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Abstract. Like all software systems, databases are subject to evolu-
tion as time passes. The impact of this evolution is tremendous as every
change to the schema of a database affects the syntactic correctness and
the semantic validity of all the surrounding applications and de facto ne-
cessitates their maintenance in order to remove errors from their source
code. This survey provides a walk-through on different approaches to the
problem of handling database and data warehouse schema evolution. The
areas covered include (a) published case studies with statistical informa-
tion on database evolution, (b) techniques for managing schema and view
evolution, (c) techniques pertaining to the area of data warehouses, and,
(d) prospects for future research.

1 Introduction

Evolution of software and data is a fundamental aspect of their lifecycle. In
the case of data management, evolution concerns changes in the contents of a
database and, most importantly, in its schema. Database evolution can concern
(a) changes in the operational environment of the database, (b) changes in the
content of the databases as time passes by, and (c) changes in the internal
structure, or schema, of the database. Schema evolution, itself, can be addressed
at (a) the conceptual level, where the understanding of the problem domain
and its representation via an ER schema evolves, (b) the logical level, where
the main constructs of the database structure evolve (for example, relations
and views in the relational area, classes in the object-oriented database area, or
(XML) elements in the XML/semi-structured area), and, (c) the physical level,
involving data placement and partitioning, indexing, compression, archiving etc.

In this survey, we will focus on the evolution of the logical schema of rela-
tional data and also extend our survey to the special case of data warehouse
evolution. For the rest, we refer the interested reader to the following very in-
teresting surveys. First, it is worth visiting a survey by Roddick [1], which ap-
peared 20 years ago and summarizes the state of the art of the time in the
areas of schema versioning and evolution, with emphasis to the modeling, archi-
tectural and query language issues related to the support of evolving schemata



in database systems. Second, 16 years later, a comprehensive survey by Har-
tung, Terwilliger and Rahm [2] appeared, in which the authors classify the re-
lated tools and research efforts in the following subareas: (a) the management
of the evolution of relational database schemata, (b) the evolution of collec-
tions of XML documents, and (c) the evolution of ontologies. In the web site
http://dbs.uni-leipzig.de/en/publications one may also find a compre-
hensive list of publications in the broader area of schema and data evolution.
From our part, the material that we survey is collected by exploiting three sources
of information: (a) our own monitoring of the field over the years, (b) by building
on top of the aforementioned surveys, and, (c) by inspecting the main database
and business intelligence venues in the last years, to identify the new works that
have taken place since the last survey.

We organize the presentation of the material as follows. In Section 2, we dis-
cuss empirical studies in the area of database evolution. In Section 3, we present
the sate of practice. In Section 4, we cover issues related to the identification
of the impact that database evolution has to external applications and queries,
as well as to views. In Section 5, we cover the specific area of data warehouses
from the viewpoint of evolution. We conclude with thoughts around open issues
in the research agenda in the area of evolution in Section 6.

2 Empirical Studies on Database Evolution

In this section, we survey empirical studies in the area of database evolution.
These studies monitor the history of changes and report on statistical properties
and recurring phenomena. In our coverage we will follow a chronological order,
which also allows us to put the studies in the context of their time.

2.1 Statistical profiling of database evolution via real world studies

Studies during the 90’s. The first account of a sizable empirical study, by
Sjoberg [3], discusses the evolution of the database schema of a health man-
agement system over a period of 18 months, monitored by a tool specifically
constructed for this purpose. A single database schema was examined, and, inter-
estingly, the monitored system was accompanied by a metadata dictionary that
allowed to trace how the queries of the applications surrounding the database
relate to the tables and attributes of the evolving database. Specific numbers for
the evolution of the system, during this period of 18 months, include:

– There was a 139% increase of the number of tables and a 274% increase of the
number of attributes (including affected attributes due to table evolution),
too.

– All (100%) the tables were affected by the evolution process.
– Additions were more than deletions, by an 28% tables and a 42% for at-

tributes.
– An insignificant percentage of alterations involved renaming of relations or

merge/split of tables.
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– Changes in the type of fields (i.e., data type, not null, unique constraints)
proved to be equal to additions (31 both) and somehow less than deletions
(48) for a period of 12 months, during which this kind of changes were
studied.

– On average, each relation addition resulted in 19 changes in the code of the
application software. At the same time, a relation deletion produced 59.5
changes in the application code. The respective numbers for attributes were
2 changes for attribute additions and 3.25 changes for attribute deletions,
respectively.

– The evolution process was characterized by an inflating period (during con-
struction) where almost all changes were additions, and a subsequent period
where additions and deletions where balanced.

Revival in late 00’s. In terms of empirical studies, and to the best of our
knowledge, no developments took place for the next 15 years. This can be easily
attributed to the fact that the research community would find it very hard to
obtain access to monitor database schemata for an in-depth and long study. The
proliferation of free and open-source software changed this situation. So, in the
last few years, there are more empirical studies in the area that report on how
schemata of databases related to open source software have evolved.

The first of these studies came fifteen years later after the study of Sjoberg.
The authors of [4] made an analysis on the database back-end of MediaWiki, the
software that powers Wikipedia. The study conducted over the versions of four
years, and came with several important findings. The study reports an increase
of 100% in the number of tables and a 142% in the number of attributes. Fur-
thermore, 41.5% of the attributes of the original database were removed from the
database schema, and 25.1% of the attributes were renamed respectively. The
major reasons for these alterations were (a) the improvement of performance,
which in many cases induces partitioning of existing tables, creation of materi-
alized views, etc., (b) the addition of new features which induces the enrichment
of the data model with new entities, and (c) the growing need for preservation of
database content history. A very interesting observation is that around 45% of
changes do not affect the information capacity of the schema, but they are rather
index adjustments, documentation, etc. A statistical study of change breakdown
revealed that attribute addition is the most common alteration, with 39% of
changes, attribute deletion follows with 26%, attribute rename was up to the
16% and table creation involved a 9% of the entire set of recorded changes. The
rest of the percentages were insignificant.

Special mention should be made to this line of research [5], as the people
involved in this line of research should be credited for providing a large collection
of links3 for open source projects that include database support. Also, it is
worth mentioning here that the effort is related to PRISM (later re-engineered to
PRISM++ [6]), a change management tool, that provides a language of Schema
Modification Operations (SMO) (that model the creation, renaming and deletion

3 http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Benchmark Extension
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of tables and attributes, and their merging and partitioning) to express schema
changes (see Section 4.1 for details).

Shortly after, two studies from the Univ. of Riverside appear. In [7], Lin and
Neamtiu study two aspects of database evolution and their effect to surrounding
applications. The first part of the study concerns the impact that schema evo-
lution has on the surrounding applications. The authors work with two cases,
specifically the evolution of Mozilla, between 2005 and 2009 and the evolution of
the Monotone version control system between 2003 and 2009, both of which use a
database to store necessary information for their correct operation. The authors
document and exemplify how the developers of the two systems address the is-
sue of schema evolution between different versions of their products. The authors
also discuss the impact of erroneous database evolution, even though there exists
software that is responsible for the migration of the system’s modules to the new
database schema. One very interesting finding is that although the applications
can include a check on whether the database schema is synchronized to the ap-
propriate version of the application code, this check is not omnipresent; thus,
there exist cases where the application can operate on a different schema than
the one of the underlying database, resulting in crashes or data loss. At the same
time, the authors have measured the breakdown of changes during the period
that they have studied. The second part of the study concerns DBMS evolution
(attention: DBMS, not database) from the viewpoint of file storage. The authors
study SQLite, MySQL and Postgres on how different releases come with differ-
ent file formats and how usable old formats can be under a new release of the
DBMS. Also, the authors discuss how the migration of stored databases should
be performed whenever the DBMS is upgraded, due to the non-compatibility of
the file formats of the different releases.

