi-
cal storage and query planning. In this set of experiments, we report results
of implementing hier merge with the greedy approximation algorithm, which
provides faster construction of the relational schemas for all datasets.All experi-
ments were performed on a server with Intel i7 3820 3.6GHz, Debian v3.2.0 and
allocated memory of 16GB.

Datasets. For this set of experiments, we used two synthetic datasets,
namely LUBM2000 (≈300m triples), and WatDiv (≈100m triples), as well
as two real-world datasets, namely Geonames (≈170m triples) and Reactome
(≈15m triples). LUBM [27] is a customizable generator of synthetic data that
describes academic information about universities, departments, faculty, and so

4The code and queries are available in https://github.com/gpapastefanatos/raxonDB
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(a) Execution time (seconds) for LUBM

(b) Execution time (seconds) for Geonames

(c) Execution time (seconds) for Reactome

Figure 8: Query execution times in milliseconds

on. Similarly, WatDiv[28] is a customizable generator with more options for
the production and distribution of triples to classes. Reactome5 is a biological

5http://www.ebi.ac.uk/rdf/services/reactome
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(a) #subqueries for LUBM

(b) #subqueries for Geonames

(c) #subqueries for Reactome

Figure 9: Number of subqueries for increasing m

dataset that describes biological pathways, and Geonames6 is a widely used
ontology of geographical entities with varying properties and rich structure.

Loading. In order to assess the effect of hierarchical merging in the loading

6http://www.geonames.org/ontology/documentation.html
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Table 3: Loading experiments for all datasets

Dataset Size Time # Tables # of ECSs Dense CS
(MB) (min) (CSs) % Coverage

Reactome Simple 781 3 112 346 100%
Reactome (m=0.05) 675 4 35 252 97%
Reactome (m=0.25) 865 4 14 73 77%

Geonames Simple 4991 69 851 12136 100%
Geonames (m=0.0025) 4999 70 82 2455 97%

Geonames (m=0.05) 5093 91 19 76 87%
Geonames (m=0.1) 5104 92 6 28 83%

LUBM Simple 591 3 13 68 100%
LUBM (m=0.25) 610 3 6 21 90%
LUBM (m=0.5) 620 3 3 6 58%
WatDiv Simple 4910 97 5667 802 100%

WatDiv (m=0.01) 5094 75 67 99 77%
WatDiv (m=0.1) 5250 75 25 23 63%
WatDiv (m=0.5) 5250 77 16 19 55%

phase, we performed a series of experiments using all four datasets. For this
experiment, we measure the size on disk, the loading time, the final number of
merged tables, as well as the number of ECSs (joins between merged tables) and
the percentage of triple coverage by CSs included in the merging process, for
varying values of the density factor m ∈ [0, 1]. The results are summarized in
Table 3. As can be seen, the number of CS, and consequently tables, is greatly
reduced with increasing values of m. As the number of CSs is reduced, the
expected number of joins between CSs in the data is also reduced, which can be
seen in the column that measures ECSs. Consequently, the number of tables can
be decreased significantly without trading off large amounts of coverage by dense
CSs, i.e. large tables with many null values. Loading time tends to be slightly
greater as the number of CSs decreases, and thus the number of merges increases,
the only exception being WatDiv, where loading time is actually decreased. This
is a side-effect of the excessive number of tables (= 5667) in the simple case
which imposes large overheads for the persistence of the tables on disk and the
generation of indexes and statistics for each one.

Query Performance. In order to assess the effect of the density fac-
tor parameter m during query processing, we perform a series of experiments
on LUBM, Reactome and Geonames. For the workload, we used the sets of
queries from [3]7. We employ two metrics, namely execution time and number
of subqueries. The results can be seen in Figures 8 and 9. As can be seen,
hierarchical CS merging can help speed up query performance significantly as
long as the dense coverage remains high. For example, in all datasets, query

7Available also in https://github.com/gpapastefanatos/raxonDB
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(a) Execution time (seconds) for LUBM2000

(b) Execution time (seconds) for Geonames

(c) Execution time (seconds) for Reactome

Figure 10: Query execution times in milliseconds for different RDF engines

performance degrades dramatically when m = 1, in which case the merging
process cannot find any dense CSs. In this case, all rows are added to one large
table, which makes the database only contain one table with many NULL cells.
These findings are consistent across all three datasets (Q6 in LUBM exhibits
a higher increase for m = 1 due to the fact that it is much more complicated
than the other queries of the Lubm workload and by involving a very big table
in two self-joins brings the system to its limits). In Section 9, a more detailed
sensitivity analysis is presented regarding the impact of m on the database size
and the performance of the query workload.

