
Computational Methods and Optimizations for
Containment and Complementarity in Web Data Cubes

Marios Meimaris

ATHENA Research Center

George Papastefanatos

ATHENA Research Center

Panos Vassiliadis

University of Ioannina

Ioannis Anagnostopoulos
University of Thessaly

Abstract

The increasing availability of diverse multidimensional data on the web has led
to the creation and adoption of common vocabularies and practices that facili-
tate sharing, aggregating and reusing data from remote origins. One prominent
example in the Web of Data is the RDF Data Cube vocabulary, which has re-
cently attracted great attention from the industrial, government and academic
sectors as the de facto representational model for publishing open multidimen-
sional data. As a result, different datasets share terms from common code lists
and hierarchies, this way creating an implicit relatedness between independent
sources. Identifying and analyzing relationships between disparate data sources
is a major prerequisite for enabling traditional business analytics at the web
scale. However, discovery of instance-level relationships between datasets be-
comes a computationally costly procedure, as typically all pairs of records must
be compared. In this paper, we define three types of relationships between mul-
tidimensional observations, namely full containment, partial containment and
complementarity, and we propose four methods for efficient and scalable compu-
tation of these relationships. We conduct an extensive experimental evaluation
over both real and synthetic datasets, comparing with traditional query-based
and inference-based alternatives, and we show how our methods provide efficient
and scalable solutions.
Keywords: elsarticle.cls, LATEX, Elsevier, template
2010 MSC: 00-01, 99-00

Preprint submitted to Elsevier March 9, 2018

1. Introduction

The increasing adoption of RDF as the de facto Semantic Web standard has
led the industrial, government, and academic sectors to leverage Linked Data
technologies [14, 58] in order to publish, re-use and extend big amounts of pro-
prietary data. A large subset of data on the web consists of multidimensional
data about policies, demographics, socio-economics and health data among oth-
ers [53].

Statistical multidimensional data is often represented in the form of data
cubes. Under this model, a single data record, named observation or fact, is
broadly defined as the value of a specific measure over several different observed
dimensions [13]. For example, Germany’s population for the year 2001 can be
represented as an observation with population as the measure, and location and
time as the dimensions, with the values Germany and 2001 instantiating these
dimensions. The use of hierarchical values enables the representation of infor-
mation on multiple combinations of levels, such as the female population of a
country in the last decade, or the total population of a city in the last year.
An example of dimension hierarchies can be seen in Figure 1. The RDF Data
Cube Vocabulary (QB) [14] provides a schema for RDF multidimensional data,
allowing for the representation of schemas, dimensions, measures, hierarchies,
observations, among others. Considering the aforementioned example, its map-
ping to the RDF QB vocabulary can be seen in Listing 1. RDF QB enables
different data publishers to fit their data in a common meta-schema, and reuse
common entities across different sources. Hence, remote datasets often exhibit
overlaps in the values that instantiate their dimensions and measures, this way
creating implicit relationships between observations among remote sources; for
example, an observation can be a specialization or generalization of another
observation from a different dataset, an observation can partially aggregate in-
formation contained in other observations, or finally different observations can
capture complementary knowledge and can be combined together.

In this article, inspired by the notion of fusion cubes [1] towards self-service
analytics, we define instance-level relationships for multidimensional observa-
tions, and we address the challenge of efficient computation of these relation-
ships over multiple data cubes.

In order to better illustrate the defined relationships, we discuss an example
scenario that will be used throughout the paper. In this scenario, the user has
gathered data from several remote sources in order to explore unemployment
and population demographics. The gathered data are in the form of observations
and originate from Linked Data sources. As such, they exhibit heavy re-use of
the same hierarchies and code lists1. The example hierarchies are shown in
Figure 1, and a snapshot of the gathered data is shown in Figure 2, where the

1Some degree of schema alignment is often necessary in realistic scenarios. This type of
alignment is used in the following two prominent cases: (a) traditional BI settings, where all
dimensions provide a reconciled dimension bus, and (b) user-initiated data collections from
the web.

2

analyst has gathered data from three different datasets, namely D1, D2 and D3.
Observations o11 and o31 have the same values for the refArea and refPeriod

dimensions, while the sex dimension has the most general value possible, i.e.,
Total. Intuitively, this means that the two observations measure different things
for the same setting, and are thus complementary. Furthermore, observations
o21, o22 measuring unemployment in Greece and Italy for the year 2001, are
generalizations of o32 and o33, because the latter measure unemployment in
Athens and Rome, which are sub-parts of Greece and Italy respectively, for a
sub-period of 2011. For the data of the example, these relationships can be seen
in Figure 3.

Discovering relationships such as the above is useful in several tasks. Multi-
dimensional data enable third parties to study, process and visualize information
in order to perform more complex analytics such as combining different datasets,
discovering new knowledge, assisting socio-centric processes such as data jour-
nalism, as well as enabling evidence-based policy making on the government and
industry levels[41, 9, 47]. As potential users, we consider data scientists, such
as data analysts or, data journalists and business users, who collect data from
external and corporate sources in their personal data cube for analysis purposes.
Then, the added value of detecting such relationships can be summarized in the
following. First and foremost, observations that originate from different datasets
become linked, and thus comparable in future analytical tasks, as in the case of
fusion cubes [1] towards self-service analytics. Furthermore, navigation and ex-
ploration of aggregations of datasets is facilitated with the existence of links on
the instance level. Traditional OLAP tasks such as rolling up or drilling down
can be applied for the exploration of remote cubes. These types of relationships
can help quantify the degree of relatedness across remote datasets and this way
provide recommendations for online browsing. Finally, materializing these rela-
tionships speeds up online exploration, as well as computation of k-dominance
[12], skylines and k-dominant skylines.

Finding implicit knowledge across different sources is a non-trivial, compu-
tationally challenging task [9], that is inherently quadratic at its core, since
all pairs of records must be examined. Traditional query processing methods
such as SPARQL engines, and inference-based methods fail to address this issue
efficiently as the volume of data increases. For instance, our experiments with
recursive, property-path based SPARQL queries show that even for small num-
bers of records (20,000 observations from 7 datasets) require more than one
hour in commodity hardware to detect and materialize pair-wise containment
relationships. Similary, inference-based methods such as SWRL [28] and Jena
Rules [10] fail to scale due to the transitive nature and the universal restrictions
of these relationships; the search space expands exponentially [17]. Hence, the
need arises to establish more efficient methods that can scale to the size of the
web of data.

Approach Overview. In this paper, we address efficient computation
of three specific types of relationships in multidimensional data from different
sources, namely full containment, partial containment and complementarity, by
extending the work presented in [37][38]. Full containment between observations

3

occurs when all dimension values in two observations are hierarchically related in
the same direction, i.e., the containing observation is a generalization of the con-
tained observation, while partial containment occurs when at least one, but not
all of the dimension values are hierarchically related. Complementarity occurs
when two observations identify the same setting but measure different aspects,
and thus hold complementary information. Specifically for complementarity, we
extend the notion of schema complement[15] to fit observations.

We present a quadratic baseline algorithm for computation of these rela-
tionships, and introduce three alternative methods that target efficiency and
scalability, an approach based on pruning the required comparisons by cluster-
ing together related observations, and two approaches based on the notion of
the multidimensional lattice, a data structure that groups observations based on
their defined combination of dimension levels. The first approach exploits the
dimension levels in order to reduce the required comparisons, whereas the op-
timized approach makes use of the inherent hierarchical structure of the lattice
to further speed up the detection process. We perform an extensive experimen-
tal evaluation of the 4 methods over 7 real-world multidimensional datasets,
and compare their efficiency with two traditional approaches, namely SPARQL
querying and rule-based inferencing. Finally, we evaluate the scalability of our
approach in an artificially generated dataset.

A first attempt to defining and computing these relationships was presented
in [38]. This work informally introduced these relationships and proposed the
naive and the 2 alternative methods for calculating them. This paper extends
the work presented in [38] by providing formal definitions for the problem com-
ponents, defining a new optimized method that drastically outperforms previous
methods, and extending the experimental evaluation to assess the defined opti-
mization with respect to the previous methods.

Contributions. The contributions of this paper are summarized as follows:

• we formally define the notions of full containment, partial containment
and complementarity, originally introduced in [38],

• we present four algorithms, a baseline, data-driven technique for comput-
ing these properties in memory, and three alternative approaches with the
scope of improving performance with respect to efficiency and scalability,

• we perform an extensive experimental evaluation of the achieved efficiency
and scalability over both real-world and synthetic datasets, comparing be-
tween the proposed methods, a SPARQL-based and a rule-based approach.

The remainder of this paper is organized as follows. Section 2 discusses
related work, Section 3 presents the preliminary definitions and formulates the
problem. Section 4 presents the proposed approaches. Section 5 describes the
experimental evaluation. Finally, Section 6 concludes this paper.

4

ex:obs1 a qb:Observation ;
qb:dataSet ex:dataset ;
ex:refPeriod ex:Y2001 ;
sdmx-attr:unitMeasure ex:unit ;
ex:refArea ex:DE ;
ex:population "82,350,000"^^xmls:integer .

Listing 1: Example RDF Data Cube observation

Figure 1: Hierarchical code list for the dimensions in Figure 2.

Figure 2: Candidate relationships between observations.

Figure 3: Derived containment and complementarity relationships from datasets D1, D2 and
D3 of Figure 2.

5

2. Related Work

In the context of RDF, there exists a growing body of research focused on
the provision of tools, methods and techniques for representing, analysing and
processing multidimensional data. In this paper, we build on, and extend the
work presented in [38][37], where we introduced the notions of full containment,
partial containment and complementarity, and discussed three approaches for
efficient computation of these relationships. We formally define the problem
components and relationships, we improve upon the presented approaches, and
we introduce a novel optimization of the cube masking approach that targets
performance, complementing it with an extended experimental evaluation.

The general problem of detecting similarities between resources is central
in the fields of entity resolution, record linkage and interlinking [39, 40, 59,
43, 19, 45]. However, these approaches are focused on finding links between
resources from different datasets without taking into account multidimensional
features such as dimension values. To the best of our knowledge, this is the first
work centred on the definition, representation and computation of relationships
between instance-level multidimensional data.

2.1. Schema-Level Hierarchy Extraction for OLAP
Traditional OLAP and data warehousing systems and frameworks are often

used for performing analytical queries with operators that can generalize (roll-
up) or specialize (drill-down) specific records, based on their defined dimension
hierarchies. These are most commonly built upon a relational backbone, or
native data cube implementations [55], and rely on the management of data
from trusted sources with known schemas and interconnections. The latter
assumption does not apply to data analysis in the Data Web, because the in-
put potentially originates from remote, implicitly related sources. Furthermore,
these types of systems are not built for detecting instance-level relationships
such as containment and complementarity. For instance, early approaches on
automatic concept hierarchy detection have been proposed, but deal with hier-
archy construction on the schema or the attribute level, rather than the instance
level[25][26]. Similarly, extraction of concept hierarchies from web tables and
transformation to data cubes has been studied in [5], and extraction of dimen-
sion hierarchies from ontological data has been addressed in [50]. Thus, the
process of detecting instance-level relationships must be translated to queries
over the employed format (e.g. SQL or SPARQL queries) in the form of query
operators, which makes the detection costly, as will be shown in the experiments,
or derived with the use of customized ETL processes.

2.2. Analytical Mining in the presence of hierarchies
The problem of finding related observations in multidimensional data spaces

has been addressed in the field of Online Analytical Mining (OLAM)[35], which
refers to the integration of data mining techniques into traditional OLAP. These

6

methods have been successfully used for tasks such as classification of observa-
tions and detection of outliers [35][3], exploration recommendation[4][6], intelli-
gent exploratory query recommendation [51], discovery of implicit knowledge[22]
and optimized OLAP querying[35]. In [49], the authors introduce the shrink op-
erator that exploits hierarchies as a means to provide summarized and shortened
cubes. It achieves this by clustering together and consequently merging similar
facts, in order to assist human-readability. Their work is not driven by effi-
ciency, as in our case, rather they focus on improving the presentation of cubes
in graphical form. In [11], the authors tackle the problem of performing roll-up
and drill-down operations on continuous dimensions, rather than fixed dimen-
sion values as in our case, and to this end they employ hierarchical clustering
on the numerical values of the dimensions.

