
An Integration-Oriented Ontology to Govern Evolution
in Big Data Ecosystems

Sergi Nadala,∗, Oscar Romeroa, Alberto Abellóa, Panos Vassiliadisb, Stijn
Vansummerenc

aUniversitat Politècnica de Catalunya - BarcelonaTech
bUniversity of Ioannina

cUniversité Libre de Bruxelles

Abstract

Big Data architectures allow to flexibly store and process heterogeneous data,
from multiple sources, in their original format. The structure of those data,
commonly supplied by means of REST APIs, is continuously evolving. Thus
data analysts need to adapt their analytical processes after each API release.
This gets more challenging when performing an integrated or historical analysis.
To cope with such complexity, in this paper, we present the Big Data Integration
ontology, the core construct to govern the data integration process under schema
evolution by systematically annotating it with information regarding the schema
of the sources. We present a query rewriting algorithm that, using the annotated
ontology, converts queries posed over the ontology to queries over the sources.
To cope with syntactic evolution in the sources, we present an algorithm that
semi-automatically adapts the ontology upon new releases. This guarantees
ontology-mediated queries to correctly retrieve data from the most recent schema
version as well as correctness in historical queries. A functional and performance
evaluation on real-world APIs is performed to validate our approach.

Keywords: Data integration, Evolution, Semantic web

1. Introduction1

Big Data ecosystems enable organizations to evolve their decision making2

processes from classic stationary data analysis [1] (e.g., transactional) to situa-3

tional data analysis [15] (e.g., social networks). Situational data are commonly4

obtained in the form of data streams supplied by third party data providers (e.g.,5

Twitter or Facebook), by means of web services (or APIs). Those APIs offer a6
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part of their data ecosystem at a certain price allowing external data analysts to7

enrich their data pipelines with them. With the rise of the RESTful architectural8

style for web services [22], providers have flexible mechanisms to share such9

data, usually semi-structured (i.e., JSON), over web protocols (e.g., HTTP).10

However, such flexibility can be often a disadvantage for analysts. In contrast11

to other protocols offering machine-readable contracts for the structure of the12

provided data (e.g., SOAP), web services using REST typically do not publish13

such information. Hence, analysts need to go over the tedious task of carefully14

studying the documentation and adapting their processes to the particular schema15

provided. Besides the aforementioned complexity imposed by REST APIs, there16

is a second challenge for data analysts. Data providers are constantly evolv-17

ing such endpoints1,2, hence analysts need to continuously adapt the dependent18

processes to such changes. Previous work on schema evolution has focused on19

software obtaining data from relational views [17, 24]. Such approaches rely on20

the capacity to veto changes affecting consumer applications. Those techniques21

are not valid in our setting, due to the lack of explicit schema information and22

the impossibility to prevent changes from third party data providers.23

Given this setting, the problem is how to aid the data analyst in the presence24

of schema changes by (a) understanding what parts of the data structure change25

and (b) adapting her code to this change.26

Providing an integrated view over an evolving and heterogeneous set of27

data sources is a challenging problem, commonly referred as the data variety28

challenge [8], that traditional data integration techniques fail to address. An29

approach to tackle it is to leverage on Semantic Web technologies, and the30

so-called ontology-based data access (OBDA). OBDA are a class of systems that31

enable end-users to query an integrated set of heterogeneous and disparate data32

sources decreasing the need for IT support [23]. OBDA achieves its purpose33

by providing a conceptualization of the domain of interest, via an ontology,34

allowing users to pose ontology-mediated queries (OMQs), and thus creating35

a separation of concerns between the conceptual and the database level. Due36

to the simplicity and flexibility of ontologies, they constitute an ideal tool to37

model such heterogeneous environments. However, such flexibility is also one of38

its biggest drawbacks, as OBDA currently has no means to provide continuous39

adaptation to changes in the sources (e.g., schema evolution), and thus causing40

queries to crash.41

The problem is not straightforwardly addressable, as current OBDA ap-42

proaches, which are built upon generic reasoning in description logics (DLs),43

represent schema mappings following the global-as-view (GAV) approach [12].44

In GAV, elements of the ontology are characterized in terms of a query over the45

source schemata. This provides simplicity in the query answering methods, which46

consists of unfolding the queries to the sources. Changes in the source schemata,47

however, will invalidate the mappings. In contrast, local-as-view (LAV) schema48

1https://dev.twitter.com/ads/overview/recent-changes
2https://developers.facebook.com/docs/apps/changelog
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mappings characterize elements of the source schemata in terms of a query over49

the ontology. They are naturally suited to accomodate dynamic environments,50

as we will see. The trade-off however, comes at the expense of query answering,51

which becomes a computationally complex task that might require reasoning [9].52

To this end, we aim to bridge this gap by providing a new approach to OBDA53

with LAV mapping assertions, while maintaining query answering tractable. We54

follow a vocabulary-based approach which rely on tailored metadata models to55

design the ontology (i.e., a set of design guidelines). This allows to annotate the56

data integration constructs with semantic annotations, enabling to automate57

the process of evolution and resolve query answering without ambiguity. Op-58

positely to reasoning-based approaches, vocabulary-based OBDA is not limited59

by the expressiveness of a concrete DL for query answering, as it does not rely60

on generic reasoning techniques but on ad-hoc algorithms that leverage such61

semantic annotations.62

Our approach builds upon the well-known framework for data integration63

[12], and it is divided in two levels represented by graphs (i.e., Global and Source64

graphs) in order to provide analysts with an integrated and format-agnostic view65

of the sources. By relying on wrappers (from the well-known mediator/wrapper66

architecture for data integration [7]) we are able to accomodate different kinds of67

data sources, as the query complexity is delegated to wrappers and the ontology68

is only concerned with how to join them and what attributes are projected.69

Additionally, we allow the ontology to contain elements that do not exist in70

the sources (i.e., syntactic sugar for data analysts), such as taxonomies, to71

facilitate querying. The process of query answering is reduced to properly72

resolving the LAV mapping assertions, relying on the annotated ontology, in73

order to construct an expression fetching the attributes provided by the wrappers.74

Finally, we exploit this structure to handle the evolution of source schema via75

semi-automated transformations on the ontology upon service releases.76

Contributions. The main contributions of this paper are as follows:77

• We introduce a structured ontology based on an RDF vocabulary that78

allows to model and integrate evolving data from multiple providers. As79

an add-on, we take advantage of RDF’s nature to semantically annotate80

the data integration process.81

• We provide a method that handles schema evolution on the sources. Ac-82

cording to our industry applicability study, we flexibly accommodate source83

changes by only applying changes to the ontology, dismissing the need to84

change the analyst’s queries.85

• We present a query answering algorithm that using the annotated elements86

in the ontology is capable of unambiguously resolving LAV mappings.87

Given a OMQ over the ontology, we are capable of manipulating it yielding88

an equivalent query over the sources. We further provide a theoretical and89

practical study of its complexity and limitations.90
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• We assess our method by performing a functional and performance evalua-91

tion. The former reveals that our approach is capable of semi-automatically92

accomodating all structural changes concerning data ingestion, which on93

average makes up 71.62% of the changes occurring on widely used APIs.94

Outline. The rest of the paper is structured as follows. Section 2 describes a95

running example and formalizes the problem at hand. Section 3 discusses the96

constructs of the Big Data Integration ontology and its RDF representation. Sec-97

tion 4 introduces the techniques to manage schema evolution. Section 5 presents98

the query answering algorithm. Section 6 reports on the evaluation results.99

Sections 7 and 8 discuss related work and conclude the paper, respectively.100

2. Overview101

Our approach (see Figure 1) relies on a two-level ontology of RDF named102

graphs to accomodate schema evolution in the data sources. Such graphs103

are built based on a RDF vocabulary tailored for data integration. Precisely,104

we divide it into the Global graph (G), and the Source graph (S). Briefly, G105

represents an integrated view of the domain of interest (also known as domain106

ontology), while S represents data sources, wrappers and their schemata. On107

the one hand, data analysts issue OMQs to G. We also assume a triplestore with108

a SPARQL endpoint supporting the RDFS entailment regime (e.g., subclass109

relations are automatically inferred) [26]. On the other hand, we have a set of110

data sources, each with a set of wrappers querying it. Different wrappers for111

a data source represent different schema versions. Under the assumption that112

wrappers provide a flat structure in first normal form, we can easily depict an113

accurate representation of their schema into S. To acommodate a LAV approach,114

each wrapper in S is related to the fragment of G for which it provides data.115

The management of such a complex structure (i.e., modifying it upon schema116

evolution in the sources) is a hard task to automate. To this end, we introduce the117

role of data steward as an analogy to the database administrator in traditional118

relational settings. Aided by semi-automatic techniques, s/he is responsible119

for (a) registering the wrappers of newly incoming, or evolved, data sources in120

