
And the Tool Created a GUI That was Impure and Without Form:
Anti-Patterns in Automatically Generated GUIs

Apostolos V. Zarras
Department of Computer Science and
Engineering, University of Ioannina,

Greece
zarras@cs.uoi.gr

Georgios Mamalis
Department of Computer Science and
Engineering, University of Ioannina,

Greece
gmamalis@cs.uoi.gr

Aggelos Papamichail
Department of Computer Science and
Engineering, University of Ioannina,

Greece
apapamichail@cs.uoi.gr

Panagiotis Kollias
Department of Computer Science and
Engineering, University of Ioannina,

Greece
cs101862@cs.uoi.gr

Panos Vassiliadis
Department of Computer Science and
Engineering, University of Ioannina,

Greece
pvassil@cs.uoi.gr

ABSTRACT
A basic prerequisite for any daily development task is to under-
stand the source code that we are working with. To this end, the
source code should be clean. Usually, it is up to us, the developers,
to keep the source code clean. However, often there are parts of
the code that are automatically generated. A typical such case are
Graphical User Interfaces (GUIs) created via a GUI builder, i.e., a
tool that allows the developer to design the GUI by combining
graphical control elements, offered in a palette. In this paper, we
investigate the quality of the code that is generated by GUI builders.
To assist tool-smiths in developing better GUI builders, we report
anti-patterns concerning naming, documentation, design and im-
plementation issues, observed in a study that involves four popular
GUI builders for Java. The reported anti-patterns can further assist
GUI developers/designers in selecting appropriate tools.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement;

KEYWORDS
GUIs, Patterns, Refactoring, Code Clones, Responsibilities

ACM Reference Format:
Apostolos V. Zarras, Georgios Mamalis, Aggelos Papamichail, Panagiotis
Kollias, and Panos Vassiliadis. 2018. And the Tool Created a GUI That was
Impure and Without Form: Anti-Patterns in Automatically Generated GUIs.
In 23rd European Conference on Pattern Languages of Programs (EuroPLoP
’18), July 4–8, 2018, Irsee, Germany. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3282308.3282333

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP ’18, July 4–8, 2018, Irsee, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6387-7/18/07. . . $15.00
https://doi.org/10.1145/3282308.3282333

1 INTRODUCTION
"I could list all of the qualities that I notice in clean code,
but there is one overarching quality that leads to all of
them. Clean code always looks like it was written by
someone who cares."

The previous quote, is a definition of the term clean code given
by Michael Feathers in Robert Martin’s homonymous book [15].

But what if that someone does not exist? What if the
code is actually generated by a tool?

In this paper, we focus on tools that generate Graphical User In-
terfaces (GUIs). A GUI builder allows the developers to design a GUI
by combining graphical control elements, offered in a palette. Based
on the GUI design, the tool generates a corresponding implementa-
tion. Typically, the developers use GUI builders for fast prototyping
and testing. Following, they often restructure/refactor the GUIs
that they developed with these tools, to improve the source code
quality and introduce new features that enhance the static layouts
supported by the tools1. On our side, we empirically observed that
the source code of generated GUIs is typically long and complex.
This was a real problem every time we had to understand how
the code works, so as to link it with the underlying business logic,
test it, or extend it to realize more advanced interactions that are
not supported by the tool. The aforementioned issues prompted
us to investigate in more detail the code that is generated by GUI
builders.

