
Extraction of Embedded Queries via
Static Analysis of Host Code

Petros Manousis, Apostolos Zarras, Panos Vassiliadis
University of Ioannina, Ioannina, Greece

George Papastefanatos
Research Center “Athena” \ IMIS, Athens, Greece

Embedded queries in data-intensive information systems

2

String-based

Object-based

Why bother?

• It is really important to locate embedded queries in the host
application of a data intensive information system

• We need to be able to locate, inspect, and visualize data-related
code for

 - understanding how data and code inter-relate

 - determining evolution’s possible impacts

 - migrating the application to another development language

• Yet, identifying the location and semantics of these queries is really
hard, as already shown

3

Hecataeus tool for charting and impact prediction

4

Dark nodes: tables
Colored nodes: queries “hitting” them,
colored by their hosting file

Hecataeus tool: http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

What happens if
I modify table
search_index?
Who are the
neighbors?

State of the art
Host languages Query type Variants

Christensen et al. (Static
Anal. Symp. 2003)

Java String-based

Gould et al. (ICSE 2004) Java String-based

Cleve et al. (WCRE 2006) Java String-based Partial

Van den Brink et al.
(SCAM 2007)

Pl/SQL, COBOL, V. Basic String-based

Ngo and Tan (IST 2008) PHP String-based

Maule et al. (ICSE 2008) C# String-based

Annamaa et al. (Asian
Symp. Prog. Lang. & Syst.
2010)

Java String-based ASTs

5

Research goals

1. Be able to extract embedded queries with a simple, generic and understandable method
regardless of the host language.

2. Provide understandable intermediate results (e.g., due to loop and branch statements of
the source code).

3. Move from code dependent (string or object based constructed query) to a universal code-
independent query representation.

4. Be able to output the queries in more than one “concrete” query language, to facilitate

a. testing the correctness of the extraction

b. migration from one system to another

6

Roadmap

1. Overview

2. A method for
Embedded Query
Extraction

3. Experiments

4. Discussion

7

Overview of solution

8

Roadmap

Concrete source code
representation

Abstract source code
representation

Abstract
Query Representation

Output: Concrete,
target query
representation

Input: Source files +
keywords

9

Roadmap

Concrete source code
representation

Abstract source code
representation

Abstract
Query Representation

Output: Concrete,
target query
representation

Input: Source files +
keywords

List of db-related
functions

10

Example of source code file

/**
 * Process variables for profile-wrapper.tpl.php.
 */
function template_preprocess_profile_wrapper(&$variables) {
 $variables['current_field'] = '';
 if ($field = arg(1)) {
 $variables['current_field'] = $field;
 $variables['theme_hook_suggestions'][] = 'profile_wrapper__' . $field;
 }
}

function _profile_get_fields($category, $register = FALSE) {
 $query = db_select('profile_field');
 if ($register) {$query->condition('register', 1);}
 else {$query->condition('category', db_like($category), 'LIKE');}
 while (!user_access('administer users')) {$query->condition('visibility', PROFILE_HIDDEN, '<>');}
 return $query->fields('profile_field')->orderBy('category', 'ASC')->orderBy('weight', 'ASC')-
>execute();
}

11

Steps
1. Remove comments
2. Remove files w/o db access

Example of source code file without comments

function template_preprocess_profile_wrapper(&$variables) {
 $variables['current_field'] = '';
 if ($field = arg(1)) {
 $variables['current_field'] = $field;
 $variables['theme_hook_suggestions'][] = 'profile_wrapper__' . $field;
 }
}

function _profile_get_fields($category, $register = FALSE) {
 $query = db_select('profile_field');
 if ($register) {$query->condition('register', 1);}
 else {$query->condition('category', db_like($category), 'LIKE');}
 while (!user_access('administer users')) {$query->condition('visibility', PROFILE_HIDDEN, '<>');}
 return $query->fields('profile_field')->orderBy('category', 'ASC')->orderBy('weight', 'ASC')-
>execute();
}

12

Steps
1. Remove comments
2. Remove files w/o db access

Has the source code of the file any DB connection?

