
A framework for learning cell interestingness
from cube explorations

Patrick Marcel1[0000−0003−3171−1174], Veronika Peralta1[0000−0002−9236−9088],
and Panos Vassiliadis2[0000−0003−0085−6776]

1 University of Tours, Blois, France firstname.lastname@univ-tours.fr
2 University of Ioannina, Ioannina, Greece pvassil@cs.uoi.gr

Abstract. In this paper, we discuss the problem of organizing the dif-
ferent ways of computing the interestingness of a particular cell derived
from a cube in the context of a hierarchical, multidimensional space. We
start from an in-depth study of the interestingness aspects in the study
of human behavior and include in our survey the approaches taken by
computer-science efforts in the area of data mining and user recommen-
dations. We move on to structure interestingness along different funda-
mental, high level aspects, and, due to their high-level nature, we also
move towards much more concrete data-oriented definitions of intertest-
ingness aspects.

1 Introduction

Given a cell of a datacube and a user’s exploration over this datacube, how to
assign to this cell a score reflecting its interestingness for the exploration?

The significance of the answer to the above question, cannot be underesti-
mated. A cell is the most granular piece of information in a BI session, thus, in
this paper it is the epicenter of our search, both because it can be of value per se,
and because the interestingness of groups of cells can be based on the interest-
ingness of individual cells. We need better systems at recommending questions,
data and highlights to the users. Understanding what is important for a user
is key to this goal and a cell interestingness score is a pre-requisite for this. If
we manage to successfully score (i.e., understand) which cells matter more to
each user, this would allow to better understand how users navigate cubes by
studying logs of user sessions, categorize these cube explorations, and make on-
line recommendations. Apart from the aforementioned practical considerations,
from the research point of view, succeeding in structuring the aspects of inter-
estingness will allow to structure our knowledge on existing methods, as well
as provide the basis to benchmark and compare such methods and help develop
new ones for supporting cube exploration in aspects not successfully covered yet.

To the best of our knowledge, there is a gap in the literature in answering
the motivating question of the paper. Although interestingness measures have
attracted a lot of attention in other communities, like for instance Data Mining,
for measuring the interestingness of a pattern [9], or Recommender Systems, for
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measuring the quality of recommendations [16], to our knowledge there exists no
principled study or survey for the interestingness of a cell in cube exploration.

We consider the context of cube exploration as follows. We assume a
user performing exploratory data analysis over a hierarchical, multidimensional
nature of data [15]. After a while, the user acquires an overarching informational
goal that their exploration tries to address. During the exploration, the user
devises queries to acquire new information. Each such query brings in new data
and constructs a new cube that is presented to the user. We call this Q&A a
transition, and it constitutes a step in the overall exploration of the user. The
user, thus, practically covers areas of the hierarchical multidimensional space at
each step (possibly at different levels of granularity), and progressively, for each
such area, some kind of expectation on its values is constructed or updated (call
it a ”model” if you will). In each transition the user makes, each new observation,
is (0) relevant or not to the user’s informational need and either (1) reinforces
the expectation or (2) contradicts it, or (3) just creates expectations for newly
explored places where none existed before. Each new observation, is therefore,
assessed with respect to its novelty, relevance, surprise and peculiarity. Each
such criterion covers a different aspect of interestingness.

Our contributions in this paper, are structured as follows: In Section 2 we
discuss earlier proposals of interestingness measures and in Section 3, we study
the forces that affect interestingness computation and structure them around
high level aspects of interestingness –specifically, novelty, relevance, surprise and
peculiarity. In Section 4, we provide exemplary algorithms and methods for as-
sessing the high level aspects of a cell’s interestingness, on the basis of low-level
measures, and Section 5 describes the experiments we ran to showcase the frame-
work. Section 6 concludes the paper and suggests open roads for future work.

2 Related work

Although there is little work proposing measures for quantifying the interest-
ingness of a cell in a datacube, several measures can be borrowed from close
research areas and adapted to cells. In this subsection we discuss interestingness
measures proposed for (i) pattern mining, (ii) cube exploration and summaries,
and (iii) recommendation.

