
Profiles of Schema Evolution in Free Open Source
Software Projects

Panos Vassiliadis
Univ. Ioannina,

Ioannina, Greece
pvassil@cs.uoi.gr, 0000-0003-0085-6776

Abstract—In this paper, we present the findings of a large study
of the evolution of the schema of 195 Free Open Source Software
projects. We identify families of evolutionary behaviors, or taxa,
in FOSS projects. A large percentage of the projects demonstrate
very few, if any, actions of schema evolution. Two other taxa
involve the evolution via focused actions, with either a single
focused maintenance action, or a large percentage of evolution
activity grouped in no more than a couple interventions. Schema
evolution also involves moderate, and active evolution, with very
different volumes of updates to the schema. To the best of our
knowledge, this is the first study of this kind in the area of
schema evolution, both in terms of presenting profiles of how
schemata evolve, and, in terms of the dataset magnitude and the
generalizability of the findings.

Index Terms—Schema Evolution, Software Evolution

I. INTRODUCTION

Much like traditional software, database schemata change
over time. Schema Evolution means that tables and attributes
can be added, deleted or renamed, and their data types and
keys can be altered. Changing the schema of a database can
incur a significant impact, as the surrounding code can be syn-
tactically and semantically inconsistent with the new structure
of the schema, leading to application failures or incomplete
data delivered to end users. Despite this significance, and in
sharp contrast to the study of software evolution and main-
tenance for years from the software engineering community,
we know very little on how schemata evolve: are there any
patterns, similarities, recurring behaviors, or even laws in
the way schemata evolve? Understanding the mechanics of
schema evolution is a piece of knowledge, currently absent
from our body of knowledge as a data engineering community,
that apart from enriching humanity’s knowledge and moving
from word-of-mouth impression to concrete evidence, can
facilitate both the management of information systems on the
practical side, and its scientific basis on the research side, by
providing insights to different audiences: (a) software curators
and developers who can benefit from the ability to (even
coarsely) predict the tendency of a schema to evolve (which
can be used for decision making, recourse allocation, software
selection), and, (b) the academic community, who can have
hard evidence on the suitability of the underlying data models
for evolving applications, the potential hindrances to their
usage and the needs of deeper education of students.

The goal of this paper is to expand our understanding
of how relational schemata in the domain of Free Open
Source Software (FOSS) projects evolve at the logical level,
by introducing taxa of projects with similar schema evolution
profiles. To this end, we have performed the largest ever -
to our knowledge- study of schema evolution, by extracting,
measuring and analyzing the history of 195 schemata of Free
Open Source Software projects.

Research Questions: We pose three research questions to
address the above goal.

RQ1. Is schema evolution extensively present? Is schema
evolution a process that frequently encountered, and
if yes, to what measurable extent does it occur in
terms of frequency and volume?

RQ2. Are there consistent patterns in the lives of schemata
– i.e., can we extract families, (“taxa” as in biology)
of schemata, with respect to the way they evolve over
time?

RQ3. What are the quantitative characteristics of schema
evolution and how do they perform for different taxa?

Means. To address the above research questions, we have
performed the largest study of schema evolution ever per-
formed in the literature (to the best of our knowledge) via
a systematic collection of data for schemata in FOSS projects.
Specifically, we collected 327 schema histories in Free Open
Source Software projects, based on a principled collection
method and with quality criteria to avoid dummy projects. Out
of them, we identified 195 candidate whose history seemed to
exhibit evolutionary characteristics, and for each such project,
we automatically extracted schema histories from their git
repository hosted in Github1. For each such history (which is
a list of versions of the schema DDL file), we extracted the
differences between subsequent versions and measurements in
terms of timing, schema size, numbers of tables and attributes
changed, coming up with specific measures of change to
characterize the heartbeat of change of a schema and its
characteristics.

Results. For the first time in the literature (to the best of our
knowledge), we study this heartbeat of change, and, following

1All data, results, summary statistics and extra explanations are publicly
available in https://bit.ly/3nMggEx (at Github). The site https://bit.ly/3ptnBJo,
summarizes our research.



an iterative, qualitative process, we studied their evolution and
grouped them in taxa of evolution, i.e., families of schemata,
which share similar evolution characteristics. The taxa of
schema evolution are: (1) completely frozen schema histories
with zero change at the logical level; (2) almost frozen histories
of very small change, typically with few intra-table attribute
modifications; (3) almost frozen histories but with a single
spike of change and almost no other change (Focused Shot
and Frozen); (4) histories of moderate evolution, without
spectacular changes, but rather small deltas spread throughout
the life of a project; (5) projects with evolution similar to the
moderate one but also with a pair of spikes on their activity
(Focused Shot and Low); and (6) histories of active projects,
typically with significant amount of change both as intra-table
change and in terms of table generation and eviction.

Contribution. To the best of our knowledge, this is the
largest study ever performed, surpassing previous studies by
at least an order of magnitude. Apart from the sheer volume
of the schemata studied, the principled method we followed
for collecting the schemata, extracting their versions and
performing the analysis, allows us to argue that our results
are largely generalizable for Free Open Source Software.
Secondly, we verify previous research that schema evolution is
indeed evident; however, the examination of a large corpus of
projects produces unshakable evidence for the first time, that
its absence is way more omnipresent than its presence. This
is a significant result as it establishes a deep problem in the
way the relational part of information systems is linked to the
overlying software. Third, this is the first time ever that taxa
of schema evolution are presented. The identification of taxa
provides us with a fundamental tool for characterizing and
forecasting the propensity of the DBA’s of a certain database
towards change. Apart from the above, subsequent studies can
benefit from the experimental method, the nomenclature, the
visualization and the analysis methods.

