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ABSTRACT
Characteristic sets (CS) organize RDF triples based on the set
of properties associated with their subject nodes. This concept
was recently used in indexing techniques, as it can capture the
implicit schema of RDF data. While most CS-based approaches
yield significant improvements in space and query performance,
they fail to perform well when answering complex query work-
loads in the presence of schema heterogeneity, i.e., when the
number of CSs becomes very large, resulting in a highly parti-
tioned data organization. In this paper, we address this problem
by introducing a novel technique, for merging CSs based on their
hierarchical structure. Our method employs a lattice to capture
the hierarchical relationships between CSs, identifies dense CSs
and merges dense CSs with their ancestors, thus reducing the size
of the CSs as well as the links between them.We implemented our
algorithm on top of a relational backbone, where each merged
CS is stored in a relational table, and we performed an extensive
experimental study to evaluate the performance and impact of
merging to the storage and querying of RDF datasets, indicating
significant improvements.

1 INTRODUCTION
The Resource Description Framework1 (RDF) and SPARQL Pro-
tocol and RDF Query Language2 (SPARQL) are W3C recommen-
dations for representing and querying data on the semantic web.
The semantic web has been established as a source of diverse
datasets from a multitude of domains, such as life sciences, sta-
tistics, finance, open science and health. Wide adoption has led
to increasingly larger dataset sizes, and at the same time com-
plex analytical queries have started to emerge, reflecting the ever
increasing recognition of value of analytical processing in the
modern data-centric economy. In light of this, RDF data manage-
ment methods are calling for improvements in the performance
of RDF storage and querying engines, as has been discussed in
recent works, where state-of-the-art RDF engines are found to be
very efficient in simple workloads, but not efficient enough when
it comes to more complex query workloads [17][16][9][12].

In response to this limitation, recent works have shown that
extraction and exploitation of the implicit schema of the data can
be beneficial in both storage and SPARQL query performance
[9][12]. In order to organize on disk, index and query triples effi-
ciently, these efforts heavily rely on two structural components
of an RDF dataset, namely (i) the notion of characteristic sets (CS),
i.e., different property sets that characterize subject nodes, and
(ii) the join links between CSs. Formally, given an RDF dataset D,

1https://www.w3.org/RDF/
2https://www.w3.org/TR/sparql11-overview/
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and a subject node s , the characteristic set cs(s) of s is defined as
follows [13]:

cs(s) = {p | ∃o : (s,p,o) ∈ D}

In plain words, a CS is the set of attributes (or RDF properties)
of a given subject node. Abstracting from RDF triples to their
CSs, an RDF graph can be represented on the structural level by
a graph containing CSs as nodes, and links between CSs as edges,
where a link between two CSs exists whenever a link between
two subject nodes exists in the original RDF graph. Due to the
ability to represent all of the properties of a subject node with a
single set, rather than multiple triples, CSs have been thoroughly
used as a means to optimize query planning, storage, indexing
and query processing [5, 9, 12, 13, 16]. In their most general
form, they are used as the basis for mapping RDF to a relational
structure, where each CS forms a relational table. An illustration
of this mapping can be seen in Figure 1. There are two entities,
Alice and Claire, each represented in an RDF graph as a node. The
properties of these two nodes are (a) their type, (b) the company
for which they work and (c) their supervisor. The set of these tree
properties, {rdf:type, worksFor, supervises}, forms the characteristic
set for these two nodes. The direct representation as a relation
is depicted at the bottom of Fig. 1, with the characteristic set
becoming the attributes of the relation.

Figure 1: A simple RDF graph consisting of a single char-
acteristic set, c1, and its resulting table.

However, a mapping from RDF to the relational space is not
always helpful, as the structural looseness that is allowed in the
RDF world can translate to multiple, heterogeneous CSs that
represent skewed distributions of triples. For example, instead
of the homogeneity of the graph in Figure 1, where all of the
nodes share the structure, i.e., the same CS, consider the case
of Figure 2(a) where nodes are described by four different CSs.
In fact, it is frequent,that there exist many different CSs within
the same dataset, representing varying internal structure for
the nodes of the source graph. This schema heterogeneity in
loosely-structured datasets is indeed frequently found in the real
world (e.g., Geonames contains 851 CSs and 12136 CS links),



Table 1: RDF datasets along with their number of CSs and
links between CSs.

Dataset # Tables (CSs) # of CS joins
Reactome 112 346
Geonames 851 12136
LUBM 2000 14 68
WatDiv 100 5667 802
Wordnet 779 7250
EFO 520 2515
DBLP 95 733

imposing large overheads in the extraction, storage and disk-
based retrieval[17][9]. For reference, some well established RDF
datasets along with their associated numbers of CSs (first column)
are shown in Table 1.

In these cases, we end up with a lot of CSs, each of which may
actually represent very few nodes. There are two antagonizing
approaches in creating a relational schema from a set of CSs. (i)
Creating a relational table for each different CS would result in
a large numbers of relational tables with few tuples in each of
them, as shown in Figure 2(b) that require a very large number of
joins to answer queries; (ii) on the other hand, creating a single,
"universal" table, accommodating the CS’s of all the nodes of
the graph would create a very wide relation, as in Figure 2(c),
which is practically overly empty (i.e., too many NULL values)
and space inefficient, due to the fact that different tuples would
have very different cells populated.