S, and (b) make such data available to analysts by defining LAV mappings to121

G (i.e., enriching the ontology with the mapping representations). With such122

setting, intuitively the problem consists of given a query over G, to derive an123

equivalent query over the wrappers leveraging on S. Throughout the rest of124

this section, we introduce the running example and the formalism behind our125

approach. To make a clear distinction among concepts, hereinafter, we will use126

italics to refer to elements in G, while sans serif font to refer to elements in S.127

Additionally, to refer to RDF constructs, we will use typewriter font.128
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Figure 1: High-level overview of our approach

2.1. Running Example129

As an exemplary use case we take the H2020 SUPERSEDE project3. It130

aims to support decision-making in the evolution and adaptation of software131

services and applications (i.e., SoftwareApps) by exploiting end-user feedback132

and monitored runtime data, with the overall goal of improving end-users’133

quality of experience. For the sake of this case study, we narrow the scope134

to video on demand (VoD) monitored data (i.e., Monitor tools generating135

InfoMonitor events) and textual feedback from social networks such as Twitter136

(i.e., FeedbackGathering tools generating UserFeedback events). This scenario137

is conceptualized in the UML depicted in Figure 2, which we use as a starting138

point to provide a high-level representation of the domain of interest that is later139

used to generate the ontological knowledge captured in G. Figure 3 in Section 3140

depicts the RDF-based representation of the UML diagram used in our approach,141

which we will introduce in detail in that section.142

Figure 2: UML conceptual model for the SUPERSEDE case study

Next, let us assume three data sources, in the form of REST APIs, and re-143

3https://www.supersede.eu
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spectively one wrapper querying each. The first data source provides information144

related to the VoD monitor, which consist of JSON documents as depicted in145

Code 1. We additionally define a wrapper on top of it obtaining the monitorId of146

the monitor and computing the lag ratio metric (a quality of service measure147

computed as the fraction of wait and watch time) indicating the percentage of148

time a user is waiting for a video. The query of this wrapper is depicted in Code149

2 using MongoDB syntax4, where for each tuple the attribute VoDmonitorId150

(renamed from monitorId in the JSON) and lagRatio are projected (respectively151

mapping to the conceptual attributes toolId and lagRatio).152

{
"monitorId": 12,
"timestamp": 1475010424,
"bitrate": 6,
"waitTime": 3,
"watchTime": 4

}

Code 1: Sample JSON for VoD
monitors

db.getCollection ("vod").aggregate([
{$project: {

"VoDmonitorId":"$monitorId",
"lagRatio": {$divide : ["$waitTime","

$watchTime"]}}
}

])

Code 2: Wrapper projecting attributes VoDmonitorId and
lagRatio (using MongoDB’s Aggregation Framework syntax)

153

For the sake of simplicity, hereinafter, we will represent wrappers as rela-154

tions where their schema are the attributes projected by the queries, dismissing155

the details of the underlying query. Hence, the previous wrapper would be156

depicted as w1(VoDmonitorId, lagRatio) (note that the JSON key monitorId has157

been renamed to VoDmonitorId). To complete our running example, we define158

a wrapper w2(FGId, tweet) providing, respectively, the toolId for the Feedback-159

Gathering at hand and the description for such UserFeedback. Finally, the160

wrapper w3(TargetApp,MonitorId,FeedbackId) states for each SoftwareApplica-161

tion the toolId of its associated Monitor and FeedbackGathering tools. Table 1162

depicts an example of the output generated by each wrapper.163

w1
VoDmonitorId lagRatio

12 0.75
12 0.90
18 0.1

w2
FGId tweet
77 “I continuously see the loading symbol”
45 “Your video player is great!”

w3
TargetApp MonitorId FeedbackId

1 12 77
2 18 45

Table 1: Sample output for each of the exemplary wrappers.

Now, the goal is to enable data analysts to query the attributes of the164

ontology-based representation of the UML diagram (i.e., G) by navigating over165

4Note that the use of the aggregate keyword is used to invoke the aggregate querying
framework. The aggregate keyword does not entail grouping unless the $group keyword is
used. Thus, note no aggregation is performed in this query.
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the classes, such that the sources are automatically accessed. Throughout the166

paper we will make use of the exemplary query retrieving for each applicationId167

its lagRatio instances. Hence, the task consists of rewriting such OMQ to an168

equivalent one over the wrappers, which can be translated to the following169

relational algebra expression: Πw3.TargetApp,w1.lagRatio(w1 ./
VoDmonitorId=MonitorId

w3).170

Table 2 depicts an example of the output generated by such query.171

TargetApp lagRatio
1 0.75
1 0.90
2 0.1

Table 2: Sample output for the exemplary query.

Assume now that the first data source releases a new version of its API172

and in the new schema lagRatio has been renamed to bufferingRatio. Hence,173

a new wrapper w4(VoDmonitorId, bufferingRatio) is defined. With such set-174

ting, the analyst should not be aware of such schema evolution, but now175

the query should consider both versions and be automatically rewritten to176

the following expression: Πw3.TargetApp,w1.lagRatio(w1 ./
VoDmonitorId=MonitorId

w3)
⋃

177

Πw3.TargetApp,w4.bufferingRatio(w4 ./
VoDmonitorId=MonitorId

w3).178

2.2. Notation179

We consider a set of data sources D = {D1, . . . , Dn}, where each Di consists180

of a set of wrappers {w1, . . . , wm} representing views over different schema181

versions. We define the operator source(w), which returns the data source D to182

which w belongs to. As previously stated, a wrapper is represented as a relation183

with the attributes its query projects. We distinguish between ID and non-ID184

attributes, hence a wrapper is defined as w(aID, anID), where aID and anID are185

respectively the set of its ID attributes and non-ID attributes.186

Example. The VoD monitoring API would be depicted asD1 = {w1({VoDmonitorId},187

{lagRatio}), w4({VoDmonitorId}, {bufferingRatio})}, the feedback gathering API188

asD2 = {w2({FGId}, {tweet}) and the relationship API asD3 = {w3({TargetApp,189

MonitorId,FeedbackId}, {}).190

191

Wrappers can be joined to each other by means of a restricted equi-join on192

IDs (.̃/). The semantics of .̃/ are those of an equi-join (wi ./
a=b

wj), but only193

valid if a ∈ wi.aID and b ∈ wj .aID. We also define the projection operator Π̃,194

whose semantics are likewise a standard projection for non-ID attributes. We do195

not permit to project out any ID attribute, as they are necessary for .̃/. With196

such constructs, we can now define the concept of a walk over the wrappers197

(W ), which consists of a relational algebra expression where wrappers are joined198

(.̃/) and their attributes are projected (Π̃). Thus, we formally define a walk as199

W = Π̃(w1).̃/ . . . .̃/Π̃(wk). Furthermore, we work under the assumption that200
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schema versions from the same data source should not be joined (e.g., w1 and201

w4 in the running example). To formalize this assumption let wrappers(W )202

denote the set of wrappers used in walk W . Then we require that ∀wi, wj ∈203

wrappers(W ) : source(wi) 6= source(wj). Note that a walk can also be seen as204

a conjunctive query over the wrappers (i.e., select-project-join expression), thus205

two walks are equivalent if they join the same wrappers dismissing the order206

how this is done. Consider, however, that as the operator Π̃ does not project207

out ID attributes, all ID attributes will be part of the output schema.208

Example. The exemplary query (i.e., for each applicationId fetch its lagRatio209

instances) would consist of two walks W1 = Π̃lagRatio(w1) .̃/
VoDmonitorId=MonitorId

210

Π̃TargetApp(w3) and W2 = Π̃bufferingRatio(w4) .̃/
VoDmonitorId=MonitorId

Π̃TargetApp(w3).211

212

Next, we formalize the ontology T as a 3-tuple 〈G,S,M〉 of RDF named213

graphs. The Global graph (G) contains the concepts and relationships that214

analysts will use to query, the source graph (S) the data sources and the215

schemata of wrappers, and the mappings graph (M) the LAV mappings between216

S and G. Recall that data analysts pose OMQs over G, however we do not allow217

arbitrary queries. We restrict OMQs to a subset of standard SPARQL defining218

subgraph patterns of G, and only project elements of such pattern. Code 3219

depicts the template of the permitted queries. Precisely, attr1, . . . , attrn must220

be attribute URIs (i.e., mapping to the UML attributes in Fig. 2), where each221

attri has an invited variable ?vi in the SELECT clause. The set of triples in222

the WHERE clause must define a connected subgraph of G. On the one hand,223

it contains triples of the form 〈si, hasFeature, attri〉, where si are class URIs224

(i.e., mapping to UML classes) and hasFeature a predicate stating that attri is225

attribute of class si. On the other hand, it contains triples of the form 〈sj , pj , oj〉,226

where sj and oj are class URIs (i.e., mapping to UML classes) and pi predicate227

