
The Traveling Analyst Problem:
Definition and preliminary study

Alexandre Chanson, Ben
Crulis, Nicolas Labroche,
Patrick Marcel, Verónika

Peralta
University of Tours, France

firstname.lastname@univ-tours.fr

Stefano Rizzi
University of Bologna, Italy

stefano.rizzi@unibo.it

Panos Vassiliadis
University of Ioannina, Greece

pvassil@cs.uoi.gr

ABSTRACT
This paper introduces the Traveling Analyst Problem (TAP), an
original strongly NP-hard problem where an automated algo-
rithm assists an analyst to explore a dataset, by suggesting the
most interesting and coherent set of queries that are estimated to
be completed under a time constraint. We motivate the problem,
study its complexity, propose a simple heuristic under simplify-
ing assumptions for approximating it, and run preliminary tests
to observe the behavior of this heuristic.

1 INTRODUCTION
Interactive data analysis (IDE) [10, 19] is an iterative process con-
sisting in executing an action (e.g., a query or a pattern extraction
algorithm) over the data, receiving the result and deciding what
query comes next. It is a challenging task that a number of pre-
vious works aimed at facilitating (see e.g., [5, 19]). Automating
such a process raises a number of challenges [16, 25]: how to
determine the direction to follow in often very large and disori-
enting datasets, how to decide what is the best query to apply,
how to determine if a result is interesting, how to tell a story
with the data resulting from the analysis [8, 9], etc.

If we define a data story as a coherent sequence of queries
that answer a user goal, we can express this problem as the
computation of the most interesting and coherent data story that
can be obtained within a reasonable time. Even with simplifying
assumptions, like restricting to exploratory OLAP queries over
a multidimensional schema (e.g., a star-schema, which allows
navigating hierarchically-structured data with a low formulation
effort) and giving a particular starting point, this problem remains
inherently highly combinatorial.

This paper presents a preliminary study of this problem, that
we name the Traveling Analyst Problem (TAP). Similarly to auto-
mated machine learning, which aims at finding the best model
on a dataset given a time budget (see e.g., [7]), TAP aims at (i)
finding, from a very large set of candidate queries, a subset of
queries that maximizes their interest within a limited time bud-
get, and (ii) ordering them so that they narrate a coherent data
story. More formally, each query is associated to an interest score
as well as to an execution cost. A distance between queries is
used to order the queries so that the transition cost between two
consecutive queries is minimized. Interestingly, a study of the
state-of-the-art reveals that TAP has not been studied in the Op-
erations Research community, while being close to two classical
optimization problems (the Traveling Salesman Problem and the
Knapsack Problem) [11].

©Copyright 2020 for this paper held by its author(s). Published in the proceedings of
DOLAP 2020 (March 30, 2020, Copenhagen, Denmark, co-located with EDBT/ICDT
2020) on CEUR-WS.org. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).

Practically, we envision TAP as being at the core of an IDE
system being used by data analysts, like the one described in [16].
Analysts would not directly enter TAP parameters, but would
use storytelling mechanism instead (e.g., [8]) or patterns like “I
want a quick short report around this query result” or “I want an
in-depth analysis in this particular zone of the cube”.

The contributions of this preliminary effort include the for-
malization of TAP as well as the proof of its strong NP-hardness
(Section 2), an approximation algorithm (Section 3), and some
preliminary tests assessing the parameter sensitivity, execution
time, and closeness to the optimal of our heuristics (Section 4).
Section 5 concludes the paper by discussing future research.

2 PROBLEM FORMULATION AND
COMPLEXITY

In this section, we formalize TAP and show its NP-hardness.

2.1 Problem formulation
TAP is formulated as:

Input: Given a set of n queries, a function interest estimat-
ing an interestingness score for each query, a function cost
estimating the execution cost of each query, and a function
dist estimating a cognitive distance between queries,

Do: find a sequence ofm ≤ n queries (without repetition)
S.T.: the sequence has the following properties:
(1) it maximizes the overall interestingness score,
(2) the sum of the costs does not exceed a user-specified

time budget t ,
(3) it minimizes the overall cognitive distance between the

queries.