There are two factors that affect or constrain the design choices
we have. First, one could wonder "why not splitting the universal
relation in the traditional manner?". Unfortunately, the traditional
decomposition via functional dependencies is neither available,
or enforceable to the source data. It is very possible that the
incoming data to be stored are not necessarily accompanied by
metadata descriptions that prescribe functional dependencies.
Even if a DBA would design them, it is also possible that the
data violate them. Thus, in the context of this paper, we proceed
with an automated design that assumes that no functional de-
pendencies are available and all schema dependencies are online
detected by the incoming data. Second, the desired analysis and
the expected workload we consider in this paper play a signifi-
cant role in the determination of the appropriate structure. Most
SPARQL queries involve complex graph patterns, i.e., query con-
ditions, which must be evaluated on the different CSs[9–11]; ap-
plying such patterns to a universal relation will result in multiple
self-joins whereas applying patterns to a fine-grained relational
schema, would again impose multiple joins (and multiple unions
of the intermediate results for merging the query output) across
a high number of CS relational tables. Consider the evaluation of
the following SPARQL query on the nodes of Figure 2(a),

SELECT ?x ?y ? z ?w
WHERE { ? x worksFor ?y .

? x s u p e r v i s e s ? z .
? z ha sB i r t hday ' 2011−02−24 ' .
? z i sMar r i edTo ?w.
?w h a sN a t i o n a l i t y 'GR ' }

Assuming a design with a "universal" relation (Figure 2c), the
query evaluation over the relational schema (see Section 4 for
the details on the SPARQL-to-SQL query evaluation) would re-
quire one self-join for each one of theworksFor , supervises and

isMarriedTo query conditions (hasBirthday and hasNationality
conditions are executed as select operations in SQL). At the same
time, there is a price of NULL values, too, as (Figure 2c) shows.
At the other end of the spectrum, in the multiple CS tables case
(Figure 2b), each one of the three query conditions would require
one self join and additionally three joins between each CS table
and all other CS tables in the database – i.e., 4 joins per table.
Thus, despite its space efficiency, the latter case imposes per-
formance overheads due to the large number of joins the query
must perform to fetch data from multiple tables. This number
can become significantly large in real-world datasets, as shown
in the second column of Table 1.

In this paper, we tackle the problem of mapping heterogeneous
RDF datasets to a relational schema with the aim to facilitate the
processing of complex analytical SPARQL queries, by automating
the decision of which tables will be created in order to host the
incoming data, such that there are no overly empty tables and
extremely large numbers of joins.

Interestingly, the problem is both open and hard to solve. The
current approaches to address the problem do not avoid the
problems that we have mentioned before and include approaches
to store data generically as triples, as property tables (practically
one table per CS) or as attribute value pairs as vertical partitions
(see Section 2 for a detailed discussion). All these solutions are
found in the extremes of the dilemma between empty space and
query performance without achieving a "sweet" compromise
between the two forces. Therefore, the state of practice and the
state of the art provide room for improvement, and in fact, to
the best of our knowledge, this is the first effort to address the
problem. At the same time, the problem is hard to solve: as we
show in Section 4, the complexity is exponential, and therefore,
brute force methods are not adequate.

In our approach, we introduce an algorithm to automate the
design process. We start by considering that each CS is a sin-
gle table and by exploiting their hierarchical relationships, we
merge related CSs into the same table. Moreover, we define a
density-based cost function that help us stop the merging process
for CSs that contain a large numbers of triples. In this way, we
achieve merging of CS based on the structural similarity as well
as the number of triples they contain. We follow a relational
implementation approach by storing all triples corresponding to
a set of merged CSs into a separate relational table and by execut-
ing queries through a SPARQL-to-SQL transformation. Although
alternative storage technologies can be considered (key-value,
graph stores,etc), we have selected well-established technologies
and database systems for the implementation of our approach,
in order to take advantage of existing relational data indexing
and query processing techniques that have been proven to scale
efficiently in large datasets and complex workloads. To this end,
we present a novel system, named raxonDB, that exploits these
hierarchies in order to merge together hierarchically related CSs
and decrease the number of CSs and the links between them,
resulting in a more compact schema with better data distribution.
raxonDB, built on top of PostgreSQL, provides significant perfor-
mance improvements in both storage and query performance of
RDF data with respect to the state of the art techniques presented
in Section 2. In short, our contributions are as follows:
• We introduce a novel CS merging algorithm that takes
advantage of CS hierarchies,
• we implement raxonDB, an RDF engine built on top of a
relational backbone that takes advantage of this merging
for both storing and query processing,



(a) Four subject nodes, s1, s2, s3, s4 with their properties and their CSs (left) and the resulting CS hierarchy graph (right).

(b) Edge case where each CS becomes a relational table. No NULL values exist in any of the tables.

(c) Edge case where all CSs become one universal table. NULL values exist in this table.

(d) Merging c1, c3, c4 together and leaving c2 unmerged.

Figure 2: Example of four CSs coming from different source datasets, and their respective CS hierarchy graph. Examples
of the two edge cases (all tables vs one table), as well as the merging case can be seen. In the figure, the CSs can be seen
as derived from data instances (nodes s1, s2, s3, s4). It can generally be assumed that are more instances belonging to these
CSs, not shown in the figure.



• we perform an experimental evaluation that indicates sig-
nificant performance improvements for various parameter
configurations.

Roadmap. In Section 2, we present the background and related
work for this paper. In Section 3, we provide preliminary defi-
nition and delineate the problem, and in Section 4 we present
algorithms towards its solution. In Section 5, we discuss the ex-
perimental evaluation of the paper. We conclude the paper in
Section 6, with a summary of our findings and future work.