2.3. Partial Materialization
In [18], the authors target efficiency in the performance of OLAP related

tasks by studying partial materialization techniques for aggregation and sum-
marization of multidimensional observations. Similarly, in [24] the authors pro-
pose materialized views for efficient processing of aggregation queries. These
two approaches resemble our notion of observation containment, and can in-
deed be complemented by the efficient computation of this type of relationship
on the observation level. In [60], the authors propose a probabilistic approach
for providing full and partial materialization over aggregate analytics at the
cube level. Ibragimov et al. [30] use materialized views formulated as SPARQL
queries in order to address the lack of support for incomplete data with implicit
information, and they evaluate their approach on multidimensional RDF data
represented with the QB4OLAP model [20], which is an extension of the RDF
QB vocabulary. This way, they provide scalable support for aggregate queries
that include roll-up and drill-down exploration over incomplete data. This work
is complementary to our methods for efficient computation of aggregate rela-
tionships between observations (i.e., observation containment) and the (partial)
materialization of RDF views can be complemented by the optimizations pre-
sented in this article.

2.4. Skyline Computation
The computation of containment relationships has been addressed in differ-

ent contexts, with skyline computation being the most prominent one. Specifi-
cally, skyline computation is based on the definition of observation dominance,
and asserts the existence of points in the multidimensional dataset that are not
dominated (i.e., fully contained) by other points [61, 54, 34]. The set of these
points comprises the skyline of a dataset, and has found important applica-
tions in summarization and recommendation tasks in data warehousing. In this
regard, full containment is a generalization of the skyline problem, where we
are interested in all intermittent skylines at all of the level combinations of the
hierarchies. Similarly, partial containment in the same context is referred as
the k-dominance problem in [12], where the authors propose a methodology for

7

efficient computation of partial skylines in subsets of the original dimension set
of the input. The problem of Subspace Skyline computation is presented in [48],
and is defined as the computation of partial skylines in subsets of the dimen-
sions of a given dataset. This is relevant to our definition of partial containment,
however, partial containment can be defined in several different subsets of the di-
mensions between two observations at the same time, which makes our problem
more computationally complicated.

2.5. Observation Relationships via Similarity Metrics
As a metric of relatedness, containment and complementarity relationships

have the potential to highlight similarity between observations as well as datasets,
even though this is not the main focus of this work. In this regard, Aligon et
al.[4] use query features in OLAP sessions in order to define distance functions
that capture instance-level similarities. In a related context, Baikousi et al.[6]
propose several similarity metrics in the form of distance functions that specif-
ically address distances in hierarchical code lists. In [29] the authors propose a
set of scalable multidimensional methods via hierarchical clustering in order to
measure similarity between reports in the same cubes. In the broader context of
web-based data sources, the work in [15] defines the notions of schema and en-
tity complement, the latter of which is the basis for our definition of observation
complementarity.

Recent works in entity resolution (ER) have been shown to perform effi-
ciently in cases when duplicate entities need to be identified based on pre-defined
similarity metrics. As ER is mainly a quadratic problem, in the sense that all
pair-wise comparisons are needed in order to identify duplicate or similar entries,
these works usually focus on providing fast ways of partitioning the search space
in smaller chunks, or blocks, and limiting the pair-wise comparisons of records
within the same, or nearby blocks. Examples of these have been addressed
in [8][43][44], while the reader is referred to [42] for an extensive experimental
evaluation of recent schema-less and schema-aware techniques. While these ap-
proaches aim at identifying similar entries, they do not address cases where the
examined attributes (i.e., dimension values) exhibit hierarchical relationships,
as in our case. Furthermore, they provide approximate solutions, rather than
exact ones.

2.6. Multidimensional Linked Data Related Approaches
The versatility of the RDF model has enabled the creation of several schemas,

vocabularies and ontologies that are used for the representation of multidimen-
sional data, concept hierarchies, code lists and so on, with the most prominent
example being the RDF Data Cube Vocabulary (QB). Furthermore, many high-
level representation models such as RDFS2 and SKOS3 provide conventions for

2https://www.w3.org/TR/rdf-schema/
3https://www.w3.org/2004/02/skos/

8

representing hierarchical dependencies, such as rdfs:subClassOf, and skos:broad-
er/skos:narrower. In fact, in this work, we rely on skos concepts and hier-
archical properties in order to detect and represent hierarchical dependencies
between values in code lists that are shared among different datasets.

In the context of Linked Data, a thorough survey of how OLAP exploration
tasks and processes are performed in the context of the Semantic Web, is given in
[2]. The authors perform a classification of research works that leverage Seman-
tic Web technologies for OLAP schema design and data provisioning according
to five criteria, namely materialization, transformations, freshness, structured-
ness, and extensibility, and further analyzed these technologies with respect
to Reasoning, Computation and Expressivity. In this regard, our work can be
categorized as a computational approach with instance-level inferred material-
ization as the ultimate goal, in order to allow for constant-time access to more
complex exploration tasks, such as querying implicit information. The work in
[32] addresses the problem of finding related cube entities amongst different and
remote sources with the use of an extended Drill-Across operator. The authors
tackle relatedness on the level of the cube schema, and to that end they define
relatedness by quantifying the difficulty of tasks such as conversion between
cubes and merging of different cubes. In [31] the authors advocate the devel-
opment of native engines that translate traditional OLAP to SPARQL queries
and materialized views in order to tackle the lack of support for analytical work-
flows in traditional RDF management systems. In [33] the authors propose a
SPARQL-based ETL framework for extracting multidimensional star-pattern
data and hierarchies from RDF and Linked Data using dynamically generated
SPARQL queries, but the authors note the lack of functionality regarding infor-
mation extraction in the form of aggregation functions in their approach. In [21],
the authors propose CQL, a conceptual algebra for querying multidimensional
RDF data, which they use to translate SPARQL queries and apply traditional
SPARQL query optimization methods. In [7], the authors propose a method
for discovering and merging OLAP cubes in the context of RDF. While this is
an interesting approach, it is not centred on the detection of instance-level rela-
tionships, as is the main focus in our work. In [20][57], the authors present the
QB4OLAP vocabulary, an extension of the RDF QB vocabulary with OLAP
constructs such dimension levels, with the aim to go beyond the representa-
tional capabilities of QB and enable native support for traditional OLAP tasks
in Linked Open multidimensional datasets. Extending on this work, in [56] the
authors implement a tool for performing OLAP-related tasks on QB Linked
Data without requiring SPARQL expertise. To this end, they provide function-
ality for semi-automatic transformation of existing QB datasets to QB4OLAP,
and high-level query formulation using the generic QL language. Furthermore,
they implement an enrichment module that is able to extract hierarchies and
code lists from remote Linked Data sources.Even though the scope of these works
is not to provide efficient computation of instance-level relationships between
observations, as is our focus, they are complementary to our approach.

9

3. Problem Definition

In this section, we present preliminaries of our approach and formulate the
problem addressed in this paper. As was noted in the introduction, in the con-
text of this work we are interested in processing linked open multidimensional
datasets with OLAP cube characteristics. These datasets must exhibit sev-
eral characteristics, the main of which is the conformance to a representational
model that allows the description of cubes and cube facts, i.e., observations.
Furthermore, linked open data technologies use commonly agreed ontologies for
describing data across different sites. This enables us to process datasets which,
although being published by different sources, are following the same seman-
tics for the description of the schema, the values of the dimensions, the unit of
measurements, etc. Under this scope, we consider a problem space consisting of
n input datasets, each of which follows a multidimensional schema in the form
of one or more cubes, containing observation instances. In the following, we
present and define the components of the problem.

Definition 1. Dimension Schema.

Following the definitions in [23], a dimension schema P is a tuple (L,→) where
L is a non-empty finite set of values h1, h2, . . . , hn along with a top value concept
named All, and→ is a partial ordering of the values in L. This partial ordering
essentially defines a hierarchy in the values. In the setting of this paper, L is
a fixed code list, that is represented by URIs. Furthermore, the → operator in
the definition of P defines a hierarchy such that when hi � hj , where hi, hj are
values in L, then hi is a hierarhical parent of hj . The concept hroot = All is
defined as the top level concept in each code list, i.e., an ancestor of every other
value in L, such that ∀hi : hroot � hi. This hierarchical ancestry is reflexive,
i.e. ∀hi : hi � hi. Figure 1 shows several code list values in their respective
hierarchies.

Definition 2. Cube Schema.

A cube schema CS is a tuple (P,M), where P is a dimension schema, and M
is a finite set of measures. Measures are essentially measurements of a specific
metric that are instantiated over a point in the multidimensional space defined
by P .

Definition 3. Observation.

An observation is a cube instance that defines a single point in the multidi-
mensional space. More specifically, an observation o is a tuple of the form
oa = (h1

a, h
2
a, . . . , h

l
a, v

1
a, v

2
a, . . . , v

m
a), where hi

a is the value of dimension Pi, and
via is the value of measure Mi for observation oa. In other words, an observation
is an entity that instantiates all of the dimensions and measures that are defined
in its respective dataset. In our running example, the values in the white cells
represent dimension values (e.g. ”Athens” is a value for dimension refArea),
while grey cells represent the values of measures, such as 10% unemployment.

10

Definition 4. Dataset Structure.

Let D = {D1, . . . , Dn} be the set of all input datasets. A dataset Di ∈ D
consists of a set of data observations Oi = o1, . . . , ok, as well as a set of dimension
schemas Pi = P1, . . . , Pl and a set of measures Mi = M1, . . . ,Mm. Thus, Di

is a tuple of the form (Oi, CSi), where CSi = (Pi,Mi). This means that D is
defined as the union of the respective components of the input datasets, that is,
D = (OD, CSD), with OD =

⋃n
i=1 Oi, CSD = (PD,MD), with PD =

⋃n
i=1 Pi

and MD =
⋃n

i=1 Mi. In the running example, all three datasets D1, D2, D3

share the dimensions refArea and refPeriod. Furthermore, D2 and D3 share the
measure ex:unemployment.

These datasets originate from possibly remote, linked open data sources,
and can exhibit overlap in both their records, and the used/reused vocabularies.
Hence, dimension values that instantiate observation instances are drawn from
linked open codelists and vocabularies and can be shared across datasets. This
creates the possibility of linkage between datasets on the instance level, i.e.,
observations can be related across remote datasets. For this reason, we will
define three types of relationships that pairs of observations can exhibit, namely
full containment, partial containment, and complementarity.

Definition 5. Observation Complementarity.

Complementarity is a binary relationship between a pair of observations. Specif-
ically, we define complementarity as a function compl : O × O → B, where B
is the boolean set B = {0, 1}. Let oa and ob be two observations that orig-
inate from datasets Da = (Oa, CSa) and Db = (Ob, CSb) respectively, with
CSa = (Pa,Ma) and CSb = (Pb,Mb). Then, oa complements ob when the
following conditions hold:

∀Pi ∈ Pa ∩Pb : hi
a = hi

b (1)

∀Pj ∈ Pa4Pb : hj
b = hroot (2)

where Pa4Pb is the symmetric difference of sets Pa and Pb. When both con-
ditions hold true, there is a complementarity relationship between oa and ob,
i.e., (1) ∧ (2)⇒ compl(oa, ob) = 1. We denote this with oa

c
= ob. This definition

essentially relates the two observations as occupying the same point in the multi-
dimensional space defined by their shared dimensions. These shared dimensions
Pa ∩ Pb must be instantiated with the same values from the respective code
lists (condition (1)), and all non-shared dimensions, i.e., Pa4Pb, must be equal
to the root of the dimension hierarchy, i.e. the value hroot = All, thus provid-
ing no further specialization, (condition (2)). This relationship indicates that
the two observations basically identify the same setting. The complementarity
relationship is symmetric, thus oa

c
= ob also implies ob

c
= oa.

For instance, in a one-dimensional setup where the only dimension is refArea,
an observation that measures poverty for the value Greece in this dimension, ex-
hibits complementarity with an observation that measures population in Greece.