In a similar vein, in [8], Wu and Neamtiu considered 4 case studies of embed-
ded databases (i.e., databases tightly coupled with corresponding applications
that rely on them) and studied the different kinds of changes that occurred in
these cases. Specifically, the authors study the evolution of Firefox between 2004
and 2008, Monotone (a version management system) between 2003 and 2010,
BiblioteQ (a catalog management suite) between 2008 and 2010 and Vienna (an
RSS newsreader) between 2005 and 2010. Comparing their results to previous
works, the authors see the same percentages concerning the expansion of the
database, but a larger number of table and column deletions. This is attributed
to the nature of the databases, as the databases that are studied by Wu and
Neamtiu are embedded within applications, rather than largely used databases
as in the case of the previous studies. Moreover, the authors performed a respec-
tive frequency and timing analysis, which showed that the database schemata
tend to stabilize over time, as the evolution activity calms down over time.
There is more change activity for the schemata at the beginning of their history,
whereas the schemata seem to converge to a relatively fixed structure at later
versions.
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A large scale study in 2013. In [9], Qiu, Li and Su report on their study of
the evolution of 10 databases, supporting open source projects. The authors col-
lected the source files of the applications via their SVN repositories and isolated
the changes to the logical schema of each database (i.e., they ignored changes
involving comments, syntax correction, DBMS-related changes, and several oth-
ers). The remaining changes are characterized by the authors as valid DB re-
visions. The authors report that they have avoided the automatic extraction of
changes, as the automatic extraction misses changes like table split or merge, or
renaming and have performed manual checks for all the valid DB revisions for
all the datasets. The study covers 24 types of change including the additions and
deletions of tables, attributes, views, keys, foreign keys, triggers, indexes, stored
procedures, default value and not null constraints, as well as the renaming of ta-
bles, attributes and the change of data types and default values. We summarize
the main findings of the study in four categories.

Temporal and Locality Focus. Change is focused both (a) with respect to time
and (b) with respect to the tables that change. Concerning timing, a very impor-
tant finding is that 7 out of 10 databases reached 60% of their schema size within
20% of their early lifetime. Change is frequent in the early stages of the databases,
with inflationary characteristics; then, the schema evolution process calms down.
Schema changes are also focused with respect to the tables that change: 40% of
tables do not undergo any change at all, and 60%-90% of changes pertain to
20% of the tables (in other words, 80% of the tables live quiet lives). The most
frequently modified tables attract 80% of the changes.

Change breakdown. The breakdown of changes revealed the following catholic
patterns: (a) insertions are more than updates which are more than deletions
and (b) table additions, column additions and data type changes are the most
frequent types of change.

Schema and Application Co-evolution. To assess how applications and databases
co-evolve, the authors have randomly sampled 10% of the valid database revi-
sions and manually analyzed co-evolution. The most important findings of the
study are as follows:

– First, the authors characterized the co-change of applications in four cate-
gories and assessed the breakdown of changes per category. In 16.22% of oc-
casions, the code change was in a previous/subsequent version than the one
where the database schema change occurred; 50.67% of application adap-
tation changes took place in the same revision with the database change,
21.62% of database changes were not followed by code adaptation and 11.49%
of code changes were unrelated to the database evolution.

– A second result says that each atomic change at the schema level is estimated
to result in 10 – 100 lines of application code been updated. At the same
time, a valid database revision results in 100 – 1000 lines of application code
being updated.

A final note: Early in the analysis of results, the authors claim that change
is frequent in schema evolution of the studied datasets. Although we do not
dispute the numbers of the study, we disagree with this interpretation: change
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caries a lot between different cases (e.g., coppermine comes with 8.3 changes
and 14.2 atomic changes per year contrasted to 65.5 changes and 299.3 atomic
changes per year at Prestashop). We would argue that change can be arbitrary
depending on the case; in fact, each database seems to present its own change
profile.

2.2 Recent Advances in Uncovering Patterns in the Evolution of
Databases

A recent line of research that includes [10,11,12], reveals patterns and regulari-
ties in the evolution of database schemata. At a glance, all these efforts analyze
the evolution of the database schemata of 8 open source case studies. For each
case study, the authors identified the changes that have been performed in sub-
sequent schema versions and re-constructed the overall evolution history of the
schema, based on Hecate, an automated change tracking tool developed by the
authors for this purpose. The number of versions that have been considered
for the different schemata ranged from 84 to 528, giving a quite rich data set
for further analysis. Then, in [10] the authors perform a macroscopic study on
the evolution of database schemata. Specifically, in this study the authors de-
tect patterns and regularities that concern the way that the database schema
grows over time, the complexity of the schema, the maintenance actions that
take place and so on. To detect these patterns they resort to the properties that
are described in Lehnman’s laws of software evolution [13]. In [11], extend their
baseline work in [10] with further results and findings revealed by the study, as
long as detailed discussions concerning the relevance of the Lehman’s laws in the
case of databases, and the metrics that have been employed. On the other hand,
in [12] the authors perform a microscopic study that delves into the details of
the life of tables, including the tables’ birth, death, and the updates that occur
in between. This study reveals patterns, regularities and relations concerning the
aforementioned aspects.

The Life of a Database Schema In the early 70’s, Lehman and his colleagues
initiated their study on the evolution of software systems [14] and continued to
refine and extend it for more than 40 years [13]. Lehman’s laws introduce the
properties that govern the evolution of E-type systems, i.e., software systems that
solve a problem, or address an application in the real world [13]. For a detailed
historical survey of the evolution of Lehman’s laws the interested reader can refer
to [15]. The essence of Lehman’s laws is that the evolution of an E-type system
is a controlled process that follows the behavior of a feedback-based mechanism.
In particular, the evolution is driven by positive feedback that reflects the need
to adapt to the changing environment, by adding functionalities to the evolving
system. The growth of the system is constrained by negative feedback that reflects
the need to perform maintenance activities, so as to prevent the deterioration of
the system’s quality.

In more detail, as discussed in [10,11] the laws can be organized in three
groups that concern different aspects of the overall software evolution process.
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The first group of laws discusses the existence of the feedback mechanism that
constrains the uncontrolled evolution of software. The second group focuses on
the properties of the growth part of the system, i.e., the part of the evolu-
tion mechanism that accounts for positive feedback. Finally, the third group of
laws discusses the properties of perfective maintenance that constrains the un-
controlled growth, i.e., the part of the evolution mechanism that accounts for
negative feedback. The major patterns and regularities revealed in [10,11] from
the investigation of each group of laws are summarized below:

– Feedback mechanism for schema evolution: Overall, the authors found that
schema evolution demonstrates the behavior of a stable, feedback-regulated
system, as the need for expanding its information capacity to address user
needs is controlled via perfective maintenance that retains quality; this an-
tagonism restrains unordered expansion and brings stability. Positive feed-
back is manifested as expansion of the number of relations and attributes
over time. At the same time, there is negative feedback too, manifested as
house-cleaning of the schema for redundant attributes or restructuring to
enhance schema quality. In [10,11] the authors further observed that the in-
verse square models [16] for the prediction of size expansion hold for all the
schemata that have been studied.

– Growth of schema size due to positive feedback : The size of the schema
expands over time, albeit with versions of perfective maintenance due to
the negative feedback. The expansion is mainly characterized by three pat-
terns/phases, (i) abrupt change (positive and negative), (ii) smooth growth,
and, (iii) calmness (meaning large periods of no change, or very small changes).
The schema’s growth mainly occurs with spikes oscillating between zero and
non-zero values. Also, the changes are typically small, following a Zipfian dis-
tribution of occurrences, with high frequencies in deltas that involved small
values of change, close to zero.