2 RELATEDWORK
Due to the tabular structure that tends to implicitly underlay RDF
data, recent works for RDF data management systems have been
implemented in relational backbones. They generally follow three
storage schemes, namely (a) triples tables, (b) property tables,
and, (c) vertical partitioning. A triples table has three columns,
representing the subject, predicate and object (SPO) of an RDF
triple. This technique replicates data in different orderings in
order to facilitate sort-merge joins. RDF-3X [14] and Hexastore
[21] build tables on all six permutations of SPO. Built on a rela-
tional backbone, Virtuoso [4] uses a 4-column table for quads,
and a combination of full and partial indexes. These methods
work well for queries with small numbers of joins, however, they
degrade with increasing sizes, unbound variables and joins.

Property Tables places data in tables with columns correspond-
ing to properties of the dataset, where each table identifies a
specific resource type. Each row identifies a subject node and
holds the value of each property. This technique has been imple-
mented experimentally in Jena [22] and DB2RDF [3], and shows
promising results when resource types and their properties are
well-defined. However, this causes extra space overhead for null
values in cases of sparse properties [1]. Also, it raises perfor-
mance issues when handling complex queries with many joins,
as the amounts of intermediate results increase [8].

Vertical partitioning segments data in two-column tables. Each
table corresponds to a property, and each row to a subject node
[1]. This provides great performance for queries with bound ob-
jects, but suffers when the table sizes have large variations in size
[20]. TripleBit [23] broadly falls under vertical partitioning. In
TripleBit, the data is vertically partitioned in chunks per predicate.
While this reduces replication, it suffers from similar problems
as property tables. It does not consider the inherent schema of
the triples in order to speed up the evaluation of complex query
patterns.

In distributed settings, a growing body of literature exists, with
systems such as Sempala [18], H2RDF [15] and S2RDF [19]. How-
ever, these systems are based on the parallelization of centralized
indexing and query evaluation schemes.

Due to the high heterogeneity in the schema during the in-
tegration and analysis of multiple RDF datasets, latest state of
the art approaches rely on implicit schema detection in order
to index/store triples based on their schema. In our previous
work [9], we defined Extended Characteristic Sets (ECSs) as typed
links betwen CSs, and we showed how ECSs can be used to in-
dex triples and greatly improve query performance. In [17], the
authors identify and merge CSs, similar to our approach, into
what they call an emergent schema. However, their main focus is
to extract a human-readable schema with appropriate relation
labelling and they do not use hierarchical information of CSs,
rather they use semantics to drive the merging process. In [16] it
is shown how this emergent schema approach can assist query

performance, however, the approach is limited by the constraints
of human-readable schema discovery. In our work, query per-
formance, indexing and storage optimization are the main aims
of the merging process, and thus we are not concerned about
providing human-readable schema information or any form of
schema exploration. In [12], the authors use CSs and ECSs in
order to assist cost estimation for federated queries, while in [5],
the authors use CSs in order to provide better triple reordering
plans. To the best of our knowledge, this is the first work to ex-
ploit hierarchical CS relations in order to merge CSs and improve
query performance.

3 PRELIMINARIES
RDF triples consist of a subject s , a predicate p and an object o.
An RDF dataset is represented as a directed labelled graph where
subjects and objects are nodes, and predicates are labelled edges.
Formally, let I , B, L be infinite, pairwise disjoint sets of URIs,
blank nodes and literals, respectively. Then, (s,p,o) ∈ (I ∪ B) ×
(I ) × (I ∪ B ∪ L) is a triple. RDF does not enforce structural rules
in the representation of triples; within the same dataset there
can be largely diverse sets of predicates emitting from nodes
of the same type [9, 13, 17]. Characteristic Sets (CS)[13] capture
this diversity by representing implied node types based on the
set of properties they emit. Formally, given a dataset D, and a
subject node s , the characteristic set cs(s) of s is cs(s) = {p |
∃o : (s,p,o) ∈ D}, and the set of all CSs is denoted with C . In
what follows, we present basic definitions for CSs and their more
generalized form of Property Sets. Intuitively, a property set is a
set of RDF predicates p1 . . .pn . Therefore, a CS is also a property
set. As we are interested in creating property sets by merging
CSs, we use this more general form (i.e., property set instead of
CS) in order to denote sets of attributes that are not necessarily
CSs in the original dataset, but are used after merging several
CSs as the basis for a relational table.

Although each real world measurement can have its very
own characteristic set, for all practical purposes, the information
stored in RDF triples typically refers to recurring concepts and
their features. Thus, some co-occurrences of features are common,
e.g., to triples coming from the same source and representing
"records" pertaining to the same "concept" (e.g., triples for events,
pertaining to the concept Event comewith the same set of features
like datetime and description. All event instances from the same
source are likely (albeit not obliged) to carry overlapping subsets
of these features. At the same time, despite the commonalities,
there are differences too, typically produced by the heterogeneity of
data sources and the lack of structural restrictions in RDF data. For
example, an RDF dataset containing information about people, is
likely to associate a name property for each instance of a Person
class, while a isFatherOf property would not be associated with
all instances for obvious reasons. Thus, there is a possibility
to define subset relationships between the features of similar
concepts. To this end, we introduce the notion of subsumption
and the notion of hierarchy of subsumed property sets.

Definition 1. (Property Sets and Property Tables). In its more
general form, a CS is a property set Pi , i.e., a set of RDF predicates
and the set of all property sets is denoted with P . A Property
Table (also: CS Table)Ti for a given property set Pi is a relational
table comprising an identifier sid for the subject node s and
|Pi | columns, where Pi = {pi ,1,pi ,2, . . . ,pi ,n } are the predicates
emitting from s . Ti contains the set ri of tuples that instantiate
the values of the properties for sid , i.e.,Ti = (sid ∪Pi , ri ). A tuple



Figure 3: (a) A CS hierarchy graph with dense nodes colored in deep purple, (b) the connected components derived by
cutting off descendants from dense nodes, (c) a connected component with dashed lines representing inferred hierarchical
relationships, (d) all possible assignments of dense nodes to non-dense nodes.

can hold values for the predicate columns in I ∪B∪L∪NULL, i.e.,
each cell in the relational table can either have a standard value of
an RDF triple object, or NULL when the subject node identified
in sid does not have a property in any of its triples. In Figure
2(a), four subject nodes, s1, s2, s3, s4, are shown. These have four
different CSs based on their property sets, namely c1, c2, c3, c4.