11

If the second observation originates from a dataset that includes the dimension
sex, then the two would complement each other only if the non-shared dimension
(i.e., sex) provides no specialization in its respective observation. In our exam-
ple, observations o11 and o31 are complementary, in that they measure different
things for Athens in 2001. Condition (2) holds for o31 in the sex dimension,
where absence of the dimension implies existence of the root value hroot = All.
The fact that o11 refers to all values from the sex dimension does not provide
any further specialization and is inherently found in o31 as well.

Definition 6. Observation Containment.

A special type of directed relationship between a pair of observations exists
when one of the two observations is a specialization of the other. We call this
a containment relationship. For instance, the population of Greece implicitly
contains all the populations of Greece’s cities. However, there are cases where
only a subset of the dimensions exhibits this type of relationship between two
observations. This is an important relationship as it shows which dimensions
need to be abstracted (i.e., rolled-up) in order for two observations to become
comparable and/or relatable. For this reason, we define two notions of con-
tainment, namely full containment and partial containment. Full containment
is exhibited when all dimension values of one observation are subsumed by the
values of the respective dimensions of another observation, while partial contain-
ment is exhibited when at least one, but not all dimension values are subsumed
from one observation to another.

More specifically, we define the existence of containment as a function cont :
O×O → [0, 1], where a value of 0 means that no containment relationship exists,
while a value of 1 means that there exists absolute containment between a pair
of observations. When cont(oi, oj) = 1, we call this full containment. On the
other hand, when 0 < cont(oi, oj) < 1, we call this partial containment. These
are defined as follows.

Definition 6.1. Full Containment.

Let oa and ob be two observations from datasets Da = (Oa, CSa) and Db =
(Ob, CSb) respectively, with CSa = (Pa,Ma) and CSb = (Pb,Mb). Full con-
tainment between two observations, oa ∈ Oa and ob ∈ Ob, exists when the
following conditions hold:

Pa ∩Pb 6= ∅ (3)
∀Pi ∈ Pa ∩Pb : hi

a � hi
b (4)

Furthermore, the non-shared dimensions must not provide any further spe-
cialization, as stated in condition (2). When all conditions are true, the pair of
observations exhibits full containment. Therefore, (2) ∧ (3) ∧ (4)⇒ cont(oa, ob) =

1. We denote this with oa
f
� ob. The intuition behind these conditions relies

on several facts. An observation oa fully contains ob when values of all shared
dimensions for oa are hierarchical ancestors of the values for the same dimen-
sions in ob as stated in (4). Furthermore, the conjunction of the two dimension

12

sets must be non-empty, as stated in (3). This condition is needed because the
universal condition in (4) would be evaluated to true in the case that there are
no shared dimensions. Observe that the containment property is not symmet-
ric, i.e., given oa

f
� ob, then ob

f
� oa is not implied. In the example, o21 fully

contains o32 and o34.

Definition 6.2. Partial Containment.

Let oa and ob be two observations from datasets Da = (Oa, CSa) and Db =
(Ob, CSb) respectively, with CSa = (Pa,Ma) and CSb = (Pb,Mb). Then, oa
partly contains ob when there exists at least one dimension whose value for oa
is a hierarchical ancestor of the value of the same dimension in ob, as stated in
the following condition:

∃Pi ∈ Pa ∩Pb : hi
a � hi

b (5)

Thus, partial containment is a generalized case of full containment. We
denote this as oa

p
� ob. In the example, observation o21 partially contains o31,

because Greece contains Athens but 2001 does not contain 2011. The notation
is summarized in Table 1.

Problem Definition. Based on the above, our problem is formulated as
follows. Given a set D of source datasets, and a set O of observations in D,
for each pair of observations oi, oj ∈ O, i 6= j, assess whether a) oi

f
� oj , b)

oi
p
� oj and c) oi

c
= oj . In the following section, we provide our techniques for

computing these properties.

Table 1: Notation

Notation Description
oi The i-th observation in a set O
P A set of dimension schemas
M A set of measure schemas
Pi The i-th dimension in a set P
Mi The i-th measure in a set M
hi
a Value of dimension Pi for observation oa

hi
a � hi

b hi
a is a parent of hi

b

hroot The root value All
compl(oa, ob) Complementarity function
cont(oa, ob) Containment function
oa

c
= ob oa complements ob

oa
f
� ob oa fully contains ob

oa
p
� ob oa partially contains ob

13

4. Algorithms for computing complementarity and containment

In this section, we present four methods for the computation of the pro-
posed relationships, i.e, full/partial containment and complementarity. We first
present a baseline method that requires quadratic computations, i.e., compar-
isons for all pairs of observations, and then we propose three efficient and scal-
able alternatives. The first uses clustering to group related observations together
and limit comparisons within clusters, the second uses the notion of a cube mask
lattice [27] in order to take advantage of the hierarchical relationships between
the levels of the dimensions of each observation and limit comparisons between
hierarchically related containers, and the third proposes an optimization over
the cube masking method.

4.1. Baseline
First, we present a baseline method, which performs comparisons between all

pairs of observations in the input dataset. Performing all pair-wise comparisons
makes the baseline algorithm quadratic, and thus not efficient for large datasets.
However, this method requires minimal preprocessing and is thus suited for
smaller input sizes.

Representation. The baseline algorithm works under the premise that
observations are represented as bit vectors in a large bitmap, which essen-
tially defines a multidimensional feature space. Let D1 = (O1, CS1), . . . , Dn =
(On, CSn) be n input datasets, then this bitmap is represented by an occurrence
matrix OM, where each row is defined by an observation key in

⋃n
i=1 Oi, and

each column represents a specific value in the codelist hierarchies of the union of
all dimension schemas P =

⋃n
i=1 Pi, with Pi ∈ CSi. That is, for each observa-

tion, we set the bits that correspond to the dimension values of the observation.
This representation also captures the ancestral relationships between hierarchi-
cal values of the dimensions, by encoding the occurrence of a dimension value
together with all of its parents. For this, we set the value of 1 to all columns
that are ancestors of this value.

Prior to creating the representation space, it is often an implicit requirement
of the input to perform dimension alignment, and have a reconciled dimension
bus in the multidimensional space. This can be achieved by applying estab-
lished entity resolution techniques for interlinking dimension values across dif-
ferent datasets. Even though we use the inherent linkage of Linked Open Data,
it is often necessary to further resolve disambiguations and similarities in the
data. Note however that Entity resolution tasks are beyond the scope of this
work, which focuses on data analytics rather than on data integration problems.
Thus, we consider that schema alignment and mapping of values is feasible and
amortized over time (especially when data is collected from already processed
sources at a regular basis) .

The occurrence matrix OM is a matrix that is defined over the union of
all input datasets, and encodes each observation with respect to the values, all
the way to the root, of its dimensions. Thus, presence of a dimension value is
denoted with the corresponding bit of the column of the dimension set to 1.

14

Furthermore, hierarchical occurrence is also represented in OM, by setting all
parents of the dimension value to 1, up to the root.

Each observation is defined over this matrix of dimensions |O| × |L| as a
bit vector representing the occurrences of codelist values in their respective
dimensions, that is, each value hi ∈ L becomes a feature, i.e., a column in OM.
For example, given an observation oa, and its value h

Pj
a for dimension Pj , then

the value as well as its hierarchical subsumption is encoded in OM by assigning
a set bit in the column that represents hi = hj

a, as well as all of the parents of
hi. Finally, we set the columns representing hroot for all observations that do
not contain Pj in their schema. This means that dimensions not appearing in
a cube schema are assigned the top concept, this way marking the distinct lack
of specialization in the absence of a dimension.

Conceptually, OM can be vertically partitioned into a series of sub-matrices,
each one representing one dimension in the unified schema of the input, i.e.,
OM = [OM1, . . . ,OM|P|], where OMi is a sub-matrix that represents occur-
rences for all values of dimension pi. For the example of Figure 2, and given the
hierarchical code lists shown in Figure 1, the OM matrix is depicted n Table 2.
The baseline algorithm uses OM for computing containment scores, and encod-
ing these scores in a pair-wise containment matrix. The latter is used for the
computation of both the complementarity and the containment relationships.

Table 2: Matrix OM for the example of Figure 2

refArea refPeriod sex
WLD EUR AM GR IT Ath Rom US TX Aus ALL 2001 2011 Jan11 Feb11 T F M

obs11 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0
obs12 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1
obs21 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0
obs22 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0
obs31 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0
obs32 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0
obs33 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0

Table 3: (a) Matrix CM1 for dimension refArea of the example of Figure 1, (b) Matrix OCM
for the example of Figure 1

(a)

obs11 obs12 obs21 obs22 obs31 obs32 obs33
obs11 1 0 0 0 1 1 0
obs12 0 1 0 0 0 0 0
obs21 1 0 1 0 1 1 0
obs22 0 0 0 1 0 0 1
obs31 1 0 0 0 1 1 0
obs32 1 0 0 0 1 1 0
obs33 0 0 0 0 0 0 1

(b)

obs11 obs12 obs21 obs22 obs31 obs32 obs33
obs11 1 0 0.33 0.33 1 0.66 0.33
obs12 0.33 1 0.66 0.66 0.33 0.66 0.66
obs21 0.66 0.33 1 0.66 0.66 1 0.66
obs22 0.33 0 0.33 1 0.33 0.66 0.66
obs31 1 0 0.33 0.33 1 0.66 0.33
obs32 0.66 0 0.33 0.66 0.66 1 0.33
obs33 0.33 0.33 0.66 0.33 0.33 0.33 1

Specifically, for each pair of observations, or rows in OM, we calculate a
score that denotes containment. This score is basically a normalized indicator
of how many dimensions exhibit subsumption between the (ordered) pair of ob-
servations. Given a specific dimension pi, the |O|× |O| matrix that is computed
for all pairs of observations is called the containment matrix for dimension pi.
To compute a containment score for a pair of observations with respect to a

15

specific occurrence matrix OMi of dimension pi = (Li,→), as per the definition
of Section 2, we define a conditional boolean function sf : Bk×Bk → B, where
B is the boolean realm, i.e., B = {0, 1}, and Bk represents the set of bit vectors
of size k = Li. Assuming there is a transformation bv : O → Bk that trans-
forms the values of an observation to its respective bit vector for a particular
dimension, then, sf is defined as follows:

sf (oa, ob) |OMi
=

{
1, if bv(b) ⊆ bv(a)

0, otherwise

In other words, containment exists if the bit vector of the right-hand observation
is a subset of the bit vector of the left-hand observation. This can easily be
computed as a logical AND operation between the bit vectors of the rows, i.e.,
if bv(b)∧bv(a) = 1, then bv(b) ⊆ bv(a). We apply sf for oa and ob for dimension
pi in OMi. Application of this function for each dimension returns a set of
|P | containment matrices, CM1, . . . ,CMk. Adding these matrices yields the
Overall Containment Matrix OCM:

OCM =

k∑
i=1

CMi

The values in OCM are normalized between [0, 1], with 0 denoting absence
and 1 denoting presence of containment in all involved dimensions. This means
that full containment between a pair of observations is derived when a cell has
a value of 1, and partial containment when a cell has a value between 0 and
1 (non-inclusive). To assert which particular dimensions exhibit containment
in a partial relationship, we examine the cells in CMi being equal to 1. The
occurrence of a 0 value indicates that full containment and complementarity
can not hold. Note also that measure overlaps can be easily detected with a
simple lookup. The construction of the OCM matrix is explained in Algorithm
1 computeOCM. We then calculate containment and complementarity using the
OCM-based Algorithm 2 baseline.

Computation of complementarity. Recalling the definition of comple-
mentarity, and specifically condition (1), we can take advantage of the reflexivity
of complementarity and assert that two observations are complementary when
(1) and (2) hold bi-directionally. Specifically, the existence of two equal values
ci, cj implies that there exists a bi-directional hierarchical ancestry relation-
ship, i.e., ci � cj and cj � ci. In this context, if two observations are related
with bi-directional full containment, then they are asserted to be complemen-
tary. Therefore, during the same process of computing containment, we can
also compute the complementarity relationships. For this reason, we use OCM
to assess whether a pair of observations exhibits full containment in both di-
rections, i.e. oa

f
� ob and at the same time ob

f
� oa. For example, in Table 3,

the obs11 and obs31 are complementary, whereas the obs21 and obs32 are not
complementary although exhibit full containment.