– Schema maintenance due to negative feedback : As stated in [11] the overall
view of the authors is that due to the criticality of the database layer in the
overall information system, maintenance is done with care. This is mainly
reflected by the decrease of the schema size as well as the decrease in the
activity rate and growth with age. Moreover, the authors observed that age
results in a reduction of the complexity to the database schema. The inter-
pretation of this observation is that perfective maintenance seems to do a
really good job and complexity drops with age. Also, they authors point out
that in the case of schema evolution, activity is typically less frequent with
age.

The Life of a Table - Microscopic Viewpoint In [12], the authors investi-
gated in detail the relations between table schema size, duration and updates.
The main findings of this study are summarized below:

– From a general perspective, early stages of the database life are more “active”
in terms of births, deaths and updates, whereas, later, growth is still there,
but deletions and updates become more concentrated and focused.
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– The life and death of tables is governed by the Gamma pattern, which says
that large-schema tables typically survive. Moreover, short-sized tables (with
less than 10 attributes) are characterized by short durations. The deletions of
these “narrow” tables typically take place early in the lifetime of the project
either due to deletion or due to renaming (which is equivalent from the point
of view of the applications: they crash in both cases).

– Concerning the amount of updates, most tables live quiet lives with few
updates. The main reason is the dependency magnet phenomenon, i.e., table
updates induce large impact on the surrounding dependent software.

– The relation between table duration and amount of updates is governed by
the inverse Gamma pattern, which states that updates are not proportional
to longevity, but rather, few top-changer tables attract most of the updates.

• Top-changer tables live long, frequently they are created in the first
version of the database and they can have large number of updates (both
in absolute terms and as a normalized measure over their duration).

• Interestingly top-changer tables, they are not necessarily the larger ones,
but typically medium sized.

3 State of Practice

In this section, we discuss how the commercial database management systems
handle schema changes. The systems that we survey are: (a) Oracle, (b) DB2
of IBM, and, (c) SQL Server and Visual Studio of Microsoft. Another part of
this research is dedicated to the open sourced or academic tools that are dealing
with the schema changes. Some of those tools are: (a) Django, (b) South, and,
(c) Hecate.

3.1 Commercial Tools

Oracle - Change Management Pack (CMP). Oracle Change Management
Pack ([17]) is part of Oracle Enterprise Manager. CMP enables the management
and deployment of schema changes from development to production environ-
ments, as well as the identification of unplanned schema changes that potentially
cause application errors.

CMP features the following concepts:

– Change plans: A change plan is an object that serves as a container for
change requests.

– Baselines: A baseline is a group of database object definitions captured by
the Create Baseline application at a particular point in time.

– Comparisons: A comparison identifies the differences found by the Oracle
Change Management Pack in two sets of database object definitions that
you have specified in the Compare Database Objects application.
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The Create Baseline application enables users in creating database schema
descriptions in a CMP format or plain SQL DDL files. These descriptions are
used to compare, or make changes to other schemata.

The Compare Database Objects application allows DBA users to compare
different “database” versions. This way, in case of an application error produced
by a non-tested schema change applied in the database, the DBA can produce
all changes a-posterior and find the cause of the application failure.

The Synchronization Wizard of CMP supports the user in modifying an item
target to match another item source. The Synchronization Wizard needs a com-
parison of the target and source items, so it works after the Compare Database
Objects application. The Synchronization Wizard orders the “transformation”
steps, in order to produce the target item. This is, for example, to make sure
that the foreign keys will be applied after the primary keys. Besides that, the
Synchronization Wizard can delete items. This happens, when there is no source
item. Moreover, if there is no target item, the Synchronization Wizard initially
creates and then synchronizes a new target item with the source one. Finally,
using the Synchronization Wizard, the user may keep or undo the changes made
to a target item.

Another module that works similar to the Synchronization Wizard is the
DB Propagate application of CMP, which allows the user to select one or more
object definitions and reproduce them in one or or more target schemata.

Two other applications of CMP are: DB Quick Change, and, DB Alter. The
DB Quick Change application helps the user in making one change to a single
database item. The DB Alter application helps the user in making one or more
changes to one, or more database items (in comparison to the Synchronization
Wizard, here there is no need of any preceding comparison).

Finally, the Plan Editor of CMP lets the user perform a single change plan on
one or more databases, that he may keep or undo. The Plan Editor can perform
a wider variety of changes, compared to those that Synchronization Wizard, DB
Alter, DB Quick Change, and DB Propagate can perform. The Plan Editor
allows the creation of a change plan that serves as a container for change requests
(directives, scoped directives, exemplars, and modified exemplars), generates
scripts for those change requests and executes them on one or more databases.

IBM - DB2. IBM DB2 provides a mechanism that checks the type of the
schema changes [18] that the users want to perform in system-period temporal
tables. A system-period temporal table is a table that maintains historical ver-
sions of its rows. A system-period temporal table uses columns that capture the
begin and end times when the data in a row is valid and preserve historical ver-
sions of each table row whenever updates or deletes occur. In this way, queries
have access to both current data, i.e., data with a valid current time, as well data
from the past. Finally, DB2 offers the DB2 Object Comparison Tool [19]. It is
used for identifying structural differences between two or more DB2 catalogs,
DDL, or version files (even between objects with different names). Moreover, it
is able to generate a list of changes in order to transform the target comparator
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into a new schema, described by the source comparator. Finally, it is capable
to undo changes that were performed and committed in a version file, so as to
restore it to a given previous version.

Temporal tables prohibit changes that result in loss of data. These changes
can be produced by commands like DROP COLUMN, ADD COLUMN, and,
ALTER COLUMN. All the changes, applicable to temporal tables, can be prop-
agated back to the history of the schema, with only two exceptions, the renaming
of a table and the renaming of an index.

Microsoft - SQL Server and Visual Studio. Change management support
for Microsoft SQL Server comes with the SQL Server Management Studio [20]
(SSMS). SSMS allows the user to browse, select, and manage any of the database
objects (e.g., create a new database, alter an existing database schema, etc.) as
well as visually examine and analyze query plans and optimize the database
performance. SSMS provides data import
export capabilities, as well as data generation features, so that users can perform
validation tests on queries. Regarding the evolution point of view, it is capable of
comparing two different database instances and returning their structural differ-
ences. The tool may also provide information on DDL operations that occurred,
through the reports of schema changes. An example of such a report from [21]
is displayed in Table 1.

Table 1: SSMS Report
database
name

start time login
name

user
name

application
name

ddl oper-
ation

object type desc

msdb 2015-08-27
14:08:40.460

sa sa SSMS -
Query

CREATE dbo.DDL History USER TABLE

TestDB 2015-08-26
11:32:19.703

sa sa SSMS ALTER dbo.SampleData USER TABLE

Another set of tools that Microsoft offers for the validation of SQL code is the
SQL Server Data Tools [22] (SSDT). SSDT follows a project-based approach for
the database schema and SQL source code that is embedded in the applications.
A developer can use SSDT to locally check and debug SQL code (by using
breakpoints in his SQL code).

Another tool that comes from Microsoft as an extension to Visual Studio
is MoDEF [23]. MoDEF uses the model-view-controller idea for the database
schema manipulation. In MoDEF, the user defines classes that represent the
columns of a table in a relational database. The classes are mapped to relational
tables that are created in the database via select-project queries. In MoDEF, the
changes of the client model are translated to incremental changes as an upgrade
script for the database. Moreover, MoDEF annotates the upgrade script with
comments, to inform the DBA for the changes that are going to happen in the
database schema.
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3.2 Open Source or Academic Tools

Django Likewise to MoDEF, Django [24] also uses the model-view-controller
idea for the database schema manipulation. Regarding evolution, Django uses an
automatic way to identify which columns were added or deleted from the tables
between two versions of code and migrate these changes to the database schema.
Django identifies the changes in the attributes of a class and then produces the
appropriate SQL code that performs the changes to the underlying database
schema.

