
Graph-Driven Federated Data Management
(Extended Abstract)

Sergi Nadal, Alberto Abelló, Oscar Romero
Universitat Politècnica de Catalunya

Barcelona, Spain

snadal|aabello|oromero@essi.upc.edu

Stijn Vansummerem
UHasselt - Hasselt University

Data Science Institute

Diepenbeek, Belgium

stijn.vansummeren@uhasselt.be

Panos Vassiliadis
University of Ioannina

Ioannina, Greece

pvassil@cs.uoi.gr

Abstract—Modern data analysis applications require the abil-
ity to provide on-demand integration of data sources while
offering a user-friendly query interface. Traditional methods for
answering queries using views, focused on a rather static setting,
fail to address such requirements. To overcome these issues, we
propose a full fledged, GLAV-based data integration approach
based on graph-based constructs. The extensibility of graphs
allows us to extend the traditional framework for data integration
with view definitions. Furthermore, we also propose a query
language based on subgraphs. We tackle query answering via
a query rewriting algorithm based on well-known algorithms for
answering queries using views. We experimentally show that our
method yields good performance with no significant overhead.

Index Terms—Data integration, query rewriting, GLAV map-
pings.

I. BACKGROUND AND MOTIVATION

Data wrangling is an iterative data exploration process to

enable analysis. In contrast to data warehousing approaches,

where data are materialized in a target schema tailored to

a specific kind of analysis, virtual data integration systems

play a key role on the exploration of a wealth of data that is

yet to be integrated. As the popularity of wrangling systems

grows, non-technical users face high-entry barriers on inter-

acting with them, requiring queries to be written in technical

languages such as Datalog or SPARQL. Additionally, the vast

number of available heterogeneous datasets on the web pose

several data integration challenges for contemporary wrangling

demands [1]. In order to contribute towards resolving those

challenges, we present a novel and full fledged approach to

virtual integration using graphs as canonical data model for the

whole process. Precisely, we present a framework for query

answering over graphs mediating a set of heterogeneous data

sources connected via global-local-as-view (GLAV) mappings.

The proposed framework (i.e., the integration graph) takes

as building blocks Seth and Larson’s reference architecture

for federated databases [2], and adapts it to Lenzerini’s data

integration framework [3]. An integration graph (see Figure

1) contains all the metadata constructs composing a federated

system. The main novelty of our approach is a query language

based on coverings, or contours, of a graph representing the

global schema. The proposed language does not require users

to define join conditions, a task delegated to a rewriting

algorithm. As opposed to classic methods where different data

Component DBS Component DBS

Local Schema Local Schema

Wrapper Wrapper Wrapper

Source Graph Source Graph Source Graph

Global Graph Global Graph

External Graph External Graph External Graph

M
ap

p
in

g
s

G
ra

p
h

Integration Graph

Fig. 1: Components in an Integration Graph, adapted from [2]

structures are maintained for schemata and mappings, our

framework is grounded on graphs as unique data structure for

all constructs. Besides the flexibility and ease of use that that

brings to the wrangling process, using graphs to represent inte-

gration systems also brings performance benefits. Encoding all

the required metadata (i.e., global schema, source descriptions,

mappings and queries) in a single data structure simplifies the

interoperability among them. This allows rewriting algorithms

to query such metadata structures (e.g., mappings), bringing

the ability to efficiently identify the relevant sources containing

a query posed over the global schema.

II. PROBLEM FORMULATION

An integration graph I is a 4-tuple of edge-labeled directed

graphs 〈G,S,M, E〉. The global graph, whose nodes are

partitioned into two disjoint sets of concepts (C) and features

(F ), encode the conceptualization of the user’s domain, while

the source graph encodes, in a graph manner, wrappers (W )

and their attributes (A). Then, a global query ϕ is represented

as a connected subgraph of G. This allows the definition of

graph-based LAV mappings between S and G. Precisely, for a

wrapper w, a LAV schema mapping is a pair M(w) = 〈ϕ,F〉,
where ϕ is a global query; and F is an injective function from

A to F . Then, the external graph E encodes views (i.e., GAV

mappings) together with the semantics of the expressions to

compute derived features (i.e., operational expression trees).

1507

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00130

20
22

 IE
EE

 3
8t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 D
at

a 
En

gi
ne

er
in

g 
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
01

30

Authorized licensed use limited to: University of Ioannina. Downloaded on August 17,2022 at 16:22:00 UTC from IEEE Xplore.  Restrictions apply. 



A

B

C

a1 a2 a3 b1 b2 c1 c2 c3 c4

AB BC

CA
ha

sF
ea

tu
re

hasF
eature ha

sF
ea

tu
re

hasFeature

ϕ1

Fig. 2: Global graph and a query. Doubly circled features

denote IDs. For clarity, some edge labels have been omitted.

Figure 2, depicts a global graph with three concepts. The

global query ϕ1 asks for all features from A and B.