16

Algorithm 1: buildContainmentMatrix
Data: An occurrence matrix OM, a set P of dimensions and their

start indices in OM
Result: An overall containment matrix OCM

1 initialize OCM;
2 for each pi ∈ P do
3 initialize CMpi;
4 for each pair oj , ok ∈ OMpi do
5 if oj AND ok == oj then
6 CMpi[j][k]← 1;
7 else
8 end
9 OCM[j][k]← OCM[j][k] + (CM(pi)/ |P |);

10 end
11 end

Complexity Analysis. Building the containment matrix requires n2 iter-
ations over the full observation vectors, where n is the number of observations
in the input. Even though Algorithm 1 iterates over observations |P| times, one
for each dimension, the input for each iteration is a subset of the observation,
as we take into account only the dimension values for the particular dimension.
Hence, assuming that the size of a bit vector is b for all |P| dimensions, and
b =

∑|P|
i=1 bi, where bi is the size of the bit vector for dimension Pi, then the num-

ber of checks with respect to the bit vector size for dimension Pi is bin2. Adding
these for all dimensions,

∑|P|
i=1 bin

2 = b1n
2 + · · · + b|P|n

2 = n2
∑|P|

i=1 bi = n2b.
Therefore, for fixed vectors of size b, the total complexity of this step is O(n2)
for n observations. Then, we iterate once again all of the pairs of observations in
Algorithm 2. Therefore, the total iterations required by the baseline approach
are 2n2, with an asymptotic time complexity of O(n2).

The baseline algorithm operates by applying all possible pair-wise compar-
isons between observations in the input datasets. Thus, given n observations,
the complexity is O(n2). However, during the iteration of the set of CM ma-
trices, if a 0 is found at any point, we can skip further computation of full
containment and complementarity, because the pair under comparison is no
longer candidate for these relationships, per their definitions.

Storage-wise, OM needs n× |P | space for n observations and |P | dimension
properties in the input, following a multi-dimensional array approach. However,
in our implementation, a sparse matrix implementation is adopted in order to
reduce the space complexity.

4.2. Computation with Clustering
The baseline approach requires n2 comparisons and thus quickly becomes

inefficient for large datasets as it fails to scale as a result of this complexity.

17

Algorithm 2: baseline
Data: An overall containment matrix OCM.
Result: SF , Sp, Sc sets of full, partial containment and

complementarity relationships, and a map of partial
containment relationships mapP with the dimensions they
exhibit containment in.

1 initialize SF , Sp, Sc;
2 for each pair oj , ok ∈ OCM do
3 if OCM[i][j] == 1 then
4 SF ← SF ∪ (oi, oj);
5 if OCM[j][i] == 1 then
6 SC = SC ∪ (oi, oj);
7 else if OCM[i][j] > 0 then
8 SP = SP ∪ (oi, oj);
9 for each pi ∈ P do

10 if CMpi[i][j] == 1 then
11 mapP (oi, oj , pi) = true

12 end
13 else
14 continue;
15 end
16 end

The first proposed alternative method aims at improving performance by re-
ducing the search space and executing fewer comparisons between observations.
It is based on pre-clustering the input observations based on their distances in
the multidimensional space, and limiting the comparisons between observations
that belong to the same cluster. This approach is shown in Algorithm 3. The
occurrence matrix OM is the input of the algorithm, and all rows are clustered
into smaller occurrence matrices (Line 1). Then, the algorithm iterates through
each of these clusters and applies the buildContainmentMatrix and baseline al-
gorithms to each separate cluster (Lines 3-5). At each step of the iteration, the
return arrays are updated to include the newly retrieved relationships (Line 6).

Notes on the Clustering Step. In our experiments, we employed three
clustering algorithms, namely k/x-means [46], agglomerative clustering and fast
canopy clustering [36]. The input for the distance function of the clustering
step is a vector with the dimension values of the row. While more features
such as other semantic and RDF metadata can be taken into account, previous
related work [6] has shown that simple hierarchical distances of the values of the
hierarchy are adequate to characterize the distance between dimension values.
It is out of scope to find the optimal clustering approach for the computation of
the relationships, as finding the optimal clustering parameterization or a close
approximation is a non-trivial task. More sophisticated clustering approaches
can be employed, however we base our selection on evaluating our approach

18

Algorithm 3: baselineWithClustering
Data: An occurrence matrix OM
Result: SF , Sp, Sc sets for fully, partial containment and

complementarity relationships.
1 clusters← cluster(OM);
2 initialize OCM;
3 for i = 1 to clusters.size do
4 OCMi ← buildContainmentMatrix(clusters[i], P);
5 SFi, SPi, SCi ← baseline(OCMi);
6 SF , SP , SC ← (SF , SPSC) ∪ (SFi, SPi, SCi);
7 end
8 return SF , SP , SC ;

on three representative clustering algorithms, a centroid-based (k/x-means, a
hierarchical (agglomerative) and a fast pre-clustering approach (fast canopy).
In order to optimize the pre-processing step of creating the clusters and assigning
points to them, we first cluster a small sample of the data (in our experiments
10% of the input size), then we assign the rest of the input to the created
clusters.

Complexity Analysis. Time and space complexity of the clustering step
depends on the complexity of the chosen clustering algorithm, the number of
clusters and the distribution of observations in the clusters. The baseline algo-
rithm will run times equal to the number k of clusters. However, the distribution
of observations in clusters is not known for a given collection of datasets. In
the centroid-based case (canopy, k/x-means), assuming an equal distribution of
n
k observations per cluster, then the time complexity for each cluster is Θ(nk)

2

thus making the total time complexity Θ(n
2

k) . Following a rule of thumb where
k =

√
n
2 , this becomes Θ(n1.5), at the cost of information loss, as will be shown

in the experiments. This does not, however, account for the complexity of the
actual clustering step, which in general is a hard problem of at least quadratic
nature (e.g., hierarchical clustering requires n2logn steps, while k-means can
be solved in ndk steps when the number of dimensions d and the number of
centroids k are fixed).

4.3. Computation with Cube Masking
In this section, we present an alternative pre-processing method that enables

flexible processing and identification of the containment and complementarity
relationships in the data. The method is based on the notion of cube masks,
which are structures that represent a fixed level instantiation of all the dimen-
sions, derived from the observations in |D|, and the cube lattice, which repre-
sents the cube masks and their interrelationships into a graph lattice. Following,
we provide the definition of these notions.

Definition 7. Cube Masks.

19

Given a globally fixed dimension ordering, a cube mask ci is a tuple ci =
(lp1 , lp2 , . . . , lpn), where p1 . . . pn are dimensions in P , and lpk

is an integer de-
noting the level of dimension pk as defined in ci. Note that P is an ordered
set, and the set of all cube masks in a dataset D is denoted with CD. In order
to derive cube masks from a given dataset D, we use a function l : C → N
that maps codelist values to the hierarchy level they belong, and a function
mask : O → CD that maps an observation to a specific cube mask. Given the
above, the mask for an observation oi is given as:

mask(oi) = (l(hi
1), l(h

i
2), . . . , l(h

i
k)) (6)

A cube mask can be used as a container structure that holds references to
all the observations that exhibit this level signature. In this sense, a cube
mask container ||ci|| can be defined as the set of all observations for which the
evaluation of the mask function is equal to ci, i.e.:

||ci|| =
n⋃

i=1

oi,mask(oi) = ci (7)

Each observation is assigned to exactly one cube mask. This means that for a
given dataset D with k cube masks, the set of all observations O in D is given
as the union of all cube mask containers ||ci||, i.e., O =

⋃k
i=1 ||ci|| .

Definition 8. Cube Lattice.

Given a dataset D and set of cube masks CD as defined, we can build a graph
lattice [27][52], where each cube mask is a node, and each edge between two
nodes denotes a direct subsumption relationship between the two nodes. In
this sense, an edge in the lattice represents a difference of exactly one level in
exactly one dimension between the two cube mask nodes. Formally, a cube
lattice is a graph L = (V,E) where V ∈ CD and E ∈ (V × V). Specifically,
a directed edge between two nodes exists in L, when the two nodes exhibit
pair-wise subsumption in exactly one dimension, with all other dimension levels
being equal, i.e. the following is true:

E(ci, cj) ∈ L ⇐⇒ ∃pk ∈ P : lipk
= ljpk

+ 1,

∀pm 6= pk : lipm
= ljpm

(8)

Furthermore, given two cube masks ci and cj , the relationship ci �cube cj is
used to denote that for all dimensions in P , ci is defined in a level that is the
same or higher than cj , and ci is thus a hierarchical ancestor of cj . Formally,
this means that there exists a directed path in L between ci and cj , or that
there exists a sequence of vertices pathij = (ci = v1, v2, . . . , vk = cj) such
that (vm, vm+1) ∈ E for 1 6 m < k. This further entails that each directed
pair of nodes from pathij exhibits pair-wise subsumption, i.e. given a path
pathij = (ci = v1, v2, . . . , vk = cj), then ∀m,n ∈ [1 . . . k],m < n→ vm �cube vn
.

20

An example lattice for the three hierarchies of Figure 1 can be seen in Fig-
ure 4. Using the lattice, we can immediately prune out comparisons between
observations that belong in cube masks that are not hierarchically related. For
instance, in the lattice of the figure, it is unnecessary to compare ||c020|| with
||c310|| for full containment, because the relationship c310 �cube c020 is not sat-
isfied, i.e., while the cube with signature 310 is defined on a higher level for
dimensions refArea and sex (3 > 0 and 0 > 0 respectively), the same is not true
for dimension refPeriod (1 � 2). Thus, it is guaranteed that no full containment
relationships can be found between ||c020|| and ||c310||.

Lattice Creation. The multidimensional cube mask lattice L can be cre-
ated with one scan on the observations of D, by applying the mask function on
each observation and storing the hash signatures of the unique cube masks into
an appropriate data structure, such as a hash map. Furthermore, during the
same iteration, we can derive the set of all ||ci|| in D. This process can be seen
in Algorithm 4. First, we initiate a single scan through all observations (Line
2), then for each observation we apply the mask function in order to derive the
cube mask of the observation (Line 4), and finally we add the observation to
cubeMaskMap with the found mask as key (Line 5). Then, we iterate through
all the detected cubes in a nested loop and check for subsumption between the
cubes (Lines 7-13).

Algorithm 4: latticeCreation
Result: A mapping of observations to unique cube masks, and an

adjacency list with the edges between hierarchically related
cubes.