South South [25] is a tool operating on top of Django, identifying the changes in
the Django’s models and providing automatic migrations to match the changes.
South supports five database backends (PostgreSQL, MySQL, SQLite, Microsoft
SQL Server, and, Oracle), while Django officially supports four (PostgreSQL,
MySQL, SQLite, and, Oracle). South also supports another five backends(SAP
SQL Anywhere, IBM DB2, Microsoft SQL Server, Firebird, and, ODBC) through
unofficial third party database connectors.

In South, one can express dependencies of table versions so as to have the
correct execution order of migration steps and void inconsistencies. For example,
in a case where a foreign key references a column that is not yet a key, this kind
of problem can be identified and avoided.

The Autodetector part of South can extend the migrations that Django offers.
Specifically, South can automatically identify the following schema modifications:
model creation and deletion (create/drop a table), field changes (type change of
columns) and unique changes, while Django can only identify the addition or
deletion of columns.

Hecate Hecate [26] is a tool that parses the DDL files of a project and compares
the database schemata between versions. Hecate also exports the transitions be-
tween two versions, describing the additions and deletions that occurred between
the versions (renames are treated as deletions followed by additions). Hecate also
provides measures such as size and growth of the schema versions.

Hecataeus Hecataeus [27] is a what-if analysis tool that facilitates the visu-
alization and impact analysis of data-intensive software ecosystems. As these
ecosystems include software modules that encompass queries accessing an un-
derlying database, the tool represents the database schema along with its de-
pendent views and queries as a uniform directed graph. The tool visualizes the
entire ecosystem in a single representation and allows zooming in and out its
parts. Most related to the topic of this survey, the tool enables the user to create
hypothetical evolution events and examine their impact over the overall graph.
Hecataeus does not simply flood the event over the underlying graph; it also
allows users as to define “veto” rules that block the further propagation of an
evolutionary event (e.g., because a developer is adamant in keeping the exact
structure of a table employed by one of her applications). Hecataeus also rewrites
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the graph, after the application of the event so that both the syntactical and the
semantic correctness of the affected queries and views are retained.

4 Techniques for Managing Database and View Evolution

In this section, we discuss the impact of changes in a database schema to the
applications that are related to that schema. Given a set of scripts, the meth-
ods proposed in this part of the literature identify how database and software
modules are affected by changes that occur at the database level. Techniques
for query rewriting are also discussed. Closely to this topic is the topic of view
adaptation: how must the definition (and the extent, in case of materialization)
of a view adapt whenever the schema of its underlying relations changes?

4.1 Impact Assessment of Database Evolution

The problem of impact assessment for evolving databases has two facets: (a) the
identification of the parts of applications that are affected by a change, and, (b)
the automation of the rewritting of the affected queries, once they have been
identified. In this subsection, we organize the discussion of related efforts in a
way that reflects both the chronological and the thematic dimension of how
research has unfolded. A summary of the different methods is given at the end
of the subsection.

Early Attempts Towards Facilitating Impact Assessment. Maule, Em-
merich and Rosenblum [28] propose a technique for the identification of the im-
pact of relational database schema changes upon object-oriented applications. In
order to avoid a high computational cost, the proposed technique uses slicing, so
as to reduce the size of the program that is needed to be analyzed. At a first step,
the authors use a prototype slicing implementation that helps them identify the
database queries of the program. Then, with a data-flow analysis algorithm, the
authors estimate the possible runtime values for the parameters of the query.
Finally, the authors use an impact assessment tool, Crocopat, coming with a
reasoning language (RML) to describe the impacts of a potential change to the
stored data of the previous step. Depending on the type of change, a different
RML program is run, and this eventually isolates the lines of code of the program
that are related to the queries affected by the change. The authors evaluated their
approach on a C# CMS project of 127000 lines of code, and a primary database
schema of up to 101 tables, with 615 columns and 568 stored procedures. The
experiments showed that the method needed about 2 minutes for each execution,
where they found that there were no false negatives. On the other hand, there
were false positives in the results, meaning that the tool was able to find all the
lines of code that were affected, leaving none out, but also falsely reported that
some lines of code would be affected, whilst this was not really happening.
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Architecture Graphs. Papastefanatos et al. [29,30,31] introduced the idea of
dealing with both the database and the application code in uniform way. The
results of this line of research are grouped in the areas of (a) modeling, (b) change
impact analysis, and (c) metrics for data intensive ecosystems (data intensive
ecosystems are conglomerations of data repositories and the applications that
depend on them for their operations). This line of work has been facilitated by
the Hecataeus tool (see [29], [32]).

Concerning the modeling and the impact analysis parts, in [29], the authors
proposed the use of the Architecture Graph for the modeling of data intensive
ecosystems. The Architecture Graph is a directed graph where the nodes rep-
resent the entities of the ecosystem (relations, attributes, conditions, queries,
views, group by clauses, etc), while the edges represent the relationships of these
entities (schema relationships, operand relationships, map-select relationships,
from relationships, where relationships, group by relationships, etc). In the same
paper, the authors proposed an algorithm for the propagation of the changes of
one entity to other related entities, using a status indicator of whether the im-
minent change is accepted, blocked or if the user of the tool should be asked.

In [30], the authors proposed an extension for the SQL query language, that
introduced policies for the changes in the database schema. The users could de-
fine in the declaration of their database schema whether a change should be ac-
cepted, blocked or if the user should be prompted. In this work, the policies were
defined over: (a) the database schema universally, (b) the high level modules
(relations, views and queries) of the database schema, and, (c) the remaining
entities of the database, such as attributes, constraints and conditions.

Regarding the metrics part, a first attempt to the problem was made by Pa-
pastefanatos et al, on ways to predict the maintenance effort and the assessment
of the design of ETL flows of data warehouses under the prism of evolution
in [31]. In [33], the same authors used a real world evolution scenario, which
used the evolution of the Greek public sector’s data warehouse maintaining in-
formation for farming and agricultural statistics. The experimental analysis of
the authors is based in a six-month monitoring of seven real-world ETL scenar-
ios that process the data of the statistical surveys. The Architecture Graph of
the system was used as a provider of graph metrics. The findings of the study
indicate that schema size and module complexity are important factors for the
vulnerability of an ETL flow to changes.

In a later work [34], Manousis et al., redefine the model of the Architecture
Graph. The paper extends the previous model by requiring the high level modules
of the graph to include input and output schemata, in order to obtain an isolation
layer that leads to the simplification of the policy language. The method is based
on the annotation of modules with policies that regulate the propagation of
events in the Architecture Graph; thus, a module can either block a change or
adapt to it, depending on its policy. The method for impact assessment includes
three steps that: (a) assess the impact of a change, (b) identify policy conflicts
from different modules on the same change event, and (c) rewrite the modules
to adapt to the change. It is noteworthy that simply flooding the evolution
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event over the Architecture Graph in order to assess the impact and perform
rewrittings, is simply not enough, as different nodes can react with controversial
policies to the same event. Thus, the three stages are necessary, with the middle
one determining conflicts and a “cloning” method, for affect paths on the graph,
in order to service conflicting requirements, whenever possible.

Fig. 1. A example of a rewrite process when the policies of Q1 and Q2 queries are
conflicting [35].

In Figure 1, we depict a situation that exemplifies the above. In the Architec-
ture Graph that is displayed in the left part of Fig. 1, a change happens in view
V0 and affects the view V1, which, in turn, affects the two queries Q1 and Q2 of
the example. The first query (Q1) accepts the change, whereas the second one
(Q2) blocks it. This means that Q2 wants to retain its semantics and be defined
over the old versions of the views of the Architecture Graph. Therefore, the query
that accepted the change will get a new path, composed of ”cloned”, modified
versions of the involved views that abide by the change (depicted in light color
in the left part of the figure and annotated with a superscript c), whereas the
original views and their path towards Q2 retain their previous definition (i.e.,
they decline the change).