URIs (i.e., mapping to relationships between UML classes).228

SELECT ?v1 . . . ?vn229

FROM G230

WHERE {231

VALUES (?v1 . . . ?vn ) { (attr1 . . . attrn ) }232

s1 p1 attr1 .233

. . .234

sn pn attrn .235

. . .236

sm pm om237

}238

Code 3: Template for accepted SPARQL queries

OMQs are meant to be translated to sets of walks, to this end the aforemen-239

tioned SPARQL queries must be parsed and manipulated. This task can be240
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simplified leveraging on SPARQL Algebra5, where the semantics of the query241

evaluation are specified. Libraries such as ARQ6 provide mechanisms to get242

such algebraic structure for a given SPARQL query. Code 4 depicts the algebra243

structure generated after parsing the subset of permitted SPARQL queries.244

( p r o j e c t (?v1 . . . ?vn )245

( j o i n246

( t a b l e ( vars ?v1 . . . ?vn )247

( row [ ?v1 attr1 ] . . . [ ?vn attrn ] )248

)249

( bgp250

( t r i p l e s1 p1 attr1 )251

. . .252

( t r i p l e sn pn attrn )253

. . .254

( t r i p l e sm pm om )255

) ) ) ) )256

Code 4: SPARQL algebra for the accepted SPARQL queries

In order to easily manipulate such algebraic structures, we formalize the257

allowed SPARQL queries asQG = 〈π, ϕ〉, where π is the set of projected attributes258

(i.e., the URIs attr1, . . ., attrn) and ϕ the graph pattern specified under the bgp259

clause (i.e., basic graph pattern). Note that π ⊆ V (ϕ), where V (ϕ) returns the260

vertex set of ϕ.261

Example. The exemplary query is depicted using SPARQL in Code 5. Al-262

ternatively, it would be represented as π = {lagRatio, applicationId}, and263

ϕ the subgraph applicationId ←−−−−−−−−
hasFeature

SoftwareApplication −−−−−−−−→
hasMonitor

264

Monitor −−−−−−−−−→
generatesQoS

InfoMonitor −−−−−−−−→
hasFeature

lagRatio.265

SELECT ?x ?y266

FROM G267

WHERE {268

VALUES (?x ?y ) { (applicationId lagRatio) }269

SoftwareApplication hasF eature applicationId .270

SoftwareApplication hasMonitor Monitor .271

Monitor generatesQoS InfoMonitor .272

InfoMonitor hasF eature lagRatio273

}274

Code 5: Running example’s SPARQL query

The wrappers and the ontology are linked by means of schema mappings.275

Those are commonly formalized using tuple-generating dependencies (tgds) [5],276

which are logical expressions of the form ∀x(∃yΦ(x, y) 7→ ∃zΨ(x, z)), where277

5https://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html
6https://www.w3.org/2011/09/SparqlAlgebra/ARQalgebra
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Φ and Ψ are conjunctive queries. However, in our context we serialize such278

mappings in the graphM, and not as separated logical expressions. Hence, we279

define a LAV mapping for a wrapper w as LAV (w) : w 7→ ϕG , where ϕG is a280

subgraph of G. We additionally consider a function F : aw 7→ am, that translates281

the name of an attribute in S to its corresponding conceptual representation in282

G. Such function allows us to denote semantic equivalence between physical and283

conceptual attributes in the ontology (respectively, in S and G). Intuitively, F284

forces a physical attribute in the sources to map to one and only one conceptual285

feature in G. As schema mappings, this function is also serialized inM.286

Example. The LAVmapping for w1 would be the subgraphMonitor −−−−−−−−−→
generatesQoS

287

InfoMonitor (also including all class attributes). Regarding F , the function288

would make the conversions w1.VoDmonitorId 7→ toolId and w1.lagRatio 7→289

lagRatio.290

2.3. Problem statement291

In order to introduce the problem statement we must first introduce the292

notions of coverage andminimality for a queryQG over G and a walkW . Coverage293

is formalized as
⋃
w∈wrappers(W ) LAV (w) ⊇ QG , which states that a walk covers294

the query if the union of the LAV graphs of the wrappers participating in295

the walk subsume QG . Minimality is formalized as ∀w∈W (coverage(W,QG) ∧296

¬coverage(W \ w,QG)), which states that if any wrapper is removed from a297

covering walk, then the walk is not covering anymore. Intuitively, these properties298

guarantee that a walk answering a query contains all the required attributes and299

joins, and each wrapper contributes with at least one attribute.300

Now, with the previously introduced formalization and properties, we can301

state the problem of ontology-based query answering under LAV mappings as a302

faceted search over the wrappers with the goal of finding all possible ways to303

obtain the requested attributes. Given an OMQ QG , we aim at finding a set of304

non-equivalent walks W such that each W ∈ W is covering and minimal with305

respect to QG .ϕ. As a result, we obtain a union of conjunctive queries, which306

corresponds to the union of all the covering and minimal walks found for QG .ϕ.307

3. Big Data Integration ontology308

In this section, we present the Big Data Integration ontology (BDI), the309

metadata artifact that enables a systematic approach for the data integration310

system governance when ingesting and analysing the data. To this end, we311

have followed the well-known theory on data integration [12] and divided it into312

two levels (by means of RDF named graphs): the Global and Source graphs,313

respectively G and S, linked via mappings M. Thanks to the extensibility314

of RDF, it further enables us to enrich G and S with semantics such as data315

types. In this section we present the RDF vocabulary to be used to represent G316

and S. To do so, we present a metamodel for the global and source ontologies317

that current models (i.e., G and S) must mandatorily follow. In the following318

subsections, we elaborate on each graph and present its RDF representation.319
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3.1. Global graph320

The Global graph G reflects the main domain concepts, relationships among321

them and features of analysis (i.e., maps to the role of a UML diagram in a322

machine-readable format). Its elements are defined in terms of the vocabulary323

users will use when posing queries. The metadata model for G distinguishes324

concepts from features, the former mimicking classes and the latter attributes325

in a UML diagram. Concepts can be linked by means of domain-specific object326

properties, which implicitely determine their domain and range. Such properties327

will be used for data analysts to navigate the graph, dismissing the need of328

specifying how the underlying sources are joined. The link between a concept329

and its set of features is represented via G:hasFeature. In order to disam-330

biguate the query rewriting process we restrict features to belong to only one331

concept. Additionally, it is possible to define a taxonomy of features, which will332

denote related semantic domains (e.g., the feature sup:monitorId is subclass of333

sc:identifier). Features can be enriched with new semantics to aid the data334

management and analysis phases. In this paper, we narrow the scope to data335

types for features, widely used in data integrity management.336

Code 6 provides the triples that compose G in Turtle RDF notation7. It337

contains the main metaclasses (using the namespace prefix G8 as main names-338

pace) which all features of analysis will instantiate. Concepts and features339

can reuse existing vocabularies by following the principles of the Linked Data340

(LD) initiative. Additionally, we include elements for data types on features341

linked using G:hasDatatype, albeit their maintenance is out of the scope of this342

paper. Following the same LD philosophy, we reuse the rdfs:Datatype class to343

instantiate data types. With such design, we favor the elements of G to be of344

any of the available types in XML Schema (prefix xsd9). Finally, note that we345

focus on non-complex data types, however our model can be easily extended to346

include complex types [4].347

348349
@prefix owl: <http://www.w3.org/2002/07/owl#> .350
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .351
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .352
@prefix voaf: <http://purl.org/vocommons/voaf#> .353
@prefix vann: <http://purl.org/vocab/vann/> .354
@prefix G: <http://www.essi.upc.edu/~snadal/BDIOntology/Global/> .355

356
<http://www.essi.upc.edu/~snadal/BDIOntology/Global/> rdf:type voaf:Vocabulary ;357

vann:preferredNamespacePrefix "G";358
vann:preferredNamespaceUri "http://www.essi.upc.edu/~snadal/BDIOntology/Global";359
rdfs:label "The␣Global␣graph␣vocabulary" .360

361
G:Concept rdf:type rdfs:Class;362

rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Global/> .363
364

G:Feature rdf:type rdfs:Class;365
rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Global/> .366

367
G:hasFeature rdf:type rdf:Property ;368

7https://www.w3.org/TR/turtle
8http://www.essi.upc.edu/~snadal/BDIOntology/Global
9http://www.w3.org/2001/XMLSchema
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Figure 3: RDF dataset of the metadata model and data model of G for the SUPERSEDE
running example. For interpretation of the references to color in the text, the reader is referred
to the web version of this article.

rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Global/> ;369
rdfs:domain G:Concept ;370
rdfs:range G:Feature .371

372
G:hasDataType rdf:type rdf:Property ;373

rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Global/> ;374
rdfs:domain G:Feature ;375
rdfs:range rdfs:Datatype .376377

