
Adaptive Indexing for In-situ
Visual Exploration & Analytics

Stavros Maroulis 1,2 Nikos Bikakis 2 George Papastefanatos 2

Panos Vassiliadis 3 Yannis Vassiliou1

1 Nat. Tech. Univ. of Athens, Greece

2 IMSI Institute, ATHENA R.C., Greece

3 University of Ioannina, Greece

Intro

Common challenges in data exploration

– Large datasets that do not fit in main memory

– Users with limited skills in data management & processing

– Limited hardware resources (e.g., no access to a distributed environment)

– Traditional DBMS require full loading & indexing → long data-to-query time

In-situ Data Exploration

On-the-fly exploration & analysis of big raw data files e.g., csv, json

– Avoid full loading & indexing

– Progressive loading & indexing

- Recent works have focused on generic in-situ querying (mainly range
queries)

- In this work
- We study categorical-based operations in in-situ scenarios

- Group-by Operations: essential for most-known visualization types

- Categorical Filters: effective exploration (e.g., faceted exploration)

Contributions

– Formulation of exploratory & analytical operations over categorical
attributes as data-access operations

– CET: a main-memory lightweight tree structure
– organizes objects & computes statistics based on categorical attributes

– VETI: a hybrid index that combines tile & tree structures
– supports in situ 2D exploration & analytics over categorical, numeric, spatial

attributes

– Experimental evaluation using real & synthetic datasets

Conclusions

our technique outperforms competitors both in execution time (~40×
faster) & I/O's (~3 orders of magnitude)

Working Scenario

Raw
Data
File

On-the-fly
Processing &

Indexing

adapt

indexes

render pan zoom filter analysisdetails

?
Visual Operations

(c) Working Scenario

2D exploration

 1 4 8

ok

oj
oi

oj
oi

ok

analysis

Abrand = {Apple, Huawei, Samsg, Xiaomi}

Aprovider = {AT&T, Veriz}

Anet = {3G, 4G, 5G}

(b) Categorical Attributes Domains

(a) Raw Data File Sample

Lat Long Signal Width Brand Provider Net

 o1 21 11 3 7 Samsg Veriz 3G

 o2 29 18 1 4 Samsg Veriz 4G

 o3 11 1 7 6 Xiaomi AT&T 4G

 o4 19 7 2 3 Huawei AT&T 5G

 o5 23 12 4 8 Huawei Veriz 5G

O
b

je
ct

s

Attributes

1

2

3 4

5

6

Exploratory Query

User operations → exploratory queries (data-access operations over index)

Exploratory query
– Selection clause

– 2D range query over X and Y attributes

– Filter clause
– conditions over the non-axis attributes

– Details clause
– non-axis attributes to retrieve

– Group-by clause
– attributes based on which to group results

– Analysis clause
– aggregate functions

Categorical Exploration Tree (CET)
Overview

–Lightweight, memory-oriented, trie-like tree structure

–Level-based organization
– Each tree level corresponds to a different categorical attribute

–Based on the tree hierarchy, each node is associated with a
set of objects based on the node path

Categorical Exploration Tree (CET)
Leaf nodes

Object Entries: ⟨𝑎𝑖,𝑥, 𝑎𝑖,𝑦, 𝑓𝑖 ⟩
– 𝑎𝑖,𝑥, 𝑎𝑖,𝑦 being the values of the axis attributes

– 𝑓𝑖 the offset (a hex value) of 𝑜𝑖 in the raw file

Synopsis Metadata
– algebraic aggregate functions over one or more non-axis numeric

attributes

e.g., sum, mean, sum of squares of deltas, etc.

Categorical Exploration Tree
Example

AT&TVeriz

Apple

Samsg Huawei

Xiaomi

Apple

Samsg

Huawei

Xiaomi

P
ro

vi
d

er
le

ve
r

B
ra

n
d

le
ve

l

o1 o2 o5 o3 o4

a

b c

d e f g h i j k

c.S = AT&T, *

c. = {o3, o4}

(a) CET Tree

d.S = Veriz, Samsg
d. = {o1, o2}

object entries d.

o1 : 21 11 f1

o2 : 29 18 f2

 Lat Long File off.

metadata d.

 max(Width)=7

 Width=11

 Width2=65

 min(Signal)=1

 Signal=4

 Signal2 =10

Signal Width

n = 2

#Obj Signal & Width

 Signal Width=25

(b) Contents of Leaf d

Leaf d

VALINOR Index

– In-memory tile-based multilevel index

– Raw file data objects are organized into hierarchy of tiles

– In each level of the hierarchy, all tiles are disjoint & can belong to
only one parent tile

– Constructed on-the-fly

– Incrementally adjusted based on user interactions

– User operations may split a tile into more fine-grained ones

More details: Bikakis N. et al. In situ Visual Exploration over Big Raw Data

Information Systems, 95, 2021

• Combines the VALINOR tile-based index with the CET tree

• Supports categorical based operations & analytics

• Each leaf tile is associated with a CET tree

• Tile objects are stored in the leaf nodes of its CET tree

Lat

 10 20 30 Long

o1

o2

o5

o4

o3

10

20

tZ

Tile tz

tz.ILat = [20, 30)

tz.ILong = [10, 20)

intervals

child tiles =

Tree tz.h

Huawei

AT&T

Xiaomi

a

c

o3

j o4
k

tk

object entries k.

Contents of leaf k

...

metadata k.
...

VETI Index

VETI Initialization

– Constructed on-the-fly based on the first user interaction

– Tile structure Initialization
– Locality-based probabilistic initialization

– More fine-grained near the initial query

– Smaller tiles more likely to be fully overlapped by window query and
avoid file accesses by utilizing metadata

– Insert objects (single file scan)

For each object:
– We find the tile it belong to based on it’s X, Y values

– We insert it into the tile’s CET tree based on the categorical attributes

Query Processing and Incremental Adaptation

Update
Metadata

Compute
Analysis

Functions

Read Values
from File

Find
Tiles-Trees

Tiles-Query
Spatial Relations

Result

Initialized
Index

Query

File

Split Tiles &

Splitting criteria

Splitting method

Reorganize
Objects

Identify Objects'
Missing Values

1
2

43

5 6

Experimental Analysis Setting

Both real and synthetic datasets:

– NYC Yellow Taxi Trip Records (TAXI)
165M objects, 18 attributes, 26 GB

– Synthetic CSV files: 100M objects - uniform distribution
100M objects, 10 & 50 attributes (11 & 51 GB, respectively)

Competitors

– VALINOR (tile-based index without the CET tree)

– MySQL

– PostgresRaw (platform for in situ querying over raw data)

Initialization Time
File Parsing, Index Construction & 𝑄0 Evaluation

Exploration Scenario: Execution Time

Conclusions

VETI Index
– lightweight main memory index for in-situ 2D visual exploration & analysis

of large raw data files

– Tile-based indexing + CET trees for supporting operations on categorical
attributes

– Constructed on-the-fly & adapted based on user interaction

Experimental evaluation using real & synthetic datasets
our technique outperforms competitors both in execution time & I/O’s

➢ RawVis System: Open source tool @ SIGMOD 2021

Thank you!

https://visualfacts.imsi.athenarc.gr

This research is funded by the project VisualFacts (#1614) - 1st Call of the Hellenic Foundation for

Research and Innovation Research Projects for the support of post-doctoral researchers