Schema Modification Operators. In this section, we review a work that
produces –when it is possible– valid query rewritings of old queries over a new
database schema, as if the evolution step of the database schema never happened.
This way, the results that the user receives, after the execution of the rewritten
query, are semantically correct.

An approach that supports the ecosystem idea, to a certain extent, is [36]. In
this approach, the authors propose a method that rewrites queries whenever one
of their underlying relations changes with the goal of retaining the same query
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result as if the evolution event never happened, using Schema Modification Op-
erators (SMOs). The Schema Modification Operators that PRISM/PRISM++
tool uses are:

– CREATE TABLE R(a, b, c)
– DROP TABLE R
– RENAME TABLE R INTO T
– COPY TABLE R INTO T
– MERGE TABLE R, S INTO T
– PARTITION TABLE R INTO S WITH condition, T
– DECOMPOSE TABLE R INTO S(a, b) T (a, c)
– JOIN TABLE R, S INTO T WHERE condition

– ADD COLUMN d [AS constant | function(a, b, c)] INTO R
– DROP COLUMN r FROM R
– RENAME COLUMN b IN R TO d

The R, S, and T variables represent relations. The a, b, c, d, and r vari-
ables represent attributes. The constant variable stands for a fixed value, while
the function is used in ADD COLUMN in order to express simple tasks as data
type and semantic conversions are. Besides the schema modification operators,
PRISM/PRISM++ uses the integrity constraints modification operators ICMO
and policies (which will be described later on) for this kind of rewrites. The
ICMOs are:

– ALTER TABLE R ADD PRIMARY KEY pk1(a, b) <policy>
– ALTER TABLE R ADD FOREIGN KEY fk1(c, d) REFERENCES T (a, b) <policy>
– ALTER TABLE R ADD VALUE CONSTRAINT vc1(c, d) AS R.e=“0” <policy>
– ALTER TABLE R DROP PRIMARY KEY pk1
– ALTER TABLE R DROP FOREIGN KEY fk1
– ALTER TABLE R DROP VALUE CONSTRAINT vc1

The R and T variables represent relations. The a, b, c, d, and e variables repre-
sents attributes. The pk1 represents the primary key of the preceding relation.
The fk1 represents the foreign key of a relation. Finally, the vc1 represents a
value constraint. The ICMOs have, also, a <policy> placeholder, where the
policy can be one of the following:

1. CHECK, where the PRISM/PRISM++ tool verifies that the current database
satisfies the constraint, otherwise the ICMO is rolled back,

2. ENFORCE, where the tool removes all the data that violate the constraint,
and,

3. IGNORE, where the tool ignores if there exist tuples that violate the constraint
or not, but informs the user about this.

When the ENFORCE policy is used and tuples have to be removed, the tool
creates a new database schema and inserts all the violating tuples in order to
help the DBA carry out inconsistency resolution actions.
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Regarding the rewrite process of queries through SMOs, the Chase & Backchase
algorithm uses as input the SMOs and a query that is to be rewritten. The algo-
rithm rewrites the query through an inversion step of the SMO’s (for example,
the inversion of a JOIN is the DECOMPOSITION), in order to retain the query’s
results unchanged, independently of the underlying schema. This way, the re-
sulting tuples of the query will be the same as if the database schema never
changed. The rewrite process of queries through ICMOs is done with the help
of policies.

So, the steps that describe the algorithm of the rewriting that the authors
proposed, are:

1. Get the SMOs from the DBA
2. Inverse the SMOs, in order to guarantee –if it is possible– the semantic

correctness of the new query
3. Rewrite the query and validate its output.

The authors also describe a rewrite process of updates statement queries
(“UPDATE table SET. . . ”) through SMOs and ICMOs, based in the ideas de-
scribed in the previous paragraph. If the rewrite is through SMOs, the Up-
dateRewrite algorithm tries to invert the evolution step, while if the rewrite is
through ICMOs, the policies ask the tool to check the tuples of the database
and either guarantee or inform the user about the contents of the database.

To improve their rewrite time the authors try to minimize the input of the
Chase & Backchase algorithm, by removing from the input all the mappings and
constraints that are not related with the evolution step. Moreover, the proposed
method uses only the version of the relation in which the query was written,
leaving all the previous modifications out, as they are unrelated to the query.
This is the backchase optimizer technique that the authors proposed, which
produced bigger execution times in the chase and backchase phase of higher
connected schemata because of the foreign keys that lead to higher input in
chase phase, in the experiments that were conducted. In order to achieve even
better execution time, the authors propose the use of a caching technique, since
from the observations they made on their datasets, they noticed that there is a
number of common query/update templates, which is parametrized and reused
multiple times. These patterns are:

Join pattern type 1. In this pattern, a new table is created to host joined
data from the desired column of two or more tables and migrates the data
from the old tables to the new one.

Join pattern type 2. In this pattern, the data of a column are moved from
the source table to the destination table.

Decompose pattern. In this pattern, a table is decomposed to two new tables.
In order to be correct, both tables should have the key of the table.

Partition pattern. In this pattern, a part of the data of a table is moved into
a new table and deleted from the original one.

Merge pattern. In this pattern, all the tuples of a table are moved into another
table.
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Copy pattern. In this pattern, an existing table is cloned.

The authors validated the PRISM/PRISM++ tool using the Ensembl project,
including 412 schema versions, and the Mediawiki project, which is part of the
Wikipedia project and had 323 schema versions. The authors used 120 SQL
statements (queries and updates) from those two projects, tested them against
SMO and ICMO operators and their tool found a correct rewriting, whenever
one existed.

In a later work [6], the authors provide an extended description of the tool
that performs the rewrites of the queries (PRISM/PRISM++) and its capa-
bilities. Moreover, the authors introduce two other tools of which the first one
collects and provides statistics on database schema changes and the other derives
equivalent sequences of (SMOs) from the migration scripts that were used for
the schema changes.

Table 2: Summary table for Section 4.1
Works Problem Input Output Method
[28] Impact analysis

of an imminent
schema change
in OO apps

DB schema and source
code; an imminent change

The lines of code
that are affected
by the DB schema
change

Slicing technique to identify
the DB related lines of C#
code, and estimation of val-
ues so as to further slice the
C# code.

[29,30] Impact analysis
of an imminent
schema change

DB schema and applica-
tion’s queries abstracted as
Architecture Graph; poli-
cies for of the nodes; an im-
minent change

Annotation of af-
fected nodes with
a status indica-
tion.

Language for node anno-
tation. Propagation of a
change, based on the node’s
policy for the change.

[34] Restructuring
of DB schema
and app queries
due to a schema
change

DB schema and applica-
tion’s queries abstracted as
Architecture Graph; poli-
cies for of the nodes; an im-
minent change

Rewritten Ar-
chitecture Graph
acording to the
policies

Rewrite via cloning the
queries that want to acquire
the change and leave in-
tact the ones that block the
change.

[6][36] Rewritting of
app queries
due to schema
change

SMOs and ICMOs of the
modification, and queries
that use the modified ta-
ble/view

Rewritten queries
returning the
same result as if
the change has
never happened.

The 1 hop away queries are
rewritten as if the schema
change never happened, us-
ing the Chase & Backchase
algorithm

Summary In Table 2 we summarize the problems and the solutions of the
works that were presented earlier. The first two works are dealing with the
impact analysis problem, which is to identify which parts of the code is affected
by a change, and the other two works are dealing with the rewriting of the code
in order to obtain or hide the schema changes.