Roadmap. In Section II, we present related work. In Sec-
tion III, we discuss our experimental method, nomenclature,
and threats to validity, in order to support the generalizability
of our results. In Section IV, we discuss our findings concern-
ing the taxa of schema evolution. In Section V we discuss
the statistical support on the validity of the proposed taxa. We
conclude in Section VI with a discussion of final thoughts.

II. RELATED WORK

The study of schema evolution has taken several research
paths. Apart from the engineering of schema evolution [1],
[2] researchers have worked towards producing algebras of
schema evolution operations (SMO’s), to describe the history
of schema changes in a semantically rich sequence of oper-
ations [3], [4], [5]. Apart from a study in the early ’90s
[6], it was only the proliferation of Free and Open Source
Software (FOSS) that gave a momentum to the study of
how schemata evolve. The original studies, [6] and 15 years
later, [7], were focused on a single case study (a hospital
database and mediawiki, respectively) and the quantification
of changes in different categories, and the main finding is the

significant dominance of expansion over deletion, as well as
the different intensity of change at different tables. [8] follows
along the same lines. [9] and [10] report that a large part of
tables and modules of application code are not-synchronized
at all times. The largest study so far has been [11] with
ten open-source schemata studied. Again, the percentages
of changes are reported, with add table, add column and
change column datatype being the most populous. The lack of
integrity constraints in several places (independently verified
and explained later, in [12]), is also reported, along with the
non-synchronization of application code and schema, as well
as the presence of focused periods of change in the early life of
the schemata. [13] shows that schemata grow over time with
bursts of concentrated effort of growth and/or maintenance
interrupting longer periods of calmness. [14] and [15] study
patterns of tables, rather than schemata, best summarized by
the Electrolysis pattern, named after the intense antithesis in
the lives of dead and survivor tables: whereas dead tables are
attracted to lives of short or medium duration and absence of
schema update activity, survivors are mostly located at medium
or high durations and the more active they are, the stronger
they are attracted towards high durations. Later studies have
moved towards the study of schema evolution in the realm of
JSON, NoSQL databases [16], [17].

Still, data collection has been very hard to tackle, with no
study exceeding a dozen projects. Compared to the previous
work, our study (a) is the first one to study the heartbeat and
provide profiles of schema evolution for the studied projects,
and (b) is conducted over one or two orders of magnitude
higher in terms of studied projects, via a principled collection
method; resulting in a strong generalizability for the produced
profiles for FOSS projects.

III. EXPERIMENTAL SETTING

In this section, we discuss our data collection process, the
artifacts and metrics that have been extracted from the fully
automated processing of the schema histories, and the threats
to validity of this study.

A. Data Collection

The goal of the data collection process was to collect
data for a large number of projects with quality guarantees.
Originally, we tried to work with GHTorrent [18], a well-
known GitHub mining tool. Still, we were unable to usefully
produce a data set with it, and, we resorted to one of its
querying platforms, Google Cloud BigQuery2. Among its
many datasets, BigQuery provides the GitHub Activity Data
dataset in relational format, along with SQL facilities to query
it. The GitHub Activity dataset is a 3TB+ dataset that contains
a full snapshot of the contents and the commits of more than
2.8 million open source GitHub repositories. We queried the
contents table for all file descriptions ending to a ’.sql’ suffix,
in 2019-04-24 and 25, and obtained a collection of SQL
file descriptions (to which we refer to as SQL-Collection,
hereafter) for 133,029 repositories.

2https://cloud.google.com/bigquery/



Figure 1. (Left) Schema size over time (#tables over human time, and, (Right) Expansion and Maintenance activity (#attributes affected) per month, for two
active projects.

Since this number of files and repositories is extremely high
to handle, we had to narrow it down via a principled selection
method. To this end, we combined the SQL-collection that we
obtained with another public dataset, available via BigQuery as
the Libraries.io dataset3. Libraries.io is an opensource commu-
nity monitoring and gathering metadata for over 2.7M unique
open source packages from 3 source code repositories, namely
GitHub, Gitlab and BitBucket. We have worked with the
collection exported at 2018-12-22. The Libraries.io collection
offers project metadata, including whether the project was an
original project or a fork, its number of stars, watchers, etc.4

We joined the two data sets over (a) their repository names
and (b) the URL of their projects, taking care to include only
Libraries.io projects which were (i) original repositories, (ii)
with more than 0 stars and (iii) more than 1 contributor.

To alleviate the possibility of void projects, or repetitions
of the same change in multiple files, the results where post-
processed with several criteria:

• We excluded all results whose file descriptions included
the terms ’test’ or ’demo’ or ’example’ in the path.

• For all the cases where multiple vendors were supported,

3https://libraries.io/about
4Among others, a GitHub project has (a) stars (i.e., someone considered

it interesting and pressed the ‘Star’ button), (b) forks (i.e., a user copies the
project in his own ‘space’ to work independently on it), (c) collaborators
(users contributing to a project owned by someone else).

we chose MySQL as the DBMS to investigate (as the
most popular DBMS in our collection).

• For all the cases where multiple SQL files were reported,
we went through manual inspection, to identify candi-
dates that could be reduced to a single DDL file with the
table creation statements. Cases omitted included (i) sev-
eral DDL scripts in a file-per-table mode, (ii) incremental
maintenance of the schema, (iii) the Cartesian product of
multiple vendors X different versions of the same schema
for different languages (e.g., projects having different
schemata for the combination of {English, French, . . .}
by {mysql, postgres, mssql, . . .} ).

The result of this post-processing was a data set of 365 FoSS
schema histories, which we refer to as the Lib-io dataset. For
all these 365 projects we went on to clone them locally and
extract their schema histories between 7 and 26 May 2019.