1 initialize cubeMaskMap, lattice;
2 for each oi ∈ O do
3 initialize cube;
4 cube← mask(oi);
5 cubeMaskMap.put(cube, cubeMaskMap.get(cube).add(oi)) ;
6 end
7 for each ci ∈ cubeMaskMap.keys() do
8 for each cj ∈ cubeMaskMap.keys() do
9 if ci �cube cj then

10 lattice.get(ci).add(cj)
11 end
12 end
13 end
14 return cubeMaskMap, lattice;

Baseline Computation using the Lattice. In the cases of full con-
tainment and complementarity, we do not need to compare observations that
belong to lattice nodes that are not hierarchically related, such as node ”121”
with node ”311”. In the case of partial containment we look for at least one

21

Example Observations:
[Rome, Jan2011, Female]
[Athens, Jan2011, Male]

321

221 311 320

120

211 220 301 310

111021 201 210 300

121

011 020 101 110 200

010 001 100

000

o12 o32,o33

o11, o31

o21,o22

Example Observation:
[World, All, Total]

Figure 4: The lattice for the three hierarchies of Figure 2. Observations in Figure 1 are
mapped to the appropriate node. The number in each node corresponds to the level of each
dimension.

dimension inclusion (i.e. path) in the lattice before comparing the contents.
Based on these observations, we propose the cubeMasking algorithm (Algo-

rithm 5). The algorithm first identifies cubes in the input datasets and populates
the lattice, mapping observations to cubes (Line 2). Then, it iterates through
cubes (Line 3) and does a pair-wise check for the cube containment criterion
(Line 5). Finally it compares observations between pairs of cubes that fulfils
this criterion (Lines 9-11). In order to perform these steps, we use a hash table
to ensure that a value’s level can be checked in constant time. We then go on
to identify the cubes and build the lattice by iterating through all observations
and extracting their unique combinations of dimensions and levels. To do so,
we apply a hash function on each observation that both identifies and popu-
lates its cube at the same step. Finally, we iterate through the identified cubes
and by doing a pair-wise check for the containment and complementarity crite-
ria, all meaningful observation comparisons are identified. This can be seen in
Algorithm 5.

alysis. In this approach, only the observations between comparable cubes
are compared for the candidate relationships; the multidimensional lattice en-
sures that the contents of cube masks that are not hierarchically related will
not be iterated quadratically. Thus, in the worst case, the maximum number of
cube masks is defined as the number of permutations of dimensions and levels,

22

Algorithm 5: cubeMasking
Data: A list C with all code list terms as they appear in the datasets,

a hash table levels with a mapping of hierarchical values to
their levels, and a list O observations

Result: SF , Sp, Sc sets for full, partial containment and
complementarity

1 initialize cubeMaskMap;
2 cubes, lattice← latticeCreation();
3 for each pair ci, cj ∈ cubes do
4 for each pi ∈ P do
5 if not(cubej .pi ≺ cubek.pi) then
6 break
7 for each oi ∈ cubej do
8 for each oj ∈ cubek do
9 SF[oi, oj]← checkFullContainment(oi, oj);

10 SP[oi, oj]← checkPartialContainment(oi, oj);
11 SC[oi, oj]← checkComplementarity(oi, oj);
12 end
13 end
14 end
15 end
16 return cubeMaskMap;
17 function checkFullContainment
18 for each pi ∈ P do
19 if not isParent(oi.pi, oj .pi) then
20 return false;
21 else return true;
22 end
23 function checkPartialContainment
24 for each pi ∈ P do
25 if isParent(oi.pi, oj .pi) then
26 return true;
27 else return false;
28 end
29 function checkComplementarity
30 if checkFullContainment(oi.pi, oj .pi) &&

checkFullContainment(oj .pi, oi.pi) then
31 return true;
32 else return false;

i.e. k(|P |), where k is the maximum level of all hierarchies and |P | is the number
of dimensions. In order to check for comparable pairs of cube masks, we need
to identify if two cube masks belong in the same ancestral path. Thus, a full
(directed) traversal of the lattice is required, starting from the root. The com-

23

plexity is equal to the number of vertices, i.e., k(|P |). In the worst case, there
will exist only one mask containing all observations, and all pairs of observa-
tions will have to be compared, thus still making this approach a quadratic one.
However, assuming that there exist k(|P |) > 1 vertices, with c comparable mask
pairs found in the traversal, and an average of p << n observations per mask,
then the algorithm will require cp2 comparisons instead of n2, with a total cost
of O(k(|P |)+cp2). The reason we expect p << n is that we assume a distribution
of all input observations in a tractable and small number of cube masks. In real
world cases, the cube schema is usually defined beforehand and populated by
observations. Furthermore, the number of cube masks is restricted by the num-
ber and combinations of hierarchical levels in the input dimensions. As there
are usually significantly more dimension values than hierarchy levels, we expect
that all observations will be distributed to a small number of cube masks. This
is also discussed in the experiments, where it can be seen in Figure 9 that as
the number of input observations increases, the rate of new cube masks with
respect to the input size decreases.

4.4. Optimized Cube Masking
In order to further optimize the computation of the containment and com-

plementarity relationships, we can take advantage of the relative differences
in dimensions between cube masks compared in the lattice structure that was
proposed in Algorithm 5. Specifically, given two cube masks ci and cj , where
ci �cube cj , we can take advantage of the relative difference in dimension levels
between ci and cj in order to define a mapping function that, given an observa-
tion oa ∈ ||ci||, will output the signature of the potential parent observation ob,
for which it holds that mask(ob) = cj . The requirement for this hash function is
that the relative difference in dimensions and their levels between ci and cj is ex-
plicitly known. Formally, assume that there exists a function Ldiff : CD → CD

that is defined as follows:

Ldiff (ci, cj) = (lip1 − ljp1, l
i
p2 − ljp2 . . . l

i
pk − ljpk) (9)

where p1 . . . pk are the dimensions, and it holds that ci �cube cj . Ldiff creates a
level difference mask between the parent and child cubes, essentially capturing
the level distance for each dimension pi between ci and cj . The result of Ldiff

will be a level mask that represents the distances in levels between the dimen-
sions of the two cube masks. For instance, consider cube masks c321 and c111
in Figure 4. Then, Ldiff (c321, c111) = (2, 1, 0), which means that the two cube
masks have a difference of two levels in the refArea dimension, a difference of
one level in the refPeriod dimension, and a difference of zero levels in the sex
dimension. We denote the level difference mask between ci and cj as Lj

i .
With the use of the Ldiff function, we can further define a function Hdiff :

O → O, that, given an observation oa and a level difference mask Lj
i , i.e., the

output of an instance of Ldiff , Hdiff will output the potential observations
that are parents of oa and also conform to the parent cube mask of the Ldiff

24

Figure 5: The lattice for the three hierarchies of Figure 2. Observations in Figure 1 are
mapped to the appropriate node. The number in each node corresponds to the level of each
dimension.

function, i.e., ci. This function is defined as follows:

Hdiff (oa)|Ldiff (ci,cj) = Oa (10)

where Oa =
⋃m

i=1 oi such that for all i, oi
f
� oa, and mask(oi) = cj , or oi ∈ ||cj ||.

In other words, Hdiff outputs a set Oa that contains all potential observations
that are parents of the input observation oa with respect to the given Ldiff

mask. An example of the application of Hdiff can be seen in Figure 5. In the
top of the figure the input observation is represented as an array of dimension
value signatures, pertaining to the fixed dimension ordering. The representation
of the values follows the Dewey Decimal System, with parent and child values
separated by dots. In the middle of the figure, the Ldiff mask is (2, 0, 0, 1). The
mask and the observation instantiate the Hdiff function which in turn outputs
a candidate parent for the input observation, where each value differs in the
number of levels defined by Ldiff .

4.5. Computation of Full Containment and Complementarity
Thus, the steps that we then follow in order to derive full containment and

complementarity are as follows:

1. Find next comparable pair of cube masks ci, cj from the lattice

2. Compute Lj
i by applying Ldiff (ci, cj)

3. For each observation oa in ||cj ||, apply Hdiff (oa)|Lj
i

4. Check for existence of the output of Hdiff (oa)|Lj
i

in ||ci||

If step 4 is successful, there is a full containment relationship between ci, cj .
These steps are described in detail in Algorithm 6, which also includes com-
putation of complementarity. Lines 2-4 define an iteration of all nodes in the
lattice. Starting from each node, we traverse the node’s children by using sim-
ple recursive pre-order traversal. In Lines 6-19 the recursive function is defined.

25

The condition for termination is that a node does not have any other children
(Lines 7-8). The algorithm first iterates through the node where the traversal
initiated and each of the node’s children (Line 9). For each pair of observations,
the Ldiff masking function is applied (Line 10). Then, the algorithm iterates
through the contents of the parent node (Line 11) and checks for complementary
observations in the child node (Line 11-13). Then, the algorithm applies the
Hdiff function on the observations of the child cube mask (Line 14) and checks
if the candidate parent (i.e., the result of Hdiff is contained in the parent cube
mask (Lines 14-17). Finally, the recursion continues in the child cube mask
(Line 19).

Algorithm 6: optimizedCubeMasking
Data: A map cubes containing cube masks and their links in the lattice
Result: SF , Sp, Sc sets for full containment and complementarity

1 for each ci ∈ cubes do
2 traverse(ci);
3 end
4 function traverse(ci)
5 if cubes.getChildren(ci) == ∅ then
6 return;
7 for each cchild ∈ cubes.getChildren(ci) do
8 Lchild

i ← Ldiff (ci, cchild);
9 for each oi ∈ ||cchild|| do

10 if oi ∈ ||ci|| then
11 SC[oi, oj]← 1;
12 candidate_parent← Hdiff (oa)|Lchild

i
;

13 if candidate_parent ∈ ||ci|| then
14 oj ← candidate_parent;
15 SF[oi, oj]← 1;
16 end
17 traverse(cchild);
18 end

In order for the computation of Hdiff to be both feasible and efficient, we
need fast access to the parents of every codelist value. For this reason, we
adopt a representation for observations that can capture, with small overhead,
all parents of a given hierarchical value up to the root. Under this scheme,
the parents of each value are encoded within the signature of the value. For
example, the value Greece can be represented as All.Europe.Greece, essentially
resembling the Dewey Decimal System. Then, with simple operations we can
get the parent of the value that conforms to the defined level difference.

For instance, consider the case where we are comparing cube masks c121 and
c100, and we want to apply Hdiff on an observation oa ∈ c121, with dimension
values (All.2011, All.Europe.Greece, All.Male), using Lc121

c100 = (0, 2, 1). The

26

value of the first dimension (refPeriod) stays the same, i.e., 2011, as the level
difference is 0. However, the values for dimensions refArea and sex will both
become All, because the level differences are 2 and 1 respectively, which are both
the distances of Greece and Male from All respectively. Eventually, the result
of Hdiff in this case is an observation o

′

a = (2011, All, All). By definition, the
mask of o′

a is c100, however, it is not guaranteed that o
′

a exists in the dataset.
If o

′

a ∈ ||c100||, we can derive that o
′

a fully contains oa, and we can mark the
relationship as computed.

Complexity Analysis. With this optimization, the extra space overhead
required for encoding parent values into the signature of every value in the
hierarchies is traded off for a significant decrease in the required comparisons at
the observation level. Following the analysis of the time complexity of the simple
cubeMasking algorithm presented in the previous section, we assume a total of
k(|P |) > 1 cube masks. The optimized masking algorithm will require k(2|P |)

comparisons of cube masks if all cube masks are candidates for containment, and
assuming that the average amount of observations in a cube mask is p << n,
then an iteration of all the observations in one of the two compared masks is
required, thus making the total cost k(2|P |)+p. Thus, assuming that the average
number of observations is asymptotically larger than the average number of cube
masks, the asymptotic cost of the optimized method is O(p) for the computation
of full containment and complementarity, based on these assumptions. In other
words, the optimized algorithm takes advantage of the knowledge of dimension
level differences in a pair of comparable cube masks in order to directly retrieve
the potential parents of the existing observations, thus eliminating the need for
quadratic comparisons between observations of a pair of cube masks. It should
be noted, however, that in the worst case, O(n2) comparisons will still be needed
if only one cube masks exists, containing all n observations.

4.6. Computation of Partial Containment
In the case of partial containment, we cannot apply directly the same steps

as in full containment, because partial containment does not require the exis-
tence of hierarchical subsumption between the values of all dimensions of two
observations, but instead, a non-empty subset of these (condition 3). There
are two main problems that we have to overcome in the computation of partial
containment using the optimized cube masking approach. First, given a set of
dimensions P = {P1, P2, . . . , Pn} in a cube schema, only a subset P

′ ⊂ P with
P

′ 6= ∅ will exhibit this subsumption between two cube masks. The set P
′ can-

not be determined a priori given the lattice structure, but only when the cube
masks containing the observations are compared, i.e., all combinations of cube
masks must be checked, which makes this a costly procedure. Second, the values
of the dimensions which lie in P\P′ are not expected to exhibit hierarchical re-
lationships between the compared observations. Thus, Hdiff cannot be applied
in the form of Definition 9 for detecting partial containment.On the contrary,
we must first make two cube masks comparable by identifying the dimensions
that are candidates for containment, and generalize to the root value the values
of the remaining dimensions.