Interestingness criteria for pattern mining In [9], the authors point out that in-
terestingness is a broad concept and identify from the literature 9 criteria to de-
termine whether or not a pattern is interesting: conciseness, generality/coverage,
reliability, peculiarity, diversity, novelty, surprisingness, utility and actionabil-
ity/applicability. They categorize these criteria in 3 groups: i) objective mea-
sures, based only on the raw data (generality, reliability, peculiarity, diversity,
conciseness), like for instance the classical support, ii) subjective measures, con-
sidering both the data and the user (surprise and novelty), like for instance the
informational content [3], and iii) semantic measures, based on the semantics and
explanations of the patterns (utility and actionability), like for instance measures
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based on user preferences [26]. We note that according to De Bie [3], subjective
interestingness is particularly well adapted for exploratory data mining, whose
goal is to pick patterns that will result in the best updates of the user’s belief
state, while presenting a minimal strain on the user’s resources. One challenge
is to define and update the belief of the user. De Bie proposes to model it as a
background distribution over patterns representing the belief the user attaches
to patterns being present in the data.

Most of the criteria introduced above can be reused in our context, except
diversity (that would concern groups of cells) and reliability (since data in cubes
are assumed reliable by construction).

Interestingness criteria for summaries In [9], authors also review interesting-
ness measures for what they call summaries, i.e., aggregated cross-tabs corre-
sponding to the result of an OLAP query, where numeric values (i.e., measures)
are aggregated by several criteria (i.e., dimensions). Out of the 9 criteria de-
fined for pattern interestingness, 4 are adapted to summaries: diversity (pro-
portional distribution of classes in the summary versus the number of classes),
conciseness/generality (level of aggregation), peculiarity (a cell in a summary
is peculiar if it is differs from the other cells in the summary) and surprising-
ness/unexpectedness (a summary is surprising if it deviates from user’s expecta-
tions). According to the classification of [9], the first three criteria are objective
and the last one is subjective. Note that except for peculiarity, and to a lesser ex-
tent, conciseness, the criteria concern the interestingness of the whole summary
instead of the interestingness of each cell.

To the best of our knowledge, such peculiarity measures are the cornerstone
of discovery-driven analysis [22–25] for measuring cell interestingness in the con-
text of cube exploration. Discovery-driven analysis guides the exploration of a
datacube by providing users with interestingness values for measuring the pecu-
liarity of the cells in a data cube, according to statistical models, e.g., based on
the maximum entropy principle, and leveraging the intrinsic structure of multi-
dimensional information. From an initial user query, the system automatically
calculates 3 kinds of interestingness values for each cell in the query result: (i)
SelfExp measures the difference between the observed and anticipated values
(the latter are calculated statistically by computing the mean of subsets of at-
tributes), (ii) InExp is obtained as the maximum of SelfExp over all cells that
are under this cell (those that result from a drill down), and (iii) PathExp
is calculated as the maximum of SelfExp over all cells reachable by drilling
down along a given path. The DIFF, INFORM and RELAX advanced OLAP
operators proposed in [22, 23, 25] use such interestingness values to recommend
relevant cells for explaining drops or increases, or for recommending areas of a
cube that should surprise the user, based on their history with the cube.

In the context of OLAP, other works propose further measures concerning (or
related to) interestingness of a cross-tab, a query result or a set of cells. Without
trying to be exhaustive, we mention here some of those works, illustrating the
diversity of the proposed measures.
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Klemettinen et al. [17] use skewness, as a peculiarity measure of asymmetry
in data distribution, for discovering interesting paths and guiding the navigation
in a datacube. Given a cuboid, the possible drill-downs are explored, measuring
skewness and generating skew-based navigation rules for the more significant
paths. Skewness is computed observing the underlying facts (the raw data that
is aggregated), looking for outliers or substantial differences with other facts.
Based on skewness, Kumar et al. [18] propose interestingness measures based on
the unexpectedness of skewness in navigation rules and navigation paths.

Fabris and Freitas [7] defined interestingness measures for attribute-value
pairs in a data cube: the I1 measure reflects the difference between the observed
probability of an attribute-value pair and the average probability in the summary
and the I2 measure reflects the degree of correlation among two attributes. Both
measures can be seen as value-based conciseness.