Code 6: Metadata model for G in Turtle notation

Example. Figure 3 depicts the instantiation of G in the SUPERSEDE case study,378

as presented in the UML diagram in Figure 2 (for the sake of conciseness only a379

fragment is depicted). The color of the elements represent typing (i.e., rdf:type380

links). Note that, in order to comply with the design constraints of G (i.e., a381

feature can only belong to one concept), the toolId feature has been explicited382

and made distinguishable to sup:monitorId and sup:feedbackGatheringId383

respectively for classes Monitor and FeedbackGathering. When possible, vocabu-384

laries are reused, namely https://www.w3.org/TR/vocab-duv (prefix duv) for385

feedback elements as well as http://dublincore.org/documents/dcmi-terms386

(prefix dct) or http://schema.org (prefix sc). However, when no vocabulary387

is available we define the custom SUPERSEDE vocabulary (prefix sup).388

3.2. Source graph389

The purpose of the Source graph S is to model the different wrappers and390

their provided schema. To this end, we define the metaconcept S:DataSource391

which models the different data sources (e.g., Twitter REST API). In S, we392
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additionally encode the necessary information for schema versioning, hence we393

define the metaconcept S:Wrapper which will model the different schema versions394

for a data source, which in turn consist of a representation of the projected395

attributes, modeled in the metaconcept S:Attribute. We embrace the reuse of396

attributes within wrappers of the same data source, as we assume the semantics397

do not differ across schema versions, however that assumption is not realistic398

among different data sources (e.g., not necessarily a timestamp has the same399

meaning in the VoD monitor and the Twitter API). Therefore, we encode in400

the attribute names the prefix of the data source they correspond to (e.g., for401

a data source D, its wrappers W and W ′ respectively provide the attributes402

{D/a, D/b} and {D/a, D/c}). Code 7 depicts the metadata model for S in Turtle403

RDF notation (using prefix S10 as main namespace).404

405406
@prefix owl: <http://www.w3.org/2002/07/owl#> .407
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .408
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .409
@prefix voaf: <http://purl.org/vocommons/voaf#> .410
@prefix vann: <http://purl.org/vocab/vann/> .411
@prefix S: <http://www.essi.upc.edu/~snadal/BDIOntology/Source/> .412

413
<http://www.essi.upc.edu/~snadal/BDIOntology/Source/> rdf:type voaf:Vocabulary ;414

vann:preferredNamespacePrefix "S";415
vann:preferredNamespaceUri "http://www.essi.upc.edu/~snadal/BDIOntology/Source";416
rdfs:label "The␣Source␣graph␣vocabulary" .417

418
S:DataSource rdf:type rdfs:Class;419

rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Source/> .420
421

S:Wrapper rdf:type rdfs:Class;422
rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Source/> .423

424
S:Attribute rdf:type rdfs:Class;425

rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Source/> .426
427

S:hasWrapper rdf:type rdf:Property ;428
rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Source/> ;429
rdfs:domain S:DataSource ;430
rdfs:range S:Wrapper .431

432
S:hasAttribute rdf:type rdf:Property ;433

rdfs:isDefinedBy <http://www.essi.upc.edu/~snadal/BDIOntology/Source/> ;434
rdfs:domain S:Wrapper ;435
rdfs:range S:Attribute .436437

Code 7: Metadata model for S in Turtle notation

Example. Figure 4 shows the instantiation of S in SUPERSEDE. Red nodes438

depict the data sources that correspond to the three data sources introduced in439

Section 2.1. Then, orange and blue nodes depict the wrappers and attributes,440

respectively.441

3.3. Mapping graph442

As previously discussed, we encode LAV mappings in the ontology. Recall443

that mappings are composed by (a) subgraphs of G, one per wrapper, and (b) the444

10http://www.essi.upc.edu/~snadal/BDIOntology/Source

13

http://www.essi.upc.edu/~snadal/BDIOntology/Source


Figure 4: RDF dataset of the metadata model and data model of S. For interpretation of the
references to color in the text, the reader is referred to the web version of this article.

function F linking elements of type S:Attribute to elements of type G:Feature.445

We serialize such information in RDF in the Mapping graphM. Subgraphs are446

represented using named graphs, which identify a subset of G. Thus, each wrapper447

will have associated a named graph identifying which concepts and features it is448

providing information about. This will be represented using triples of the form449

〈w, M:mapping, G〉, where w is an instance of S:Wrapper and G is a subgraph of450

G. Regarding the function F , we represent it via the owl:sameAs property (i.e.,451

triples of the form 〈x, owl:sameAs, y〉, where x and y are respectively instances452

of S:Attribute and G:Feature.453

Example. In Figure 5 we depict the complete instantiation of the BDI ontology454

for the SUPERSEDE running example. To ensure readability, internal classes455

are omitted and only the core ones are shown. Named graphs are depicted using456

colored boxes, respectively red for w1, blue for w2 and green for w3.457

The previous discussion sets the baseline to enable semi-automatic schema458

management in the data sources. Instantiating the metadata model, the data459

steward is capable of modeling the schema of the sources to be further linked to460

the wrappers and the data instances they provide. With such, in the rest of this461

paper we will introduce techniques to adapt the ontology to schema evolution462

aswell as query answering.463

4. Handling evolution464

In this section, we present how the BDI ontology accomodates the evolution465

of situational data. Specific studies concerning REST API evolution [14, 27]466

have concluded that most of such changes occur in the structure of incoming467

events, thus our goal is to semi-automatically adapt the BDI ontology to such468

evolution. To this end, in the following subsections we present an algorithm to469

aid the data steward to enrich the ontology upon new releases.470

4.1. Releases471

In Section 2, we discussed the role of the data steward as the unique maintainer472

of the BDI ontology in order to make data management tasks transparent to473
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Figure 5: RDF dataset of the metadata model and data model of the complete ontology for
the SUPERSEDE running example. For interpretation of the references to color in the text,
the reader is referred to the web version of this article.

data analysts. Now, the goal is to shield the analysts queries, so that they do474

not crash upon new API version releases. In other words, we need to adapt S475

to schema evolution in the data sources, so that G is not affected. To this end,476

we introduce the notion of release, the construct indicating the creation of a477

new wrapper, and how its elements link to features in G. Thus, we formally478

define a release R as a 3-tuple R = 〈w,G, F 〉, where w is a wrapper, G is a479

subgraph of G denoting the elements in G that the wrapper contributes to, and480

F = a 7→ V (G) a function where a ∈ w.aID ∪w.anID and V (G) vertices of type481

G:Feature in G. R must be created by the data steward upon new releases.482

Several approaches can aid this process. For instance, to define the graph G, the483

user can be presented with subgraphs of G that cover all features. However, this484

raises the question of which is the most appropiate subgraph that the user is485

interested in. Regarding the definition of F , probabilistic methods to align and486

match RDF ontologies, such as paris [25], can be used. Note that the definition487

of wrappers (i.e., how to query an API) is beyond the scope of this paper.488

Example. Recall wrapper w4 for data source D1. Its associated release would489

be defined as w4(VoDmonitorId, bufferingRatio), G = sup:lagRatio←−−−−−−−−
G:hasFeature

490

sup:InfoMonitor −−−−−−−−−→
sup:hasMonitor

sup:Monitor −−−−−−−−→
G:hasFeature

sup:monitorId, and491

15



F = {VoDmonitorId 7→ sup:monitorId, bufferingRatio 7→ sup:lagRatio}.492

4.2. Release-based Ontology Evolution493

As mentioned above, changes in the source elements need to be reflected494

in the ontology to avoid queries to crash. Furthermore, the ultimate goal is to495

provide such adaptation in an automated way. To this end, Algorithm 1 applies496

the necessary changes to adapt the BDI ontology T w.r.t. a new release R. It497

starts registering the data source, in case it is new (line 4), and the new wrapper498

to further link them (lines 7 and 8). Then, for each attribute in the wrapper499

R.w, we check their existence in the current Source graph and register it, in case500

it is not present. Given the way URIs for attributes are constructed (i.e., they501

have the prefix of their source), we can ensure that only attributes from the502

same source will be reused within subsequent versions. This helps to maintain503

a low growth rate for T .S, as well as avoiding potential semantic differences.504

Next, the named graph is registered to the Mapping graph, to conclude with the505

serialization of function F (in R.F ). The complexity of this algorithm is linearly506

bounded by the size of the parameters of R.507

Algorithm 1 Adapt to Release
Pre: T is the BDI ontology, R new release
Post: T is adapted w.r.t. R
1: function NewRelease(T , R)
2: Sourceuri = "S:DataSource/"+source(R.w)
3: if Sourceuri /∈ SELECT ?ds FROM T WHERE 〈?ds, "rdf:type", "S:DataSource"〉 then
4: T .S ∪= 〈Sourceuri, "rdf:type", "S:DataSource"〉
5: end if
6: Wrapperuri = "S:Wrapper/"+R.w
7: T .S ∪= 〈Wrapperuri, "rdf:type", "S:Wrapper"〉
8: T .S ∪= 〈Sourceuri, "S:hasWrapper",Wrapperuri〉
9: for each a ∈ (R.w.aID ∪ R.w.anID) do