We, then, define the notion of covering and minimal source

queries. The former states that a source query ψ covers a

global query ϕ if the union of the participating LAV mappings

in ψ subsumes ϕ. Then, ψ is minimal w.r.t. ϕ if removing

any wrapper from the source query generates a non-covering

query. Using this notion, we consider rewriting algorithms

over integration graphs (i.e., RI) as functions with input a

global query and output a set of source queries Ψ (i.e., unions

of conjunctive queries). We say RI is minimally-sound if all

source queries in RI(ϕ) are minimal. Likewise, we say RI
is minimally-complete if for any source query ψ such that it

is a rewriting of ϕ and is minimal, it holds that ψ ∈ RI(ϕ).

Problem statement. Rewriting queries ϕ over I reduces to

finding a minimally-sound and minimally-complete rewriting

algorithm RI . We refer the reader to our full paper [4]

for the detailed description and proofs of REWRITECQ, our

proposal of such a minimally-sound and minimally-complete

rewriting algorithm. REWRITECQ is inspired by the bucket
algorithm for LAV mediation, which finds rewritings for each

subgoal in the query, and stores them in buckets. Then, it

finds a set of conjunctive queries such that each of them

contains one conjunct from every bucket. In our case, concepts

are analogous to buckets, however equi-join conditions must

be automatically discovered. Hence, we first separately find

rewritings that cover the requested concepts in ϕ to later find

all possible minimal combinations among them.

III. EVALUATION

In this section, we measure the performance of REWRITECQ

and compare it to alternative approaches for answering queries

using views. To assess our algorithms and facilitate their

comparison to alternatives, we generate artificial data via

a principled method. Precisely, we systematically generate

synthetic experimental scenarios with different characteristics.

Each scenario consists of a global graph, a set of wrappers,

mappings, and a global query. For each combination of exper-

imental variables, we generate an scenario and measure the

processing time of REWRITECQ in seconds.

Comparison to alternatives on query rewriting. We com-

pare our approach with the following state-of-the-art solutions

for answering queries using views, whose source code is

openly available: MiniCon [5] and Graal [6]. We compared

the runtime for small values of |F |, as our tests showed that

the alternatives struggled to manage a large number of features.

Then, Figure 3 depicts the runtime comparison. First, we can

observe that both alternatives have a much steeper exponential

trend than ours. While we efficiently deal with 64 wrappers,

MiniCon only manages to successfully execute around half

of them. Graal fails to manage more than 10 wrappers. We

believe the major performance drawback of such methods

is the number of intermediate results they manage (i.e.,

candidate queries). Indeed, we have observed an exponential

number of existential rules in their executions. Under these

circumstances, exploration of the search space in a breadth-

first search manner, as Graal does, becomes extremely costly.

Oppositely, and considering we generate more solutions due

to our rewriting semantics, thanks to the ability of querying

the mappings, which are stored as graphs, we can select only

relevant views in an incremental and more efficient manner.

 0.1

 1

 10

 100

8 16 24 32 40 48 56 64|W|

|F| = 3 |F| = 6 |F| = 9

se
co

nd
s

 0.1

 1

 10

 100

8 16 24 32 40 48 56 64
 0.1

 1

 10

 100

8 16 24 32 40 48 56 64

RewriteCQ MiniCon Graal

Fig. 3: Runtime evolution w.r.t. the number of wrappers (|W |)
and alternative approach under comparison. Missing points

denote that the execution of the alternatives timed out.

IV. CONCLUSIONS

In this paper, we provide an overview of a virtual data

integration system grounded on graphs. We advocate that such

unique, and widely accepted, formalism allows non-technical

users to perform exploratory tasks, such as data wrangling. On

top of that, the flexibility of graphs enables the extensibility

of the current rewriting algorithm. For example, to jointly

consider aggregations when running the rewriting algorithm.

Acknowledgements. Sergi Nadal is partly supported by the

Spanish Ministerio de Ciencia e Innovación, as well as the

European Union - NextGenerationEU, under project FJC2020-

045809-I / AEI/10.13039/501100011033.

REFERENCES

[1] T. Furche, G. Gottlob, L. Libkin, G. Orsi, and N. W. Paton, “Data
wrangling for big data: Challenges and opportunities,” in EDBT, 2016.

[2] A. P. Sheth and J. A. Larson, “Federated database systems for managing
distributed, heterogeneous, and autonomous databases,” ACM Comput.
Surv., vol. 22, no. 3, pp. 183–236, 1990.

[3] M. Lenzerini, “Data integration: A theoretical perspective,” in PODS,
2002.

[4] S. Nadal, A. Abello, O. Romero, S. Vansummeren, and P. Vassil-
iadis, “Graph-driven federated data management,” IEEE Transactions on
Knowledge and Data Engineering, pp. 1–1, 2021.

[5] R. Pottinger and A. Y. Halevy, “Minicon: A scalable algorithm for
answering queries using views,” VLDB Journal, vol. 10, no. 2-3, pp.
182–198, 2001.

[6] J. Baget, M. Leclère, M. Mugnier, S. Rocher, and C. Sipieter, “Graal: A
toolkit for query answering with existential rules,” in RuleML, 2015.

1508

Authorized licensed use limited to: University of Ioannina. Downloaded on August 17,2022 at 16:22:00 UTC from IEEE Xplore.  Restrictions apply. 