We assume that a storytelling mechanism (e.g., [8]) generates
a set of candidate queries towards producing a story. Thus, our
deliberations start with a set of n candidate queries whose exe-
cution has to be optimized. Formally, let Q be a set of n queries,
each associated with a positive time cost cost(qi) and a positive
interestingness score interest(qi). Each pair of queries is associ-
ated with a metric dist(qi ,qj) for their cognitive distance. Given
a time budget t , the optimization problem consists in finding
a sequence ⟨q1, . . . ,qm⟩ of queries, qi ∈ Q , without repetition,
withm ≤ n, such that:

(1) max
∑m
i=1 interest(qi),

(2)
∑m
i=1 cost(qi) ≤ t

(3) min
∑m−1
i=1 dist(qi ,qi+1),

The decision problem associated with this optimization prob-
lem is to decide if such a sequence exists.

2.2 Complexity
TAP can be related to two families of classical NP-hard opti-
mization problems: (i) the Knapsack problem, which consists
in picking weighted items from a set S such that the sum of
their values is maximum, without exceeding a given size [13],
corresponding to constraints (1) and (2); and (ii) the traveling
salesman problem (TSP), which aims at finding the shortest route
that visits all cities and returns to the initial one [1] and is close
to constraint (3).

In our context, the former problem would find the most inter-
esting queries given a time budget but, in its classical formulation,
it would miss the ordering of queries. A variant [4] includes the
position of each object in the Knapsack via the definition of a
function (which is constant in the case of classical Knapsack).
While this problem is closer to TAP, it involves a function that
only relies on the position (or order) of an object in the Knapsack,
and not on the positions of objects previously picked.

TAP could also be modeled as a TSP problem with particu-
lar constraints: (i) the TSP cities are the queries; (ii) inter-city
distances correspond to the cognitive distance between queries,
whose total must be minimized. However, differently from classi-
cal TSP, TAP operates under strong constraints: (iii) it is possible
to visit only a subset of cities, each city has a weight correspond-
ing to the action’s interest, whose total is to be maximized; and
(iv) each city has a duration of visit corresponding to the cost of
the query, whose sum must not go beyond a given time budget.

Interestingly, this optimization problem has not been studied
in the literature yet. The variant of the TSP called TSP with profit
(TSPwP), described by Feillet & al. in [6], is closer to our problem,
but still differs in two aspects: (i) it looks for circuits and does
not reject any vertex in the solution, and (ii) it gives a limit in
terms of the travel distance (inter-queries distance in our case)
while our limit is on the cost of queries (the duration of visit).

An in-depth study of the TAP complexity is beyond the scope
of this paper. However, we can easily show that our problem is
strongly NP-hard since the TSP is a particular case of it. Indeed, if
the time budget t is high enough, i.e., all queries can be selected,
then TAP is a TSP. This result means that, unless P=NP, the TAP
problem can only be solved to optimality by algorithms with a
worst-case time complexity in O∗(cn), with c a positive root and
n the size of Q .

2.3 Size of the problem and our naive
approach

We now discuss the size n of TAP (the number of queries in
Q) since the size of an optimization problem usually impacts
the choice of resolution approaches. Theoretically, given a cube
schema, all non empty queries over this schema could be con-
sidered. Practically, it is reasonable to consider that this set is
generated from a given initial query q0.

In what follows, we restrict to star join queries over a star
schema of the form q = (д, s,m) where д is the query group-by
set, s is a set of selections, andm is a set of measures, all 3 sets
being pairwise disjoint. Transforming a query into another with
a simple OLAP operation means either changing the group-by
set д, changing a selection in s , or changing a measure inm.

