
Keep Calm & Wait for the Spike!
Insights on the Evolution of

Amazon Services

Apostolos
Zarras

Panos
Vassiliadis

Ioannis
Dinos

Department of Computer Science &
Engineering

University of Ioannina - Greece
 www.cs.uoi.gr This work was supported from the European Community's

FP7/2007-2013 under grant agreement number 257178
(project CHOReOS).

http://www.cs.uoi.gr/�

Fundamental question

What are the patterns of

web service evolution

from the viewpoint of an

external observer?

Developer concerns

A developer of client applications of
web services wants to know
- should I use this service?
- will the service evolve and how?
- how will this impact my application?

// Create an Amazon SQS queue
CreateQueueRequest createQueueRequest = new CreateQueueRequest("MyQueue");
String myQueueUrl = sqs.createQueue(createQueueRequest).getQueueUrl();
...
//get all the msg's from the queue
ReceiveMessageRequest receiveMessageRequest = new ReceiveMessageRequest(myQueueUrl);
List<Message> messages = sqs.receiveMessage(receiveMessageRequest).getMessages();
...

// Create an Amazon SQS queue
CreateQueueRequest createQueueRequest = new CreateQueueRequest("MyQueue");
String myQueueUrl = sqs.createQueue(createQueueRequest).getQueueUrl();
...
//get all the msg's from the queue
ReceiveMessageRequest receiveMessageRequest = new ReceiveMessageRequest(myQueueUrl);
List<Message> messages = sqs.receiveMessage(receiveMessageRequest).getMessages();
...

Developer concerns

data type change?

web service evolution

signature change?

Deprecated operations?
New alternatives?
Renamings?

External observer

A developer of client applications of web
services is not able to know the internals
of the web service provider

The external observation of the
history of changes is the only
information she has…

Evolution of Dependency Magnets

Contribution

We present patterns of web service
evolution
from the viewpoint of an external
observer

by studying the evolution of AWS
services based on Lehman’s laws of
software evolution

and discuss recommendations for
assessing the future behavior of a w/s

- Method
- Laws
- Recommendations

Roadmap

Setup & History Extraction

Membrane SOA Model: www.membrane-soa.org/

http://www.membrane-soa.org/�
http://www.membrane-soa.org/�
http://www.membrane-soa.org/�

What did we measure

Service Evolution History:

()ChangeSizedateIDr s
i ,,,=

Service Release:

{ }s
N

ss
s rrrH ,,, 21 =

Size: Number of Interfaces, Operations, XML Types
Change: Additions, Deletions, and Updates* of Operations between subsequent rel.

*Operation Updates: (a) changes in their own structure (e.g., attributes,
annotations), or (b) updates in the structure of their constituents (e.g., messages,
XML types).

- Method
- Laws
- Recommendations

Roadmap

Lehman’s laws in a nutshell
 An E-Type software system continuously changes over time (I)

obeying a complex feedback-based evolution process (VIII)
that prohibits the uncontrolled growth of the system (III).

 Positive feedback: due to the need for growth and adaptation
to user needs
 evolution results in an increasing functional capacity of the system (VI),
 produced by a growth ratio that is slowly declining in the long term (V),
 with effort typically constant over phases (with the phases disrupted

with bursts of effort from time to time (IV)).

 Negative feedback: to regulate the ever-increasing growth and
control both the overall quality of the system (VII), with
particular emphasis to its internal quality (II).