To remove erroneous or void files, a final post processing
took place over the retrieved repositories. First, we removed
14 projects whose history extraction resulted in 0 versions
(i.e., their file descriptions in Github Activity did not match
their actual, downloaded .git). We also removed the commits
with empty files, as well as the histories whose .sql files did
not contain “CREATE TABLE” statements. This involved 24
projects. Out of the remaining 327 repositories, we isolated
132 rigid projects with just one version of the schema file,
i.e., projects whose schema never changed. The number is



striking: 132 out of 327 is a vast 40% of projects without any
schema evolution(!). Eventually, we ended up with 195 non-
rigid repositories that were used for our subsequent analysis,
and to which we refer as the Schema Evo 2019 data set.

B. Nomenclature and Measurements

To address the diversity of nomenclature and measurements,
in this section,we establish a reference nomenclature.

A Schema History is a list of commits (a.k.a. versions) of
the same DDL file of a database schema, ordered over time.
A transition from an older version i to its subsequent version
i +1 occurs at the timepoint where version i +1 is committed,
and potentially incurs changes in the schema. The initial,
originating version of the history is called, as shorthand,
V0. Active commits are the commits whose sum of updates
(see next) exceeds zero. Non-Active commits involve changes
in comments, directives to the DBMS, INSERT statements,
indexing, and other changes that do not affect the logical
capacity of the schema in terms of tables, attributes, data types
or primary keys. The Schema Update Period (SUP) is the time
span (in human time) between the first and the last commit
of the schema file. This is a very different time interval than
its superset, Project Update Period (PUP) that marks the start
and end of project history.

For each transition of the schema history, our tool, Hecate,
automatically computes several categories of measurements.
First, it computes timing information, like the distance of the
i +1 commit from V0 in days, and the running month and year.
Second, it registers the schema size (no. of tables, attributes)
of both the older and the subsequent version of the transition.
Third, Hecate identifies and quantifies updates (all measured in
attributes): attributes born with a new table, attributes injected
into an existing table, attributes deleted with a removed table,
attributes ejected from a surviving table, attributes having a
changed data type, or a participation in a changed primary
key. We measure as Expansion the sum of attributes born
and injected, and as Maintenance, the sum of all the other
categories. Total Activity, or simply Activity, of the schema,
is the sum of Expansion and Maintenance (in what follows,
remember that fundamental unit of measurement of change in
our setting is the attribute, for all categories).

We define the heartbeat H = {ci(ei,mi)} of the schema
as the ordered list of pairs (expansion, maintenance), one per
commit, of the schema history. Due to the visual impression
of the shape of the heartbeat (see Fig. 2), we refer to standing
out commits with total activity strictly higher than 14 attributes
as “reeds”, and commits with lower activity as “turf”. The
reed limit was produced by taking all single-commit projects,
sorting them by activity (producing a power-law like distribu-
tion)and splitting them at the 85% limit).

C. Threats to validity

From the very beginning, our goal was to be able to clearly
specify the scope and generalization of our study.

Scope. We are interested in the monitoring of the evolution
of the logical-level relational schema for significant Free Open

Source Software projects, hosted in GitHub. We want to stress
that, in the context of our deliberations, we are not covering or
generalizing to proprietary schemata outside the FoSS domain.
We do not cover conceptual or physical schemata. We are
also restricted in relational schemata and not XML, JSON, or
another format.

External Validity. The external validity refers to the pos-
sibility of generalizing the findings of a study to a broader
context. We claim that our elicited repositories and their
extracted history give a fairly representative view of schema
evolution in FoSS projects.

First, the SQL-Collection data set includes the locations of
schemata that are part of Free Open Source Projects (and
not proprietary ones), available via GitHub. Practically, the
domain of search was all the .sql files of GitHub reported
at Github Activity and Libio. In our opinion, this is also a
very good representative of open source software overall, as
GitHub is the main public repository for FoSS software. We
applied the restriction that the respective files end with a ’.sql’
suffix. It is possible that other suffixes, are used by developers.
To the extent that this would be a non-recommended practice,
we believe that the projects ending up in our study are valid
candidates to be monitored as significant projects.

Second, the Lib-io data set is a restricted version of the
SQL-collection data set with the schemata whose repository
path was monitored by the public Libraries.io data set. We ap-
plied the filter of more than one contributor, more than 0 stars
and non-forking. We believe this to be a fairly broad scope
for original projects with a degree of significance (without
implying, of course, that other projects are not significant).

Third, the subsequent filtering, performed an extra quality
check. We believe that filtering out tests, examples and demos
is not decreasing the value or validity of our approach.
Although databases of these types have their value, monitoring
their evolution, would not say much for the essence of a
database supporting the regular operation of a software project.
For the case of multi-vendor support for schemata, we are
also confident that our choice to select only one vendor is the
appropriate one, especially since we are studying logical-level
changes. The only ambiguous situation, was the necessity to
omit multi-file DDL declarations. This improves the precision
of our study (as we are sure we get the correct history of the
DDL statements) but reduces the recall.

Fourth, the domains of the collected projects are diverse
enough to support our external validity claim. Specifically,
the project domains include Content Management Systems,
IoT Management on the cloud, Task Management Systems
for operating systems, similarly for web services, Messaging
Platforms, Systems for the management of Scientific Data,
Web on-line stores, On-line Charging Systems (OCS), etc.

An issue of future investigation is also the commit habits
of different projects: other teams commit small increments,
other ones group changes in larger commits. Although this
has an impact to the internal structure of changes, it does not
impact the aggregate profile of a project. An extra issue of
concern has to do with the non-linearity of git histories [19].