Even restricting Q to the set of queries that can be generated
by transforming an initial query q0 = (д0, s0,m0)with a sequence
of simple OLAP operations, the size ofQ is potentially very large,
not allowing to look for an exact solution. A rough estimate of
the number of queries that can be generated from q0 by applying

k OLAP operations, i.e., the size of Q , can be done by assuming
for simplicity that dimensions only have linear hierarchies (no
branches):

|Q | = ((Πihi − 1) + (|2D | − 1) + (|2M | − 1)) · k

where hi is the number of levels in dimension i , D is the union of
the active domains of all levels, andM is the set of all measures
in the cube. Changing the query group-by set means picking one
group-by set among all the possible ones, excluding the current
oneд0. Changing the selected valuesmeans picking a set of values
in the active domain, excluding the current one s0. Changing the
measure set means picking a set of measures among all possible
sets of measures excluding the current onem0.

In order to approach solutions of TAP for arbitrary large sets of
queries, we adopt the following strategy. We first use a heuristic
to solve the Knapsack problem and obtain a subset of queries,
using estimated costs and interests, so that the estimated costs
satisfy the time budget. Then, we order the queries by increasing
estimated cost and evaluate them. We periodically check the
difference between the time budget constraint and the elapsed
time: if it is negative (too much time is taken) we redo a Knapsack
to reduce the set of chosen queries; otherwise (we can benefit
from additional time), we redo a Knapsack adding previously not
taken queries. Finally, we determine an order on the chosen set of
queries so that cognitive distance is minimized, using a heuristic
to solve the TSP.

3 APPROXIMATION ALGORITHM
Before presenting our approach we discuss its parameters, i.e.,
the three functions for cost, interest, and distance, and the set Q
of queries. Choosing the best three functions or defining the best
set of queries Q is outside the scope of this paper. Note that a
framework for learning cell interestingness in a cube is the topic
of a recent paper [17]. We give examples in this section, and we
indicate precisely in the tests of Section 4 the parameters used.

3.1 Cost
The cost of a query is related to its execution time. Classically,
this cost can be estimated by a query optimizer before the exe-
cution of the query. We therefore consider that we can measure
a query cost in two ways, to obtain an a priori cost (e.g., using
the RDBMS optimizer) and an a posteriori cost (the actual query
execution time). The a priori cost is used to decide if a query can
be included or not in the solution, while the a posteriori cost is
used to compute the elapsed time.

3.2 Interestingness measure
A crucial part of TAP lies in the definition of an interestingness
measure to determine the optimal subset of queries. To quickly
decide if a query is interesting, it is preferable that this measure
can be computed before the actual evaluation of the query by
the DBMS, therefore that it relies on the text of the query. In this
sense, we propose to follow the idea of subjective interestingness
measure of a pattern as developed by De Bie in the context of Ex-
ploratory Data Mining (EDM) [2] and to extend it to measure the
subjective interestingness of a query as expressed by a coherent
set of query parts.

In the information-theoretic formalism proposed by De Bie, in-
terestingness is conditioned by the prior knowledge belie f (p) on
a pattern p of the data space, which is expressed as a probability

distribution over the set of patterns P . The interestingness mea-
sure IM is derived by normalizing the belief by the complexity
of the pattern as follows:

IM(p) =
− log(belie f (p))
complexity(p)

(1)

In the context of BI, [3] introduces an innovative approach
to learn the belief distribution associated to query parts. The
approach considers a connected graph of query parts based on
the schema of the cube and the past usage of query parts, and uses
a random walk on this graph to produce the expected long-term
distribution over query parts. Interestingly, by construction, the
probabilities obtained for each query part are independent, which
allows to propose a simple formulation for the interestingness
measure of a query q = (д, s,m) based on its query parts p ∈

(д ∪ s ∪m):

IM(q) =
−
∑
p∈(д∪s∪m) log(belie f (p))

|д | + |s | + |m |
(2)