So far, several empirical studies have been performed to assess
the source code adherence to coding conventions and best practices
(e.g., [1, 3, 4, 6, 7, 14, 18, 21]). The state of the art further comprises
interesting tools and techniques that allow the developers to deal
with naming (e.g., [2, 12]), documentation (e.g., [22]), design and
implementation issues [9, 16]. Nevertheless, the quality of automat-
ically generated GUIs has not been studied before. We address this
shortcoming in a study that concerns four popular GUI builders
for Java. Using these tools, we designed, as case studies, (partial)
replicas of the Eclipse GUI. We focus on naming, documentation,
design and implementation issues. Concerning these issues, we

1For instance, see a related forum discussion at
www.reddit.com/r/java/comments/30gz4s/gui_builders_goodbad/

https://doi.org/10.1145/3282308.3282333
https://doi.org/10.1145/3282308.3282333

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany A. V. Zarras et al.

observed good and bad practices in the code of automatically gen-
erated GUIs. We believe that reporting both the good and the bad
practices involved in the context of a particular issue would be
useful. For this reason, we choose to report our findings in the form
of anti-patterns. Typically, an anti-pattern specifies a problematic
solution to a specific problem, along with a better solution to the
problem [5, 13]. The reported anti-patterns are primarily intended
to help tool-smiths in developing better GUI builders, and secondly
to assist GUI developers/designers in the tool selection process.

The rest of the paper is structured as follows. Section 2, provides
the necessary background concerning our empirical study. Sec-
tions 3, 4, 5, and 6 introduce the observed anti-patterns. Section 7
discusses related (anti-)patterns. Finally, Section 8 summarizes our
contribution.

2 EMPIRICAL STUDY SETUP
In this section, we detail the setup of our study. Moreover, we
discuss threats to validity, concerning the study and the observed
anti-patterns. Finally, we introduce the template that we employ
for the specification of the anti-patterns.

GUI Builders. In our study, we considered four popular GUI
builders for Java: Matisse2, JFormDesigner3,WindowBuilder4, and
SceneBuilder5. All of the tools provide a palette that allows the
developer to select, via drag and drop, the different elements (a.k.a.
widgets) of a GUI. Typically, the GUI widgets are top-containers
(e.g., windows, frames, applets), lightweight containers (e.g., dialogs,
panels), control elements (e.g., buttons, checkboxes, text fields, text
areas), and menu elements (e.g., menu bars, menus, menu items).
Using the tools, we designed, as case studies, partial replicas of
the Eclipse GUI. Each replica realizes the main perspective of the
Eclipse GUI, which includes the IDE’s menu structure, toolbar,
editor, console and package explorer. With Matisse and JFormDe-
signer we developed Swing6 case studies; with WindowBuilder
we constructed two case studies that rely on Swing and SWT7;
with SceneBuilder we developed a JavaFX8 case study. The analysis
of the generated GUIs and the respective anti-patterns that are
detailed in the next sections focus on the following key issues of
source code quality [15]: the names of the generated source code
elements; the comments that document the generated source code;
the design/implementation of classes and methods. To analyze the
code of the generated GUIs we used CheckStyle [8]. We configured
CheckStyle according to the Oracle standard coding style for Java
9. To check whether the names of classes, methods and variables
consist of terms that belong to the right part of speech (e.g., method
names beginning with verbs) we extended the tool via WordNet10,
a lexical database developed at the Princeton University.

Threats to Validity. To ensure the construct validity of the
study, we used CheckStyle [8], a well-known open-source tool,

2netbeans.org/features/java/swing.html
3www.formdev.com/jformdesigner
4www.eclipse.org/windowbuilder/
5www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
6docs.oracle.com/javase/tutorial/uiswing/start/index.html
7www.eclipse.org/swt/docs.php
8docs.oracle.com/javafx/2/overview/jfxpub-overview.htm
9www.oracle.com/technetwork/java/codeconventions-150003.pdf
10wordnet.princeton.edu

for the analysis of the generated GUIs. Moreover, the metrics that
we employed for the assessment are directly related to the measured
constructs. Internal validity is not an issue in our work as we do not
attempt to establish any particular cause-effect relationship. Con-
cerning external validity, we observed each one of the anti-patterns
several times in multiple case studies. However, our study is focused
on GUI builders for Java and related technologies. Extending the
study in more case studies that rely on other tools, languages, and
technologies, may result in further related anti-patterns.