Competitors. In order to assess the performance of raxonDB and establish
that no overhead is imposed by the relational backbone, we performed a series
of queries on LUBM2000, Geonames and Reactome, assuming the best merging
of CSs is employed as captured by m with respect to our previous findings. The
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density factor m was set at 0.6. We also compared the query performance with
rdf-3x, Virtuoso 7.1, TripleBit and the emergent schema approach described in
[2]. The results can be seen in Figure 10 and indicate that raxonDB provides
equal or better performance from the original axonDB implementation, as well
as the rest of the systems, including the emergent schema approach, which is
the only direct competitor for merging CSs. Especially for queries with large
intermediate results and low selectivity that correspond to a few CSs and ECSs
(e.g. LUBM Q5 and Q6, Geonames Q5 and Q6) several of the other approaches
fail to answer fast and in some cases time out.

9. Sensitivity Analysis

The previous sections reveal a solution to the schema determination problem
for RDF storage in relational engines. However, in the presence of data collec-
tion from diverse sources and with diverse properties per subject, is the greedy
algorithm that we propose robust, in the sense that it maintains a reasonable
performance even if the solution is not optimal?

To address this question, we have experimented with an answer to the prob-
lem of what would happen if we would add or remove tables from the solution
produced from the greedy algorithm? Is there any major difference in perfor-
mance?

9.1. Sensitivity Analysis for the Density Factor

The key parameter for the final number of tables is the density factor m ∈
[0, 1]. The selection of m has impact on the total number of tables and their
extent, the nulls in columns as well as the query performance over the schema
that will result from this selection. In this section, we discuss in details the
impact of m through an example on the LUBM100 (≈ 1.3M triples) and the
workload of 6 queries presented in Figure 13. To include the aspect of data set
size, too, we have worked with other variants of LUBM too, of different sizes,
and the behavioral trends as identical; thus, we only report LUBM100 here.

Impact on the number of tables and their extent. Small numbers
of m will create more tables, with m = 0 eliminating any merging effect and
creating a separate table for each CS. Note that, the total number of records
in a database for different values of m remains the same; changes in m only
reorganize records to different tables. Small numbers of m build smaller tables
on average. Large numbers of m merge different CSs into a few large tables
with m = 1 resulting in at most 2 tables, one corresponding to the most dense
node (attracting any parent CSs in its subgraph) and another corresponding to
the aggregation of all other disconnected CS into a single table. Figure 11(a)
and (b) show the impact of m on the number and the average size of tables. For
m = 0, the database contains 13 tables, and as it decreases, the total number
falls to 7, 5, 4, 3 and 2 for random different values of m. The average table size
starts from ≈ 167K records and increases over ≈ 1M records for m close to 1.

Impact on the number of nulls. Subsequently, the selection of m deter-
mines the total number of nulls in the schema. A smaller value of m builds a
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Figure 11: Impact of Density Factor on characteristics of LUBM100

more “compact” schema, with tables containing only a few columns with null
values (null values drop to 0 for m = 0). On the contrary, the merging of a par-
ent CS to its child results in filling with nulls all parent’s cells for the columns
that are defined in the child CS, and did not exist in the parent’s CS. Thus,
large values of m create tables with large number of null values (≈18M null
values for m > 0.7).

Impact on workload performance. The performance of queries is pri-
marily affected by the size of tables accessed by each query, especially by those
that participate in join conditions. As briefly discussed in Section 8, varying
the number of tables constructed by m for a specific schema has a result on
the total number of subqueries that need to be combined via the appropriate
UNIONs for answering an SQL query over this schema. Subqueries correspond
to the different matches that a variable CS has to the underlying data CSs and
each one is translated to a separate subquery concatenated via UNION clauses
in the final SQL query and whose evaluations bring additional cost on the per-
formance. Figure 11 (d) shows the geometric mean of the cost of the 6 queries
for the different schema variants constructed based on m. For the schema cre-
ated by small values of m (0 . . . 0.3), most queries perform chains of joins and
UNIONS to fetch the results. For values of m between 0.4 and 0.6, where the
tables have been merged to 3, the cost is improved, due to the reduction in the
number of subqueries needed. For this range of m the workload makes use of
the optimal number of tables and achieves to best match its CSs to those of
the underlying schema (see also Figure 9(a) for the decrease of the numbner of
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subqueries as m increase in LUBM). Finally, for values greater than 0.7, the
performance deteriorates. Although the number of UNIONs remain similar in
numbers, tables are now oversized and queries need costly self-joins with many
NOT NULL filters to evaluate.