function template_preprocess_profile_wrapper(&$variables) {
 $variables['current_field'] = '';
 if ($field = arg(1)) {
 $variables['current_field'] = $field;
 $variables['theme_hook_suggestions'][] = 'profile_wrapper__' . $field;
 }
}

function _profile_get_fields($category, $register = FALSE) {
 $query = db_select('profile_field');
 if ($register) {$query->condition('register', 1);}
 else {$query->condition('category', db_like($category), 'LIKE');}
 while (!user_access('administer users')) {$query->condition('visibility', PROFILE_HIDDEN, '<>');}
 return $query->fields('profile_field')->orderBy('category', 'ASC')->orderBy('weight', 'ASC')-
>execute();
}

13

Steps
1. Remove comments
2. Remove files w/o db access

Roadmap

14

Split file to Callable Units (methods/functions/...)

function template_preprocess_profile_wrapper(&$variables) {
 $variables['current_field'] = '';
 if ($field = arg(1)) {
 $variables['current_field'] = $field;
 $variables['theme_hook_suggestions'][] = 'profile_wrapper__' . $field;
 }
}

function _profile_get_fields($category, $register = FALSE) {
 $query = db_select('profile_field');
 if ($register) {$query->condition('register', 1);}
 else {$query->condition('category', db_like($category), 'LIKE');}
 while (!user_access('administer users')) {$query->condition('visibility', PROFILE_HIDDEN, '<>');}
 return $query->fields('profile_field')->orderBy('category', 'ASC')->orderBy('weight', 'ASC')->execute();
}

02

01

15

Steps
1. Split code in Callable Units (Cus)
2. Remove CUs w/o db access

Keep only DB related functions

function _profile_get_fields($category, $register = FALSE) {
 $query = db_select('profile_field');
 if ($register) {$query->condition('register', 1);}
 else {$query->condition('category', db_like($category), 'LIKE');}
 while (!user_access('administer users')) {$query->condition('visibility', PROFILE_HIDDEN, '<>');}
 return $query->fields('profile_field')

 ->orderBy('category', 'ASC')
 ->orderBy('weight', 'ASC')
 ->execute();

}

16

Steps
1. Split code in Callable Units (Cus)
2. Remove CUs w/o db access

Roadmap

Concrete source code
representation

Abstract source code
representation

Abstract
Query Representation

Output: Concrete,
target query
representation

Input: Source files +
keywords

17

Roadmap

18
Steps
For each CU
 build a tree of possible execution paths

Query
Variants

Graph

19

The Query Variants Graph is a “tree-
like” graph with
- blocks as its white nodes
- loops and conditionals as its red

nodes
- alternatives of the control flow as

its edges

Each node carries the respective src
code with it

QVG serves an interim means to decide:
- all the alternative query generation control flow paths
- which query-generating parts of the CU pertain to each path

In Q we have not taken any decision for the branches of the query.

In QT and QF we have taken a decision for the first branch (QT has the code that will be executed if the
condition is True, and in QF the code that will be executed if the condition is False).

Likewise, in QT,T, QT,F, QF,F and QF,T we have taken decisions for all the branches of the query Q.
QT,T is when in both branches the conditions are true.
QT,F is when the first condition is true while the second is false.
QF,F is when in both branches the conditions are false.
QT,F is when the first condition is false while the second is true.

20

QT,T execution plan

function _profile_get_fields($category, $register = FALSE) {
 $query = db_select('profile_field');
 if ($register) {$query->condition('register', 1);}
 else {$query->condition('category', db_like($category), 'LIKE');}
 if (!user_access('administer users')) {$query->condition('visibility', PROFILE_HIDDEN, '<>');}
 return $query->fields('profile_field')

 ->orderBy('category', 'ASC')
 ->orderBy('weight', 'ASC')
 ->execute();

}

21

QT,F execution plan

function _profile_get_fields($category, $register = FALSE) {
 $query = db_select('profile_field');
 if ($register) {$query->condition('register', 1);}
 else {$query->condition('category', db_like($category), 'LIKE');}
 if (!user_access('administer users')) {$query->condition('visibility', PROFILE_HIDDEN, '<>');}
 return $query->fields('profile_field')