Figure 2. A reference example of schema and activity evolution via the builderscon octav project: (Left) Schema size over time (#tables over human time):
each dot on the line is a commit (observe that many of them do not affect schema size, as they are intra-table changes, or changes to documentation, data
insertions etc., that do not affect the schema). The points are placed with respect to human time thus, they are not uniformly distributed. Observe that (a) the
main part of the schema growth is a focused period tagged “ladder up” and (b) towards the end of the monitored period, commits are more infrequent and
change is smaller. (Right) Expansion and Maintenance activity (#attributes affected) over transition ID (attn: not human time, but sequential id’s of commits
to the schema file). Blue bars above the x-axis measure expansion (attributes added to the schema), whereas read bars under the x-axis measure maintenance
(attribute deletions, data type or PK changes). Observe how the change rates of the left and right parts are not isomorphic.

We investigate the entire schema history, whereas one might
consider focusing on a single branch of the history.

Experimental Reliability. We tested our extraction scripts
with OpenCart (the largest of our studied projects) for which
we had a previous past extraction of its history, in 2016. The
comparison produced an almost identical result, as only one
commit out of 412 was missing from the GitHub history we
extracted. We manually tested the histories of the retrieved
files against the number of commits reported at GitHub for the
respective file, for a random sample of 50 cases. In all cases
there was an exact match. We also confirmed that the missing
projects had also been removed from GitHub at the time of
the cloning via a sample of 7 of them. Concerning our own
software, we did extensive checks to our metrics computation
tools. Overall, although bugs or omissions are still possible,
we are quite confident with our software tool suite.

IV. FINDINGS

A. Derivation and intuition of taxa of similar evolution profile

We have organized the studied schemata in families of
evolutionary behavior, which we call “taxa”. The derivation
of the taxa was a (i) manual, (ii) qualitative and (iii) iterative
process. We automatically generated charts, in particular, the
heartbeat and the schema size chart5. Manual inspection made
apparent that there was a clear discrimination between (a)
completely frozen histories, without any change to their logical
schema, (b) a very large number of almost frozen histories,
with very few commits, very small volume of change and
mostly without change in the schema size of the project, (c)
moderately evolving projects, mostly in terms of “regular”
small changes and less in terms of schema growth, and, (d)

5Hecate at https://github.com/DAINTINESS-Group/Hecate and Heraclitus
Fire at https://github.com/pvassil/HeraclitusFire, set up our toolset.

active projects with significant change in the schema size,
and typically, frequent active commits. Soon, our iterative,
manual, visual inspection of the project charts and metrics
revealed that we could further isolate two more taxa of focused
change: a taxon of very few commits (i.e., mostly in the almost
frozen category) but with a focused amount of change in a
single commit and maybe a couple of commits of very small
volume (i.e., the change was fundamentally focused in a single
commit), and a taxon of -again- few commits, but also with a
couple of reeds, and moderate to high change.

Once this manual, qualitative process was mature, with
only a few grey-zone projects having an ambiguous label, we
were able to extract a simple classification tree of taxa (see
Fig. 3), with respect to active commits and activity. Table I
demonstrates the initial qualitative intuition and the subsequent
rule-based, quantitative definitions for the taxa. A Kruskal-
Wallis analysis (see Section V), both for the entire set of the
taxa, and for all pairwise comparisons, verifies the difference
of the taxa in terms of active commits and total activity. In
what follows, it is important to remember that we have not
selected just any random project, but rather, we intentionally
restricted our scope to original, stared projects, where people
were actually contributing effort to develop and maintain (see
Sec. III). Overall, 65% of projects spanned more than 24
months and 77% more than a year.

In Fig. 4 we present a summary of the statistical profiles of
the different taxa with respect to their (a) cardinalities, and, (b)
measures that characterize their evolutionary activity. Observe
that all taxa come with a significant cardinality, and in any
case, each of the taxa alone is several times larger than the
corpus of each of the previous studies in the related work (that
never surpassed a dozen of studied projects).



Figure 3. Taxa of Schema Evolution for FOSS Projects

Figure 4. Measurements per Taxon (min, median, max, avg; Definition wherever appropriate).

B. The Frozen Land of Total Rigidity

“In a survey of 20 database administrators (DBAs) at three
large companies in the Boston area, we found that ... DBAs try
very hard not to change the schema when business conditions
change, preferring to ”make things work“ without schema
changes.” [20] We have named this tendency as gravitation
to rigidity in studies of smaller scale [13], [14], [15]. The
most characteristic and undisputed finding of this study is the
confirmation with solid numbers over a very large dataset of
the above. Overall, within the scope of FOSS projects, it is
the absence of evolution of the logical level of the schema
that demonstrates itself in large numbers, as opposed to its
presence. Out of the 327 repositories that we cloned, 132
(40%) had a single commit for their schema whatsoever, 34
(10%) had more than 1 commits, but zero changes at the

logical-level schema, and 65 (20%) were almost frozen (with
less than 4 active commits and 10 modified attributes). Overall,
70% of the projects, demonstrated total absence or very small
presence of change.

Interestingly, this absence of evolution is not a feature of
abandoned projects, but rather an attitude of the developers: In
terms of project duration (attn.: not schema update period),
68% of Frozen projects span more than 24 months, and
79% span more than 12 months. The respective numbers for
Almost Frozen are 58% and 73%, respectively. The commits
concerning the DDL file amounted to 6% and 5% of the
total commits, respectively. Concerning change, the Almost
Frozen category, which is the only one with some change,
has a median of 3 commits, one of them active, a median of
zero tables inserted and deleted (75% of projects having a flat
schema line) and a median total change of 3 attributes.



Table I
INTUITION AND DEFINITION FOR THE TAXA OF SCHEMA EVOLUTION.