Djedaini et al. use supervised classification techniques for learning two in-
terest measures for OLAP queries: focus, that indicates to what extent a query
is well detailed and related to other queries in an exploration, indicating that
the user investigates in details precise facts and learns from this investigation
[5], and contribution, that highlights to what extent a query is important for an
exploration, contributing to its interest and quality [4].

Finally, we mention two recent works [27, 21] that are concerned with detect-
ing the validity of insights gained by users when examining query answers. As
other works measuring peculiarity by leveraging the nature of OLAP cubes, this
is again achieved by statistical tests comparing data at different levels of details.

Interestingness criteria for recommendations There is a long discussion about
interestingness in the area of evaluating recommender systems [14, 11, 16]. We
mention [16] as an excellent recent survey on the topic. The survey presents 4 cri-
teria (diversity, serendipity, novelty, and coverage), in addition to the traditional
accuracy, for evaluating the quality of a recommendation.

Query recommendation techniques (see e.g., [6, 2]) are usually evaluated with
interestingness measures coming from the literature on recommender systems
exposed above. We mention the more OLAP-specific foresight measure [2], that
quantifies how distant is the recommendation from the current point of explo-
ration.

3 Interestingness aspects for cube exploration

How can we define interestingness? To the best of our knowledge, there is no
formal definition. Online resources3 propose ”Interest is a feeling or emotion
that causes attention to focus on an object, event, or process”. In contemporary
psychology of interest, the term is used as a general concept that may encompass
other more specific psychological terms, such as curiosity [19] and to a much
lesser degree surprise [20] and novelty [8].

3 https://en.wikipedia.org/wiki/Interest (emotion)
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In this section, we derive from our study of the literature the criteria of the
interestingness of a cell, by listing what influences them. We can conclude from
our study of related work that interestingness is a degree attributed to a piece
of information, regarding the curiosity and surprise it generates. This piece of
information under consideration may spark the will to continue exploring the
source of information to close some knowledge gap, or get novel information.
But how can we pass from such a high level description of interestingness, to
a more concrete one? Our approach is a two level modeling. At the first level,
we discuss high-level aspects of interestingness, like the ones deduced from the
study of human behavior. Second, we provide data-oriented measures of interest-
ingness, substantiating the aforementioned high-level aspects, on the grounds of
the available information. This section presents the first level, while next section
provides examples of concrete measures (the second level of our approach) and
describes their computation. A proof of concepts implementing some measures
is described in Section 5.

3.1 Interestingness aspects

We now present 4 fundamental, high-level interestingness aspects: relevance,
novelty, surprise, and peculiarity.

Relevance as a measure for the user’s curiosity Curiosity is the main
driver of knowledge acquisition. Data exploration, especially in an environment
of Business Intelligence, is primarily related to the answering of an open question.
So, it is realistic to assume that the user comes with a question for a particular
subset of the multidimensional space, and her exploration has to do with ”a
walk” within this sub-space in order to answer the question. We will call the
aspect of interestingness that pertains to curiosity as the relevance of the cell
with respect to the exploration and its underlying user goal.

The main force, thus, of the assessment of relevance is the modeling of the
user intentions. Basically, we can discriminate between (a) the case where a
description of the user intention is given vs. (b) the case where no such knowledge
is available. In the former, we deal with an expression of the user’s interest as the
space of a user goal. In the latter, we need to learn the user goal from the history
of past activity, which, in turn, relies on the availability of the coordinates of the
cells of the queries in the exploration and the schema of the cube.

Novelty Novelty is also an aspect of interestingness that mainly pertains to the
need of users to learn information previously unknown. The simple reporting of
data that have not been previously reported might increase their interestingness.

The main force behind novelty is the existence of a history. A lesser influence
is the availability of results (cell coordinates are sufficient to understand if the
cell have never been seen). Without the knowledge of the history of the user’s
queries, novelty is practically a wild guess. When dealing with novelty, we are
not primarily interested in the intention of the user, although it can affect the
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attention that a user pays to a particular cell (in other words, we assume all
cells being equally probable to have been observed by the user).