10: Attributeuri = Sourceuri+a
11: if Attributeuri /∈ SELECT ?a FROM T WHERE 〈?a, "rdf:type", "S:Attribute"〉 then
12: T .S ∪= 〈Attributeuri, "rdf:type", "S:Attribute"〉
13: end if
14: T .S ∪= 〈Wrapperuri, "S:hasAttribute", Attributeuri〉
15: end for
16: T .M∪= 〈Wrapperuri, "M:mapping", R.G〉
17: for each (a, f) ∈ R.F do
18: auri = Sourceuri+a
19: furi = "G:Feature/"+f
20: T .M∪= 〈auri, "owl:sameAs", furi〉
21: end for
22: end function

Example. In Figure 6, we depict the resulting ontology T after executing Algo-508

rithm 1 with the release for wrapper w4.509

5. Query answering510

In this section, we present the algorithm for ontology-based query answering511

under LAV mappings with wrappers. To this end, we provide a query rewriting512

algorithm that, given a conjunctive query QG produces a union of conjunctive513
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Figure 6: RDF dataset for the evolved ontology T for the SUPERSEDE running example

queries Q over the wrappers. Retaking the running example, and now using514

the vocabulary introduced in Section 3 as prefixes, the SPARQL representation515

of the query obtaining for each applicationId all its lagRatio instances would516

be that depicted in Code 8. Alternatively, recall the alternative representation517

for QG as QG .π = {sup:applicationId, sup:lagRatio} and the graph QG .ϕ518

depicted in Figure 7.519

SELECT ?x ?y520

FROM G521

WHERE {522

VALUES (?x ?y ) { (sup:applicationId sup:lagRatio) }523

sc:SoftwareApplication G:hasFeature sup:applicationId .524

sc:SoftwareApplication sup:hasMonitor sup:Monitor .525

sup:Monitor sup:generatesQoS sup:InfoMonitor .526

sup:InfoMonitor G:hasFeature sup:lagRatio527

}528

Code 8: Running example’s SPARQL query

5.1. Well-formed queries529

As previously mentioned, unambiguously resolving query answering under530

LAV mappings entails constraining the design of the elements in the ontology,531
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Figure 7: Graph pattern for the running example query

which also applies for the case of queries. Even though our approach makes532

transparent to the user how the concepts in G are to be joined in the wrappers,533

it is necessary that Q.π retrieves only elements that exist in the sources (i.e.,534

features) and can be populated with data. To this end, we introduce the notion535

of well-formed query.536

Definition 5.1 (Well-formed query). A query QG is well formed iff QG .ϕ has a537

topological sorting (i.e., it is a DAG) and any projected element p ∈ QG .π refers538

to a terminal node n ∈ QG .ϕ which has a triple 〈n, rdf:type, G:Feature〉 in G.539

The rationale behind such definition is to ensure that (a) the graph QG .ϕ can540

be safely traversed by joining different sources, and (b) all projected elements541

are features, which potentially have mappings to the sources. For instance,542

the SPARQL query depicted in Code 9, which retrieves pairs of Monitor and543

FeedbackGathering per SoftwareApplication, is not well-formed as it retrieves544

only concepts.545

SELECT ?x , ?y , ?z546

FROM G547

WHERE {548

VALUES (?x ?y ?z ) {549

(sup:SoftwareApplication sup:Monitor sup:FeedbackGathering)550

}551

sup:SoftwareApplication sup:hasMonitor sup:Monitor .552

sup:SoftwareApplication sup:hasFGTool sup:FeedbackGathering553

}554

Code 9: A non well-formed query

In our approach, IDs are considered the default feature. Hence, it is possible to555

automatically rewrite the query and make it well-formed by replacing projections556

of concepts for IDs, if available. Such process is depicted in Algorithm 2, which557

converts a query to a well-formed one if possible, otherwise it raises an error.558

Algorithm 2 firstly attempts to detect if the graph pattern QG .ϕ is acyclic,559

18



which will be true if and only if there exists a topological ordering. Next, it560

iterates over the projected elements in QG .π looking for those that are not of561

type G:Feature (line 6), in such case it explores all the features of the concept562

at hand looking for a candidate ID. Note the usage of the auxiliary method563

x.outgoingNeighborsOfType(t, g), returning, for a node x, all outgoing564

neighbors of type t in the graph g (line 8). Code 10 depicts the previous non565

well-formed query now converted to its well-formed version after applying the566

algorithm.567

Algorithm 2 Well-formed query
Pre: T is the BDI ontology, QG = 〈π, ϕ〉 is a query over G
Post: QG is well-formed, otherwise an error is raised
1: function WellFormedQuery(G, QG)
2: if @TopologicalSort(QG .ϕ) then
3: return error(QG .ϕ has at least one cycle)
4: end if
5: for each π ∈ QG .π do
6: if typeOf(π) 6= G:Feature then
7: hasID = false
8: for each o ∈ π.outgoingNeighborsOfType("G:Feature", T ) do
9: if 〈o, "rdfs:subClassOf", "sc:identifier"〉 ∈ T then

10: hasID = true
11: QG .π = (QG .π \ {π}) ∪ {o}
12: QG .ϕ ∪= 〈π, "G:hasFeature", o〉
13: end if
14: end for
15: if ¬hasID then
16: return error(QG has at least one concept without any feature included in the query

that is mapped to the sources)
17: end if
18: end if
19: end for
20: return S
21: end function

SELECT ?x ?y ?z568

FROM G569

WHERE {570

VALUES (? x ?y ? z ) {571

(sup:applicationId sup:monitorId sup:feedbackGatheringId)572

}573

sup:SoftwareApplication sup:hasMonitor sup:Monitor .574

sup:SoftwareApplication sup:hasFGTool sup:FeedbackGathering .575

sup:SoftwareApplication G:hasFeature sup:applicationId .576

sup:Monitor G:hasFeature sup:monitorId .577

sup:FeedbackGathering G:hasFeature sup:feedbackGatheringId578

}579

Code 10: A well-formed query

5.2. Query rewriting580

The core of the query answering method is the query rewriting algorithm581

that, given a well-formed query QG automatically resolves the LAV mappings582

and returns a union of conjunctive queries over the wrappers. Intuitively, the583

algorithm consists of three phases:584
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1. Query expansion, which deals with the analysis of the query w.r.t. the585

ontology. To this end, it takes as input a well-formed query QG in order586

to build its expanded version. An expanded query Q′G contains the same587

elements as the original QG , however it also includes IDs for concepts that588

have not been explicitely requested by the analyst. This is necessary to589

perform joins in the next phases. In this phase, we also identify which are590

the concepts in the query, as the next phases are concept-centric.591

2. Intra-concept generation, which receives as input the expanded query and592

generates a list of partial walks per concept. Such partial walks indicate593

how to query the wrappers in order to obtain the requested features for the594

concept at hand. To achieve this, we utilize SPARQL queries that aid us595

to obtain the features per concept, as well as to resolve the LAV mappings.596

3. Inter-concept generation, it receives the list of partial walks per concept597

and joins them to produce covering walks. As result, it returns the union598

of all the covering and minimal walks found. This is achieved by generating599

all combinations of partial conjunctive queries that can be joined and that600

cover the projected attributes in QG .601

Next, we present the algorithms corresponding to each of the phases and602

their details.603

Phase #1 (query expansion). The expansion phase (see Algorithm 3) breaks604

down to the following steps:605

1 Identify query-related concepts. The list of query-related concepts606

consists of vertices of type G:Concept in the graph pattern (line 4). Travers-607

ing QG .ϕ we manage to store adjacent concepts in the query in the list608

concepts (line 5). For the sake of conciseness, algorithms assume lin-609

ear traversals amongst concepts. Note that using tree-shaped concept610

traversals is possible, but entails overburdening the algorithms with graph611

manipulations instead of lists.612

Example. In the running example (see Figure 7), the list concepts would613

be [sc:SoftwareApplication, sup:Monitor, sup:InfoMonitor].614

2 Expand QG with IDs. Given the list of query-related concepts, we615

identify their features of type ID by means of a SPARQL query and store616

it in the set IDs (line 10). For each element in the set IDs we finally617

expand the query with it (line 12).618

Example. The expanded queryQ′G would include the feature sup:monitorId619

(i.e., the ID of concept sup:Monitor), which was not initially in QG .620
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Algorithm 3 Query Expansion
Pre: QG is a well-formed query, T us the BDI ontology
Post: concepts is the list of query related concepts, Q′

G is the expanded version of QG with IDs
1: function QueryExpansion(QG ,G)
2: concepts = [ ]
3: for v ∈ TopologicalSort(QG .ϕ) do
4: if 〈v, "rdf:type", "G:Concept"〉 ∈ T then