27

To address these issues, we propose an alternative optimization based on the
optimized cube masking approach. Given two cube masks ci, cj , after computing
Ldiff (ci, cj), we isolate the positive values in the resulting mask, as these denote
the dimensions that exhibit hierarchical subsumption between the pair of cube
masks, and generalize the rest of the dimension values to hroot. For example,
given cube masks c321, c222, then Ldiff (c321, c222) = (1, 0,−1); the only positive
value is the value of the first dimension. The last two dimensions must be
generalized with the root value in order for the observations in the two masks
to become comparable. For this, we refine the definition of Hdiff by introducing
a variant, named H

′

diff , defined as follows:

H
′

diff (oa,P
′
)|Ldiff (ci,cj) = O

′

a (11)

where O
′

a =
⋃m

i=1 oi such that for all i, it holds that (i) oi
p
� oa and (ii)

hj
i = hroot, where pj ∈ P \ P′ . Note that, because of the generalization of the

values of the dimensions in P \P′ , the contents of O′

a are observations that do
not exist in the ci cube mask, but basically represent candidate parents of oa
with respect to the dimensions in P

′ .
For computing partial containment, we scan both ||ci|| and ||cj || once. For

each observation in ||ci||, we create a set of candidate parents by generalizing
the dimensions in P \P′ , and for each observation in ||cj ||, we calculate H

′

diff

on P
′ , generalizing as well the values of P \ P′ . This procedure outputs a set

of candidates in each one of the cube mask containers. Finally, we check for
candidates that exist in both of these sets. In brief, the steps for computing
partial containment are as follows:

1. Iterate through all pairs of cube masks ci, cj from the lattice

2. Compute Lj
i by applying Ldiff (ci, cj)

3. Derive P
′ by isolating the positive values in Lj

i

4. For each observation oa in ||ci||, generalize all values of the dimensions
that are not in P

′ to the hroot value, and store the result in set O
′

a

5. For each observation ob in ||cj ||, apply H
′

diff (ob,P
′
)|Lj

i
and store the result

in set O
′

b

6. For each entry o
′

b in O
′

b, check for existence in O
′

a

These steps are shown in Algorithm 7. The algorithm iterates through all
possible pairs of cube masks (Lines 1-2), as opposed to the case of full contain-
ment, where only child cube masks are traversed. Then, Ldiff is computed (Line
3) and consequently the set of containment dimensions P ′ is derived (Lines 4-7).
The algorithm iterates through the container of the outer cube mask (Line 9),
and for each observation, it generalizes the dimension values to the hroot value
(Line 10), mapping the newly created observation to the original one (Line 11).

28

Next, the algorithm iterates through the contents of the inner cube mask (Line
13) and applies H

′

diff on the contained observations (Line 14). Each created
observation is then checked for existence in the candidates of the outer set,
marking the relationship as partial containment in case of success (Line 15-17).

Algorithm 7: optimizedCubeMaskingPartial
Data: A map cubes containing cube masks and their links in the lattice
Result: Sp set for partial containment

1 for each ci ∈ cubes do
2 for each cj ∈ cubes do
3 Lj

i ← Ldiff (ci, cj);
4 for each lp ∈ Lj

i do
5 if lp > 0 then
6 P

′ ← p;
7 end
8 initialize candidate_seti;
9 for each oa ∈ ||ci|| do

10 o
′

a ← generalize(oa,P \P
′
);

11 candidate_seti.put(o
′

a, oa);
12 end
13 for each ob ∈ ||cj || do
14 o

′

b ← H
′

diff (ob,P
′
);

15 if candidate_seti.contains(o
′

b) then
16 oa ← candidate_seti.get(o

′

b);
17 SP[oa, ob]← 1;
18 end
19 end
20 end

Complexity Analysis. As in the case for full containment, the extra space
overhead required for encoding the candidate sets for a given pair of cube masks
is traded off for a decrease in the required comparisons at the observation level.
Assuming a total of k(|P |) cube masks, then we need to compare all pairs of
cube masks for partial containment, or k(2|P |). For each compared pair of cube
masks, we scan both cube masks and apply the H

′

diff function in their contents,
which makes the total cost k(2|P |)+2p. Asymptotically, this amounts to a linear
time complexity of O(p), which is still linear with respect to the average obser-
vation cardinality in the cube masks. As in the other cube masking approaches,
however, in the worst case, there will only exist one cube mask containing the
whole set of observations, which makes the complexity O(n2) for n observations.
In real cases, the performance improvements are still significant and fall under
the assumptions made in these analyses.

29

5. Experimental Evaluation

The goal of the experimental evaluation is to assess the performance of all
the above methods in terms of time efficiency, accuracy and scalability of the
proposed algorithms and evaluate our methods in comparison with inference and
SPARQL query processing techniques widely used for detecting relationships in
RDF data. We demonstrate that our approach achieves small execution time in
commodity hardware and outperforms traditional techniques, which fail to scale
up as the number of observations increase. In the following sections, we first
provide the experimental setting, i.e., the datasets used for the experiments, the
metrics and the setup of the experimental environment. Then we proceed with
the evaluation of the proposed metrics, and we present and discuss the results.

5.1. Setting
We have selected seven real-world datasets on government and demographic

statistics. The datasets were taken from Eurostat4, the Eurostat Linked Data
Wrapper5, World Bank6 and the linked-statistics.gr project 7. Eurostat offers a
wide variety of statistical data on countries of the EU region, and while it did
not provide data in RDF format at the time of writing, some of the datasets
contained therein are provided through the Eurostat Linked Data Wrapper in
the RDF Data Cube (QB) representation format. World Bank is a rich source of
statistical data for all countries of the world, and linked-statistics.gr is a project
that offers data from the official Greek statistics authority, converted to RDF
with the QB representation. In the case of datasets in the CSV format, we
converted them to QB by adopting the approach of [51]. Notably, several other
tools can also be used for the conversion, such as CSV2RDF8, OpenCube9 and
Open Refine10. In this context, the header labels of the CSV files are converted
to dimensions (each assigned with a unique URI), and each row becomes an
observation. The cell values are matched automatically to existing terms in the
shared code lists.

The datasets consist of a total of 11 dimensions, 6 measures and more than
2,500 unique hierarchical terms, for a total of 2̃60,000 observation records. The
seven datasets cover demographic statistical data on population, unemployment,
births/deaths, national economy (GDP) and internet adoption by household
number, while the dimensions cover features such as geographical region, refer-
ence periods, country of citizenship, human genre (sex), level of education, and
household size. The dataset details can be seen in Table 4.

4http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_
database

5http://estatwrap.ontologycentral.com/
6http://data.worldbank.org/
7http://linked-statistics.gr/
8http://www.w3.org/TR/csv2rdf/
9http://opencube-toolkit.eu/

10http://refine.deri.ie/

30

http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database
http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database
http://estatwrap.ontologycentral.com/
http://data.worldbank.org/
http://linked-statistics.gr/
http://www.w3.org/TR/csv2rdf/
http://opencube-toolkit.eu/
http://refine.deri.ie/

Table 4: Dataset dimensions, amount of observations and respective measures

Dataset
(# of
obs)

refArea refPeriod sex unit age eco-
nomic
activi-
ties

citizen-
ship

educa-
tion

house-
hold
size

measure

D1 (58k) Y Y Y Y Y N Y N N Population
D2 (4.2k) Y Y N Y N N N N Y Members
D3 (6.7k) Y Y Y Y Y N N Y N Population
D4 (15k) Y Y N Y N N N N N Births
D5 (68k) Y Y Y Y Y N Y N N Deaths
D6 (73k) Y Y N Y N N N N N GDP
D7

(21.6k)
Y Y N N N Y N N N Compensation

We preprocessed the code lists in order to align dimension and hierarchy
values across the input data space, by employing LIMES [40], a Linked Data
interlinking tool that is commonly used for term alignment in the LOD cloud.
LIMES can be configured to use restriction rules on the input (for example, can-
didate matches must exhibit the same rdf:type values), and has a customizable
distance metric parameter, that can be programmed to use combined distance
functions such as aggregates (maximum, average etc.) on multiple distance
functions, such as cosine similarity, jaccard distance and levenshtein distance.
For our experiments, we configured LIMES to match the code list terms by
comparing the string URIs, and used their cosine distance in order to discover
matches based on the URI suffixes.

Metrics. The main aim of the experimental evaluation was to compare
the performance of all the proposed methods with respect to execution time.
Specifically, we measure execution time by including the pre-processing and
computation steps for the defined relationships. Furthermore, we report the
total number of observations that are accessed/compared for each method. Es-
pecially for the case of the clustering approach, we are also interested in the
achieved recall of the computed relationships, as this method is the only one
that does not guarantee 100% recall. In this sense, recall is defined as the ratio
of correctly found relationships to the number of all relationships in the datasets,
as discovered by the other methods. Note that we do not consider any decrease
in recall induced by the tool used in the dimension alignment step. The align-
ment process is performed as a pre-processing step for all algorithms, providing
the same input in each case, and is thus independent from the achieved recall.

Experimental Setup. We implement our approach in Java 1.8 on a single
machine with allocated memory of 16GB DDR3. For the experiments, we grad-
ually increased the input size, starting from 2̃,000 observations and increasing
it with a fixed step of 20,000 observations. For the clustering method, we have
experimented with three clustering algorithms, namely fast canopy, x-means,
and hierarchical clustering, using Jaccard similarity as a distance metric, and
applying them on random 10% samples of the full input. In the series of exper-
iments, we performed comparisons between the proposed algorithms, as well as
a SPARQL-based and an inference-based alternative.

SPARQL-based approach. We consider a SPARQL-based alternative ap-
proach, for which we devised three queries for the detection of the underlying

31

relationships of containment and complementarity. For the containment rela-
tionships, the subsumption between dimension values can occur in any level,
and thus must be modelled using wildcard-enabled property paths, which are
directly supported by the SPARQL 1.1 recommendation and most of its im-
plementations. However, a requirement for the case of full containment is the
universal restriction over the subsumption of the dimension values. As SPARQL
does not explicitly allow universal quantification in its syntax, it has to be mim-
icked with the use of negation and nested recursion, which makes the query
complicated to write and costly to execute. Partial containment can be easily
detected, but it is complicated to derive the exact dimensions that do not ex-
hibit containment. Given the above, and for the sake of simplicity, we design
the three queries with the scope of detecting the existence of the relationships,
and we do not quantify it like in the computation of the OCM matrix. The
queries can be seen in Appendix A.

Rule-based. The rule-based approach consists of three forward-chaining
rules implemented in Jena, as the Jena generic rule reasoner is simple to use
and offers the required expressiveness. The rules can be seen in Appendix B.

The datasets and code are available online at http://github.com/mmeimaris.

5.2. Experimental Results
The set of conducted experiments suggests that the baseline algorithm can

be improved significantly by all three of the optimized methods. In what follows,
we describe the achieved results for each of the algorithms.

5.2.1. Baseline
The baseline algorithm behaves quadratically with respect to input size, as

it performs n2 comparisons for n input observation rows. The results are shown
in Figure 6(a-c). When computing full containment and complementarity, the
required checks are decreased, because we can quickly skip pairs of rows that
fail the subsumption criterion at least once. Furthermore, recall from Algo-
rithm 2, that complementarity and full containment relationships are computed
at the same pass, i.e., a bilateral full containment relationship between two
observations implies their complementarity. The total number of observation
pairs compared in the baseline method can be seen in Figure 7, and includes all
possible pairs of observations in the datasets.

5.2.2. Clustering
The clustering approach has been implemented on top of the baseline, by

configuring the code to cluster the input observation rows and then perform
the baseline on each cluster. In this set of experiments, we run three different
settings, changing the clustering algorithm in each one. The three algorithms
we have used, two centroid-based and one agglomerative, are (i) x-means, which
is a variant of k-means that automatically configures the number of centroids
based on the input, (ii) fast canopy clustering, and (iii) hierarchical clustering.
For all approaches, we configured the system to use a sample 10% of the input

32

http://github.com/mmeimaris

(a) Execution time (seconds) for complementarity

(b) Execution time (seconds) for full containment

(c) Execution time (seconds) for partial containment

Figure 6: Execution performance experiments

size, and then assigned the remainder of the input to the detected clusters. We
achieved varying degrees of recall, which can be seen in Figure 8. According to
our results, the k-means variant achieved the higher degree of recall. In Figure
6(a-c) we report the execution times with x-means, compared with the other
approaches. Furthermore, the total number of compared observation pairs can
be seen in Figure 7 for the cases of full and partial containment. As a general
note, the clustering approach outperformed the naive baseline algorithm, despite
the eventual trade-off between runtime performance and relationship recall.