Anti-patterns Template. In the literature there are several tem-
plates for the specification of patterns [11, 17, 24] and anti-patterns
[5, 13]. The template that we use in this paper is inspired from
the aforementioned efforts. Nevertheless, the employed template is
adapted to the specificities of our work, which concerns empirically
observed anti-patterns in automatically generated GUIs. Specifi-
cally, we specify an observed anti-pattern in terms of the following
elements: a characteristic name that highlights a problematic (anti)
solution, observed in automatically generated GUIs, a description
of the problem that is solved by the problematic solution, the anti-
solution; a brief discussion concerning unbalanced forces that relate
with the observed anti-solution, a better solution, a brief report
regarding empirical evidence of the observed anti-pattern.

3 NUMBEREDWIDGETS
Problem. A typical GUI builder starts from the design of a GUI,

specified using the tool’s palette, and generates the GUI imple-
mentation that relies on a particular widget API. In particular, the
tool maps the widgets that constitute the GUI into corresponding
implementation-specific elements (classes, objects, etc.). To this end,
the tool must generate meaningful names for the mapped widgets
i.e., names that reveal the purpose of the widgets in the GUI.

Anti-Solution: Numbered Widgets. The GUI builder gener-
ates a widget name is generated as a combination of a prefix, de-
rived from the type of the widget, and a serial number that allows
to distinguish between widgets of the same type.

Forces. When used properly, names are a powerful tool that
allows the developers to express their intention in the code that they
develop. On the contrary, inappropriate names can become a curse
for anyone who’s trying to understand, test, or maintain a piece
of code. In our context, the naming approach that combines type
prefixes and serial numbers is straightforward and quite convenient
for the code generation process. Thewidget names do not depend on
any other widget property (e.g., the widget labels). Consequently,
the names are generated once and for all. There is no need to
maintain any kind of consistency between the generated names and
other widget properties that could change overtime. However, the
combination of type prefixes with serial numbers does not enable
the generation of intention revealing and informative names [15].
At the same time, the use of type prefixes is not search-friendly,
as it increases the similarity between widgets of the same type.
Moreover, the use of serial numbers does not favor the generation
of pronounceable names that make meaningful distinctions.

Anti-Patterns in Automatically Generated GUIs EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Better Solution: Named Widgets. Typically, widgets are char-
acterized by labels, specified by the GUI designer/developer. Exploit-
ing the provided labels gives a good chance for intention revealing
widget naming.

Empirical Evidence. In our empirical study we observe num-
bered widgets in two case studies (Matisse and JFormDesigner).
Figure 1, gives specific examples that show how Matisse and JFor-
mDesigner actually name widgets; red/italics and cyan/underline
distinguish between the type prefix and the serial number, respec-
tively. Overall, in these two case studies 91% of the widgets (i.e.,
number of buttons, checkboxes, radio buttons, menu bars, menus
and menu items, over the total number of widget that constitute the
GUI) are characterized by intention revealing labels (i.e., labels that
reveal the purpose of the widgets in the GUI), which could serve for
the generation of better names. The rest of them are lightweight
containers (e.g. panels), popup menus and auxiliary elements (e.g.
separators).

Figure 1: Examples of numbered widgets.

The other three case studies (WindowBuilder/SWT, Window-
Builder/Swing and SceneBuilder) take advantage of the widgets’
labels. In the WindowBuilder case studies, the name of a labeled
widget consists of a prefix, derived from the type of the widget, and
the provided label, while an unlabeled widget is named by follow-
ing the numbered widget approach. Similarly, in the SceneBuilder
case study, labeled widgets are mapped to labeled FXML elements,
while unlabeled widgets are mapped into FXML elements that are
characterized only by their type. Figure 2, gives examples of this
approach; red/italics and cyan/underline emphasize the type prefix
and the label, respectively. Overall, the percentage of widgets that
come with intention revealing names in WindowBuilder/Swing,
WindowBuilder/SWT, and SceneBuilder is 91%, 86% and 90%, re-
spectively.

Figure 2: Examples of named widgets.