3.3 Cognitive distance
To order a set of queries we draw inspiration from Hullman et al.
[9] who estimate the cognitive cost of transiting from the result
of one query to the result of another. We use this cost as a proxy
for cognitive distance. Interestingly, this cost can be estimated
without having evaluated the query. Using controlled studies of
peoples’ preferences for different types of single visualization-
to-visualization transitions, Hullman et al. [9] proposed a transi-
tion cost model that approximates the cognitive cost of moving
from one visualization to the next in a sequence of static views.
The transition cost is defined as the number of transformations
required to convert the data shown in the first view to the sec-
ond. A single transformation is defined as a change to one of
the data fields shown from the first view to the second. We use
this cost model to define a simple distance between queries as
the Jaccard distance between sets of query parts. Formally, let
q1 = (д1, s1,m1) and q2 = (д2, s2,m2) be two queries; we define:

dist(q1,q2) = 1 −
|(д1 ∪ s1 ∪m1) ∩ (д2 ∪ s2 ∪m2)|

|д1 ∪ s1 ∪m1 ∪ д2 ∪ s2 ∪m2 |
(3)

3.4 Set of queries
TAP is defined for a given setQ of queries. Practically, we consider
that this set is generated from a given initial query, q0. This initial
query can be interpreted as a particular moment in an interactive
analysis where the user considers what is retrieved is important
and worth exploring “around” it, but has too many directions
to explore. In what follows, we consider this initial query as a
parameter of our approach.

Defining the set of queries worth exploring after q0 should
be rooted in the earlier OLAP literature, especially automatic
reporting [8], automatic cube exploration [12], discovery driven
analysis [22, 23], and more generally realistic OLAP workloads
[21]. In the Cinecubes approach [8], the authors consider two
types of queries: (i) queries for values similar to those defining
the selection filters of the initial query (i.e., siblings of ancestors),
and (ii) direct drill-downs into the dimensions of the initial re-
sult, one dimension at a time. In the DICE approach [12], the
authors consider direct roll-up queries, direct drill-down queries,
sibling queries (a change of a dimension value, i.e., coordinate,
in a dimension), and pivot queries (a change in the inspected

dimension). In the DIFF and RELAX operators [22, 23], the au-
thors consider direct or distant drill-down (resp. roll-up) queries
that detail (resp. aggregate) two particular cells of a query result.
Finally, the CubeLoad OLAP workload generator [21] is based
on patterns modeling realistic OLAP sessions, that could be used
to generate the queries of Q .

Ideally, the set Q should include all these potentially relevant
follow-up queries to q0. For the present work we will consider
different sets varying the generation of roll-up, drill-down, and
sibling queries (see Section 4).

3.5 A simple heuristic for approximating TAP
Algorithm 1 presents our heuristic, named Reopt , since it is based
on a naive re-optimization principle. Note that the generation of
the setQ from an initial queryq0 is considered as a pre-processing
step. Algorithm 1 takes advantage of the fact that functions in-
terest, cost, and distance can be computed solely on the basis of
the query expression (and not on the result of the queries).

First, Algorithm 1 splits the time budget t in tk (time for the
global query execution) and to (time for other tasks, like solving
the Knapsack, solving the TSP, etc.). Then the Knapsack is solved
(line 2), and the queries selected are ordered by their estimated
evaluation cost (line 3). Queries are then executed (line 6) and,
after each execution, the elapsed time is checked. If it is esti-
mated that the time budget tk will not be respected (line 9), then
another Knapsack is triggered with the remaining time. If it is
estimated that the time budget will not be completely spent (line
13), then another Knapsack is triggered with all the remaining
queries. Finally, once all the queries of the chosen set of queries
are executed, the TSP is solved. It is easy to verify that Algorithm
1 converges: the set K is at worst Q and, at each iteration of the
for loop (line 5-16), the set E is augmented with one more query
of K while such query is removed from K .