Taxon Motivating Intuition and Resulting Classification Definition
(italics)

History-
less

Only 1 commit of the .sql file (we did not study them, due to
lack of transitions)

Frozen With history, but with total activity of 0 changes & 0 active
commits

Almost
Frozen

Very few commits and low change volume
Def: At most 3 active commits, change less or equal to 10
updated attributes

Focused
Shot &
Frozen

Very few commits, focused change (not necess. small) in a
single commit
Def.: At most 3 active commits, change more than 10 updated
attributes (typically also involves a single reed)

Moderate Moderate rate of heartbeat (active commits), moderate volume
of activity
Def.: None of the rest, total change less than 90 updated
attributes

Focused
Shot &
Low

A couple of reeds and a few active commits, focused (mod. -
high) change
Def.: Between 4 and 10 active commits, no more than 2 reeds

Active Frequent rate of heartbeat (active commits), high volume of
activity
Def.: None of the rest, total change more than 90 updated
attributes

Figure 5. A typical example of an Almost Frozen schema: schema size over
human time (left) and expansion vs maintenance over transitionId (right).
There are 8 commits post the original version (mostly close to each other,
thus overlapping each other on the left) and out of them, the only active
commit involves the data type update of 3 attributes.

C. Hit and Freeze Evolution

There is a particular family of projects whose evolution
demonstrates specific transitions with significantly higher
amount of changes than the Almost Frozen taxon. The
Focused-Shot-and-Frozen taxon is based around one or two
such transitions, with often a single reed being practically
the only change performed to the schema. The jRonak /
Onlinejudge project in Fig. 6 depicts another form of schema
evolution, again with a very restricted set of just a couple of
active commits, and in this case, a small expansion of the set
of tables of the schema.

This taxon’s schemata do not change significantly and the
amount of change is small in terms of attributes. In 36% of the
projects, evolution involves attribute injections into existing
tables (i.e., a flat schema line) and a small maintenance
activity, all combined in a single active commit. In other
words, a significant percentage of such projects simply focuses

Figure 6. Example of a focused expansion of two tables

evolution in almost a single commit. 52% of the projects
involve a single step-up in the schema line; on average the
projects of the taxon insert 2 tables and remove 1 in their life.

Concerning project duration, out of the 25 projects, 9 lasted
less than 1 year and another 6 less than 2 years. However,
there are 11 projects (44%) which outlasted 2 years of project
duration (PUP). In contrast, SUP has a median of 2 months
and an average of 9 months. The commits concerning the DDL
file amounted to 4% of the total commits.

D. The Timid Life of Moderate Evolution

Moderate evolution is the characteristic of 29 projects.
There is a consistency in change, as the median Schema
Update Period is 20 months with a median of 10 commits, 7 of
them active, typically all of them turf (distinguishing the taxon
from the subsequent ones), a median of two tables inserted and
zero deleted and a median total change of 23 attributes. 65%
of projects have a rise in the schema, 10% have a flat line
and the rest of the projects have turbulent or dropping schema
lines. In terms of project duration, 72% of the taxon’s projects
span more than 24 months, and 86% more than 12 months.
The commits concerning the DDL file amounted to 5% of the
total project commits.

E. Focused Change and Turf

Apart from a moderate and low-volume evolution of the
schema, there is a distinct subcategory of not-insignificant
heartbeat with focused change (via a couple of reeds) and
a few extra active commits. We refer to this taxon as Focused
Shot and Low. The taxon is characterized by one or two
reeds and no more than 10 active commits. Change in this
category comes to a large extent due to the “ reeds” of focused
activity, rather than the regular “ turf-like” activity of small
volume. Except for activity, the numbers are very similar to
the moderate taxon: the median Schema Update Period is 17.5
months with a median of 10.5 commits, 6.5 of them active,
with one reed, a median of 4.5 tables inserted and 2.5 deleted.
This taxon is the second largest in activity volume, right after
active projects, with a median total change rise to 71 attributes
(significantly different from the previous taxa). In terms of
project duration, 70% of the projects of this taxon span more
than 24 months, and 75% span more than 12 months. The
commits concerning the DDL file amounted to 6% of the total
project commits.



Figure 7. A typical example of a schema evolving with a moderate tempo: schema size over human time as tables (left), attributes (center) and heartbeat
over transitionId for the mozilla/tls-observatory project. There are 43 commits (23 active) after the original version, mainly directed towards mild attribute
injections, with different time density (as the middle figure demonstrates).

SUP in this category comes in two flavors: short and long
schema update periods. In Fig. 8, the jasdel/harvester project
has a very short SUP, with a couple of reeds and a two-
step increase in the schema line. The TalkingData/OWL-v3
project is quite expressive of the family: the “reed” reaches
124 attributes of growth and 68 attributes of maintenance,
practically including 90% of the project’s post-V0 activity.

F. Schemata with high volumes of updates

Apart from the aforementioned, low-to-med activity taxa,
there are also schemata that demonstrate significant volume
of updates. The schemata of this taxon, although few, are the
ones with the largest amount of tables involved, the largest
SUP durations (31 months median), a heartbeat with a median
of 36.5 commits, 22 active, 5.5 reeds and the rest turf, 24
tables inserted and 9 deleted and a median total activity of 254
attributes. In terms of project duration, 91% of the projects of
this taxon span more than 24 months, and 95% span more than
12 months. The commits concerning the DDL file amounted to
6% of the total project commits. In other words, the behavior
of the taxon demonstrates significantly higher volumes of
change than the other taxa (Fig. 1, 2, 9).

It is important to note that in active projects, the heartbeat
is not homogeneous. This has to do both with the frequency
and the size of the change events. In terms of frequency, there
are periods of systematic activity, with versions of small-to-
medium size changes, periods of idleness, spikes of massive
maintenance, growth and restructuring. The size of the schema
is typically growing (50% of the cases with several steps, 9%
with a single step), and, out of the 22 cases there are also 2
cases of flat schemata, 3 cases of massive drop of its size and
4 cases of turbulent evolution.