 ->orderBy('category', 'ASC')
 ->orderBy('weight', 'ASC')
 ->execute();

}

22

QF,T execution plans

function _profile_get_fields($category, $register = FALSE) {
 $query = db_select('profile_field');
 if ($register) {$query->condition('register', 1);}
 else {$query->condition('category', db_like($category), 'LIKE');}
 if (!user_access('administer users')) {$query->condition('visibility', PROFILE_HIDDEN, '<>');}
 return $query->fields('profile_field')

 ->orderBy('category', 'ASC')
 ->orderBy('weight', 'ASC')
 ->execute();

}

23

QF,F execution plan

function _profile_get_fields($category, $register = FALSE) {
 $query = db_select('profile_field');
 if ($register) {$query->condition('register', 1);}
 else {$query->condition('category', db_like($category), 'LIKE');}
 if (!user_access('administer users')) {$query->condition('visibility', PROFILE_HIDDEN, '<>');}
 return $query->fields('profile_field')

 ->orderBy('category', 'ASC')
 ->orderBy('weight', 'ASC')
 ->execute();

}

24

function _profile_get_fields($category, $register = FALSE) {
 $query = db_select('profile_field');
 if ($register) {$query->condition('register', 1);}
 else {$query->condition('category', db_like($category), 'LIKE');}
 if (!user_access('administer users')) {$query->condition('visibility', PROFILE_HIDDEN, '<>');}
 return $query->fields('profile_field')

 ->orderBy('category', 'ASC')
 ->orderBy('weight', 'ASC')
 ->execute();

}

This if used to be a while.
Yet: for abstracting the query structure, there is no difference!

On the side: loops converted to branches

25

Roadmap

Concrete source code
representation

Abstract source code
representation

Abstract
Query Representation

Output: Concrete,
target query
representation

Input: Source files +
keywords

26

How to abstract each QVG path?

… At this point, we have at our disposal all the linear paths , each with its own
sequence of db-related, query-generating, host-language statements

…Each QVG path creates one of the possible queries embedded in the code via
its list of host language statements

Still, it is in host-language format. How to abstract?

27

Ingredients
- A family of Abstract Data Manipulation Operators
- A mapping of host language “method calls” to these operators
- An Abstract Representation of Queries (AQR)
- An algorithm to walk the path and create an AQR

Abstract Data Manipulation Operators

 - an extensible palette of operators for data manipulation
 - currently with a minimal set of operators

28

Mapping of host language
to ADMO

29

Per project:
Must materialize the
CreateAbstractQuery
method!

Creation includes
cases of diff.
#params, string
manipulation, …

See the exact price to
pay later…

Algorithm to transform host language statements to ADMO

30

function _profile_get_fields($category, $register = FALSE) {
 $query = db_select('profile_field');
 if ($register) {$query->condition('register', 1);}
 else {$query->condition('category', db_like($category), 'LIKE');}
 if (!user_access('administer users')) {$query->condition('visibility', PROFILE_HIDDEN, '<>');}
 return $query->fields('profile_field')

 ->orderBy('category', 'ASC')
 ->orderBy('weight', 'ASC')
 ->execute();

}

 Abstract Query Representation of a host path
(a sequence of ADMO operators to which individual host method
calls are translated)

31

Roadmap

Concrete source code
representation

Abstract source code
representation

Abstract
Query Representation

Output: Concrete,
target query
representation

Input: Source files +
keywords

32

SQL
SELECT profile_field.∗
FROM profile_field
WHERE register = 1
ORDER BY category ASC, weight ASC
;

AQR to target

MongoDB
db.profile_field.aggregate
([
 { $match: {register: { $eg: 1 } } },
 { $sort: { category: 1, weight: 1 } },
 { profile_field.*: 1 }
])

33

Translate each
ADMO operator
to a part of a
“query
statement”
depending on the
target language

http://www.cs.uoi.gr/~pmanousi/publications/queryExtraction/

Roadmap

1. Overview

2. A method for
Embedded Query
Extraction

3. Experiments

4. Discussion

34

Experimental setup

Two projects analyzed:

• Clementine (a music player written in C++)

• Drupal (a CMS written in PHP)

Metrics:

Recall: the fraction of the retrieved queries of each le over the actually existing
ones.