Note that, when actually executing the queries, Reopt attaches
a particular importance to the estimated cost (see for instance
Line 3) compared to interest or distance. The main cause behind
this decision is due to the time budget that has to be respected:
had we given priority to distance from q0 or interest, we might
have executed first costly queries or we might have many ties
(since many queries would be at the same distance from q0).
Although alternative formulations are also possible, due to the
sensitivity of time efficiency in user interactions (keep in mind
that we operate in the context of exploratory data analysis), it is
imperative that the other factors do not guide query execution
to take up too much time.

Implementation-wise, the Knapsack problem is solved using
a Fully Polynomial Time Approximation that gives a bound on
the divergence from the optimum [14], and for the TSP using the
heuristic of [15].

4 PRELIMINARY EXPERIMENTS
Our preliminary experiments aim at understanding the behavior
of our naive algorithm Reopt . To this end, we have compared
it to two other algorithms: a brute force one that looks for the
optimal solutions (named optimal), which obviously works only
on small instances of TAP, and a simplistic one that consists of
solving the Knapsack, then solving the TSP, and then executing
the queries (namedK +TSP). All the algorithms are implemented
in Java 12 and run on a Core i7 with 16GB RAM under Linux
Fedora. The code is available via Github (https://github.com/
OLAP3/CubeExplorer). Note that, in all tests, costs are estimated

https://github.com/OLAP3/CubeExplorer
https://github.com/OLAP3/CubeExplorer

Algorithm 1: Reopt: simple re-optimization heuristic for
TAP approximation
Data: An instance (Q, interest(), dist(), cost(), t) of TAP
Result: A sequence of queries

1 Split t = tk + to
2 K = knapsack(Q, tk)

3 sort K by increasing cost
4 E = ∅

5 for each query q ∈ K do
6 execute q
7 K = K \ {q}

8 E = E ∪ {q}

9 if elapsedTime +
∑
q∈K cost(q) > tk then

10 //we may have less time than expected
11 K = knapsack(K, tk − elapsedTime)

12 sort K by increasing cost
13 else if elapsedTime +

∑
q∈K cost(q) < tk then

14 //we may have more time than expected
15 K = knapsack(Q \ E, tk − elapsedTime)

16 sort K by increasing cost

17 S = TSP(E); // construct sequence
18 return S

Figure 1: Optimization time

using not the estimation coming from the query optimizer of the
DBMS but a linear regressive model based on the query length
in ASCII, the number of tables, the number of projections, the
number of selections, and the number of aggregations of the SQL
star join query. This is because our empirical tests have shown
that this model was more accurate than the raw estimates given
by the query optimizer.

4.1 Optimization time
In this first test, we use a simple synthetic cube under the schema
of the SSB benchmark [20], with an instance of 1GB under Mari-
aDB, produced with the TPC-H data generator. The cube has
only one fact table and 5 dimension tables, which enables to keep
the number of queries in Q under control for comparing Reopt
and K +TSP with optimal . Over this schema, we have used the
CubeLoad generator [21] to generate 40 q0 queries. These queries
are used to generate Q with direct roll-up or drill down queries,
i.e., Q can vary between 5 and 10.

Figure 2: Total interestingness

Figure 1 shows, on a logarithmic scale, the average time taken
by the 3 algorithms to optimize (not counting the query execu-
tion time) by different sizes of Q with time budget varying from
1 second to 10 seconds for Reopt and K + TSP . Results are as
expected, with K +TSP outperforming its two competitors, since
it only runs once Knapsack solving. Notably, the time taken by
Reopt remains under control.

To assess the benefit of our re-optimization step (line 9-16
of Algorithm 1), we counted the number of times each branch
of the if statement in line 9 of Reopt is taken, i.e., the number
of times for negative (lines 10-12) and for positive (lines 14-16)
re-optimizations. We have observed that both branches are used,
with positive re-optimizations being rarely done compared to neg-
ative ones; precisely, over 399 total runs, positive re-optimizations
are done 116 times while negative re-optimizations are done 851
times. This demonstrates that Reopt can adaptively respond to
inaccurate estimates.