4 INAPPROPRIATE GUI COMMENTS
Problem. An automatically generatedGUI should be documented

with informative comments that facilitate the integration of the
generate code with the underlying application logic.

Anti-Solution: InappropriateGUIComments. TheGUI builder
does not generate informative comments, or it generates a mixture
consisting of informative comments and comments whose purpose
is not clear.

Forces. Generating no comments at all can be convenient for
the GUI builder, as it simplifies the overall code generation process.
However, the application developers may need help, to deal with
further development tasks that involve the generated source code. In
particular, the developers must integrate the generated GUI with the
underlying business logic. Moreover, the automatically generated
GUI could be just a prototype that should be extended with further
functionalities that concern more dynamic interactions, or even
refactored to improve the quality of the generated code. Informative
comments that facilitate such tasks would be useful. Nevertheless,
mixing comments that concern the application developers with
comments that serve other purposes (e.g., tool specific comments
that facilitate the code generation process) could be a burden for
the application developers. Redundant or misleading comments
that are less informative than the code are also undesirable [15].

Better Solution: InformativeGUIComments. TheGUI builder
generates the following kinds of comments:

• Legal/authorship comments that identify the GUI designers
and the tool that generated the GUI source code.

• Javadoc comments for public GUI elements.
• TODO comments that specify "hooks" where the application
developers should put the "glue" code for handling the events,
generated by the widgets.

• Warnings/clarification comments concerning GUI implemen-
tation related issues that the GUI designer/developer should
be aware of.

Comments that serve other purposes should be avoided. If not
possible, the purpose of such comments should be clearly specified
to allow distinguishing them from comments that concern the GUI
designers/developers.

Empirical Evidence. In our study, two case studies (Matisse,
JFormDesigner) are bloated with unclear comments comments (Ta-
ble 1).

Specifically, in the Matisse case study, generated event handling
methods are surrounded with opening/closing brace comments
(e.g., Figure 3). Surely, these comments do not reveal the purpose of
the methods themselves, which is actually reflected quite well from
the methods’ names and the generated TODO comments, within
the body of the methods. Concerning the purpose of the opening/-
closing brace comments, we could make several assumptions: they
could be warnings (e.g., to prevent the GUI designers/developers
from changing the methods), they could be useful for the code gen-
eration process, and so on. Nevertheless, nothing of the previous is
clearly stated.

The JFormDesigner case study includes comments that mark the
position of (similar) long widget configuration code blocks (e.g.,

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany A. V. Zarras et al.

Table 1: Classification of comments found in the case stud-
ies.

Figure 3). Normally, these comments wouldn’t be needed if the
code was not long, complex and full of clones (more in Section 5).
Moreover, there are several comments that mark variable declara-
tion fragments. If not used for the code generation process, these
comments are quite useless because the code in these cases "speaks
for itself".

Figure 3: Examples of unclear comments.

On the positive side, the aforementioned case studies also include
informative comments (e.g. Figure 4) like legal/authoriship com-
ments, TODO comments for the generated event handling methods,
and comments that warn the GUI developer to avoid changing the
code of generated methods.

In the remaining three case studies, the provided documentation
is limited. WindowBuilder/Swing andWindowBuilder/SWT include
only few Javadoc comments, while in the SceneBuilder case there
are no comments at all.

5 WIDGET CONFIGURATION CLONES
Problem. Having generated the source code that maps the wid-

gets of a particular GUI into corresponding implementation-specific

Figure 4: Examples of informative comments.

elements (classes, objects, etc.), the GUI builder must generate the
source code that configures the properties (labels, colours, coordi-
nates, etc.) of the mapped elements using the underlying widget
API.

Anti-Solution: Widget Configuration Clones. For each wid-
get, the tool generates a respective code fragment that configures
the widget’s properties.