Definition 2. (CS Subsumption). Given two CSs, ci and c j ,
then ci subsumes c j , or ci ≻ c j , when ci is a subset of c j , or
ci ⊂ c j . This subsumption forms a parent-child relationship.
For example, consider c1, c2 that describe human beings, with
c1 = {type,name} and c2 = {type,name,marriedTo}. It can be
seen that c1 ⊂ c2 and therefore c1 subsumes c2. CS subsumption
relationships can be seen in Figure 3(a) as directed edges between
nodes. In the example of Figure 2(a), the four CSs exhibit strong
subset-superset relationships between their properties, For in-
stance, c1 and c2 have property sets that are supersets of both
c3 and c4, while c3 also subsumes c4. The set of all parent-child
relationships defines a CS hierarchy.

Definition 3. (CS Hierarchy and Inferred Hierarchy). CS
subsumption creates a partial hierarchical ordering such that
when ci ≻ c j , then ci is a parent of c j . Formally, a CS hierarchy
is a graph lattice H = (V , E) where V ∈ C and E ∈ (V × V ). A
directed edge between two CS nodes c1, c2 exists in H , when
c1 ≻ c2 and there exists no other ci such that c1 ≻ ci ≻ c2.
The directed edge stems from the parent node and arrives at
the child node. An example CS hierarchy can be seen in Figure
3(a). Given a hierarchy H , we denote the hierarchical closure of H
with Hc , so that Hc extends H to contain inferred edges between
hierarchically related nodes that are not consecutive, e.g. a node
and its grandchildren. Intuitively, for every set of features c that
describes some concept in the dataset, we introduce a node in
our graph. Every strict superset of features of c is a descendant
of c , and every strict subset of features of c is a superset of c . An
example inferred hierarchy can be seen on the right of Figure 2(a),
with the inferred relationships in dashed lines as well as in Figure
3(c) for a sub-graph of the graph in Figure 3(a). In the remainder of
this paper, we refer toHc as the inferred hierarchy ofH . The lattice
resembles the traditional OLAP cube lattice (see [7]), although in
our case, the construction is ad-hoc, depending on the available
CS’s, and serves a different purpose.

Definition 4. (CS Ancestral Sub-graphs). Given an inferred
hierarchy Hc = (V , E), a CS cbase , a set of CSs c1, . . . , ck , and
a sub-graph Hanc

cbase = (V
′

, E
′

) with V
′

⊆ V and E
′

⊆ E, we

say that Hanc
cbase is an ancestral sub-graph over cbase when ∀i ∈

[1..k], it holds that ci ≻ cbase and (ci , cbase ) ∈ E
′

. Intuitively,
any set of ancestors of a node cbase forms an ancestral sub-
graph. More than one ancestral sub-graphs can be defined over
cbase , as any subset of its parents is considered an ancestral
sub-graph over cbase . For instance, in Figure 3(c), nodes c7, c4, c2
form an ancestral sub-graph over c7. Similarly, nodes c6, c4, c2
and c6, c5, c2 form ancestral sub-graphs over c6.

Having defined the hierarchy of characteristic sets and the
respective graph, we are now ready to provide the foundation
for the core of the problem of this paper. Basically, the goal is to
find a way to store data in a way that balances two antagoniz-
ing goals: (a) the number of NULL values and the unnecessary
space increase, vs., (b) the resulting decrease in query processing
time that would result from the fragmentation of stored data
in multiple nodes and the need to join them. To address this
issue, we can attempt to merge different nodes into one, paying
the price of empty space to avoid the price of joins. There exist
two edge cases here, namely (i) assign a table to each CS in the
incoming data, resulting in as many tables as CSs, and (ii) assign
one universal tables for all CSs. This table would contain all of
the properties found in the input dataset. The two edge cases for
the running example of Fig. 2 can be seen in Fig. 2(b,c).

Definition 5. (Hierarchical CSMerge). Given an ancestral sub-
graph a = (V

′

, E
′

), where V
′

= {c1, c2, . . . , ck } as defined above,
and the set of property tables T (V

′

), then hier_merдe(a,T (V
′

))

is a hierarchical merge of a that results in a single table Ta =
(cbase , ra ). As cbase is the most specialized CS in a, the columns

of Ta are exactly the properties in cbase , while ra =
k⋃
i=1

r
′

i is the

union of the records of all CSs in V
′

, where r
′

i is the projection
of ri on the properties in cbase . Consequently, r

′

i contains NULL
values for all the non-shared properties of cbase and ci . In essence,
this is an edge contraction operator that merges all tables of the
nodes of an ancestral sub-graph into one and keeps the signature
(i.e., the properties) of the base CS cbase . For instance, assume
that V

′

= {c0 = (P0, r0), c1 = (P1, r1), c2 = (P2, r2)} is the set
of vertices of an ancestral sub-graph with three CSs, with P0 =
{pa,pb }, P1 = {pa,pb ,pc } and P2 = {pa,pb ,pc ,pd }. Thus, c0 ≻
c1 ≻ c2. The output of the merging process for our running
example can be seen in Figure 2(d). Hierarchical merging can be
seen in Figure 4.