5.2.3. Cube Masking
The performance of the cubeMasking algorithm yields a substantial improve-

ment with respect to both the baseline and the baseline with clustering. This is

33

(a) Number of observation accesses for full containment

(b) Number of observation accesses for partial containment

Figure 7: Quantified accesses to individual observations for containment relationships

attributed to several factors. First, the cost of identifying the cube masks and
building the lattice is linear with respect to the input size, as it requires one scan
over the data. Second, the number of comparisons is significantly decreased, as
comparisons are limited only between hierarchically related cube masks, while
maintaining full recall. These results can be seen in Figures 6 and 7. A poten-
tial drawback of this approach is the loss of the performance advantage (i.e.,
the decrease of comparisons) when the number of cube masks is very large with
respect to the input rows, or the distribution of the data is uneven (e.g., a small
number of cube masks that cover a large percentage of the input). However,
the rate of cube masks per input rows tends to converge logarithmically as the
input size increases. This can be seen in Figure 9.

Figure 8: Achieved recall for the clustering approaches

34

Figure 9: Rate of cube masks per row

Figure 10: Execution rate (pre-fetching vs non-pre-fetching)

While cubeMasking operates in a similar way to the clustering method, it is
more efficient because of the hierarchical relationships between the cube masks,
which allow for less and more relevant comparisons between the observations.
We implement the lattice as a graph data structure, so that we can have fast
access to the children of each cube mask. However, we also experimented with
pre-processing the lattice in order to derive the parent-child relationships and
store them in memory for constant time access for each cube mask. This pre-
fetching yielded a 15% improvement of the execution time, as can be seen in
Figure 10, at the cost of an extra scan of the cube masks, and a minor imposed
overhead in the storage of the system, for explicitly storing all paths between
cube masks in the lattice (in our experiments, this was less than 1MB for the
full dataset).

5.2.4. Optimized Cube Masking
The optimized cube masking algorithm yields a substantial improvement

in the runtime performance for the computation of full containment, partial
containment and complementarity, as can be seen in the execution times of
Figure 6, as well as the total number of accessed observations in Figure 7.
This is attributed to its decreased computational complexity with respect to
the original cube masking approach. However, for large numbers of dimensions,
the Hdiff function becomes costlier as the observation signatures require larger
numbers of hierarchy abstractions. For the case of partial containment, the

35

Figure 11: Execution time (log-log) with synthetic dataset

optimization exhibits a smaller relative advantage when compared to the original
cube masking approach as the input size increases, as can be seen in Figure 6.
However, it is still the fastest of all the approaches we experimented with.

The optimized cube masking approach is the fastest of all the tested ap-
proaches, as it takes advantage of exact hash signatures which can be checked
in constant time. This is reflected in the experiments shown in Figure 6.

5.2.5. SPARQL and Rule-based
The runtime performance for these two alternatives is satisfactory for very

small input sizes, as shown in Figure 6(a), (b) and (c) (less than 40k observa-
tions). However, they become intractable fast, as they either hit the time-out
limits or they have vast memory requirements. This renders them non-scalable
and thus not deployable in realistic settings over large real world datasets. The
quality of performance is dependent on the transitive nature of the relationships,
which quickly makes the search space large. The SPARQL queries timed out
quickly as the number of rows increases when executed in Virtuoso (see Figure
6(c)). In the experiments the SPARQL method was still inadequate after the
query relaxation described in Appendix A. For the rule based approach, the
space overhead became large quickly, triggering several out of memory errors.

5.3. Scalability
We conducted a set of experiments to test the scalability of the proposed

approaches, by creating a complementary synthetic dataset (x10 of the full size
of the real world datasets), by following a similar approach as in [16] and ex-
tending the existing data by creating observation rows that follow a projected
distribution of the data with respect to the real-world datasets. More specif-
ically, we used a number of cube masks derived from Figure 9 for 2.5 million
observations, and populated the newly created cube masks accordingly.

As expected, the experiments show that the SPARQL-based and rule-based
approaches do not scale. The results for the rest of the methods are shown
in Figure 11, with the dotted line representing the projection of the baseline
approach, as it took more than 7 days to complete.

These results show that the clustering, cubeMasking and optimizedCube-
Masking methods are scalable for larger input sizes, with the latter two having

36

a more clear advantage because of the reduced number of needed comparisons.
It should be noted, however, that in some edge cases where the input con-
tains very large numbers of cube masks with sparse and even distributions of
observations in these cube masks, the cubeMasking and optimizedCubeMasking
approaches will lose their relative advantage to the quadratic baseline. Such
cases justify the need for probabilistic approaches such as clustering, especially
when runtime performance is more important than the achieved recall.

6. Concluding Remarks

In this paper, we have presented and compared four approaches for discov-
ering three types of instance-level relationships between observations of multi-
dimensional RDF data cubes. To this end, we have formally defined full con-
tainment , partial containment, and complementarity between multidimensional
observations. We performed an extensive experimental evaluation between the
proposed approaches and with two traditional approaches, namely a SPARQL-
based and a rule-based method, and we found that our algorithms outperform
the traditional approaches in both execution time and scalability. As future
work, we intend to tackle incremental updates of the relationships in dynam-
ically growing datasets. Furthermore, we intend to study the possibilities of
utilizing further semantic metadata in order to assist and also enrich the detec-
tion process. Finally, we plan to study the performance of the proposed methods
in distributed and parallel contexts.

Acknowledgement. We thank the reviewers and the editor for their valu-
able comments that have improved the readability and clarity of the paper.
We acknowledge support of this work by the projects ”EU H2020 SlideWiki
(#688095)” and ”Moving from Big Data Management to Data Science”(MIS
5002437/3) which is implemented under the Action ”Reinforcement of the Re-
search and Innovation Infrastructure”, funded by the Operational Programme
”Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-
financed by Greece and the European Union (European Regional Development
Fund).

[1] A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J. N. Mazón López,
F. Naumann, T. B. Pedersen, S. Rizzi, J. C. Trujillo Mondéjar, P. Vassil-
iadis, et al. Fusion cubes: towards self-service business intelligence. 2013.

[2] A. Abelló, O. Romero, T. B. Pedersen, R. Berlanga, V. Nebot, M. J. Aram-
buru, and A. Simitsis. Using semantic web technologies for exploratory
olap: a survey. IEEE transactions on knowledge and data engineering,
27(2):571–588, 2015.

[3] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data.
In ACM Sigmod Record, volume 30(2), pages 37–46. ACM, 2001.

[4] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, and E. Turricchia. Similarity
measures for olap sessions. Knowledge and information systems, 39(2):463–
489, 2014.

37

[5] N. Alrayes and W.-S. Luk. Automatic transformation of multi-dimensional
web tables into data cubes. Data Warehousing and Knowledge Discovery,
pages 81–92, 2012.

[6] E. Baikousi, G. Rogkakos, and P. Vassiliadis. Similarity measures for mul-
tidimensional data. In Data Engineering (ICDE), 2011 IEEE 27th Inter-
national Conference on, pages 171–182. IEEE, 2011.

[7] S. Bayerl and M. Granitzer. Discovering, ranking and merging rdf data
cubes. In Semantic Computing (ICSC), 2017 IEEE 11th International
Conference on, pages 133–140. IEEE, 2017.

[8] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and
J. Widom. Swoosh: a generic approach to entity resolution. The VLDB
Journal—The International Journal on Very Large Data Bases, 18(1):255–
276, 2009.

[9] C. Böhm, F. Naumann, M. Freitag, S. George, N. Höfler, M. Köppelmann,
C. Lehmann, A. Mascher, and T. Schmidt. Linking open government data:
what journalists wish they had known. In Proceedings of the 6th Interna-
tional Conference on Semantic Systems, page 34. ACM, 2010.

[10] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and
K. Wilkinson. Jena: implementing the semantic web recommendations.
In Proceedings of the 13th international World Wide Web conference on
Alternate track papers & posters, pages 74–83. ACM, 2004.

[11] M. Ceci, A. Cuzzocrea, and D. Malerba. Effectively and efficiently sup-
porting roll-up and drill-down olap operations over continuous dimensions
via hierarchical clustering. Journal of Intelligent Information Systems,
44(3):309–333, 2015.

[12] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang. Finding
k-dominant skylines in high dimensional space. In Proceedings of the 2006
ACM SIGMOD international conference on Management of data, pages
503–514. ACM, 2006.

[13] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap
technology. ACM Sigmod record, 26(1):65–74, 1997.

[14] R. Cyganiak, D. Reynolds, and J. Tennison. The rdf data cube vocabulary.
W3C Recommendation (January 2014), 2013.

[15] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee, F. Wu, R. Xin, and
C. Yu. Finding related tables. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages 817–828. ACM,
2012.

38

[16] B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private data cubes:
optimizing noise sources and consistency. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, pages 217–228.
ACM, 2011.

[17] F. M. Donini. Complexity of reasoning. In The description logic handbook,
pages 96–136. Cambridge University Press, 2003.

[18] G. Drzadzewski and F. W. Tompa. Partial materialization for online ana-
lytical processing over multi-tagged document collections. Knowledge and
Information Systems, 47(3):697–732, 2016.

[19] V. Efthymiou, G. Papadakis, G. Papastefanatos, K. Stefanidis, and T. Pal-
panas. Parallel meta-blocking for scaling entity resolution over big hetero-
geneous data. Information Systems, 65:137–157, 2017.

[20] L. Etcheverry and A. A. Vaisman. Qb4olap: a new vocabulary for olap
cubes on the semantic web. In Proceedings of the Third International Con-
ference on Consuming Linked Data-Volume 905, pages 27–38. CEUR-WS.
org, 2012.

[21] L. Etcheverry and A. A. Vaisman. Querying semantic web data cubes. In
AMW, 2016.

[22] A. Giacometti, P. Marcel, E. Negre, and A. Soulet. Query recommendations
for olap discovery driven analysis. In Proceedings of the ACM twelfth in-
ternational workshop on Data warehousing and OLAP, pages 81–88. ACM,
2009.

[23] L. I. Gómez, S. A. Gómez, and A. A. Vaisman. A generic data model
and query language for spatiotemporal olap cube analysis. In Proceedings
of the 15th International Conference on Extending Database Technology,
pages 300–311. ACM, 2012.

[24] A. Y. Halevy. Answering queries using views: A survey. The VLDB Journal,
10(4):270–294, 2001.

[25] J. Han and Y. Fu. Dynamic generation and refinement of concept hier-
archies for knowledge discovery in databases. In KDD Workshop, pages
157–168, 1994.

[26] J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong, K. Koperski, D. Li, Y. Lu,
A. Rajan, N. Stefanovic, et al. Dbminer: A system for mining knowledge
in large relational databases. In KDD, volume 96, pages 250–255, 1996.

[27] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data
cubes efficiently. In ACM SIGMOD Record, volume 25, pages 205–216.
ACM, 1996.

39

[28] I. Horrocks, P. F. Patel-Schneider, S. Bechhofer, and D. Tsarkov. Owl
rules: A proposal and prototype implementation. Web Semantics: Science,
Services and Agents on the World Wide Web, 3(1):23–40, 2005.

[29] K. C. Hsu and M.-Z. Li. Techniques for finding similarity knowledge in
olap reports. Expert Systems with Applications, 38(4):3743–3756, 2011.

[30] D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi. Optimizing aggre-
gate sparql queries using materialized rdf views. In International Semantic
Web Conference (1), pages 341–359, 2016.

[31] B. Kämpgen and A. Harth. No size fits all–running the star schema bench-
mark with sparql and rdf aggregate views. In The Semantic Web: Semantics
and Big Data, pages 290–304. Springer, 2013.

[32] B. Kämpgen, S. Stadtmüller, and A. Harth. Querying the global cube:
Integration of multidimensional datasets from the web. In Knowledge En-
gineering and Knowledge Management, pages 250–265. Springer, 2014.

[33] T. Komamizu, T. Komamizu, T. Amagasa, T. Amagasa, H. Kitagawa, and
H. Kitagawa. H-spool: A sparql-based etl framework for olap over linked
data with dimension hierarchy extraction. International Journal of Web
Information Systems, 12(3):359–378, 2016.