V. TAXA WELL-FORMEDNESS

Are the taxa that we derived reasonable? Is it possible
that two taxa actually hide the same behavior? To address
these sanity-check questions, in this Section, we argue that
our proposed taxa abide by three well-formedness criteria:

• Completeness:, i.e., covering all possible cases of activity
behavior

• Disjointness: the characteristics of the different taxa are
different, and each project can belong to exactly one
taxon

• Internal Cohesion: within a taxon, the behavior of its
projects is similar

It is easy to see that Completeness is covered both by the
classification scheme of Fig. 3 at the logical level, and, as
sanity check, by the projects at the instance level. Similarly,
Disjointness is covered by mutual exclusion of the constraints
of the classification scheme of Fig. 3, which dictate mutually
disjoint taxa. Fig. 10 visually demonstrates why the rule-based
classification makes sense, as the different taxa have a fairly
small overlap.

Proving Cohesion, however, is not trivial. To this end, we
compared the derived taxa both (a) as a set of taxa over the
entire data set, and, (b) pairwise, on whether their statistical
characteristics qualify them to be different. To this end, we
assessed statistical significance of the taxa differences over (i)
their number of active commits and (ii) their total activity.

We employed the Kruskal-Wallis test, in R, to test the
differences of the defined taxa. The null hypothesis of the
test is that the different taxa have the same median and thus
the reported p-value is a measure on the rejectability of the
null hypothesis. We excluded the totally frozen taxon, which
is practically a special case of the Almost Frozen, from this
analysis. The overall assessment of the Kruskal-Wallis test for
the entire data set for the activity measurements produces
a Kruskal-Wallis chi-squared = 178.22, df = 5, p-value <
2.2e-16 and for Active Commits Kruskal-Wallis chi-squared
= 175.27, df = 5, p-value < 2.2e-16. In other words, it is
extremely improbable that the taxa represent similar behaviors.

Note that our data are not normally distributed: Shapiro-
Wilk normality test on total activity produces W = 0.24386
and a p-value < 2.2e-16, i.e., it is extremely unlikely that
activity data are normally distributed. Internally, within each
taxon, the respective test revealed non-normality for all taxa
for both active commits and total activity, with the exception
of active commits for the case of Focused Shot and Low.

Extra statistical evidence. To reinforce the above conclu-
sions, we performed extra statistical tests. First, we compared



Figure 8. Examples of focused maintenance: a two-step schema increase accompanied with a few turf commits (top) and a very large reed, accompanied by
very low change (bottom).

Figure 9. Example of high, systematic activity: the schema is being augmented over time via a systematic heartbeat that comes either with large spikes,
or with constant turf and minor increases, without excluding periods of idleness. Observe that in this figure, the schema size is depicted over human time,
whereas the heartbeat over the aggregated monthly changes. See Fig. 1 and 2, too, for more active schemata.

the taxa pairwise via a Kruskal-Wallis test. In Fig. 11, we
report the p-values of the respective test: the lower left triangle
refers to the active commits and the upper right triangle to the
total activity. Assuming an acceptance threshold of 5%, the
test reveals that the differences between taxa are significant,
with the exception of two cases.

More concretely, the only cases where we cannot reject the
null hypothesis are (a) the similarity of moderate with focused
shot and frozen for their activity, and (b) the similarity of

moderate with focused shot and low for their active commits.
For both cases, however, the two involved taxa demonstrate
significant difference in the other measures. Specifically:

• For the case of Moderate with Focused Shot and Frozen:
whereas the overall number of affected attributes appears
to be similar, the number of active commits is signifi-
cantly different - in other words, whereas the Moderate
schemata demonstrate a turf-oriented, more frequent evo-
lution activity, the Focused Shot and Frozen schemata



Figure 10. Project profiles in terms of active commits and activity. Frozen
are not shown due to the logarithmic nature of the axes; almost frozen (blue
diamonds) are lower left; focused shot & freeze (blue circles) are upper left;
moderate (green triangles) occupy the center; focused shot & low (orange
squares) complements moderate in the upper center with higher volumes
of activity and moderate heartbeat; active projects (red circles) are at the
upper right. Naturally, the borders are not completely separated; however,
the original qualitative discrimination fits quite well with the rule-based
discrimination of Fig. 3.

group a “similar” volume of activity in no more than 3
active commits. Thus, the difference lies in the active
commit part.

• For the case of Moderate with Focused Shot and Low:
whereas the overall number of affected attributes appears
to be quite different, and the Focused Shot and Low
schemata demonstrate significantly higher amounts of
activity, the number of active commits is similar: in
other words, the schemata of moderate activity lack the
reeds of high activity that the Focused Shot and Low
schemata demonstrate, and who drive their activity to
larger heights. This resonates quite well with our intuition
of treating Focused Shot and Low as a special case of
Moderate evolution in terms of heartbeat, but whose reeds
reach high activity volume.

In other words, we see that there is not a single pair of
taxa that demonstrates similar behavior in both the number of
active commits and total activity. Based, thus, on all the above
discussion, we argue that the taxa that our analysis derived are
pairwise different.

To further strengthen the statistical evidence, we also com-
puted the quartiles of total activity and active commits for
each taxon (Fig. 12). We also depicted these numbers in the
double box plot shown in Fig. 13. The separation of the taxa
demonstrates overlaps and “grey zones”, however, the shape
and placement of the boxes is quite reassuring. Specifically:

• The active taxon is very far from the rest. They are just
22 projects, but really far apart from the other taxa (see
the legend of the Fig. 13 for details)

• The frozen taxa are quite close (also by definition) one
to another. However, due to their larger populations,
the separation can be justified: frozen with zero active
commits and activity are by definition a taxon of its

own. The most populous, Almost Frozen, is really close;
however, we discriminate it from Frozen as having even
such a small activity. Focused Shot and Frozen is also
close both to Almost Frozen and to Moderate, however
the shape of its heartbeat is quite different from both.