Forces. Generating a widget configuration code fragment for
each widget is straightforward and simplifies the code generation
process, as there is no need to come up with generic widget configu-
ration methods. However, a GUI typically comprises many widgets
of the same type (panels, menus, menu items, buttons, text fields,
etc.), characterized by similar properties. Consequently, the gen-
erated GUI implementation includes a lot of duplicated code that
comes in the form of Type 2, and 3 clones (i.e., duplicate fragments
with added or removed statements, in addition to variations in
identifiers and literals [20]).

Better Solution: General Widget Configuration Interpreter
Methods. For the different types of widgets involved, have respec-
tive methods that take as input a specification of widget properties,
interpret the given specification, and configure the widget using the
underlying widget API. The widget’s properties can be specified in
a declarative way, via a configuration-specific data structure (class,
map, XML schema, etc.). However, certain specification means like
XML can make the program more difficult to test. Moreover, IDEs
may not be able to support certain refactorings (e.g., renamings),
when external configuration files are involved.

Empirical Evidence. This anti-pattern appears in four out of
five case studies (Matisse, JFormDesigner, WindowBuilder/Swing,
WindowBuilder/SWT). Table 2 gives more details concerning the
anti-pattern. In particular, the amount of duplicate code in the case
studies ranges from 1898 to 2665 lines of code. The percentage
of duplicate code over the total size of each study is also notable,
ranging from 23.4% to 47.7%.

Figure 5 shows two clones from the WindowBuilder/Swing case
study, each responsible for the configuration of a respective menu
item.

The SceneBuilder case study is an indicative example of the
good solution. The properties of a particular widgets’ are specified
in FXML, while an FXML loader interprets the specification to

Anti-Patterns in Automatically Generated GUIs EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Table 2: Duplicate code statistics: size of each case study,
measured as the total number of physical lines of code of its
classes; size of duplicate code, measured as the total number
of lines of code spent in code clones; percentage of duplicate
code over the size of the case study.

Figure 5: Menu item configuration clones found in the Win-
dowBuilder/Swing case study.

configure the widget. Figure 6 illustrates the specification of menu
items in FXML.

Figure 6: Specification of menu items in the SceneBuilder
case study.

Another example concerning the good solution is given in Fig-
ure 7. More specifically, the figure gives the code of setComponent
Properties(), a generic method that can be used to remove clones
like the ones given in Figure 5. In our study, we came up with
this method in an attempt to refactor the code of the Window-
Builder/Swing case study. The method relies on Java reflection; it
takes as input any widget, derived from the abstract JComponent
class and the specification of the widget’s properties. The specifica-
tion is given in the form of a map that contains property name/value
pairs. Based on the name of each property, setComponentProperties()
identifies the appropriate JComponent setter. Following, setComponent
Properties() invokes the setter, giving as input the respective
property value.

Figure 7: A generic configuration method that can be used
to remove widget configuration clones in the Window-
Builder/Swing case study.

6 MIX OF WIDGET & EVENT HANDLING
CODE

Problem. To be functional, the GUI widgets must come along
with event handling code that binds user interaction events with
the underlying business logic. To this end, the GUI builder must
generate the event handling "hooks" for the binding code.

Anti-Solution: Mix of Widget & Event Handling Code. The
GUI builder maps each top-level GUI container into a class that
contains both the widget configuration code and the respective
event handling code.

Forces. Having the the widget configuration code and the event
handling code in the same top-level container class simplifies the
code generation process as it reduces the number of generated
classes that should be handled by the tool. Nevertheless, this ap-
proach results in god classes [10] that mix different responsibilities.

Better Solution: Widget and Event Handling Apart. Sepa-
rate the widget configuration code from the event handling code
via a Model View Controller pattern [19]. An interesting issue to
this end is to decide the granularity of the controllers. Two possible
options are:

• One controller per top level container. The risk that comes
up in this case is that the controller itself can become a god
class if the container comprises many constituent widgets.

• Different controllers/handlers for the individual widgets. The
issue in this case is bloating the GUI with many classes that
do little work.

Empirical Evidence. We observe this anti-pattern in four out of
five case studies (Matisse, JFormDesigner, WindowBuilder/Swing,

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany A. V. Zarras et al.