Surprise Not surprisingly, surprise is a major aspect of interestingness. Sur-
prise occurs when our previous beliefs are disconfirmed or contradicted. This
can happen either directly, when the expected value of an event proves to be sig-
nificantly different than the actual value, or implicitly, when the disconfirmation
of a certain fact deduces the disconfirmation of a dependent fact.

Clearly, the main prerequisite for evaluating surprise is the existence of a
previous belief of the user. Without the existence of a structured model for the
estimation of the previous beliefs, the assessment of surprise is impossible; for
this case, it is only possible to measure some objective peculiarity intrinsic to the
data (see below). Surprise can be measured using models leveraging the history
of the user with the datacube, for instance to estimate belief.

Peculiarity Consistently with the literature on cubes, we use peculiarity to
denote an intrinsic property of the data, i.e., the cell’s value, when considered
together with other cells related to it.

Peculiarity of a cell cannot be assessed in vacuum. Most typically, it can
be assessed against the cells of the same query. Taken to extremes, it can also
be evaluated by comparing the cell to all the previous cells of the history of
the exploration – or even, to all the cells of the full history of the user with
the datacube, i.e., including past explorations. Finally, peculiarity may also be
calculated with respect to the unseen cells of the cube. The full instance, i.e.,
with measure values, of cells considered are prerequisites for this criteria.

3.2 Definition of interestingness

We define interestingness of a cell as a vector of scores, defined over a set of
interestingness measures.

Definition 1 (Cell interestringness). Given a user’s exploration over a dat-
acube, the interestingness of a cell of this exploration is a tuple of scores for a
list of interestingness measures.

We intentionally do not differentiate between high-level and data-oriented
criteria. We support an extensible approach towards which criteria would an in-
terestingness assessment tool include, especially as we cannot provide any com-
pleteness proof on our list of high-level interestingness aspects.

4 Detecting interesting cells in an exploration

In this Section, armed with the tools of the previous sections, we revisit the orig-
inating question of our introduction: How do we compute the different aspects of
the interestingness of a cell? To this end, and without trying to be exhaustive, we
provide some alternatives per high-level aspect and discuss their computation.



A framework for learning cell interestingness from cube explorations 7

4.1 Relevance

Assessing the relevance of a cell practically answers the question: how close is
this cell to the subset of the multidimensional space that the user intents to ex-
plore? Two fundamental notions hide behind this formulation of the problem, the
specification of an area of interest and the understanding of the user’s intention.

As already mentioned, we define the space of a user goal as the framing
of a subspace of the multidimensional space (either intentionally via selection
predicates, or explicitly, at the extensional level, as a set of cells) for which the
user wants to obtain information. In the former case, we refer to the intentional
specification of a user goal whereas in the latter to refer to the extensional area
of interest of the goal, with the explicit set of cells defined by this framing. Then,
given a specific exploration, with a user goal as its underlying motive, we define
relevance as the degree to which the cell overlaps with the area of interest of the
exploration’s motivating goal.

Concerning the user intentions, as already mentioned, we discriminate be-
tween (a) the case we have no such information, and, (b) the case we have an
expression of the user’s intentions. Let us proceed in exploring both cases.

Relevance without knowledge of the user’s intent Let’s start with the
case where no model for the user’s intent is given a priori. To assess the rele-
vance of a cell, we need to quantify how ”close” or ”central” the cell is to the
subspace induced by the exploration of the user. Practically speaking, we need
an algorithm that enumerates the cells that have been visited by the user during
her exploration. Due to the hierarchical nature of the space, the easiest way to
compare cells is by referring all cells to a common level of granularity (i.e., the
node in the lattice of group-by’s [13] that is (a) dominated by all the nodes to
which history queries correspond, and, (b) the highest among all the candidates
of (a)). For simplicity, in this paper, we assume this is the lowest possible node
of the group-by lattice, i.e., the level of the facts, that we call C0.