4.2 Views: Rewriting Views in the Context of Evolution

A view is a query expression, stored in the database dictionary, which can be
queried again, just as if it was a regular relation of the database. A view, thus,
retains a dual nature: on the one hand, it is inherently a query expression;
yet, on the other hand, it can also be treated as a relation. A virtual view
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operates as a macro: whenever used in a query expression, the query processor
incorporates its definition in the query expression and the query is executed
afterwards. Materialized views are a special category of views, that persistently
store the results of the query in a persistent table of the DBMS. In this section,
we survey research efforts that handle two problems. First, we start with the
effect that a materialized view redefinition has on the maintenance of the view
contents: the expression defining the view is altered and the stored contents of
the view have to be adjusted to fit the new definition (ideally, without having to
fully recompute the contents of the view from scratch). Second, we survey efforts
pertaining to how views should be adapted when the schema of their defining
tables evolves (also known as the “view adaptation” problem). A summary table
concludes this subsection.

In [37], Mohania deals with the problem of maintaining the extent of a mate-
rialized view that is under redefinition, by proposing methods that try to avoid
the full re-computation of the view. The author uses expression trees, which are
binary trees, the leaf nodes represent base relations that are used for defining
the view, while the rest of the nodes contain binary relational algebraic opera-
tors. Unary operators such as selection and projection are associated with the
edges of the tree. In a nutshell, the author proposes that making use of these
expression trees, it is easy to find common subexpressions between the new and
old view statements and thus, if applicable, make use of the old view to get the
desired results of the redefined view, without recomputing the new definition.
Due to its structure, the tree allows to avoid interfering with the result of the
view computation: (a) the height of the trees is no more than two levels, and,
(b) a change is either a change to a unary operator associated with the edge of
the tree, or a change to a binary node. This way, when the change is made at the
root node, then the expression corresponding to the right hand child in the tree
has to be evaluated only, while when the change is made at level d=1, the view
re-computation becomes a view maintenance problem. Finally, when the change
is made at any other node, it is only the intermediate results of the nodes that
have to be maintained.

Gupta, Mumick, Rao and Ross [38] provide a technique that redefines a
materialized view and adapts its extent, as a sequence of primitive local changes
in the view definition, in order to avoid a full re-computation. Moreover, on more
complex adaptations –when multiple simultaneous changes occur on a view– the
local changes are pipelined in order to avoid intermediate creations of results of
the materialized view. The following changes are supported as primitive local
changes to view definitions:

1. Addition or deletion of an attribute in the SELECT clause.
2. Addition, deletion, or modification of a predicate in the WHERE clause (with

and without aggregation).
3. Addition or deletion of a join operand (in the FROM clause), with associated

equijoin predicates and attributes in the SELECT clause.
4. Addition or deletion of an attribute from the GROUP BY list.
5. Addition or deletion of an aggregate function to a GROUP BY view.
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6. Addition, deletion or modification of a predicate in the HAVING clause. Ad-
dition of the first predicate of deletion of the last predicate corresponds to
addition and deletion of the HAVING clause itself.

7. Addition of deletion of an operand to the UNION and EXCEPT operators.
8. Addition or deletion of the DISTINCT operator.

Concerning the problem of adapting a view definition to changes in the re-
lations that define it, Nica, Lee and Rundensteiner [39] propose a method that
makes legal rewritings of views affected by changes. The authors primarily deal
with the case of relation deletion which (under their point of view) is the most
difficult change of a database schema, since the addition of a relation, the addi-
tion of an attribute, the rename of a relation and the rename of an attribute can
be handled in a straightforward way (the attribute deletion, according to the
authors, is a simplified version of the relation deletion). To attain this goal one
should find valid replacements for the affected components of the existing view,
so, in order to achieve that, the authors of [39] keep a Meta-Knowledge Base on
the join constraints of the database schema. This Meta-Knowledge Base (MKB)
is modeled as a hyper-graph that keeps meta-information about attributes and
their join equivalence attributes on other tables. The proposed algorithm, has
as input the following: (a) a change in a relation, (b) MKB entities, and, (c)
new MKB entities. Assuming that valid replacements exist, the system can au-
tomatically rewrite the view via a number of joins and provide the same output
as if there was no deletion. The main steps of the algorithm are: (a) find all
entities that are affected for Old MKB to became New MKB, (b) mark these
entities and for each one of them find a replacement from Old MKB, using join
equivalences, and, (c) rewrite the view over these replacements. Interestingly,
the authors accompany their method with a language called E-SQL that anno-
tates parts of a view (exported attributes, underlying relations and filters) with
respect to two characteristics: (a) their dispensability (i.e., if the part can be
removed from the view definition completely) and (b) their replaceability with
an another equivalent part.

Summary In Table 3 we summarize the problems and the solutions of the
works that were presented earlier. The first two works refer to the problem of
the recomputation of the contents of a materialized view, after a redefinition of
the view. The other work refers to the problem of view adaptation on a column
deletion in the source tables, via a replacement.

5 Techniques for Managing Data Warehouse Evolution

A research area where the problem of evolution has been investigated for many
years is the area of data warehouses. In this section, we concentrate on works
related on evolution of both schema and data modifications in the context of
data warehouses, and we review methods and tools that help on the adaptation
of those changes. We also refer the reader to two excellent surveys on the issue,
specifically, [40] and [41].
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Table 3: Summary table for Section 4.2
WorkProblem Input Output Method
[37] Maintenance

of redefined
materialized
views

Definition and
redefinition of
a materialized
view

Recomputed
content of
the redefined
view

Use of expression trees that identify common
subexpressions between the input and output
of their method, thus helping to avoid the full
re-computation of a materialized view

[38] Maintenance
of redefined
materialized
views

Definition and
redefinition of
a materialized
view

Recomputed
content of
the redefined
view

The redefinition takes place as a sequence of
primitive local changes (in complex adapta-
tions this sequence is pipelined to avoid tem-
poral results).

[39] View adapta-
tion on col-
umn deletion

Hypergraph that
contains the join
constraints of
the DB schema

Valid replace-
ment of col-
umn that is to
be deleted

Search in the hypergraph (named MKB) for
a replacement of the column that is to be
deleted, and replace that column in the view
with the replacement

5.1 Data Warehouses and Views

At the beginning of data warehousing, people tended to believe that data ware-
houses were collections of materialized views, defined over sources. In this case,
evolution is mostly an issue of adapting the views definitions whenever sources
change.

Bellahsene, in two articles, [42] and [43], proposed a language extension to an-
notate views with a HIDE clause that works oppositely to SELECT (i.e., the idea
is to project all attributes except for the hidden ones and an ADD ATTRIBUTE
clause to equip views with attributes not present in the sources (e.g., timestamps
or calculations). Then, in the presence of an event that changes the schema of
a data warehouse source (specifically, the events covered are attribute/relation
addition and deletion), the methods proposed by the author for the adaptation
of the warehouse handle the view rematerialization problems i.e., how to recom-
pute the materialized extent via SQL commands. The author also proposes a
cost model to estimate the cost of alternative options.

In [44], the author proposes an approach on data warehouse evolution based
on a meta-model, that provides complementary metadata that track the his-
tory of changes (in detail, changes that are related to data warehouse views)
and provide a set of consistency rules to enforce when a quality factor (actual
measurement of a quality value) has to be re-evaluated.

5.2 Evolution of Multidimensional Models

Multidimensional models are tailored to treat the data warehouse as a collection
of cubes and dimensions. Cubes represent clean, undisputed facts that are to be
loaded from the sources, cleaned and transformed, and eventually queried by the
client application, Cubes are defined over unambiguous, consolidated dimensions
that uniquely and commonly define the context of the facts. Dimensions com-
prise levels, which form a hierarchy of degrees of detail according to which we
can perform the grouping of facts. For example, the Time dimension can include
the levels (1) Day, that can be rolled up to either (2a) Week or (2b) Month, both
of which can be rolled up to level (3) Year. Each level comes with a domain of
values that belong to it. The values of different levels are interrelated via rollup
functions (e.g., 1/1/2015 can be rolled up to value 1/2015 at the Month level). As

20



levels construct a hierarchy that typically takes the form of a lattice, evolution is
mainly concerned with changing (i) the nodes of the lattice, or (ii) their relation-
ship, or (iii) the values of the levels and their interrelationship. The problem that
arises, then, is: how do we adapt our cubes (in their multidimensional form and
possibly their relational representation) when the structure of their dimensions
changes? The works surveyed in this subsection address this problem. A table at
the end of the subsection summarizes the problems addressed and the solutions
that are given.