WindowBuilder/SWT). All of these case studies comprise a huge
top-level container class. The event handling code that is mixed
with the widget configuration code ranges from 1359 to 3247 lines
of code, i.e., 20.7% to 40.0% of the overall implementation (Table 3).

Table 3: Event handling code statistics: size of each case
study, measured as the total number of physical lines of
code of its classes; size of event handling code; percentage
of event handling code over the size of the case study.

Figure 8 gives a specific example of the anti-pattern from the
WindowBuilder/Swing case study. In particular, EclipseGUI is the
top-level container class of this case study. This class configures all
the widgets that constitute the GUI and further contains the event
handling code. The addPopup()method, for instance, concerns the
handling of popup menu events.

Figure 8: Mixed UI and event handling in the Window-
Builder/Swing case study.

The SceneBuilder case study is an indicative example of the
good solution. The GUI implementation comprises a controller class
that is responsible for the handling of events. Another example
concerning the good solution is given in Figure 9, where the inline
handling methods that are included in addPopup() of Figure 8
are extracted in a separate class, named PopupListener, which is
responsible for the handling of popup menu events.

Figure 9: Separate event handling in the Window-
Builder/Swing case study.

7 FURTHER RELATED (ANTI-)PATTERNS &
CONCEPTS

Our work concerns automatically generated GUI implementations.
Hence from a broader perspective it is related with Markus Völter’s
patterns for program generation [23]. In this work, the author
introduced a catalog of seven patterns:

• Templates & Filtering: according to this pattern, code is gen-
erated by applying certain templates to a textual model spec-
ification (e.g. a XMI specification of a UML model).

• Templates & Meta-model: the code generation process can
be customized with respect to different sets of templates that
correspond to respective meta-models (e.g. UML profiles).

• Frame Processing: code is generated with respect to parame-
terized programs, called frames.

• API-Based Generators: the idea behind this pattern is to have
the code generating programs, specific to respective APIs.

• Inline Code Generation: according to this pattern, code is
generated in a pre-compile/processing step of a regular non-
generated program.

• Code Attributes: concerns the generation of code that is
based on annotations or attributes, specified for a regular
non-generated program.

• Code Weaving: this pattern introduces a code generation
process that is based on combining together different code
fragments that concern respective aspects (e.g. concurrency,
persistence, etc.)

Regarding our study, we can characterize the examined GUI
builders as API-Based Generators, as they generate code with re-
spect to specific GUI APIs (Swing, SWT and JavaFX).

In our study, we assessed the names of the generated code ele-
ments with respect to standard Java naming conventions. In this
context, Arnaoudova et al. further proposed a catalog of linguistic
anti-patterns [3]. At a glance, these anti-patterns can be divided in
the following two categories:

• Anti-patterns regarding methods whose implementation se-
mantics are not consistent with the methods’ prototypes.

Anti-Patterns in Automatically Generated GUIs EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

• Anti-patterns concerning attributes/variables, whose names
are not consistent with their types.

In the generated GUI implementations, we did not observe in-
stances of the aforementioned linguistic anti-patterns.

8 TAKEAWAY & FUTURE PERSPECTIVES
Do GUI builders generate clean code? In our study, we have

found positive and negative answers to the question, varying with
respect to different aspects of source code quality and the tools.
Based on this experience we reported four anti-patterns that de-
scribe the encountered issues, along with possible solutions towards
the development of better GUI builders. The reported anti-patterns
further provide some basic directions to GUI developers/designers
for the selection of appropriate GUI builders.

How can you (tool-smiths) develop better GUI Builders?
• Generate meaningful names. To this end, avoid naming pat-
terns that combine type information with number series be-
cause the resulting names will not reveal the purpose of the
named elements. Employ naming patterns that exploit infor-
mation like labels or textual descriptions, provided by the GUI
developer for the characterization of the named elements.
Prompt the GUI developer to provide meaningful content for
the GUI elements, reward him for that and possibly check
the quality of the provided content on the fly with respect to
given linguistic anti-patterns [3].