Now, we need an algorithm that computes the area of interest, starting with
its most detailed form, at the level of C0 (see Algorithm 1). The input to this
algorithm is the history of user queries of an exploration. The output is the
detailed area of interest. Basically, for every aggregate cell that is part of a
query result, the algorithm detects its detailed cells, increases a score for each
of the times this cell has contributed to the computation of a query result and
adds it to the detailed area of interest, returned by the algorithm.

Having computed the detailed area of interest of a user goal, we can now
proceed to answer the question ”What is the relevance of a cell c to an area of
interest, say S?” Let S be the area of interest of the session, and S0 = {cS1 , . . .,
cSk } be the set of cells corresponding to the cells of S at the detailed cube C0.
Let c = 〈a1, . . . , an, v1, . . . , vm〉 be the cell we are interested in and c0 = {cc1,
. . . , cSl } be the set of descendant cells corresponding to c at the most detailed
level. Then, relevance(c | S) is a function fR that calculates the percentage of
c0 that also lies within S0 (see Algorithm 2).
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Algorithm 1: ComputeDetailedAreaOfInterest

Data:
a history of user queries Q
a basic cube C0

a set of dimension hierarchies defining the multidimensional space set of models
D
Result:
a Detailed Area of Interest S0, with all its cells annotated with a relevance
indicator

1 begin
2 for every query q ∈ Q do
3 for every cell r ∈ q.cells do
4 Let r0 be the set of descendants of r at the most detailed level, r0 ⊆

C0 ;
5 for every detailed cell r0i ∈ r0 do
6 increase r0i .score by 1;
7 S0 = S0 ∪ r0i ;

8 return the detailed area of interest S0

Variants. A more liberal definition of relevance can compute a distance
function of the two sets. A more strict definition might take the frequency of
the visits of the user to each member of S0 during the exploration. Then, each
cell is weighted by how many times it has been visited by the user during the
exploration. Then, relevance is defined as the fraction of the sum of the weights
of the common cells of the two sets over the sum of weights of the cells of S0.

A side-effect problem, that we leave aside for the moment concerns the most
concise description of S0 by rolling up regions of C0 completely covered by
cuboids at an ancestor level at the lattice of group-by’s.

Relevance in the presence of knowledge of the user’s intent Assume now
that we have the expression of a user goal. Here, we do not discriminate between
an induced goal by a user profile, or a deliberate expression of the goal by the
user. We assume that the goal is expressed as a boolean predicate φ (typically
-but not obligatorily- expressed as the conjunction of simple atomic selection
formulae). There are several ways to compute the relevance of a cell c to φ. Note
that φ may not be part of the query that retrieves c. The user may (a) compare
cells within the area of the original goal with similar / peer cells, or, (b) put the
values she observes in context by rolling-up in a way that produces aggregate
values broader than the original goal’s selection condition.

Variants. The simplest way is to see whether c satisfies the goal φ. To do
that, both c and φ must be converted to the same level of detail – again to
their highest common descendant in the lattice of group-by’s. Then, relevance
in its simplest form is Boolean and evaluates to true or false if all descendants
of c satisfy φ, or numerical, if a percentage is computed. In these variants, the



A framework for learning cell interestingness from cube explorations 9

Algorithm 2: ComputeSimpleRelevance

Data:
a cell c
a history of user queries Q
a basic cube C0, and a set of dimension hierarchies defining the
multidimensional space set of models D
Result:
the relevance of c to Q computed via S0

1 begin
2 S0 = computeDetailedAreaOfInterest(Q);
3 Let c0 be the set of descendants of c at the most detailed level, c0 ⊆ C0 ;
4 return relevance(c|Q) = |S0 ∩ c0| / |c0| ; /* Other variants of the

formula can be envisaged */

history of queries is not taken into consideration – only the intentional space of
the user goal.

If we want to assess relevance given the history too, we can resort to the
computation of the previous subsection that did not take the user goal into
consideration. Assume now that we convert φ to the lowest possible level and
obtain φ0 [10]. In this case, we can isolate the subset of the explored space that
is relevant to the user goal, via σφ0(S0), with S0 as previously defined, and
then search for its (simple or weighted) intersection with c0 (also as previously
defined).