 1
5: concepts.add(v)
6: end if
7: end for
8: Q′

G = QG
9: for c ∈ concepts do

10: IDs = SELECT ?t FROM T WHERE
{〈c, "G:hasFeature", ?t〉.〈?t, "rdfs:subClassOf", "sc:identifier"〉}

11: for fID ∈ IDs do

 2
12: Q′

G .ϕ ∪= 〈c, "G:hasFeature", fID〉
13: end for
14: end for
15: return 〈concepts,Q′

G〉
16: end function

Phase #2 (intra-concept generation). The intra-concept phase (see Algorithm621

4) gets as input the list of concepts in the query, and the expanded query Q′G ,622

and outputs the list of partial walks per concept (partialWalks defined in line623

2). A partial walk is a walk that is not yet traversing all the concepts required624

by the query. The process breaks down to the following steps:625

3 Identify queried features. Phase #2 starts iterating for each concept in626

the query. First, we define the auxiliary hashmap PartialWalksPerWrapper627

(line 5), where its keys are wrappers and its values are walks. To populate628

this map, we obtain the requested features in Q′G for the concept at hand,629

which is stored in the set features that is obtained via a SPARQL query630

over the graph pattern Q′G .ϕ (line 6).631

Example. The set features (result of the SPARQL query in line 6) would632

be {sup:lagRatio, sup:monitorId, sup:applicationId}.633

4 Unfold LAV mappings. Next, for each feature f in the set features,634

we look for wrappers whose LAV mapping contain it. This is achieved635

querying the named graphs in T (line 8). At this point, we have the636

information of which wrappers may provide the feature at hand.637

Example. For the feature sup:lagRatio the identified set of wrappers638

would be {sup:W1}. Likewise, for the feature sup:monitorId the set639

{sup:W1, sup:W3} and for sup:applicationId the set {sup:W3}.640

5 Find attributes in S. Now, for each wrapper w in the previously devised641

set of wrappers for feature f , with a SPARQL query (line 10) we find the642

attribute a in S that maps to the feature at hand (i.e., owl:sameAs rela-643

tionship). This will be added to the hashmap PartialWalksPerWrapper,644

with key w and value Π̃a(w).645

Example. For feature sup:lagRatio and wrapper sup:W1, we would iden-646

tify sup:D1/lagRatio as attribute in S. Hence, we would add to the647
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hashmap PartialWalksPerWrapper an entry with key sup:W1 and value648

Π̃sup:D1/lagRatio(sup:W1). The process would be likewise for the rest of649

features and wrappers.650

6 Prune output. Note that we might have considered walks that do651

not contain all the requested features for the current concept c (e.g., a652

wrapper w5 where lagRatio has been dropped), hence, in order to avoid653

the complexity that combining wrappers within a concept would yield, we654

only keep those wrappers providing all the features queried for the current655

concept. To this end, we first use the MergeProjections operator,656

which merges the projection operators that have been separately added657

to the walk (e.g., from Π̃a1(w)Π̃a2(w) to Π̃a1,a2(w)). With such wrapper658

projections, we follow the owl:sameAs relation from S to G to ensure659

that we are obtaining the same set of features as requested by the analyst660

(defined in line 6), if so we will add such partial walk to the output, ensuring661

covering and minimality for the concept at hand.662

Example. The final output of phase #2 would be a list with the following663

elements:664

• 〈 sc:SoftwareApplication → {Π̃sup:D3/TargetApp(sup:W3)}〉665

• 〈 sup:Monitor→ {Π̃sup:D1/VoDmonitorId(sup:W1), Π̃sup:D3/MonitorId(sup:W3)}〉666

• 〈 sup:InfoMonitor → {Π̃sup:D1/lagRatio(sup:W1)}〉667

Phase #3 (inter-concept generation). The final phase of the rewriting process668

(see Algorithm 5) consists of joining the partial walks per concept to obtain a669

set of walks joining all the concepts required in the query. This is a systematic670

process where the final list of walks is incrementally built.671

7 Compute cartesian product. Phase #3 iterates on partialWalks using672

a window of two elements, current (line 2) and next (line 4), and maintain673

a set of currently joined partial walks (line 5). We start computing the674

cartesian product of the respective lists of partial walks (line 6), namely675

CPleft (corresponding to current) and CPright (corresponding to next).676

Example. In the first iteration, current and next would be respectively the677

maps 〈 sc:SoftwareApplication → {Π̃sup:D3/TargetApp(sup:W3)}〉 and 〈678

sup:Monitor → {Π̃sup:D1/VoDmonitorId(sup:W1), Π̃sup:D3/MonitorId(sup:W3)}〉.679

Thus, the resulting cartesian product of the sets of partial walks would680

be the pair 〈Π̃sup:D3/TargetApp(sup:W3), Π̃sup:D1/VoDmonitorId(sup:W1)〉 and the681

pair 〈Π̃sup:D3/TargetApp(sup:W3), Π̃sup:D3/MonitorId(sup:W3)〉.682

8 Merge walks. Given the two partial walks from the cartesian product,683

the goal is now to merge them into a single one. To this end, we use the684

function MergeWalks (line 7) that given the two partial walks generates685

a merged one that projects the attributes from both inputs. At this moment686
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Algorithm 4 Intra-concept generation
Pre: concepts is the list of concepts in the query, Q′

G is an expanded query, T is the BDI ontology
Post: partialWalks is the map of sets of partial walks per concept
1: function IntraConceptGeneration(concepts,Q′

G , T )
2: partialWalks = [ ]
3: for i = 0; i < length(concepts); ++i do
4: c = concepts[i]
5: PartialWalksPerWrapper = HashMap<k,v>

}
3

6: features = SELECT ?f FROM Q′
G .ϕ WHERE {〈c, "G:hasFeature", ?f〉}

7: for f ∈ features do
8: wrappers = SELECT ?g FROM T WHERE

{ GRAPH ?g{〈c, "G:hasFeature", f〉}}

}
4

9: for w ∈ wrappers do
10: attribute = SELECT ?a FROM T WHERE

{〈?a, "owl:sameAs", f〉.〈w, "S:hasAttribute", ?a〉}

 5
11: PartialWalksPerWrapper[w] ∪= Π̃attribute(w)
12: end for
13: end for
14: for 〈wrapper, walk〉 ∈ PartialWalksPerWrapper do
15: mergedWalk = MergeProjections(walk)
16: featuresInWalk = {}
17: for a ∈ Projections(mergedWalk) do
18: featuresInWalk ∪= SELECT ?f FROM T WHERE

{〈a, "owl:sameAs", ?f〉}


6

19: end for
20: if featuresInWalk = features then
21: partialWalks.add(〈c,mergedWalk〉)
22: end if
23: end for
24: end for
25: return partialWalks
26: end function

there are two possibilities, (a) there is a wrapper shared by both partial687

walks and then the join has been materialized by it, or (b) they do not688

share a wrapper, thus we need to explore ways to join them. In the former689

case, as discussed, no further join needs to be added to the merged walk,690

however the latter needs to be extended by an additional join (.̃/) between691

both inputs. Such discovery process is described in the following steps.692

Example. Given 〈Π̃sup:D3/TargetApp(sup:W3), Π̃D3/MonitorId(sup:W3)〉, the693

merged walk would be Π̃sup:D3/TargetApp,sup:D3/MonitorId(sup:W3) where no694

extra joins should be added. Regarding the pair 〈Π̃sup:D3/TargetApp(sup:W3),695

Π̃sup:D1/VoDmonitorId(sup:W1)〉, after merging the walks the result would be696

Π̃sup:D3/TargetApp(sup:W3)Π̃sup:D1/VoDmonitorId(sup:W1), thus it is necessary697

to discover how to join sup:W1 and sup:W3.698

9 Discover join wrappers. For each pair of concepts related by an edge699

in Q′G (current and next), we aim at retrieving the list of wrappers700

providing the required features (i.e., identified as partial walks in the701

previous step). Since G is a directed graph, we first need to identify,702

for each edge, the concept playing the role of current and next (e.g., if703

sc:SoftwareApplication and sup:Monitor play the role of current and704

next, respectively, then the join must be computed using the ID of next).705
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This is computed in two SPARQL queries (lines 9 and 10). Note that only706

one direction will be available since our graph query (Q′G) does not contain707

cycles.708

Example. Given that current.c and next.c are respectively the concepts709

sc:SoftwareApplication and sup:Monitor, as the edge is directed from710

the former to the latter, only wrappersFromLtoR would contain any data,711

precisely the set of wrappers {sup:W1}. This entails that we need to look712

for the attribute of type ID for concept sup:Monitor that is provided by713

sup:W1.714

10 Discover join attribute. Focusing on the case where next must provide715

the ID (lines 12-17), we start issuing a SPARQL query that tells us such ID716

(line 12). Next, the operation findWrapperWithID (line 13) identifies717

which wrapper is providing such ID for next, and subsequently we obtain718

the physical attribute (line 14). Then, we iterate on all wrappers that719

contribute to the relation between both concepts, and for each wrapper we720

identify the ID attribute for left (line 16). With such, we can generate721

a new walk by joining each potential pair resulting from the list of IDs722

for current and the one identified for next (line 17). As we previously723

discussed, this process depends on the direction of the edge, therefore line724

20 entails that the same process should be executed if the edge goes from725

next to current.726

Example. Given the partial walks from the previous example, the output727

of phase #3 would consist of the following set of walks:728

• Π̃sup:D1/lagRatio,sup:D1/VoDmonitorId,sup:D3/TargetApp729

(sup:W1 .̃/
sup:D1/VoDmonitorId=sup:D3/MonitorId

sup:W3)730

• Π̃sup:D1/lagRatio,sup:D3/MonitorId,sup:D3/TargetApp731

(sup:W1 .̃/
sup:D1/VoDmonitorId=sup:D3/MonitorId

sup:W3)732

Note that, even though the analyst requested only the first and third at-733

tributes our approach has generated further combinations when considering734

IDs (in Step 2). Those can be easily projected out at the final step, when735

generating the union of conjunctive queries.736

5.3. Computational complexity737

The query rewriting algorithm is divided into three blocks, hence we will738

present the study of the computational complexity for each of them. We will739

study the complexity in terms of the number of walks generated in the worst case.740