The authors of [45] present a formal framework, based on a formal conceptual
description of an evolution algebra, to describe evolutions of multi-dimensional
schemata and their effects on the schema and on the instances. In [45], the
authors propose a methodology that supports an automatic adaptation of the
multi-dimensional schema and instances, independently of a given implementa-
tion. The main objectives of the proposed framework are: (i) the automatic adap-
tation of instances, (ii) the support for atomic and complex operations, (iii) the
definition of semantics of evolution operations, (iv) the notification mechanism
for upcoming changes, (v) the concurrent operation and atomicity of evolution
operations, (vi) the set of strategies for the scheduling of effects and (vii) the
support of the design and maintenance cycle.

The authors provide a minimal set of atomic evolution operations, which
they use in order to present more complex operations. These operations are:
(i) insert level, (ii) delete level, (iii) insert attribute, (iv) delete attribute, (v)
connect attribute to dimension level, (vi) disconnect attribute from dimension
level, (vii) connect attribute to fact, (viii) disconnect attribute from fact, (ix)
insert classification relationship, (x) delete classification relationship, (xi) insert
fact, (xii) delete fact, (xiii) insert dimension into fact, and, finally, (xiv) delete
dimension.

In [46], the authors suggest a set of primitive dimension update operators
that address the problems of: (i) adding a dimension level, above (generalize) or
below (specialize) an existing level, (ii) deleting a level, (iii) adding or deleting
a value from a level (add/delete instance), or (iv) adding (relate) or removing
edges between parallel levels (unrelate). In [46], the authors also suggest another
set of complex operators, that intend to capture common sequences of changes
in instances of a dimension and encapsulate them in a single operation. The set
of those operators consists of: (i) reclassify (used, for example, when new regions
are assigned to salespersons as a result of marketing decisions of a company), (ii)
split (used, for example, when a region is divided into more regions and more
salespersons must be assigned to those regions due to the population density),
(iii) merge (the opposite of split), and, (iv) update (used, for example, when a
brand name for a set of items changes but the corporation as well as the set of
products related to the brand remain unchanged).

The mappings that the authors propose, for the transitions from the multi-
dimensional to the relational model, support both the de-normalized and nor-
malized relational representations. In the de-normalized approach, the idea is
to build a single table containing all the roll-ups in the dimension while in the
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normalized approach, the idea is to build a table for each direct roll-up in the
dimension.

Finally, in the experiments that the authors conducted, they found that the
structural update operators in the de-normalized representation are more ex-
pensive. The instance update operators in the normalized representation are
more expensive because of the joins that have to be performed, whilst both rep-
resentations are equally good for the operators that compute the net effect of
updates.

In a later work, the authors of [47] suggest a set of operators which encapsu-
late common sequences of primitive dimension updates and define two mappings
from the multidimensional to the relational model, suggesting a solution on the
problem of multidimensional database adaptation.

The effects of evolution to alternative relational logical designs is explored
in [48]. Specifically, the authors explore the impact of changes to both star and
snowflake schemata. The changes covered include (i) the addition of deletion
of attributes to levels, (ii) the addition/deletion of dimension levels, (iii) the
addition/deletion of measures, and (iv) the addition/deletion of dimensions into
fact tables. A notable, albeit expected, result is that comparison of the effect
of changes to the two alternative structures, reveals that the simplest one, star
schema, is more immune to change than the more complicated one.

Summary In Table 4 we summarize the problems and the solutions of the
research efforts that were presented earlier. The first two lines of work refer to
the evolution of multidimensional database schemata and the adaptation of its
contents, and the final effort refers to a comparison of the logical design between
star and snowflake alternatives.

Table 4: Summary table for Section 5.2
Works Problem Input Output Method
[45] Multidimensional

database adapta-
tion

MD schema;
Changes of
schemata

New schema and
instances

Automatic adaptation of multi-
dimensional schema and instances
through simple and complex opera-
tors of an evolution algebra

[46,47] Multidimensional
database adapta-
tion

MD schema;
Changes of
schemata

Normalized or
de-normalized new
(RDBMS) schema

Use of primitive dimension up-
date operators and complex opera-
tors that map the multidimensional
schemata to RDBMS schemata

[48] Evolution of alter-
native relational
logical designs

Changes of
schemata

Comparison of
logical designs to
changes

Perform the changes to both star
and snowflake designs

5.3 Multiversion Querying over Data Warehouses

Once the research community had obtained a basic understanding of how mul-
tidimensional schemata can be restructured, the next question that followed
was: “what if we keep track of the history of all the versions of a data ware-
house schema as it evolves?” Then, we can ask queries that span several versions
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having different structure, also known as multiversion queries. The essence of
multi-version queries involves transforming the data of previous versions (that
obey a previous structure) to the current version of the structure of the data
warehouse, in order to allow their uniform querying with the current data.

In this section, we discuss the adaptation of multiversion data warehouses
[49], the use of data mining techniques in order to detect structural changes
in data warehouses [50,51,52], and, the use of graph representations (directed
graphs) [53], in order to achieve correct cross version queries. We summarize
problems and solutions in a table at the end of the subsection.

Eder and Koncilia [52] propose a multidimensional data model that allows
the registration of temporal versions of dimension data in data warehouses.
Mappings are provided to translate data between different temporal versions
of instances of dimensions. This way, the system can answer correctly queries
that span in periods where dimension data have changed. The paper makes no
assumption on dimension levels, so when referring to a dimension, the paper
implies a flat structure with a single domain. The mappings are described as
transformation matrices. Each matrix is a mapping of data from version Vi to
version Vi+1 for a dimension D. Assume, for example a 2-dimensional cube, in-
cluding dimensions A and B with domains {a1, a2} and {b1, b2} respectively.
Assume that in a subsequent version: (i) a1 is split to a1

1 and a2
1 and (ii) b1 and

b2 are merged into a single value b. Then, there is a transformation matrix for
dimension A, with one row for each old value {a1, a2} and one column for each
new value {a1

1, a2
1, a2} expressing how the previous values relate to the new ones.

For example, one might say that a1
1 takes 30% of a1 and a2

1 takes the other 70%.
The respective matrix is there for dimension B. Then, by multiplying any cube
with A and B as dimensions with the respective transformation matrices, we can
transform an old cube defined over {a1, a2} × {b1, b2} to a new cube defined
over {a1

1, a2
1, a2} × {b}.

So at the end, the resulting factual cube maps the data of the previous version
to the dimension values of the current version; this way, both the current and
the previous version can be presented uniformly to the user.

Eder, Koncilia and Mitsche [50] propose the use of data mining techniques
for the detection of structural changes in data warehouses, in order to achieve
correct results in multi-period data analysis OLAP queries. Making use of three
basic operations (INSERT, UPDATE and DELETE), the authors are able to rep-
resent more complex operations such as: SPLIT, MERGE, CHANGE, MOVE,
NEW-MEMBER, and DELETE-MEMBER. The authors propose several data
mining techniques that detect which is the schema attribute that changed. In
the experiments that were conducted, the authors observed that the quality of
the results of the different methods depends on the quality and the volatility of
the original data.

The same authors continue their previous work on data mining techniques for
detection of changes in OLAP queries in [51]. Since their previous approach was
incapable of detecting some variety of changes, the authors propose data mining
techniques in form of multidimensional outlier detection to discover unexpected
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deviations in the fact data, which suggests that changes occurred in dimension
data. By fixing a dimension member they get a simple two-dimensional matrix
where the one axis is the excluded dimension member. From that matrix, a simple
deviation matrix with relative differences is computed. In this deviation matrix,
the results are normalized to get the probability of a structural change that might
have occurred. The authors propose the 10% as a probability threshold for the
change to have occurred. From the conducted experiments, the authors found
that this method analyzes the data in more detail and gives a better quality of
the detected structural changes.