4.2 Novelty

As already mentioned, novelty refers to the second facet of curiosity, obtaining
new knowledge, and for all practical concerns, it deals with whether the user has
seen a cell before or not. Due to the hierarchical nature of the multidimensional
space, novelty does not only concern the previous appearance of a cell per se,
but also, whether the user has been exposed to ancestor or descendant cells too.

Given a datacube C, the history Q of queries of an exploration, and the set H
of the cells of the queries of Q, we have several alternatives for the evaluation of
novelty, which in all cases is a function fN assessing novelty(c | H) or novelty(c
| H,C).

1. We define the strict novelty of a cell c as its absence from H or not. Thus,
the strict novelty is Boolean, and refers to the cell per se, in the context of
the exploration’s query history.

2. We define the coverage novelty of c based on the fraction of cells of the
datacube C covered by c (e.g., all the descendants of c) that the user has

seen during the exploration: 1− |cov(c,H)|
|cov(c,C)| , where cov(c, S) denotes the cells

of S covered by c.
3. We define the inferred novelty of a cell c as the extent of overlap of c with the

cells of H, even via ancestor or descendant relationships. For each cell of H,
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say cH , that is related via an ancestor or descendant relationship with c, we
count the complement of the weight of cH over c. This can be done in many
ways, and here we mention the simplest ones. Assume cH is an ancestor of
c, then the respective weight is the fraction of the cell’s measures, if the
aggregate function is distributive (i.e., not avg). Alternatively, the fraction
can be the inverse of the cardinality of cH ’s descendants at the level of c. The
roles are inverted if the relationship is a descendant rather than an ancestor
one. In all these cases, the inferred novelty is a real number that can easily
be normalized in the range [0 .. 1]

4. We can also define inferred novelty at the detailed level by comparing the
detailed descendants of c and the descendants of the members of H, say H0

at the level of C0. The percentage of descendants of c at the detailed level
that also belong to the H0 define the inferred novelty of c at the detailed
level.

4.3 Surprise

Surprise is a fundamental aspect of interestingness. Where relevance describes
the general area of data within which the user wants to walk around, and has to
do with why he is interested in a cell, surprise relates to the divergence of what
she sees with her previous belief of what she expected to find. Surprise instigates
further searches or actions, in order to adapt our challenged beliefs to the new
data, and opens new ways of looking at the data. The fundamental premise upon
which surprise can be computed is the modeling of the user’s previous beliefs.

How then do we structure a model of beliefs for the cells of a multidimen-
sional space? Fundamentally, there are two ways of handling beliefs: (a) the
objective way, where there is a function that assigns an expected value to a
measure, independently of what the user has seen in her exploration, and, (b)
the subjective way, where the expectation of a cell’s value is dependent upon the
previous cells that the user has seen in her exploration. The objective evaluation
is very demanding, in the sense that it requires that the user has full knowledge
of the cube - or even, the sub-cube that she explores and some way to express
this knowledge as a potential value. The subjective mechanism is more dynamic:
it can start with the user being tabula rasa and, progressively, as cells are ob-
served, her beliefs for the next cells that are related to the previously seen ones
are updated.

Surprise assessment. We give two indicative ways to compute surprise,
one objective and one subjective.

The value-based surprise for a cell c, surprise(c) is the difference between the
actual value of a measure M of the cell, say m, compared against its expected
value, for instance m.

The probability-based surprise of a cell. Assume a probability distribution
P over the set of all potential values for the cells of C. This distribution is
used to represent a user’s belief, i.e., for a cell c = 〈a1, . . . , an, v1, . . . , vm〉 the
probability that the user attaches to the statements ”the ith measure of c is
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vi”. The surprise brought by c is a function over this probability, for instance
surprise(c) = −log(P (c)).

A fundamental aspect of a model for user beliefs is belief refreshment. As
the exploration unravels, the beliefs of the user are updated with every new cell
he observes. A mechanism for belief update is out of the scope of this paper,
but could follow the general principle given in [3]. However, this does not fun-
damentally alter the mechanism for interestingness assessment that we propose,
as, at any time point, when a cell appears, we can assume that the user has an
expected value for it.