Such worst case occurs when each concept features is provided by a different741

wrapper (which forces us to generate more joins) and for each concept different742

sources provide wrappers for it (which generates unions of alternative walks),743

which forces us to generate a larger number of joins.744
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Algorithm 5 Inter-concept generation
Pre: partialWalks is the list of partial walks per concept, S is the source graph andM the LAV

mappings
Post: walks is the final list of walks
1: function InterConceptGeneration(partialWalks,S,M)
2: current = partialWalks[0]
3: for i = 1; i < length(partialWalks); ++i do
4: next = partialWalks[i]
5: joined = {}
6: for 〈CPleft, CPright〉 ∈ current.lw × next.lw do } 7
7: mergedWalk = mergeWalks(CPleft, CPright) } 8
8: if wrappers(CPleft) ∩ wrappers(CPright) = ∅ then
9: wrappersFromLtoR = SELECT ?g FROM T WHERE

{ GRAPH ?g {〈current.c, ?x, next.c〉}}

}
9

10: wrappersFromRtoL = SELECT ?g FROM T WHERE
{ GRAPH ?g {〈next.c, ?x, current.c〉}}

11: if wrappersFromLtoR 6= ∅ then
12: fID = SELECT ?t FROM T WHERE

{〈next.c, G:hasFeature, ?t〉.〈?t, rdfs:subClassOf, sc:identifier〉}
13: wrapperWithIDright = findWrapperWithID(CPright)
14: attright = SELECT ?a FROM T WHERE

{〈?a, owl:sameAs, fID〉.〈wrapperWithIDright, S:hasAttribute, ?a〉}
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15: for w ∈ wrappersFromLtoR do
16: attleft = SELECT ?a FROM T WHERE

{〈?a, owl:sameAs, fID〉.〈w, S:hasAttribute, ?a〉}
17: mergedWalk ∪= w .̃/

attleft=attright

wrapperWithIDright

18: end for
19: else if wrappersFromRtoL 6= ∅ then
20: Repeat the process from lines 12-17 inverting left and right.
21: end if
22: end if
23: joined.add(mergedWalk)
24: end for
25: current = 〈next.c, joined〉
26: end for
27: return current
28: end function

• Phase #1: this phase expands the query with IDs not explicitly queried745

and therefore it is linear in the number of concepts in the query.746

• Phase #2: this phase is linear in the number wrappers providing all the747

required features of a given concept of the query. This complexity results748

from the fact that either a wrapper provides all the features of a concept749

or it is not considered. Thus, no combinations between wrappers are750

performed to obtain the features or a given concept. Thus, the output of751

such phase is an array, where each of its buckets is the size of the number752

of wrappers per concept ([(#W )C1 , (#W )C2 , . . . , (#W )Cn
]).753

• Phase #3: this phase yields an exponential complexity as it generates754

joins of partial walks. Note that a cartesian product is performed for each755

partial walk of a given concept c in the query. Hence, in the worst case756

(i.e., all partial walks can be joined), we are generating all combinations of757

wrappers in order to join them (i.e., (#W )C1 × (#W )C2 × . . .× (#W )Cn
).758

With the previous discussion, we conclude that in the worst case we can759
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upper bound the theoretical complexity to O(WC), assuming each concept has760

W wrappers generating partial walks (see phase 2), and the query navigates761

over C concepts. Indeed, such complexity depends on the number of mappings762

that refer to the query subgraph. To verify the theoretical complexity we have763

performed a controlled experiment. We have constructed an artificial query764

navigating through 5 concepts and we have progressively increased the number765

of wrappers per concept from 1 to 25. Then, we measured the time needed766

to run the algorithms. This is depicted in Figure 8, the theoretical prediction767

(thin line) closely aligns with the observed performance (thick line). Despite the768

exponential behavior of query answering, we advocate that realistic Big Data769

scenarios (e.g., the SUPERSEDE running example) where data are commonly770

ingested in the form of events, such disjointness in wrappers amongst concepts771

is not common. In that case, there are few combinations to walk through edges772

in G, and thus query answering remains tractable in practice.773

Figure 8: Evolution of query answering time in the worst case scenario where wrappers are
disjoint (i.e., there is no evolution). The query is a query with 5 concepts. The x-axis shows
the number of (disjoint) wrappers per concept.

6. Evaluation774

In this section, we present the evaluation results of our approach. We first775

discuss its implementation, and then provide three kinds of evaluations: a776

functional evaluation on evolution management, the industrial applicability of777

our approach and a study on the evolution of the ontology in a real-world API.778
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6.1. Implementation779

Prior to discuss the evaluation of our approach we present its implementation,780

which is part of a system named Metadata Management System (shortly MDM).781

Figure 9 depicts a functional overview of the querying process in the system.782

Data analysts are presented with a graph-based representation of G in a user783

interface where they can graphically pose OMQs. Such graphical representation784

is automatically converted to its equivalent SPARQL query, and if its well-785

defined to its algebraic expression QG . Next, this is the input to our three-phase786

algorithm for query answering, which will yield a list of walks (i.e., relational787

algebra expressions over the wrappers).788

Figure 9: Architectural overview of the query answering process

MDM is implemented using a service-oriented architecture. In the frontend,789

it provides the web-based component to assist the management of the Big Data790

evolution lifecycle. This component is implemented in JavaScript and resides in791

a Node.JS web server, Figure 10 depicts an screenshot of the interface to query792

G. The backend is implemented as a set of REST APIs defined with Jersey for793

Java. The backend makes heavy use of Jena to deal with RDF graphs, as well794

as its persistence engine Jena TDB.795

Figure 10: Posing an OMQ through the interface and the generated output

6.2. Functional evaluation796

In order to evaluate the functionalities provided by the BDI ontology, we797

take the most recent study on structural evolution patterns in REST API [27].798

Such work distinguishes changes at 3 different levels, those in (a) API-level,799

(b) method-level and (c) parameter-level. Our goal is to demostrate that our800
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approach can semi-automatically accommodate such changes. To this end, it801

is necessary to make a distinction between those changes occurring in the data802

requests and those in the response. The former are handled by the wrapper’s803

underlying query engine, which also needs to deal with other aspects such as804

authentication or HTTP query parametrization. The latter will be handled by805

the proposed ontology.806

API-level changes. Those changes concern the whole of an API. They can be807

observed either because a new data source is incorporated (e.g., a new social808

network in the SUPERSEDE use case) or because all methods from a provider809

have been updated. Table 3 depicts the API-level change breakdown and the810

component responsible to handle it.811

API-level Change Wrapper BDI Ont.
Add authentication model 3

Change resource URL 3

Change authentication model 3

Change rate limit 3

Delete response format 3

Add response format 3

Change response format 3

Table 3: API-level changes dealt by wrappers or BDI ontology

Adding or changing a response format at API level consists of, for each812

wrapper querying it, registering a new release with this format. Regarding the813

deletion of a response format, it does not require actions, due to the fact that no814

further data on such format will arrive. However, in order to preserve historic815

backwards compatibility, no elements should be removed from T .816

Method-level changes. Those changes concern modifications on the current817

version of an operation. They occur either because a new functionality is818

released or because existing functionalities are modified. Table 4 summarizes819

the method-level change breakdown and the component responsible to handle it.820

Method-level Change Wrapper BDI Ont.
Add error code 3

Change rate limit 3

Change authentication model 3

Change domain URL 3

Add method 3 3

Delete method 3 3

Change method name 3 3

Change response format 3

Table 4: Method-level changes dealt by wrappers or BDI ontology
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Those changes have more overlapping with the wrappers due to the fact that821

new methods require changes in both request and response. In the context of the822