4.2 Distance and interestingness vs time
budget

For the next series of tests, we use a cube issued by a French
project on energy vulnerability. It is organized as a star schema
with 19 dimensions, 68 (non-top) levels, and 24 measures, and it
contains 37,149 facts recorded in the fact table. The cube is stored
in SQL Server. We use 19 real user explorations over this cube
(navigation traces generated by master students when analysing
data during a course) and pick as q0 the first query of the explo-
rations. For each of these queries, we generateQ by rolling-up q0
in a dimension, drilling down q0 in a dimension, or computing
a sibling query in a dimension. We use this cube and set Q to
obtain more realistic instances of TAP. Precisely, |Q | ranges from
29 to 149 queries for these tests. Over these sets Q we run Reopt
and K +TSP and observe how total interestingness and average
distance between queries change when increasing time budget t
from 500 milliseconds to 5 seconds.

Figures 2 and 3 show the results. It can be seen that Reopt
outperforms the simplistic K +TSP in terms of interestingness,
which illustrates the benefit of our re-optimization heuristic,
while both algorithms achieve comparable average distance.

4.3 Unused time
In this last test, using the same cube and protocol as in the previ-
ous subsection, we want to understand if the budget time is used
properly.

Figure 3: Average distance

Figure 4: Unused time and candidate queries left

Figure 4 plots against different time budgets the proportion of
unused time versus the number of candidate queries left in Q to
execute. As we can see, regardless of the budget, our algorithm
manages to take advantage of all the time available unless all
queries of the Q have been explored, in which case the ratio of
unused time increases. On the contrary, the K +TSP approach,
which is unaware of the possible gain in executing the other
queries, has a larger ratio of unused time and does not manage
to explore completely Q . The absence of idle time clearly proves
the advantages of our adaptive re-optimization heuristic over the
static K +TSP method, which cannot compensate for the errors
in the prediction of the cost, nor ensure that the execution time
is near to the time budget.

5 CONCLUSION
This paper introduced the Traveling Analyst Problem (TAP), the
problem of computing the most interesting and coherent data
story that can be obtained within a reasonable time. We formalize
the problem, show its strong NP-hardness and propose a heuristic
for finding approximate solutions to it. Our preliminary experi-
ments show that a heuristic based on simple re-optimization is a
promising direction to obtain acceptable solutions.

We believe that TAP opens many interesting research direc-
tions. Obviously, the first step is an in-depth theoretical study
of TAP, to understand which types of optimization algorithms
are more appropriate. Importantly, TAP should be investigated

in the context of data exploration, which means that optimiza-
tion algorithms should take advantage of classical data manage-
ment optimizations, like re-optimization (e.g., [18]), and that TAP
should be declaratively formulated, for instance by having start-
ing points expressed in an intentional fashion (e.g., [24]). User
tests should be conducted for further evaluating the approach.
Finally, we also note that the definition of TAP is general, leaving
room for variants, e.g., changing the definition of queries (e.g.,
from non-OLAP SQL queries to more complex actions involving
queries and pattern mining or statistical tests), as well as chang-
ing cost (e.g., using self-adjusting cost model), interest (e.g., using
statistics or data sampling), and distance functions.

Acknowledgment. The authors would like to thank Vincent
T’Kindt for his insights on TAP complexity.

REFERENCES
[1] David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook.

The Traveling Salesman Problem, A Computational Study. Princeton Series in
Applied Mathematics. Princeton UP, 2006.

[2] Tijl De Bie. Subjective interestingness in exploratory data mining. In Proc. of
IDA, pages 19–31, 2013.

[3] Alexandre Chanson, Ben Crulis, Krista Drushku, Nicolas Labroche, and Patrick
Marcel. Profiling user belief in BI exploration for measuring subjective inter-
estingness. In Proc. of DOLAP, 2019.

[4] Fabián Díaz-Núñez, Franco Quezada, and Óscar C. Vásquez. The knapsack
problemwith scheduled items. Electronic Notes in DiscreteMathematics, 69:293–
300, 2018.