Definition 5. (Merge Graph). Given an inferred CS hierarchy
Hc = (V , E), a merge graph is a graph H

′

= (V
′

, E
′

) that consists
of a set of n ancestral sub-graphs, and has the following prop-
erties: (i) H

′

contains all nodes in H such that V
′

≡ V , i.e., it
covers all CSs in the input dataset, (ii) H

′

contains a subset of
the edges in H such that E

′

⊂ E, (iii) each node is contained in
exactly one ancestral sub-graph ai , (iv) all ancestral sub-graphs
are pair-wise disconnected, i.e., there exist no edges between the
nodes of different ancestral sub-graphs. Thus, each ancestral sub-
graph can be contracted into one node unambiguously, using the
hier_merдe operator. Also, the total number of relational tables
will be equal to the number of ancestral sub-graphs in the merge
graph.

The primary focus of this work is to improve the efficiency of
storage and querying in relational RDF engines by exploiting the
implicit schema of the data in the form of CSs. The two extreme
approaches – i.e., (a) a separate table for each CS, on the one end
of the spectrum, or, (b) merging all the data into a universal table
with a schema expressed as the union of the individual features
of the different CS’s, at the other end of the spectrum, have the
following drawbacks, respectively: (i) multiple joins of separate
tables at query processing, if many tables are used, and (ii) bad
utilization of disk space if nodes are excessively merged into a
very small number of tables (due to excessive empty space with
NULLs).

Problem Formulation.Given an inferred CS hierarchyHc =

(V , E), the problem is to find a merge graph H
′

= (V , E
′

) in the
form of a set of disconnected ancestral sub-graphs, that provides
a good way to merge CS nodes. In other words, the problem
is to find the best set of ancestral sub-graphs from an inferred
hierarchy Hc that minimize an objective cost function cost(x).

4 HIERARCHICAL CS MERGING
What makes the problem hard, is the complexity of finding a
sweet spot in the Pareto equilibrium between conciseness of the
relational schema (few tables) and internal density (with respect
to the empty space they contain).

Schema conciseness. To start with the arguments in favor
of reducing the number of nodes via merging, we can see that, by
reducing the number of CS, the number of joins between them
is also reduced. Furthermore, merging together CSs leads to a
less skewed distribution of data to relational tables. Ultimately,
this results in a drastically decreased disk-based I/O cost, as less
tables are fetched, positively affecting query processing as well.

Density. On the contrary, merging tables results in the intro-
duction of NULL values for the non-shared columns, which can
degrade performance. Specifically, merging CSs with different
attribute sets can result in large numbers of NULL values in the
resulting table. Given a parent CS table T1 = (sid ∪ c1, r1) and a
child CS table T2 = (sid ∪ c2, r2) with |c1 | < |c2 | and |r1 | >> |r2 |,
the resulting |c2 \ c1 | × |r1 | NULL cells will be significantly large
compared to the total number of r1 + r2 records, thus poten-
tially causing poor storage and querying performance[17]. For
this reason, CS merging must be performed in a way that will
minimize the presence of NULL values. The following function
captures the NULL-value effect of the merge of two CS tables
Ti = (sid ∪ ci , ri ),Tj = (sid ∪ c j , r j ) with ci ≻ c j :

rnull (Ti ,Tj ) =
|c j \ ci | × |ri |

(|r j | + |ri |)
(1)

rnull represents the ratio of null values to the cardinality of
the merged table. The numerator of the fraction represents the
total number of cell values that will be null, as the product of
the number of non-shared properties and the cardinality of the
parent CS. The denominator represents the resulting cardinality
of the table.

In order to assess an ancestral sub-graph, we use a generalized
version of rnull that captures the NULL value effect on the whole
sub-graph:

r
д
null (д)|Td =

∑ |д |
i=1 |cd \ ci | × |ri |

|rd | +
∑ |д |
i=1(|ri |)

(2)

Here, Td = (cd , rd ) is the root of sub-graph д. However, merging
a parent to a child changes the structure of the input graph, as
the cardinality of the merged child is increased. Thus, we define
a cost function that works on the graph level, as follows:

cost(д) =
n∑
i=1

r
д
null (дi )|cdi (3)

where n is the number of dense nodes, cdi is a dense node and дi
is the ancestral sub-graph with cdi as the base node.

Thus, choosing dense CSs as bases is a seeding process that
aims to minimize this NULL value effect by making sure that
a large fraction of the input records will not be extended with
NULL values. This is true because a CS base and its resulting
merged table will have exactly the same properties (columns)
and thus introduction of NULL values will not be needed for the
records of the CS base.

The problem of selecting ancestral sub-graphs for the merge
is computationally hard, as mentioned earlier. For this reason,
we rely on heuristics in order to seed the process and provide an
initial set of ancestral sub-graph bases for the final merged tables.
The CS bases will be the only relational tables in the output, with
the remaining tables merged into them. For this, we identify dense
CS nodes in the hierarchy (i.e, with large cardinalities) and use
these nodes as the bases of the ancestral sub-graphs. While node
density can be defined in many different ways, in the context
of this work we define a ci to be dense, if the cardinality of its
relational table is larger than a linear function of the maximum
cardinality of CSs in D, i.e., a function d : N → R, with d(Ti ) =
m × |rmax |. Here,m ∈ [0, 1] is called the density factor, and rmax
is the cardinality of the largest CS table in D. By definition, if
m = 0, no CSs will be merged (i.e., each CS will be stored in
each own table), while ifm = 1, no tables will be created, as no
CS has a cardinality larger than that of the largest CS. With a
givenm, the problem is reduced to finding the optimal ancestral
sub-graph for each given dense node.