4.4 Peculiarity

Peculiarity is an intrinsic property of the data: it makes a particular cell to be
set apart from its peers, typically due to the divergence of its measure values
from a typical value distribution. Peculiarity can be used to estimate surprise in
the absence of any other model for the user (e.g., if we know nothing about what
the user expects to see, we can possibly assume that very small or high values
in the sales, i.e., outliers, could be interesting). Peculiarity is not restricted to
naive outlierness, as it can be due to a more complex pattern (e.g., how a cell
evolves over time).

Assessing peculiarity can be performed in a plethora of ways (e.g., via iso-
lating extreme values, assessing how close a value is to its ”neighboring” values,
performing clustering of the values, information theoretic approaches) [1]. It is
beyond the scope of this paper to discuss outlier detection methods, either simple
or advanced. We refer the interested reader to [1, 12] for an extensive coverage.

5 Experiments

This section showcases our framework through preliminary experiments over a
small set of real user explorations.

5.1 Experimental setup

In our experiments, we reuse the dataset described in [5], consisting of navigation
traces collected in the context of a French project on energy vulnerability. Traces
consist of logged OLAP sessions4 of volunteer students of a Master degree in
Business Intelligence, answering some high-level information needs defined by
their lecturer, using Saiku5 to ask the queries and see the results. In the present
paper, we analyzed 11 sessions, whose sizes range from 12 to 69 queries, 411
queries in total, with an average of 37 queries per session, and an overall of
14,384 cells. Both queries and sessions were manually inspected and labelled by
the lecturer. Queries were assigned a binary label regarding their focus on the

4 We do not distinguish between the terms session and exploration in what follows.
5 https://www.meteorite.bi/products/saiku
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phenomenon analyzed by the student during the session. The term focus is used
as in [5]: “When focused, an analyst would expect more precise queries, related
to what she is currently analyzing. On the contrary, when exploring the data,
the analyst would prefer more diverse queries, for a better data space coverage.”

Sessions were graded from A (lowest) to D (highest grade) with respect to
the combination of two characteristics, specifically, (a) the extent to which the
queries of the session are semantically linked to their previous query (and not
ad-hoc) and (b) the progressive stabilization of an area of interest in the multi-
dimensional space (as opposed to everlasting, ad-hoc explorations of the space).
Among the 11 sessions analyzed, 4 sessions were labelled B, 3 labelled C and 4
labelled D.

We have developed a prototype session analyzer to analyze the logs of the
users. Our prototype loads the sessions of each user, and for each of them eval-
uates the queries one by one, in order. Each time a query is evaluated, the user
history is updated, the detailed area of interest (cf. Algorithm 1) is refreshed and
the cell interestingness measures are computed. We implemented the extraction
of 4 basic measures, one per high level aspect described in the previous section:
(i) simple relevance, as of Algorithm 2, (ii) strict binary novelty, i.e., the cell is
previously seen or not, (iii) a limited form of surprise, called positional surprise,
computed as minus log of the product of the member’s probability of appear-
ance in the user history6, and (iv) simple peculiarity hereafter called outlierness,
calculated as z-score w.r.t. the rest of the cells in the query result to which it
belongs. Our goal is to confront the measures with the labels assigned to the
sessions and queries, looking for correlations between interestingness, user focus,
and session quality.

Our prototype is written in Java 8 and ran on a MacBook Pro Core I5 with
16GB RAM running MacOS Mojave 10.14.3. The average processing time per
cell is 1071.55 ms, with a minimum of 376 ms, a maximum of 10663 ms and a
standard deviation of 248.11. The computation of relevance constitutes by far
the majority of the computation time. The average processing time per query is
37.18 seconds, with a standard deviation of 85.02. Comparatively, the average
consideration time (i.e., the time the user took between two consecutive queries)
is 29.42 seconds, with a standard deviation of 65.59.

5.2 Lessons learned

Our first experiment investigates whether the queries with a higher focus obtain
higher values for these interestingness measures compared to the queries with
less focus.