Is it possible that a taxon is not cohesive? The cohesion
of the taxa is demonstrated by the double box plot of active
commits vs activity, for the proposed taxa. The following
observations are due:

• All taxa are heavily biased towards lower values, for both
active commits and activity.

• The 3 most frozen taxa are really clustered in very
cohesive boxes. This has to do both with the box and
the whiskers of the box plot, with one exception: the 6
projects of the upper quartile of Focused Shot and Frozen,
that spans from 31.5 attributes to 383. This should also be
assessed under the prism of their population: there are 34
Frozen, 65 Almost Frozen (largest category and smallest
distribution of all), 25 Focused Shot and Frozen projects,
which means that there is almost an inverse relationship
between population and surface of the box in the plot
(remember that Moderate projects are 29, Focused Shot
and Low are 20, and Active are 22 projects).

• The only box that spans a significant amount of surface
in Fig. 13 is the taxon with the smallest population,
Focused Shot and Low. However, there is no other taxon
really, around the area of its high values, (there are only
3 Focused Shot and Frozen projects above 55 attributes
of activity, and the entire taxon of Active, however at
different areas of active commits, i.e., height in the chart).

• Finally, the Active taxon,with its just 22 projects of high
activity, is very far apart from the rest. Both the location
of the projects in the 2D area of Fig. 13, and its statistical
tests, emphasize its separation from the other taxa.

VI. CONCLUDING REMARKS

In this study, we attack the problem of understanding the
characteristics of schema evolution by performing the largest
empirical study ever performed in the domain of Free Open
Source Software projects. Our contributions involve:

• A clear definition of the nomenclature and the important
measures of the problem.

• The collection of a significantly large dataset, with a
population of 195 studied projects (almost 20 times larger
than the largest study in the literature).

• The study of the heartbeat of schema evolution as well
as the identification of taxa of schema evolution (both
for the first time ever), with taxa being distinct classes of
archetypal behavior of a schema over its lifetime.

• The answering of several research questions around the
nature of schema evolution, for the first time in the related
literature (see next too).

Coming back to our original research questions, we can
summarize our findings as follows.

RQ1. Is schema evolution present extensively? For a very
large percentage of projects, schema evolution is practically



Figure 11. p-values of the Kruskal-Wallis test for the pairwise comparison of the taxa of our study: the lower left triangle refers to the active commits and
the upper right triangle to the total activity values.

Figure 12. Quartiles of activity and active commits for the different taxa.

absent. As already mentioned, out of the largest possible col-
lection of 327 projects that we came up, 40% had no evolution
whatsoever, 10% had different versions but no schema changes
at the logical level and 20% were almost frozen.

We believe that our empirical evidence is important exactly
because it refutes the traditional belief that schema evolution is
extensive (also reported in the literature, e.g. [11]) and replaces
it with a new perspective: schema evolution is mostly absent
from the typical Free Open Source Project, and emphatically
present only in a small percentage of projects with an active
profile of continuous schema maintenance. The massive and
widespread nature of this absence drives us to conjecture that
there is a strong possibility that the idiosyncrasy of schema
evolution is that this “absence” is not due to the lack of its
necessity, but rather due to its difficulty (see also [20])!

RQ2. Are there archetypal patterns of schema lives? For
the first time in the related literature, we define and study the
heartbeat and present patterns of schema evolution. Frozen
projects with no change whatsoever and Almost Frozen with
few active commits and small change constitute 17% and 33%
of the studied population – i.e., half the projects of the study.
Focused Shot and Frozen projects with almost no activity
other than a single spike of change arise to 13% and Focused
Shot and Low projects, with a couple of high-volume reeds
of evolution and less than 10 active commits overall another
10%. Projects of constant rate of schema maintenance involve
(a) Moderate projects, with less than 90 attributes changed in
their lifetime, and a fraction of 15% of the population, and,
(b) Active ones, with frequent change and high volumes of it,

amounting to an 11% of the population.

RQ3. What are the demonstrable properties of schema
evolution, in terms of volume, frequency and important char-
acteristics? One of our main contributions is the clear specifi-
cation of important measures of evolution. Fig. 4 summarizes
the most important of them. Volume of change is measured
in affected attributes (as the universal unit of change) that
can capture both table births and deaths, but also intra-table
changes. The number of commits of the DDL file and active
commits, that also include changes to it, is a demonstrator of
the frequency of change. Reeds and turf commits characterize
the density of change. Tables inserted and deleted, as well as
tables at start and end characterize the resizing of the schema at
a coarser level of detail. Specific questions around the behavior
of these measures are also answered.

• How is the amount and frequency of change demon-
strated? The frequency of change is really low. Out of
the 195 projects studied, 124 (64%) have 0 - 3 active
commits. The delta change in terms of tables is signifi-
cantly small in almost all categories except for the active
one (practically between zero and two tables in most
categories). Deletions are extremely rare, in particular.
Overall, with the exception of the active category, the
change in the number of tables is quite small.

• Is change mostly concentrated in few commits of focused
change? Focused commits of change do exist, and they
are also apparent in both moderate and active projects,
but also in low-activity projects (where although we do
not count reeds, there are small-volume active commits
that concentrate the small change of a project). However,
focused change is not a recurring practice. Most taxa
come with less than 2 reeds, and only active projects
practically surpassing this number.

Open paths for research. As already mentioned in [20], the
absence of industrial schema histories (and thus our reliance
on FOSS projects only) makes the problem of acquiring
publicly available schema histories from the industry quite an
improbable scenario. In the absence of such data, however, we
can continue research to test the existence of patterns at the
table level, to extract the treatment of constraints (esp., foreign
keys) in FOSS projects and to qualitatively study gravitation
to rigidity at more depth.