Given this cost model and a predefined set of dense nodes,
our algorithm will find the optimal sub-graph for each dense
node. An inferred hierarchy graph can be converted to a set of
connected components that are derived by removing the outgoing
edges from dense nodes, since we are not interested in merging
children to parents, but only parents to children. An example
of this can be seen in Figure 3(b). For each component, we can
compute cost(д) as the sum of the costs of these components.
The main idea is to identify all connected components in the CS
graph, iterate through them, enumerate all sub-graphs within
the components that start from the given set of dense nodes, and
select the optimal partitioning for each component.



Figure 4: Merging the tables of c0, c1 and c2.

The algorithm can be seen in Algorithm 1. The algorithm
works by first identifying all connected components of the in-
ferred hierarchy (Line 2). Identifying connected components is
trivially done using standard DFS traversal, and is not shown in
the Algorithm. Then, we iterate each component (Line 3), and for
each component, we generate all possible sub-graphs. Then, we
calculate the cost of each sub-graph (Line 7) and if it is smaller
than the current minimum, the minimum cost and best sub-graph
are updated (Lines 8-9). Finally, we add the best sub-graph to the
final list (Line 11) and move to the next component.

To generate the sub-graphs, we do not need to do an exhaustive
generation of 2n combinations, but we can rely on the observa-
tion that each non-dense node must be merged to exactly one
dense node. Therefore, sub-graph generation is reduced to find-
ing all possible assignments of dense nodes to the non-dense
nodes. An example of this can be seen in Figure 3. In the figure,
nodes c2, c4, c5 are non-dense, while nodes c6, c7, c8 are dense. All
possible and meaningful sub-graphs are enumerated in the table
at the right of the figure, where we assign a dense node to each
of the non-dense nodes. An assignment is only possible if there
exists a parent-child relationship between a non-dense node and
a dense node, even if it is an inferred one (e.g. c2 is an inferred
parent of c7). Hence, the problem of sub-graph generation be-
comes one of generating combinations from different lists, by
selecting one element from each list. The number of lists is equal
to the number of non-dense nodes, and the elements of each list
are the dense nodes that are related to the non-dense node.

Complexity Analysis. Assuming that a connected compo-
nent д has k non-dense nodes and d dense nodes, and each non-
dense node ki is related to e(ki ) dense nodes, then the num-
ber of sub-graphs that need to be enumerated are

∏k
i=1 e(ki ).

In the example of figure 3, the total number of sub-graphs is
e(c2) × e(c4) × e(c5) = 3 × 2 × 1 = 6. In the worst case all k
nodes are parents of all d nodes. Then, the number of total sub-
graphs is dk , which makes the asymptotic time complexity of
the algorithm O(dk ).

4.1 Greedy Approximation
For very small d,k (e.g. d,k < 4), the asymptotic complexity of
O(dk ) is acceptable. However, in real-world cases, the number of
connected components can be small, making d and k large. For
this reason, we introduce a heuristic algorithm for approximat-
ing the problem, that does not require enumerating all possible
combinations, relying instead on a greedy objective function that
attempts to find the local minimum with respect to the defined
cost model for each non-dense node.

Algorithm 1: optimalMerge
Data: An inferred hierarchy lattice Lc as a adjacency list , and a set of dense CSs D
Result: A set of optimal ancestral sub-graphs

1 init f inalList ;
2 connectedComponents ← f indConnectedComponents(Lc );
3 for each connectedComponent do
4 initmin ← MAX _VALU E ;
5 init bestSubдraph ;
6 while next ← connectedComponent .дenerateN extSubдraph()

do
7 if cost (next ) < min then
8 min ← cost (next );
9 bestSubдraph ← next ;

10 end
11 f inalList .add (bestSubдraph);
12 end
13 return f inalList ;

The main idea behind the algorithm is to iterate the non-dense
nodes, and for each non-dense node, calculate rnull and find the
dense node that minimizes this function for the given non-dense
node. Then, the cardinalities will be recomputed and the next
non-dense node will be examined. The algorithm can be seen in
Algorithm 2. In the beginning, the algorithm initiates a hash table,
merдeMap, with an empty list for each dense node (Lines 1-4).
Then, the algorithm iterates all non-dense nodes (Line 5), and for
each dense node, it calculates the cost rnull of merging it to each
of its connected dense nodes (Lines 5-13), keeping the current
minimum cost and dense node. In the end, the current non-dense
node is added to the list of the dense node that minimizes rnull
(Line 14). Notice that we do not need to split the hierarchy into
connected components in order for дreedyMerдe to work.

Complexity Analysis.Given k non-dense nodes andd dense
nodes, where each non-dense node ki has e(ki ) dense children,
the дreedyMerдe algorithm needs

∑k
i=1 e(ki ) iterations, because

it requires iteration of all e(ki ) nodes for eachki . In the worst case,
every ki is related to all d dense nodes, requiring kd iterations.
Assuming a constant cost for the computation of rnull , then the
asymptotic complexity of the greedy algorithm is O(kd), which
is a significant performance when compared to the exponential
complexity of optimalMerдe .