The first result comes from Table 1. We average all focused vs non-focused
cells and compare the values. The focused category consistently demonstrates
higher values for all the measures, with novelty having a 15% difference in the

6 In this implementation, the user belief is agnostic of measure values, and the metric
therefore characterizes how surprising it is that the user visits this particular cell.
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Relevance Novelty Surprise Peculiarity

Not focused 0.68 (0.43) 0.56 (0.50) 0.77 (0.25) 0.61 (0.90)
Focused 0.78 (0.31) 0.71 (0.46) 0.82 (0.26) 0.66 (0.78)

Table 1. Average and Standard deviation (in brackets) of measures per query labels

values and relevance a 10%, even though this is nuanced by the standard devi-
ation.

Then, one can refine the above result by assessing whether there is any differ-
ence in their behavior of these measures during the progression of the sessions.
As session lengths are different, for each query we compute the percentage of
progress with respect to the session, as an indicator of how deep the analyst was
in her search during that session. To reduce the visual clutter, we organize the
demonstration by ranges of 10 steps, where the average value is shown for each
category.

Fig. 1. Evolution of the four interestingness measures (y-axis) with respect to the %
progress in a session (x-axis) for focused vs non-focused queries

Figure 1 shows how the four measures evolve along the progression of the
sessions, distinguishing by query labels. Concerning novelty, we see that focused
queries soon demonstrate higher amounts of novelty compared to non-focused
ones (which seem to revolve around the same cells). Only very later in the
session is this difference equalized or surpassed (and indeed at low levels of
novelty anyway). So overall, focused queries demonstrate more novelty than the



14 P. Marcel et al.

non-focused ones. The same phenomenon is observed for surprise, but with less
variations. Concerning relevance, as already mentioned, we measure relevance as
the subset of the detailed multidimensional space that is revisited, as an indicator
of what the user is looking at. Practically, this is acting as the counterpart of
novelty, albeit here we are found in the detailed multidimensional space rather
than the space of the actual aggregated cells. Here, we observe that the non-
focused queries, due to the repetition, obtain higher values than the focused
ones. Only later in the session, when the focused queries are returning to the well-
established area of exploration to finalize conclusions is the situation reversed.
For peculiarity, things are pretty much equal throughout the entire session, apart
from a few cases where focused queries contain a little bit more outlier cells than
non-focused ones. This justifies the small 5% advantage they have in the total
scoring of Table 1.

Fig. 2. Evolution of the four interestingness measures (y-axis) with respect to the %
progress in a session (x-axis) for session labels

Figure 2 shows how the four measures evolve along the progression of the ses-
sion arranged by session label. The following general behaviors can be observed:

– B sessions are erratic, and novelty is low, one could say they are not really
analyzing, in that users are merely comparing with novel facts.

– In C sessions, all measures are high, there is too much movement, indicating
that they are focused, but not enough. The fact that novelty and relevance
are high at the same time is not contradictory: users stay in the same de-
tailed area, but keep rolling-up, drilling-down. In other words, they keep
investigating, but seem inconclusive, which is corroborated by the fact that
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those sessions are often longer than D sessions, that get straight to the point.
And also by the fact that outlierness tends to increase in the end.

– In D sessions, relevance keeps increasing, novelty is high then collapses, like
surprise, and then start increasing again. This indicates that the sessions are
more focused in the end. Outlierness is very high in the beginning, which
could have sparked the session.

6 Conclusions

This paper has addressed the problem of measuring the interestingness of the
cells of a data cube, analyzed by a user during a session of data exploration. We
have assumed a hierarchically-structured multidimensional space and, within
this context, we have proposed criteria of interestingness at both a high-level
and a data-oriented level.

We have kept our discussion independent from the particular model of OLAP
operations that can be applied to the data, or from technological aspects influ-
encing it. We believe that the paper opens the road for a more directed research
of interestingness assessment and recommendation algorithms with specific tar-
gets among the high-level interesting aspects discussed here. Our experiments
provide a proof of concept in this direction, showing how even simple measures
can help the analysis of user behavior. Extending the framework beyond the
realm of clean, simply structured multidimensional spaces, in the realm of an
arbitrarily structured and populated database schema, is a clear path for future
work.
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