Concluding remarks. There are a few remarks to be made here.

• The most striking observation is the workload behavior of Figure 11: the
two antagonizing forces are clearly demonstrated in this figure. Pushing
towards too many tables (small m, making several CS appear as dense)
increases the subqueries produced, and the result is that the system spends
too much time storing the interim results of the subqueries, to facilitate
their UNION. Pushing towards too few tables (large m, i.e., few CSs
considered dense and attracting all others to their table) results in big
tables, with many NULL values, that ultimately end up (self-)joining with
each other and spending too much time examining tuples that are not
useful.

• In the middle, there is a sweet spot of ranges for m, around 50% that
should be targeted for a reasonable behavior of the system. Overall, our
sensitivity analysis demonstrates that the problem is valid and there is a
not insignificant range of values for the robust tuning of the parameters of
the proposed solution.

• The number of NULL values and the table sizes are direct consequences of
the implications produced by the upper left diagram of Figure 11 relating
the value of m to the number of tables produced.

9.2. The separatist problem

A second research question that arises, has to do with the robustness of
the proposed solution by the greedy algorithm. Practically, assuming that the
greedy algorithm for a given m has already produced a solution, the question is
whether small variations to this solution, by adding or removing tables would
greatly impact the performance of the solution.

To assess this possibility, we conduct a workload-aware sensitivity analy-
sis. We have constructed a workload of queries and tried to see the impact to
performance, by trying to modify the final schema of the relational database.
The sensitivity analysis method consists of starting from a medium value for
the number of tables and adding a small number of tables to the solution, by
carefully extracting subsets of the existing tables into new ones.

To facilitate this problem, however, we need to address the problem of (a)
how many tables to consider adding to the existing design, by extracting them
from the merged tables of our greedy algorithm, and (b) which ones exactly?

Assume we know a workload of frequent, expected queries in advance of the
design. Equivalently, or possibly, more importantly, assume that once the design
has been determined and deployed, we monitor which queries posed by the users
are frequent. As already explained, the SPARQL queries are translated in SQL
queries that contain UNIONS of subqueries, with each subquery including as
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many joins as the joins between SPARQL variables. Several times, the same
table participates in different subqueries, and in fact, possibly in different roles.
Thus, due to the possible vastness of the joins involved, a potential road to
follow would be to minimize the size of the tables involved in these joins. That
would mean avoiding storing tuples that would not participate in the derived
joins and succinctly constraining tables to include only tuples that are useful
for the answering of the queries of the query workload.

How could this be attained? The ”separatist” problem assumes that we start
(a) with a solution of the query-unaware algorithm, and (b) a set of queries
that would be given as input to the problem, as previously discussed, and, we
”extract” from the existing tables those ones who are the best candidates to be
stored as separate tables that are to be used, ”solo” given the query workload.

Our algorithm to address the problem is as follows:

1. For each query, for each variable of the query, say ?v , specify all the
properties that are used in the query. In other words, for every property,
say p, for which an expression of the form ?v p o, with o being either
another variable, or a constant, add p in the property-list of ? v for the
query under inspection. Thus, for each variable, of each query, we have a
set of properties needed in a property-list.

2. For each variable of a query, specify which are the Characteristic Sets that
contain its property list. This means they have all the needed property
for being useful in evaluating the query. Thus, for each variable, we have
a list of candidate data providers.

3. For each query, create the Cartesian product of candidate data providers
of the query variables.

4. Count the frequency of each Characteristic Set over the union of the
queries’ Cartesian products, and put the CS’s in a sorted list in decreasing
frequency (i.e., the most popular first).

5. Find the place in the decreasing list of popularity with the steepest de-
scent in their differential popularity (i.e., the fraction (old.popularity -
new.popularity)/old.popularity and stop there (see for example in the Fig-
ure how the descent changes between the 4th-5th CS and the 6th-7th CS).
In our implementation, in order to control this size, we also place min and
max boundaries on the number of CSs involved.

6. The final output is the sorted list of the most popular CS’s in the query
workload, and a limit on how many of them will be allowed, under the
constrain of min required and max allowed number of separatist tables:
if the point of highest differential gain falls within [ min, .., max ] then,
this is the number of separatist tables to extract; if it is lower than the
min threshold, we select min tables, and if it is higher than the maximum
tolerable, we select max tables (this is also convenient for controlling the
experiment).