Algorithm 2: greedyMerge
Data: A hash table p mapping non-dense CSs to their dense descendants, a set of

dense CSs D , and a set of non-dense CSs K
Result: A hash table mapping dense CSs to sets of non-dense CSs to be merged

1 initmerдeMap ;
2 for each d ∈ D do
3 merдeMap .put (d , newList ());
4 end
5 for each k ∈ K do
6 min ← MAX _VALU E ;
7 init bestDense ;
8 for each dk ∈ p .дet (k ) do
9 cost ← rnull (k , dk );

10 if cost < min then
11 min ← cost ;
12 bestDense ← dk ;
13 end
14 merдeMap .дet (bestDense).add (k );
15 end
16 returnmerдeMap ;

This process does not necessarily cover all CSs of the input
dataset. For example, some CS nodes might not have any dense
children. Given this, the percentage of the dataset that is covered
by this process is called dense CS coverage. The remainder of the
CSs are aggregated into one large table, Tr est , containing all of
their predicates. If the total coverage of the merging process is
large, then Tr est does not impose a heavy overhead in query



Figure 5: An example of greedymerging. Dense nodes are coloured in deep purple. At each step, the non-dense node under
examination is coloured with green, while the edge that minimizes rnull can be seen in bold.

performance, as will be shown in the experiments. Finally, we
load the data in the corresponding tables.

4.2 Implementation
We implemented raxonDB as a storage and querying engine that
supports hierarchical CS merging, and can be deployed on top
of standard RDBMS’s. Specifically, we used PostgreSQL 9.6, but
raxonDB can be adapted for other relational databases as well.

CS Retrieval and Merging. The processes of retrieving and
merging CSs take place during the loading stage of an incom-
ing RDF dataset. CS retrieval is a trivial procedure that requires
scanning the whole dataset and storing the unique sets of prop-
erties that are emitted from the subject nodes in the incoming
triples, and is adopted from our previous work in [9] where it is
described in detail. After retrieving the CSs, the main idea is to
compute the inferred CS hierarchy and apply one of the described
merging algorithms. Finally, each set of merged CSs is stored
in a relational table. In each table, the first column represents
the subject identifier, while the rest of the columns represent the
union of the property sets of the merged CSs. For multi-valued
properties, we use PostgreSQL’s array data type in order to avoid
duplication of the rows.

Indexing. We deploy several indexes in raxonDB. First off,
we index the subject id for each row. We also build foreign-key
indexes on object-subject links between rows in different CSs, i.e.,
when a value of a property in one CS is the subject id of another
CS. Next, we use standard B+trees for indexing single-valued
property columns, while we use PostgreSQL’s GIN indexes, which
apply to array datatypes for indexing multi-valued properties.
This enables fast access to CS chain queries, i.e., queries that apply
successive joins for object-subject relationships. Furthermore,
we store these links on the schema level as well, i.e., we keep an
index of CS pairs that are linked with at least one object-subject
pair of records. These links are called Extended Characteristic
Sets (ECSs) and are based on our previous work in [9]. With the
ECS index, we can quickly filter out CSs that are guaranteed not
to be related, i.e., no joins exist between them, even if they are
individually matched in a chain of query CSs. Other metadata and
indexes include the property sets of CSs, and which properties
can contain multiple values in the same CS.

Query Processing. Processing SPARQL queries on top of
merged CSs entails (i) parsing the queries, (ii) retrieving the query
CSs, (iii) identifying the joins between them, and (iv) mapping
them to merged tables in the database. Steps (i)-(iii) are inherited
from our previous work in [9]. For (iv), a query CS can match
with more than one table in the database. For instance, consider
a query containing a chain of three CSs, q1 ▷◁ q2 ▷◁ q3, joined
sequentially with object-subject joins. Each query CS qi matches
with all tables whose property sets are supersets of the property
set of qi . Thus, each join in the initial query creates a set of

permutations of table joins that need to be evaluated. For instance,
assume that q1 matches with c1, c2, while q2 matches with c3 and
q3 matches with c4, c5. Assume also that by looking up the ECS
index, we derived that the links [c1, c3], [c2, c3], [c3, c4] and [c3, c5]
exist in the index, i.e., they correspond to candidate joins in the
data. Then, [c1, c3, c4], [c1, c3, c5], [c2, c3, c4] and [c2, c3, c5] are
all valid table permutations that must be processed. Two main
strategies can be employed here. The first is to join the UNIONs
of the matching tables for eachqi , and the other is to process each
permutation of tables separately and append the results. Given
the filtering performed by the ECS indexing approach, where
we can pre-filter CSs based on the relationships between them,
the UNION would impose significant overhead and eliminate
the advantage of ECS indexing. Therefore, we have implemented
the second approach, that is, process a separate query for each
permutation. Finally, due to the existence of NULL values in the
merged tables, we must add explicit IS NOT NULL restrictions
for all the properties that are contained in each matched CS and
are not part of any other restriction or filter in the original query.

5 EXPERIMENTAL EVALUATION
We implemented raxonDB on top of PostgreSQL3. As the focus of
this paper is to improve RDF storage and querying efficiency in
relational settings, we rely on existing mechanisms within Post-
greSQL for I/O operations, physical storage and query planning.
In this set of experiments, we report results of implementing
hier_merдe with the greedy approximation algorithm, as experi-
menting with the optimal algorithm failed to finish the merging
process even in datasets with small numbers of CSs.

Datasets. For this set of experiments, we used two synthetic
datasets, namely LUBM2000 (≈300m triples), and WatDiv (≈100m
triples), as well as two real-world datasets, namely Geonames
(≈170m triples) and Reactome (≈15m triples). LUBM [6] is a cus-
tomizable generator of synthetic data that describes academic
information about universities, departments, faculty, and so on.
Similarly, WatDiv[2] is a customizable generator with more op-
tions for the production and distribution of triples to classes.
Reactome4 is a biological dataset that describes biological path-
ways, and Geonames5 is a widely used ontology of geographical
entities with varying properties and rich structure.