Some years later, Golfarelli et al. [53] propose a representation of data ware-
house schemata as graphs. The proposed graph represents a data warehouse
schema, in which the nodes are: (i) the fact tables of the data warehouse, and
(ii) the attributes of fact tables (including properties and measures), while the
edges represent simple functional dependencies defined over the nodes of the
schema. The authors also define an algebra of schema graph modifications that
are used to create new schema versions and discuss of how cross-version queries
can be answered with the help of augmented data warehouse schemata. The
authors finally show how a history of versions for data warehouse schemata is
managed.

Since the authors’ approach is based on a graph, the schema modification
algebra uses four simple schema modification operations (M): (i) AddF that adds
an arc involving existing attributes, (ii) DelF that deletes an existing arc, (iii)
AddA that adds a new attribute –directly connected by an arc to its fact node–
and (iv) DelA that deletes an existing attribute. Besides those simple operators,
the authors define the New(S,M) operator that describes the creation of a new
schema, based on the existing schema S when a simple schema modification M
is applied.

The authors introduce augmented schemata to serve multiversion queries.
Each previous version of the data warehouse schema is accompanied by an aug-
mented schema whose purpose is to translate the old data under the old schema
to the current version of the schema. To this end, the augmented schema keeps
track of every new attribute (say A), or new functional dependency (say f). In
order to translate the old data to the new version of the schema, the system
might have to: (i) estimate values for A, (ii) disaggregate or aggregate measure
values depending on the change of granularity, (iii) compute values for A, (iv)
add values for A, or, (v) check if f holds.

The set of versions of the schemata is described by a triple (S, SAUG, t),
where S is a version, SAUG is the related augmented schema and t is the start
of the validity interval of S. This way, the history of the versions of the data
warehouse can be described as a sequence of changes over changes, starting from
the initial schema of the history: H = S0, S

AUG
0 , t0. Since every previous version

is accompanied by an augmented schema that transforms it to the current one,
it is possible to pose a query that spans different versions and translate the
data of the previous versions to a representation obeying the current schema, as
explained above.

24



Practically around the same time, Wrembel and Bebel [49] deal both with
cross-version querying and with the problems that appear when changes take
place at the external data sources (EDS) of a data warehouse. Those problems
can be related to a multi-version data warehouse which is composed of a sequence
of persistent versions that describe the schema and data for a given period of
time. The authors approach has a meta-data model with structures that support:
(i) the monitoring of the external data sources on content and structural changes,
(ii) the automated generation of processes monitoring external data sources,
(iii) the adaptation of a data warehouse version to a set of discovered external
changes, (iv) the description of the structure of every data warehouse version and
(v) the querying of multiple data warehouse versions (cross version querying),
and (vi) the presentation of the output as an integrated result.

The schema change operations that the authors support are: (i) the addition
of a new attribute to a dimension level table, (ii) the removal of an attribute from
a dimension level table, (iii) the creation of a new fact table, (iv) the association
of a fact table with a dimension table, (v) the renaming of a table, and three
more operations that are applicable to snowflake schemata, (vi) the creation of a
new dimension level table with a given structure, (vii) the inclusion of a parent
dimension level table into its child dimension level table, and, (viii) the creation
of a parent dimension level table based on its child level table.

The instance change operations that the authors have worked on, are: (i) the
insertion of a new level instance into a given level, (ii) the deletion of a level
instance, (iii) the change of the association of a child level instance to another
parent level instance, (iv) the merge of several instances of a given level into
one instance of the same level, and (v) the split of a given level instance into
multiple instances of the same level.

In order to query multiple versions, the authors’ method is based on a simple
and elegant idea: the original query is split to a set of single version queries.
Then, for each single version query, the system does a best-effort approach: if,
for example, attributes are missing from the previous version, the system omits
them from the single version query; the system exploits the available metadata
for renames; it can even, ignore a version, if the query is a group by query and the
grouping is impossible. If possible, the collected results are integrated under the
intersection of attributes common to all versions (if this is the case of the query);
otherwise, they are presented as a set of results, each with its own metadata.

Regarding the detection of changes in external data sources, the authors
propose a method that uses wrappers (software modules responsible for data
model transformations). Each wrapper is connected to a monitor (software that
detects predefined events at external data sources). When an event is detected, a
set of actions is generated and stored in data warehouse update register in order
to be applied to the next data warehouse version when the data warehouse
administrator calls the warehouse refresher. The events are divided into two
categories: (i) structure events (which describe a modification in the schema of
the data warehouse) and (ii) data events (which describe a modification in the
contents of a data warehouse). For each event, an administrator defines a set of
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actions to be performed in a particular data warehouse version. The actions are
divided in two categories: (i) messages (which represent actions that cannot be
automatically applied to a data warehouse version) and (ii) operations (for events
whose outcomes can be automatically applied to a data warehouse version). Both
categories of actions do not create a new data warehouse version automatically
but require either the administrator to apply them all in an action definition of
an explicitly selected version, or the actions are logged in a special structure for
manual application of the ones the administrator wants to apply.

Summary In Table 5 we summarize the problems and the solutions of the
research efforts that were presented earlier. The first two lines of work refer to
data translation between the versions of the data warehouse, while the other two
efforts refer to cross-version queries.

Table 5: Summary table for Section 5.3
Works Problem Input Output Method
[52] Data translation

between versions
of DW

History of DW
data

A derivation of
the data of previ-
ous version

Transformation matrices that are
mappings between the different ver-
sions of the DW

[50,51] Data translation
between versions
of DW

History of DW
data; Multi-
period query

A derivation of
the data answer-
ing the multi-
period query

Data mining techniques that identify
DW schema changes and dimension
changes, using a normalized matrix

[53] Data translation
between versions
of DW; Cross-
version queries

History of DW
schema

Mapping of pre-
vious schemata
and data to
current schema

Graphs with a simple algebra that
describes schema changes and aug-
mented schemata to translate the data
from old schemata to current

[49] Cross ver-
sion queries
& changes of
external data
sources

History of DW
schema; Data
providers; Cross
version query

Answer to the
cross version
query

Decompose a query to queries that are
correct at each schema version. For
the evolution of sources, wrappers no-
tify monitors that activate rules that
respond to the change

6 Prospects for Future Research

Handling data and software evolution seems to be a meta-problem that generates
problems in specific subareas of computer science and data management. As
such, we forecast that research problems around the evolution of data and their
structure will never cease to exist.

We have covered the area of logical schema evolution in relational settings,
and data warehouses in particular. The evolution of data at the instance level
and at the evolution of the schema at the physical level has not been covered in
this paper, although both are of great importance.

We also believe that as particular areas of data management have provided
ground for research on the problem of evolution in the past (e.g., Conceptual
Modeling, XML, Object-Oriented databases, etc), the future will include research
efforts in the hot topics of the day, at any given time period. For example, nowa-
days, we anticipate that schema-less data, or data with very flexible structures
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(graphs, texts, JSON objects, etc) will offer ground for research on the manage-
ment of their evolution.

Concerning the area of the impact of evolution to ecosystems, the two main
areas that seem to require further investigation are: (a) the identification of the
constructs that are most sensitive to evolution – ideally via metrics that assess
their sensitivity to evolution, and (b) the full automation of the reaction to
changes by mechanisms like self-monitoring and self-repairing.

We close with the remark that due to the huge importance and impact of
evolution in the lifecycle of both data and software, the potential benefits out-
weight the (quite significant) risk of pursuing research of both pure scientific
nature, in order to find laws and patterns of evolution, and of practical nature,
via tools and methods that reduce the pain of evolution’s impact.
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