• Do not bloat the generated code with comments. If you feel
that the generated code should include a comment, spend
time to improve the code generation process, to produce cleaner
code that does not need explanations. Generate comments that
facilitate integration, extension and maintenance.

• Do not generate god classes that mix widget configuration and
event handling responsibilities. To this end, you can follow a
model-view-controller approach. Considering the event han-
dling controllers, a possible challenge is to develop a tool
that allows the GUI developer to customize their granularity
according to the specificities of the GUI that he/she develops.
Another interesting feature would be to enable the reuse of
views or view parts, possibly via some kind of parameteriza-
tion.

• Avoid the generation of widget configuration clones. To achieve
this, organize the generated code in terms of small interpreter
methods that initialize different types of widgets, based on re-
spective widget property specifications. Benefit from features
of the underlying technology, like GUI model specification
facilities, paired with technology-specific GUI initialization
interpreters.

How can you (GUI designers/developers) select appropriate
GUI Builders?

• Select GUI builders based on both the provided GUI design
features and the quality of the generated GUI implementation.

• To assess the quality of the GUI implementation consider the
generated widget names. Look for GUI builders that generate
widget names which reflect the purpose of the widgets in
the GUI, make meaningful distinctions between widgets, are
search friendly, pronounceable, and so on.

• Take into account the generated GUI documentation. Select
GUI builders that generate minimal documentation which
facilitates the GUI integration, extension and maintenance.

• Pay attention to the size and the complexity of the generated
GUI implementation. Look for GUI builders that separate wid-
get configuration from event handling. Select GUI builders
that generate clone free widget configuration code.

Future perspectives: In our study, we focused on the quality of
the code that is generated by GUI builders. Assessing the provided
GUI design features is also a primary concern that can be considered
as futurework. Several interesting issues can be investigated like the
variety of widgets that are offered, support for multiple widget APIs,
GUI internalization, integration with available testing frameworks,
and so on. For instance, the tools that we investigated in our study
provide means for GUI internalization. Although the details on how
this is done vary between the tools, the main idea is common, i.e.,
to specify widget names in a language-specific external properties
file that can be easily changed. An issue in this approach is that
the GUI developer has to perform most of the work that concerns
the names translation in multiple languages. Hence, automating
the identification of equivalent terms in different languages could
be a useful feature. Finally, it would be interesting to study further
combinations of tools and technologies, like Web development
frameworks/IDEs, Mobile App development frameworks/IDEs, etc.

ACKNOWLEDGMENTS
We want to thank our shepherd, Ralf Laue, for his valuable com-
ments, suggestions, and overall guidance in the preparation of this
paper. We would also like to thank his students attending the course
"Patterns and Pattern Languages" at the University of Applied Sci-
ences Zwickau for their remarks and the suggested future work
issues.

REFERENCES
[1] Surafel Lemma Abebe, Sonia Haiduc, Paolo Tonella, and Andrian Marcus. 2009.

Lexicon Bad Smells in Software. In Proceedings of the 16th IEEEWorking Conference
on Reverse Engineering (WCRE). 95–99.

[2] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. 2015.
Suggesting Accurate Method and Class Names. In Proceedings of the Joint 23rd
ACM SIGSOFT Symposium on the Foundations of Software Engineering and 15th
European Software Engineering Conference (FSE/ESEC). 38–49.

[3] Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. 2016. Linguis-
tic Antipatterns: What They Are and How Developers Perceive Them. Empirical
Software Engineering 21, 1 (2016).

[4] Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan I. Maletic, Christopher
Morrell, and Bonita Sharif. 2013. The Impact of Identifier Style on Effort and
Comprehension. Empirical Software Engineering 18, 2 (2013), 219–276.

[5] William Brown, Raphael Malveau, Hays McCormick, and Thomas Mowbray. 1998.
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis. Wiley.