[34] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An
online algorithm for skyline queries. In Proceedings of the 28th international
conference on Very Large Data Bases, pages 275–286. VLDB Endowment,
2002.

[35] V. Markl, F. Ramsak, and R. Bayer. Improving olap performance by mul-
tidimensional hierarchical clustering. In Database Engineering and Ap-
plications, 1999. IDEAS’99. International Symposium Proceedings, pages
165–177. IEEE, 1999.

[36] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In Proceed-
ings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 169–178. ACM, 2000.

[37] M. Meimaris and G. Papastefanatos. Containment and complementarity
relationships in multidimensional linked open data. In Second International
Workshop for Semantic Statistics SemStats, 2014.

[38] M. Meimaris, G. Papastefanatos, P. Vassiliadis, and I. Anagnostopoulos.
Efficient computation of containment and complementarity in rdf data
cubes. In EDBT, pages 281–292, 2016.

[39] P. N. Mendes, M. Jakob, A. García-Silva, and C. Bizer. Dbpedia spot-
light: shedding light on the web of documents. In Proceedings of the 7th
International Conference on Semantic Systems, pages 1–8. ACM, 2011.

40

[40] A.-C. N. Ngomo and S. Auer. Limes-a time-efficient approach for large-scale
link discovery on the web of data. integration, 15:3, 2011.

[41] S. M. Nutley, H. T. Davies, and P. C. Smith. What works?: Evidence-based
policy and practice in public services. MIT Press, 2000.

[42] G. Papadakis, G. Alexiou, G. Papastefanatos, and G. Koutrika. Schema-
agnostic vs schema-based configurations for blocking methods on homoge-
neous data. Proceedings of the VLDB Endowment, 9(4):312–323, 2015.

[43] G. Papadakis, E. Ioannou, C. Niederée, and P. Fankhauser. Efficient entity
resolution for large heterogeneous information spaces. In Proceedings of
the fourth ACM international conference on Web search and data mining,
pages 535–544. ACM, 2011.

[44] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederee, and W. Nejdl. A
blocking framework for entity resolution in highly heterogeneous infor-
mation spaces. IEEE Transactions on Knowledge and Data Engineering,
25(12):2665–2682, 2013.

[45] G. Papadakis, G. Papastefanatos, T. Palpanas, and M. Koubarakis. Scaling
entity resolution to large, heterogeneous data with enhanced meta-blocking.
In EDBT, pages 221–232, 2016.

[46] D. Pelleg, A. W. Moore, et al. X-means: Extending k-means with efficient
estimation of the number of clusters. In ICML, pages 727–734, 2000.

[47] G. Piatetsky-Shapiro, R. J. Brachman, T. Khabaza, W. Kloesgen, and
E. Simoudis. An overview of issues in developing industrial data mining
and knowledge discovery applications. In KDD, volume 96, pages 89–95,
1996.

[48] M. F. Rahmany, A. Asudehy, N. Koudas, and G. Das. Efficient com-
putation of subspace skyline over categorical domains. arXiv preprint
arXiv:1703.00080, 2017.

[49] S. Rizzi, M. Golfarelli, and S. Graziani. An olam operator for multi-
dimensional shrink. International Journal of Data Warehousing and Mining
(IJDWM), 11(3):68–97, 2015.

[50] O. Romero and A. Abelló. Automating multidimensional design from on-
tologies. In Proceedings of the ACM tenth international workshop on Data
warehousing and OLAP, pages 1–8. ACM, 2007.

[51] G. Sathe and S. Sarawagi. Intelligent rollups in multidimensional olap data.
In VLDB, volume 1, pages 531–540, 2001.

[52] A. Shukla, P. Deshpande, J. F. Naughton, et al. Materialized view selection
for multidimensional datasets. In VLDB, volume 98, pages 488–499, 1998.

41

[53] E. Tambouris. Multidimensional open government data. JeDEM-eJournal
of eDemocracy and Open Government, 8(3):1–11, 2016.

[54] K.-L. Tan, P.-K. Eng, B. C. Ooi, et al. Efficient progressive skyline com-
putation. In VLDB, volume 1, pages 301–310, 2001.

[55] A. Vaisman and E. Zimányi. Data Warehouse Systems: Design and Imple-
mentation. Springer, 2014.

[56] J. Varga, L. Etcheverry, A. A. Vaisman, O. Romero, T. B. Pedersen, and
C. Thomsen. Qb2olap: Enabling olap on statistical linked open data. In
Data Engineering (ICDE), 2016 IEEE 32nd International Conference on,
pages 1346–1349. IEEE, 2016.

[57] J. Varga, A. A. Vaisman, O. Romero, L. Etcheverry, T. B. Pedersen, and
C. Thomsen. Dimensional enrichment of statistical linked open data. Web
Semantics: Science, Services and Agents on the World Wide Web, 40:22–51,
2016.

[58] B. Villazón-Terrazas, L. M. Vilches-Blázquez, O. Corcho, and A. Gómez-
Pérez. Methodological guidelines for publishing government linked data.
In Linking government data, pages 27–49. Springer, 2011.

[59] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk-a link discovery
framework for the web of data. LDOW, 538, 2009.

[60] X. Xie, X. Hao, T. B. Pedersen, P. Jin, and J. Chen. Olap over proba-
bilistic data cubes i: Aggregating, materializing, and querying. In Data
Engineering (ICDE), 2016 IEEE 32nd International Conference on, pages
799–810. IEEE, 2016.

[61] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang. Efficient
computation of the skyline cube. In Proceedings of the 31st international
conference on Very large data bases, pages 241–252. VLDB Endowment,
2005.

42

Appendix A. SPARQL Queries

Notes on the SPARQL-based approach. As it has been argued in this
paper, property paths are directly supported by SPARQL 1.1 and are necessary
for computing whether two values are related hierarchically. A different alter-
native is to compute the transitive closure of the data and materialize these
relationships, however we do not address efficient materialization of transitivity
in RDF datasets. Universal quantification must be mimicked by using a negation
construct that includes a nested recursion. This negation actually ensures that
there is no dimension between two candidate observations that does not exhibit
hierarchically related values. This is useful for computing full containment. On
the other hand, partial containment can be detected by SPARQL ASK queries
merely by checking whether at least one occurrence of hierarchically related
values is present in any of the shared dimensions between two observations.

In the case of partial containment, the queries for materializing and detecting
pairs of observations are as follows:

Partial Containment (materialization):
CONSTRUCT {

[
rdf:type imis:PartialContainment ;

imis:containedObservation ?o1 ;
imis:containingObservation ?o2 ;

other metadata can be added about the containment here
]

}
WHERE {
?o1 a qb:Observation .
?o2 a qb:Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v2.
?v1 skos:broaderTransitive/skos:broaderTransitive* ?v2

}

Partial Containment (detection):
SELECT DISTINCT ?o1, ?o2
WHERE {

?o1 a qb:Observation .
?o2 a qb:Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v2.
?v1 skos:broaderTransitive/skos:broaderTransitive* ?v2
FILTER(?o1 != ?o2)

}

The above query will select pairs of ?o1 and ?o2 that have at least one di-
mension with ancestral values; ?v1 must be a parent of ?v2. The above query
does not provide the number of dimensions that participate in the partial con-
tainment; this would make the query more complicated.

43

In the case of full containment, the queries for materializing and detecting
pairs of observations are as follows:

Full Containment (Materialization):
CONSTRUCT {

[
rdf:type imis:FullContainment ;

imis:containedObservation ?o1 ;
imis:containingObservation ?o2 ;

other metadata can be added about the containment here
]

}
WHERE {
?o1 a qb:Observation .
?o2 a qb:Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v2.
?v1 skos:broaderTransitive/skos:broaderTransitive* ?v2

?o1 ?d2 ?v12 .
?o2 ?d2 ?v22 .
FILTER NOT EXISTS {

OPTIONAL {
?v12 skos:broaderTransitive/skos:

broaderTransitive* ?v22
}
FILTER (!BOUND(?v22))
}
}

Full Containment (Detection):
SELECT DISTINCT ?o1, ?o2 WHERE {
?o1 a qb:Observation .
?o2 a qb:Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v2.
?v1 skos:broaderTransitive/skos:broaderTransitive* ?v2

?o1 ?d2 ?v12 .
?o2 ?d2 ?v22 .
FILTER NOT EXISTS {

OPTIONAL {
?v12 skos:broaderTransitive/skos:

broaderTransitive* ?v22
}
FILTER (!BOUND(?v22))
}
}

The above queries return pairs observations, ?o1 and ?o2, that have all
dimension values exhibiting ancestral relationships; all ?v1 must be a parent of
?v2 using property paths of undefined length.

44

Complementarity (Materialization):
In the case of complementarity, we tested the data against the following

SPARQL queries:
CONSTRUCT {

[
rdf:type imis:Complement;

imis:observation ?o1 ;
imis:observation ?o2 ;

other metadata can be added about the containment here
]

}
WHERE {
?o1 a qb:Observation .
?o2 a qb:Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v1.

FILTER NOT EXISTS {
?o1 ?d2 ?v12 .
?o2 ?d2 ?v22 .
FILTER(?v12!=?v22)

}
}

Complementarity (Detection):
SELECT DISTINCT ?o1, ?o2
WHERE {
?o1 a qb:Observation .
?o2 a qb:Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v1.

FILTER NOT EXISTS {
?o1 ?d2 ?v12 .
?o2 ?d2 ?v22 .
FILTER(?v12!=?v22)

}
}

The queries will return pairs of observations with no different values in their
shared dimensions.

Note that in all of the queries, we have relaxed the conditions presented in
section 2, as the runtimes would be even slower, and their syntax complicated.

Appendix B. Rules

Notes on the rule-based approach. The rule based approach is per-
formed with forward-chaining rules for the cases of containment and comple-
mentarity. For full containment, we check for pairs of observations that exhibit
both existential and universal quantification in the subsumption of their respec-
tive dimension values. The existential quantification is needed to ensure that

45

there exists at least one relationship, while the universal is needed to ensure
that all relationships exist. The rule for full containment is as follows:
observation(o1) ∧ observation(o2)
∧ (o1 6= o2)
∧ ∃p.(has_dimension_value(o1,p,v1)

∧ has_dimension_value(o2,p,v2)
∧ is_ancestor(v1,v2))

∧ ∀p.(has_dimension_value(o1,p,v1)
∧ has_dimension_value(o2,p,v2)
∧ is_ancestor(v1,v2))

⇒ full_containment(o1,o2)

Similarly, the rule for partial containment checks the existential restriction;
that is, we need at least one pair of dimension values to exhibit a containment
relationship between o1 and o2. Therefore, the rule is as follows:
observation(o1) ∧ observation(o2)
∧ (o1 6= o2)
∧ ∃p.(has_dimension_value(o1,p,v)

∧ has_dimension_value(o2,p,v))
⇒ partial_containment(o1,o2)

The rule for complementarity is activated when two different observations
have the same values for all of their shared dimensions and is summarized in
the following:
observation(o1) ∧ observation(o2)
∧ (o1 6= o2)
∧ ∃p.(has_dimension_value(o1,p,v)

∧ has_dimension_value(o2,p,v))
∧ ∀p.(has_dimension_value(o1,p,v)

∧ has_dimension_value(o2,p,v))
⇒ complement(o1,o2)

46

	Introduction
	Related Work
	Schema-Level Hierarchy Extraction for OLAP
	Analytical Mining in the presence of hierarchies
	Partial Materialization
	Skyline Computation
	Observation Relationships via Similarity Metrics
	Multidimensional Linked Data Related Approaches

	Problem Definition
	Algorithms for computing complementarity and containment
	Baseline
	Computation with Clustering
	Computation with Cube Masking
	Optimized Cube Masking
	Computation of Full Containment and Complementarity
	Computation of Partial Containment

	Experimental Evaluation
	Setting
	Experimental Results
	Baseline
	Clustering
	Cube Masking
	Optimized Cube Masking
	SPARQL and Rule-based

	Scalability

	Concluding Remarks
	SPARQL Queries
	Rules