BDI ontology, each method is an instance of S:DataSource and thus, adding a823

new one consists of declaring a new release and running Algorithm 1. Renaming824

a method requires renaming the data source instance. As before, a removal does825

not entail any action with the aim of preserving backwards historic compatibility.826

Parameter-level changes. Such changes are those concerning schema evolution827

and are the most common on new API releases. Table 5 depicts such changes828

and the component in charge of handling it.829

Parameter-level Change Wrapper BDI Ont.
Change rate limit 3

Change require type 3

Add parameter 3 3

Delete parameter 3 3

Rename response parameter 3

Change format or type 3

Table 5: Parameter-level changes dealt by wrappers or BDI ontology

Similarly to the previous level, some parameter-level changes are managed830

by both wrappers and the ontology. This is caused by the ambiguity of the831

change statements, and hence we might consider both URL query parameters832

and response parameters (i.e., attributes). Changing format of a parameter has833

a different meaning as before, and here entails a change of data type or structure.834

Any of the parameter-level changes identified can be automatically handled by835

the same process of creating a new release for the source at hand.836

6.3. Industrial applicability837

After functionally validating that the BDI ontology and wrappers can handle838

all types of API evolution, next we aim to study how these changes occur839

in real-world APIs. With this purpose, we study the results from [14] which840

presents 16 change patterns that frequently occur in the evolution of 5 widely841

used APIs (namely Google Calendar , Google Gadgets, Amazon MWS , Twitter842

API and Sina Weibo). With such information, we can show the number of843

changes per API that could be accommodated by the ontology. We summarize844

the results in Table 6. As before, we distinguish between changes concerning845

(a) the wrappers, (b) the ontology and (c) both wrappers and ontology. This846

enables us to measure the percentage of changes per API that can be partially847

accommodated by the ontology (changes also concerning the wrappers) and848

those fully accommodated (changes only concerning the ontology). Our results849

show that for all studied APIs, the BDI ontology could, on average, partially850

accommodate 48.84% of changes and fully accommodate 22.77% of changes. In851

other words, our semi-automatic approach allows to solve on average 71.62% of852

changes.853
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API Owner
#Changes
Wrapper

#Changes
Ontology

#Changes
Wrapper&Ontology

Partially
Accommodates

Fully
Accommodates

Google Calendar 0 24 23 48.94% 51.06%
Google Gadgets 2 6 30 78.95% 15.79%
Amazon MWS 22 36 14 19.44% 50%
Twitter API 27 0 25 48.08% 0%
Sina Weibo 35 3 56 59.57% 3.19%

Table 6: Number of changes per API and percentage of partially and fully accommodated
changes by T

6.4. Ontology evolution854

Now, we are concerned with performance aspects of using the ontology.855

Particularly, we will study its temporal growth w.r.t. the releases of a real-856

world API, namely Wordpress REST API11. This analysis is of special interest,857

considering that the size of the ontology may have a direct impact on the cost858

of querying and maintaining it. As a measure of growth, we count the number859

of triples in S after each new release, as it is the most prone to change. Given860

the high complexity of such APIs, we focus on a specific method and study its861

structural changes, namely the GET Posts API. By studying the changelog,862

we start from the currently deprecated version 1 evolving it to the next major863

version release 2. We further introduce 13 minor releases of version 2. (the864

details of the analysis can be found in [19]). We assume that a new wrapper865

providing all attributes is defined for each release.866

The barcharts in Figure 11 depict the number of triples added to S per867

version release. As version 1 is the first occurrence of such endpoint, all elements868

must be added and thus carries a big overhead. Version 2 is a major release869

where few elements can be reused. Later, minor releases do not have many870

schema changes, with few attribute additions, deletions or renames. Thus, the871

largest batch of triples per minor release are edges of type S:hasAttribute.872

Each new version needs to identify which attributes it provides even though no873

change has been applied to it w.r.t. previous versions.874

Figure 11: Growth in number of triples for S per release in Wordpress API

With such analysis we conclude that major version changes entail a steep875

11https://wordpress.org/plugins/rest-api
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growth, however that is infrequent in the studied API. On the other hand, minor876

versions occur frequently but the growth in terms of triples has a steady linear877

growth. The red line depicts the cumulative number of triples after each release.878

For a practically stable amount of minor release versions, we obtain a linear,879

stable growth in S. Notice also that G does not grow. Altogether guarantees880

that querying T in query answering will not impose a big overhead, ensuring a881

good performance of our approach across time. Nonetheless, other optimization882

techniques (e.g., caching) can be used to further reduce the query cost.883

7. Related work884

In previous sections, we have cited relevant works on RESTful API evolution885

[27, 14]. They provide a catalog of changes, however they do not provide any886

approach to systematically deal with them. Other similar works, such as [28],887

empirically study API evolution aiming to detect its healthiness. If we look888

for approaches that automatically deal with such evolution, we must shift the889

focus to the area of database schemas, which are mostly focused on relational890

databases [24, 17]. They apply view cloning to accommodate changes while891

preserving old views. Such techniques rely on the capability of vetoing certain892

changes that might affect the overall integrity of the system. This is however893

an unrealistic approach to adopt in our setting, as schema changes are done by894

third party data providers.895

Attention has also been paid to change management in the context of896

description logics (DLs). The definition of a DL that provides expresiveness897

to represent temporal changes in the ontology has been an interesting topic of898

study in the past years [16]. Relevant examples include [3], that defines the899

temporal DL TQL, providing temporal aspects at the conceptual model level, or900

[10] that delves on how to provide such temporal aspects for specific attributes901

in a conceptual model. It is known, however, that providing such temporal902

aspects to DLs entails a poor computational behaviour for CQ answering [16],903

for instance the previous examples are respectively coNP-hard and undecidable.904

Recent efforts are being put to overcome such issues and to provide tractable DLs905

and methods for rewritability of OMQs. For instance, [2] provides a temporal906

DL where the cost of first-order rewritability is polynomial, however that is907

only applicable for a restricted fragment of DL-Lite, and besides the notion of908

temporal attribute, which is key for management of schema evolution does not909

exist. Generally speaking, most of this approaches lack key characteristics for910

the management of schema evolution [21].911

Regarding LAV schema mappings in data integration, few approaches strictly912

follow its definition. This is mostly due to the inherent complexity of query913

answering in LAV, which is reduced to the problem of answering queries using914

views [13]. Probably the most prominent data integration system that follows915

the LAV approach is Information Manifold [11]. To overcome the complexity916

posed by LAV query answering, combined approaches of GAV and LAV have917

been proposed, which are commonly referred as both-as-view (BAV) [18] or918

global-and-local-as-view (GLAV) [6]. Oppositely, we are capable of adopting a919
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purely LAV approach by restricting the kind of allowed queries as well as how920

the mediated schema (i.e., ontology) has to be constructed.921

Novelty with respect to the state of the art. Going beyond the related literature922

on management of schema evolution, our DOLAP’17 paper [20] proposed an RDF923

vocabulary-based approach to tackle such kind of evolution. Precisely, we focused924

on Big Data ecosystems that ingest data from REST APIs in JSON format.925

This paper extends our prior work, where, in the line of the mediator/wrapper926

architecture, we delegate the complexity of querying the sources to the wrappers.927

With such, we achieve the possibility to define LAV mappings, which are required928

in our setting. More importantly, we provide a tractable query answering929

algorithm that does not require reasoning to resolve LAV mappings.930

8. Conclusions and Future Work931

Our research aims at providing self-adapting capabilities in the presence932

of evolution in Big Data ecosystems. In this paper, we have presented the933

building blocks to handle schema evolution using a vocabulary-based approach934

to OBDA. Thus, unlike current OBDA approaches, we restrict the language935

from generic knowledge representation ontology languages (such as DL-Lite) to936

ontologies based on RDF vocabularies. We also restrict reasoning to the RDFS937

entailment regime. These decisions are made to enable LAV mappings instead938

of GAV. The proposed Big Data integration ontology aims to provide data939

analysts with an RDF-based conceptual model of the domain of interest, with940

the limitations that features cannot be reused among concepts. Data sources are941

accessed via wrappers, which must expose a relational schema in order to depict942

its RDF-based representation in the ontology and define LAV mappings, by943

means of named graphs and links from attributes to features. We have defined a944

query answering algorithm that leverages the proposed ontology and translates945

a restricted subset of SPARQL queries (see Section 2.2) over the ontology to946

queries over the sources (i.e., relational expressions on top of the wrappers).947

Also, we have presented an algorithm to aid data stewards to systematically948

accommodate announced changes in the form of releases. Our evaluation results949

show that a great number of changes performed in real-world APIs could be950

semi-automatically handled by the wrappers and the ontology. We additionally951

have shown the feasability of our query answering algorithm. There are many952

interesting future directions. A prominent one is to extend the ontology with953

richer constructs to semi-automatically adapt to unanticipated schema changes.954
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