[6] Raymond P. L. Buse and Westley Weimer. 2010. Learning a Metric for Code
Readability. IEEE Transactions on Software Engineering 36, 4 (2010), 546–558.

[7] Simon Butler, Michel Wermelinger, and Yijun Yu. 2015. Investigating Naming
Convention Adherence in Java References. In Proceedings of the 31st IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). 41–50.

[8] CheckStyle Team. 2017. Checkstyle. checkstyle.sourceforge.net/index.html.
[9] Jehad Al Dallal. 2015. Identifying Refactoring Opportunities in Object-Oriented

Code: A Systematic Literature Review. Information and Software Technology 58,
0 (2015), 231 – 249.

[10] Martin Fowler. 2009. Refactoring - Improving the Design of Existing Code. Addison-
Wesley.

[11] Neil B. Harrison. 2004. Advanced Pattern Writing Patterns for Experienced
Pattern Authors. Avaya, inc..

[12] Yuki Kashiwabara, Yuya Onizuka, Takashi Ishio, Yasuhiro Hayase, Tetsuo Ya-
mamoto, and Katsuro Inoue. 2014. Recommending Verbs for Rename Method

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany A. V. Zarras et al.

Using Association Rule Mining. In Proceedings of the 21st IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER). 323–327.

[13] Ralf Laue. 2017. Anti-Patterns in End-User Documentation. In Proceedings of the
22nd ACM European Conference on Pattern Languages of Programs (EuroPLoP).
ACM, 20:1–20:11.

[14] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name? A Study of Identifiers. In Proceeedings of the 14th IEEE International
Conference on Program Comprehension (ICPC). 3–12.

[15] Robert C. Martin. 2009. Clean Code - A Handbook of Agile Software Craftsmanship.
Prentice Hall.

[16] Tom Mens and Tom Tourwé. 2004. A Survey of Software Refactoring. IEEE
Transactions on Software Engineering 30, 2 (2004), 126–139.

[17] Gerard Meszaros and Jim Doble. 1997. Pattern Languages of Program Design 3.
Chapter A Pattern Language for Pattern Writing, 529–574.

[18] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto, and Andrea
De Lucia. 2016. On the Diffusion of Test Smells in Automatically Generated Test
Code: An Empirical Study. In Proceedings of the 9th International Workshop on
Search-Based Software Testing (SBST). 5–14.

[19] Trygve Reenskaug. 1979. A Note on DynaBook Requirements. Xerox PARC.
[20] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. 2009. Comparison and

Evaluation of Code Clone Detection Techniques and Tools: A Qualitative Ap-
proach. Science of Computer Programming 74, 7 (2009), 470–495.

[21] Michael Smit, Barry Gergel, H. James Hoover, and Eleni Stroulia. 2011. Code
Convention Adherence in Evolving Software. In Proceedings of the 27th IEEE
International Conference on Software Maintenance and Evolution (ICSME). 504–
507.

[22] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L. Pollock, and K. Vijay-
Shanker. 2010. Towards Automatically Generating Summary Comments for
Java Methods. In Proceedings of the 25th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 43–52.

[23] Markus Völter. 2003. A Catalog of Patterns for Program Generation. In Proceed-
ings of the 8th ACM European Conference on Pattern Languages of Programms
(EuroPLoP). 285–320.

[24] Tim Wellhausen and Andreas Fiesser. 2012. How to Write a Pattern?: A Rough
Guide for First-time Pattern Authors. In Proceedings of the 16th European Confer-
ence on Pattern Languages of Programs (EuroPLoP). ACM, 5:1–5:9.

	Abstract
	1 Introduction
	2 Empirical Study Setup
	3 Numbered Widgets
	4 Inappropriate GUI Comments
	5 Widget Configuration Clones
	6 Mix of Widget & Event Handling Code
	7 Further Related (Anti-)Patterns & Concepts
	8 Takeaway & Future Perspectives
	Acknowledgments
	References