[5] Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis, and Naushin Shaikh.
QueRIE: Collaborative database exploration. TKDE, 26(7):1778–1790, 2014.

[6] Dominique Feillet, Pierre Dejax, and Michel Gendreau. Traveling salesman
problems with profits. Transportation Science, 39(2):188–205, 2005.

[7] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springen-
berg, Manuel Blum, and Frank Hutter. Efficient and robust automated machine
learning. In Proc. of NIPS, pages 2962–2970, 2015.

[8] Dimitrios Gkesoulis, Panos Vassiliadis, and Petros Manousis. Cinecubes:
Aiding data workers gain insights from OLAP queries. IS, 53:60–86, 2015.

[9] Jessica Hullman, Steven M. Drucker, Nathalie Henry Riche, Bongshin Lee,
Danyel Fisher, and Eytan Adar. A deeper understanding of sequence in
narrative visualization. TVCG, 19(12):2406–2415, 2013.

[10] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of
data exploration techniques. In Proc. of SIGMOD, pages 277–281, 2015.

[11] D.S. Johnson and M. Garey. Computers and Intractability. W.H.Freeman, 1979.
[12] Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga, and Arnab Nandi.

Distributed and interactive cube exploration. In Proc. of ICDE, pages 472–483,
2014.

[13] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems.
Springer, 2004.

[14] Katherine Lai and M Goemans. The knapsack problem and fully polynomial
time approximation schemes (fptas). Technical report, Massachusetts Institute
of Technology, 2006.

[15] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res., 21(2):498–516, 1973.

[16] Patrick Marcel, Nicolas Labroche, and Panos Vassiliadis. Towards a benefit-
based optimizer for interactive data analysis. In Proc. of DOLAP, 2019.

[17] Patrick Marcel, Verónika Peralta, and Panos Vassiliadis. A framework for
learning cell interestingness from cube explorations. In Proc. of ADBIS, pages
425–440, 2019.

[18] Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman, and
Hamid Pirahesh. Robust query processing through progressive optimization.
In Proc. of SIGMOD, pages 659–670, 2004.

[19] Tova Milo and Amit Somech. Next-step suggestions for modern interactive
data analysis platforms. In Proc. of KDD, pages 576–585, 2018.

[20] Patrick E. O’Neil, Elizabeth J. O’Neil, Xuedong Chen, and Stephen Revilak.
The star schema benchmark and augmented fact table indexing. In Proc. of
TPCTC, pages 237–252, Lyon, France, 2009.

[21] Stefano Rizzi and Enrico Gallinucci. CubeLoad: A parametric generator of
realistic OLAP workloads. In Proc. of CAISE, pages 610–624, 2014.

[22] Sunita Sarawagi. Explaining differences in multidimensional aggregates. In
Proc. of VLDB, pages 42–53, 1999.

[23] Gayatri Sathe and Sunita Sarawagi. Intelligent rollups in multidimensional
OLAP data. In Proc. of VLDB, pages 531–540, 2001.

[24] Panos Vassiliadis, Patrick Marcel, and Stefano Rizzi. Beyond roll-up’s and
drill-down’s: An intentional analytics model to reinvent OLAP. IS, 85:68–91,
2019.

[25] AbdulWasay,Manos Athanassoulis, and Stratos Idreos. Queriosity: Automated
data exploration. In Proceedings of IEEE International Congress on Big Data,
pages 716–719, New York City, NY, 2015.

	Abstract
	1 Introduction
	2 Problem formulation and complexity
	2.1 Problem formulation
	2.2 Complexity
	2.3 Size of the problem and our naive approach

	3 Approximation algorithm
	3.1 Cost
	3.2 Interestingness measure
	3.3 Cognitive distance
	3.4 Set of queries
	3.5 A simple heuristic for approximating TAP

	4 Preliminary experiments
	4.1 Optimization time
	4.2 Distance and interestingness vs time budget
	4.3 Unused time

	5 Conclusion
	References