Figure 13. Double box plot for active commits and activity for the different taxa. The horizontal axis depicts the total activity (in number of affected attributes)
and the vertical axis depicts the number of active commits. Each taxon has a rectangle with the Q1 and Q3 quartiles at its edges, for both dimensions. A
cross formed by lines passing from the Q2 (median) for each dimension is also annotating the box of each taxon. The min and max values of each taxon for
the respective dimension mark the limits of each line. For example, for the moderate taxon, activity has: min: 11, Q1: 15, Q2: 23, Q3: 37.5, max 88, and,
active commits have: min: 4, Q1: 5, Q2: 7, Q3:10, Q4: 22. The active taxon is not shown, as its activity lies far away from the rest: Q1: 177, Q3: 5585 and
its active commits with Q1: 15 and Q3: 50.5.

REFERENCES

[1] M. Hartung, J. F. Terwilliger, and E. Rahm, “Recent advances in schema
and ontology evolution,” in Schema Matching and Mapping, ser. Data-
Centric Systems and Applications, Z. Bellahsene, A. Bonifati, and
E. Rahm, Eds. Springer, 2011, pp. 149–190.

[2] P. Manousis, P. Vassiliadis, A. V. Zarras, and G. Papastefanatos, “Schema
evolution for databases and data warehouses,” in 5th European Summer
School on Business Intelligence , eBISS 2015, ser. Lecture Notes in
Business Information Processing, vol. 253. Springer, 2015, pp. 1–31.

[3] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Automating the
database schema evolution process,” VLDB J., vol. 22, no. 1, pp. 73–98,
2013.

[4] K. Herrmann, H. Voigt, J. Rausch, A. Behrend, and W. Lehner, “Robust
and simple database evolution,” Inf. Syst. Frontiers, vol. 20, no. 1, pp.
45–61, 2018.

[5] R. E. Schuler and C. Kesselman, “A high-level user-oriented framework
for database evolution,” in 31st International Conference on Scientific
and Statistical Database Management, SSDBM 2019, Santa Cruz, CA,
USA, July 23-25, 2019. ACM, 2019, pp. 157–168.

[6] D. Sjøberg, “Quantifying schema evolution,” Information and Software
Technology, vol. 35, no. 1, pp. 35–44, 1993.

[7] C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo, “Schema evolution in
wikipedia: toward a web information system benchmark,” in Proceed-
ings of ICEIS 2008, 2008.

[8] A. Cleve, M. Gobert, L. Meurice, J. Maes, and J. H. Weber, “Understand-
ing database schema evolution: A case study,” Sci. Comput. Program.,
vol. 97, pp. 113–121, 2015.

[9] D.-Y. Lin and I. Neamtiu, “Collateral evolution of applications and
databases,” in Joint Intl. Annual ERCIM Workshops on Principles of
Software Evolution (IWPSE) and Software Evolution (Evol), 2009, pp.
31–40.

[10] S. Wu and I. Neamtiu, “Schema evolution analysis for embedded
databases,” in 2011 IEEE 27th International Conference on Data Engi-
neering Workshops, ser. ICDEW ’11, 2011, pp. 151–156.

[11] D. Qiu, B. Li, and Z. Su, “An empirical analysis of the co-evolution of
schema and code in database applications,” in 2013 9th Joint Meeting
on Foundations of Software Engineering, ser. (ESEC/FSE), 2013, pp.
125–135.

[12] P. Vassiliadis, M. Kolozoff, M. Zerva, and A. V. Zarras, “Schema
evolution and foreign keys: a study on usage, heartbeat of change and
relationship of foreign keys to table activity,” Computing, vol. 101,
no. 10, pp. 1431–1456, 2019.

[13] I. Skoulis, P. Vassiliadis, and A. V. Zarras, “Growing up with stability:
How open-source relational databases evolve,” Information Systems,
vol. 53, pp. 363–385, 2015.

[14] P. Vassiliadis, A. V. Zarras, and I. Skoulis, “Gravitating to rigidity:
Patterns of schema evolution - and its absence - in the lives of tables,”
Information Systems, vol. 63, pp. 24–46, 2017.

[15] P. Vassiliadis and A. V. Zarras, “Schema evolution survival guide for
tables: Avoid rigid childhood and you’re en route to a quiet life,” Journal
of Data Semantics, vol. 6, no. 4, pp. 221–241, 2017.

[16] M. Klettke, H. Awolin, U. Störl, D. Müller, and S. Scherzinger, “Un-
covering the evolution history of data lakes,” in IEEE International
Conference on Big Data, BigData 2017, Boston,A, USA, December 11-
14, 2017. IEEE Computer Society, 2017, pp. 2462–2471.

[17] S. Scherzinger and S. Sidortschuck, “An empirical study on the design
and evolution of nosql database schemas,” CoRR, vol. abs/2003.00054,
2020. [Online]. Available: https://arxiv.org/abs/2003.00054

[18] G. Gousios, “The ghtorent dataset and tool suite,” in Proceedings of the
10th Working Conference on Mining Software Repositories, MSR ’13,
San Francisco, CA, USA, May 18-19, 2013. IEEE Computer Society,
2013, pp. 233–236.

[19] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. Germán, and P. T.
Devanbu, “The promises and perils of mining git,” in 6th International
Working Conference on Mining Software Repositories, (MSR). IEEE
Computer Society, 2009, pp. 1–10.

[20] M. Stonebraker, R. C. Fernandez, D. Deng, and M. L. Brodie,
“Database decay and what to do about it,” Commun. ACM, vol. 60,
no. 1, p. 11, 2017. [Online]. Available: https://doi.org/10.1145/3014349