Loading. In order to assess the effect of hierarchical merging
in the loading phase, we performed a series of experiments using
all four datasets. For this experiment, we measure the size on
disk, the loading time, the final number of merged tables, as well
as the number of ECSs (joins between merged tables) and the
percentage of triple coverage by CSs included in the merging
process, for varying values of the density factorm ∈ [0, 1]. The

3The code and queries are available in https://github.com/mmeimaris/raxonDB
4http://www.ebi.ac.uk/rdf/services/reactome
5http://www.geonames.org/ontology/documentation.html



(a) Execution time (seconds) for LUBM (b) Execution time (seconds) for Geonames (c) Execution time (seconds) for Reactome

Figure 6: Query execution times in milliseconds

(a) # of CS permutations for LUBM (b) # of CS permutations for Geonames (c) # of CS permutations for Reactome

Figure 7: # of CS permutations for increasing m

Table 2: Loading experiments for all datasets

Dataset Size (MB) Time # Tables (CSs) # of ECSs Dense CS
Coverage

Reactome Simple 781 3min 112 346 100%
Reactome (m=0.05) 675 4min 35 252 97%
Reactome (m=0.25) 865 4min 14 73 77%
Geonames Simple 4991 69min 851 12136 100%

Geonames (m=0.0025) 4999 70min 82 2455 97%
Geonames (m=0.05) 5093 91min 19 76 87%
Geonames (m=0.1) 5104 92min 6 28 83%
LUBM Simple 591 3min 14 68 100%
LUBM (m=0.25) 610 3min 6 21 90%
LUBM (m=0.5) 620 3min 3 6 58%
WatDiv Simple 4910 97min 5667 802 100%
WatDiv (m=0.01) 5094 75min 67 99 77%
WatDiv (m=0.1) 5250 75min 25 23 63%
WatDiv (m=0.5) 5250 77min 16 19 55%

(a) Execution time (seconds) for LUBM2000 (b) Execution time (seconds) for Geonames (c) Execution time (seconds) for Reactome

Figure 8: Query execution times in milliseconds for different RDF engines

results are summarized in Table 2. As can be seen, the number of CS, and consequently tables, is greatly reduced with increas-
ing values ofm. As the number of CSs is reduced, the expected



number of joins between CSs is also reduced, which can be seen
in the column that measures ECSs. Consequently, the number
of tables can be decreased significantly without trading off large
amounts of coverage by dense CSs, i.e. large tables with many
null values. Loading time tends to be slightly greater as the num-
ber of CSs decreases, and thus the number of merges increases,
the only exception being WatDiv, where loading time is actually
decreased. This is a side-effect of the excessive number of tables
(= 5667) in the simple case which imposes large overheads for the
persistence of the tables on disk and the generation of indexes
and statistics for each one.

Query Performance. In order to assess the effect of the den-
sity factor parameterm during query processing, we perform a
series of experiments on LUBM, Reactome and Geonames. For
the workload, we used the sets of queries from [9] 6. We em-
ploy two metrics, namely execution time and number of table
permutations. The results can be seen in Figures 6 and 7. As can
be seen, hierarchical CS merging can help speed up query per-
formance significantly as long as the dense coverage remains
high. For example, in all datasets, query performance degrades
dramatically when m = 1, in which case the merging process
cannot find any dense CSs. In this case, all rows are added to
one large table, which makes the database only contain one table
with many NULL cells. These findings are consistent across all
three datasets (Q6 in LUBM exhibits a higher increase form = 1
due to the dataset’s characteristics; for lack of space we omit the
explanation of this behaviour) and require further future work
in order to identify the optimal value form.

In order to assess the performance of raxonDB and establish
that no overhead is imposed by the relational backbone, we per-
formed a series of queries on LUBM2000, Geonames and Reac-
tome, assuming the best merging of CSs is employed as captured
bym with respect to our previous findings. We also compared
the query performance with rdf-3x, Virtuoso 7.1, TripleBit and
the emergent schema approach described in [16]. The results can
be seen in Figure 8 and indicate that raxonDB provides equal or
better performance from the original axonDB implementation, as
well as the rest of the systems, including the emergent schema
approach, which is the only direct competitor for merging CSs.
Especially for queries with large intermediate results and low
selectivity that correspond to a few CSs and ECSs (e.g. LUBM Q5
and Q6, Geonames Q5 and Q6) several of the other approaches
fail to answer fast and in some cases time out.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we tackled the problem of automatically mapping
heterogeneous RDF datasets to a relational schema by consider-
ing the implicit schema in RDF triples. We presented a method
that extracts the Characteristics Sets, i.e., the set of properties
describing the different classes of RDF instances in the data and
exploits the hierarchical relationships between different CSs in or-
der to merge and map them to relational tables. We have provided
two algorithms, an optimal (exhaustive) one which selects ances-
tral sub-graphs of CS for merging in exponential time and greedy
one, which via the use of heuristics improves the performance to
polynomial time. We have implemented our methods on top of a
standard RDBMS solution, i.e., PostgreSQL for extracting, index-
ing and query processing of SPARQL queries. Finally, we have
experimented with two synthetic and two real-world datasets,
all of them exhibiting high heterogeneity in their schemas, we

6Available also in https://github.com/mmeimaris/raxonDB

compared with various alternative RDF engines and the results
for the performance of indexing and querying showed that our
system outperforms for various types of workloads.

As futurework, wewill study computation of the optimal value
form, taking into consideration workload characteristics as well
as a more refined cost model for the ancestral paths. Furthermore,
we will study and compare our approach to a graph database
setting, as well as experiment with a column-stored relational
DB, in order to further scale the capabilities of raxonDB.
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