37



Figure 12: Distribution of frequencies for a given workload. Observe the points where there
is a big difference in the derivative.

For these CS’s, we intentionally isolate them as separatists, and assign a
dedicated table that contains only them. Practically, this is facilitated by
” extracting” these CS’s from their merged path of the greedy algorithm into a
new, ”solo” table.

9.3. The implications of extra tables in the solution

How does the set of solo, separatist tables affect the performance of the
system given a workload of queries?

We have constructed a workload of queries and applied in three different
versions of the LUBM dataset with a scale factor of 1, 10 and 100. We chose
the LUBM data set because it allows us to control the size of data and see the
impact of the data set size too, in the behavior of the system.

The workload includes queries with an increasing number of needed proper-
ties, and a variety of joins and join patterns (Figure 13). We have issued the
same workload against (i) the Lubm data set at three scale factors (1, 10, 100)
and (ii) alternative versions of the schema, that originally comes with 5 tables
(for all scale factors) by allowing 1,2, and,3 extra popular tables to be separated.
In all our results we start with a m value of 20%, such that the set of actual
tables that store the data of the benchmark is a reasonably small (neither too
high, or too low) number of 5 tables. Note that the best possible solution in
terms of popularity includes the 4 top-most tables of Figure 12, two of which,
however, are anyway isolated by the greedy algorithm. All experiments are
conducted in a commodity i5 laptop with 8GB main memory.

The results (see Figures 14, 15, 16) gave clear evidence on how things op-
erate.8 Remember that the alternatives to the greedy algorithm are targeted

8Unfortunately, the experimental environment originally used in Sec. 8 was no longer avail-
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Figure 13: Workload of queries used.

selections of popular characteristic sets to be isolated from their ancestral prop-
erties. The greedy algorithm is fairly stable, with several exceptions. In most of
the cases, the behavior is pretty close. This means that the result of the greedy
algorithm is quite close to the behavior of the alternatives. In several cases, it
is actually the fasted possibility. There exist some cases, however, where the
separatist algorithm significantly improves the behavior of the system. This is
the clear case of the most complicated query, Q2, that involves the 3 joins be-
tween the three variables, where the gains in table size produces gains of several
orders of magnitude in terms of query time. At the same time, in most of the
queries tested, as the number of tables involved increases, the execution time
slightly increases too, as the number of unioned subqueries increases too, and
there is an extra cost of saving the interim results to the disk.

As an overall assessment, we believe that based on our experimentation,
the separatist approach provides goods results, if the expected workload is com-
plicated. If however (as typically expected) the queries are simple, the greedy

able when we performed the experimental analysis in this section. Although the behavior is
consistent, the reader is kindly instructed to avoid linking the exact numbers of the two
different sections.
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Figure 14: Execution of workload for Lubm 1

Figure 15: Execution of workload for Lubm 10

Figure 16: Execution of workload for Lubm 100

40



algorithm produces quite results that are fairly stable and close to the average
behavior of the alternatives produces by the separatist algorithm.

10. Conclusions and Future Work

In this paper, we have tackled the problem of automatically mapping hetero-
geneous RDF datasets to a relational schema by considering the implicit schema
in RDF triples. We have presented a method that extracts the Characteristics
Sets, i.e., the set of properties describing the different classes of RDF instances
in the data and exploits the hierarchical relationships between different CSs in
order to merge and map them to relational tables. We have provided two algo-
rithms, an exhaustive one which selects ancestral sub-graphs of CS for merging
in exponential time and greedy one, which via the use of heuristics improves the
performance to polynomial time. We have implemented our methods on top
of a standard RDBMS solution, i.e., PostgreSQL for extracting, indexing and
query processing of SPARQL queries. Moreover, we have experimented with two
synthetic and two real-world datasets, all of them exhibiting high heterogeneity
in their schemata, we compared with various alternative RDF engines and the
results for the performance of indexing and querying showed that our system
outperforms for various types of workloads. Finally, apart from presenting in
detail the query processing method and the system architecture, we have also
performed a sensitivity analysis that demonstrates that the algorithm’s result
is robust to small changes in the database schema and that the choice of m, al-
though it can potentially affect the query performance significantly, comes with
a fairly wide ”sweet spot” of values near 0.5 that allow good query performance.

As future work, we will study computation of the optimal value for m, taking
into consideration workload characteristics as well as a more refined cost model
for the ancestral paths. Furthermore, we will study and compare our approach to
a graph database setting, as well as experiment with a column-stored relational
DB, in order to further scale the capabilities of raxonDB.
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