Correctness: the fraction of the correctly reconstructed queries over the
retrieved ones. “Correctly” = (a) retrieving all its structural parts + (b)
assembling them as originally intended

 35

Recall

Ideally, to assess recall, we need to manually verify the percentage of queries that our
method extracts with respect to the queries that actually exist in the code.

Due to the vastness of the task, we have sampled the 10% of the database-related files.

Also, we performed automated searches based on the prescription of the project’s
manual, on how queries are authored in the code.

• We manually inspected the code of the evaluated files and we were unable to find
any other query, besides the ones that our tool reported.

• Similarly, all automated searches failed to produce any misses

We claim 100% recall based on the above.

36

Correctness

Used a classification of queries wrt their structure

1. Fixed structure: query structure not altered by host variables

(1a) All parts fixed: queries that have no variable at all

(1b) Variable values in filtering: queries that contain a variable that
gets its value at execution time but does not intervene with the
query structure. Typically, in a selection predicate.

2. Variable structure: query structure is defined at runtime via host
variables. Typically occurs at FROM clause (!)

37

Correctness

38

Percentages of queries per category for the two data sets

100% correctness

Achieved

Currently, we fail
to handle them

User effort

There is a preprocessing step to translate the projects’ API database-related
functions to Abstract Data Manipulation Operators.

Effort is measured with

(a) the number of functions that needed translation from the project's API,

(b) the lines of code that were written for the translation of those API
functions to Abstract Data Manipulation Operators.

39

Roadmap

1. Overview

2. A method for
Embedded Query
Extraction

3. Experiments

4. Discussion

40

We present a method to extract
embedded queries from host code!

41

We can also represent
interim structures

in a principled &
meaningful way!

… and in a way that is simple and understandable

We can envision a generic, all-
encompassing, language independent
representation of data retrieval that

treats queries as workflows of data
transformation Lego blocks

1

2

3

Open Issues

Work more on ADMO

Broaden the support for more host languages

 Test with more systems

Broaden the query class to incorporate more flexible query structures

Improve the efficiency of the algorithms to gain memory (!) and time

42

We present a method to extract embedded
queries from host code!

43

We can also represent
interim structures in a

principled & meaningful
way!

… and in a way that is simple and understandable

We can envision a generic, all-encompassing,
language independent representation of data

retrieval that treats queries as workflows of
data transformation Lego blocks

Danke schön!
Thank you!

http://www.cs.uoi.gr/~pmanousi/publications/2017_CAiSE/

	Extraction of Embedded Queries via Static Analysis of Host Code
	Embedded queries in data-intensive information systems
	Why bother?
	Hecataeus tool for charting and impact prediction
	State of the art
	Research goals
	Roadmap
	Overview of solution
	Roadmap
	Roadmap
	Example of source code file
	Example of source code file without comments
	Has the source code of the file any DB connection?
	Roadmap
	Split file to Callable Units (methods/functions/...)
	Keep only DB related functions
	Roadmap
	Roadmap
	Query �Variants�Graph
	QVG serves an interim means to decide:�- all the alternative query generation control flow paths �- which query-generating parts of the CU pertain to each path
	QT,T execution plan
	QT,F execution plan
	QF,T execution plans
	QF,F execution plan
	On the side: loops converted to branches
	Roadmap
	How to abstract each QVG path?
	Abstract Data Manipulation Operators�� - an extensible palette of operators for data manipulation� - currently with a minimal set of operators
	Mapping of host language �to ADMO
	Algorithm to transform host language statements to ADMO
		Abstract Query Representation of a host path�(a sequence of ADMO operators to which individual host method calls are translated)
	Roadmap
	AQR to target
	Roadmap
	Experimental setup
	Recall
	Correctness
	Correctness
	User effort
	Roadmap
	Slide Number 41
	Open Issues
	Danke schön!�Thank you!