6th Law The functional capability of E-type systems must be continually
enhanced to maintain user satisfaction over system lifetime

Criteria A continuous increasing trend in the growth of the
system. We measure the growth of the service as the
number of provided operations:

Validity Holds

Properties There is an increasing trend in the growth of the service operations
 However, the increase is not continuous

()][. OpersSizerrG s
i

s
i =

G
r
o
w
t
h

1st Law An E-type system must be continually adapted, or else it becomes
less satisfactory in use

Criteria Heartbeat of changes during the service evolution history

Validity Holds

Properties Changes are mostly internal and involve the structure of the exported
operations less frequently

 When they do, they involve mostly updates and additions

H
e
a
r
t
b
e
a
t

4th Law The work rate of an organization evolving an E-type system tends to
be constant over the operational lifetime of that system, or phases of
that lifetime

Criteria Indicators like personnel time dedicated to software evolution is typically
unavailable and inaccurate. An approximation suggested by Lehman et al. is
number of changes performed per release

Validity Inconclusive

Properties The amount of changes is not invariant; also, it is not possible to speak
about phases in which the amount of changes remains constant.

 On the other hand, it is not possible to know precisely the work done
behind the scenes

2nd Law As an E-type system is changed its complexity increases and
becomes more difficult to evolve, unless work is done to maintain
or reduce the complexity

Criteria Complement of the ratio of the provided
interfaces to the operations:

Validity Holds

Properties Interface complexity, is high; it smoothly increases over time; usually
the increase is logarithmic.

() []
][.

.1
OpersSizer

InterfacesSizerrC s
i

s
is

i −=

C
o
m
p
l
e
x
i
t
y

7th Law The quality of an E-type system will appear to be declining, unless
rigorously maintained and adapted to operational environment
changes

Criteria The assessment is problematic because the required data are typically not
publicly available .

 Lehman et al. discuss a more general strategy based on induction: quality
decline, follows from functional growth and increasing complexity

Validity Inconclusive

Properties By following the general strategy suggested by Lehman et al. we have
indications that the seventh law holds for the examined services.

 However, there are no concrete qualitative evaluations

3nd Law Global E-type system evolution is feedback regulated

Criteria Demonstrated by patterns in
the incremental growth:

Validity Holds

Properties Two patterns of incremental growth: spikes and calmness periods,
which together indicate the existence of a stabilization mechanism.

 Calmness periods involve internal improvements on documentation,
bug fixing, security patching and extension of programming facilities.

()][.][., 11 OpersSizerOpersSizerrrIG s
i

s
i

s
i

s
i −= ++

I
n
c
r
.

G
r
o
w
t
h

5th Law The incremental growth of E-type systems is constrained by the
need to maintain familiarity

Criteria 1. Releases characterized by high incremental growth, followed by releases
with lower incremental growth

2. Declining trend in the incremental growth of the system, due to the
increasing complexity of the system

Validity Holds

Properties There is no clear declining trend in the incremental growth of the
operations

 However, releases characterized by non-zero incremental growth, tend
to be followed by releases of zero incremental growth.

8th Law E-type evolution processes are multi-level multi-loop, multi-agent
feedback systems

Criteria The actual growth of the
system adheres to the
inverse square (IS)
model

Validity Holds

Properties The growth of the examined Web services can be accurately estimated via
a feedback-based formula that exploits changes in previous service releases

() ()
()

()

() ()() ()211

2
1

1

*

,

s
j

s
j

s
jj

jHs
i

s
i

s
i

rGrGrGE

EavgEwhere
rG

ErGrG
s

−−

−

−

−=

=+=

- Method
- Laws
- Recommendations

Roadmap

Is this service living a healthy life?
Normal life = calm lives with few excitement

(mostly) periods of calmness + add & update spikes

Checklist:
 change heartbeat
 incremental growth

of the service!

Will I have time to absorb changes?
 Check the incremental growth of the service for a simple

pattern:
 releases with changes of the spec (non-zero incremental growth)

followed by
 releases of zero incremental growth

 If yes: there is time to absorb the changes.

Will I have time to absorb changes …
… & learn about new functionalities?
Checklist:
 Is growth increasing with discontinuations?

If you observe that the increase is not continuous: you can

use the interval for the understanding of the new
features.

Will the complexity of the service be a
problem for service usage?
 Complexity assessment is complex!
 More than one types of complexity: specification,

architectural, structural, etc.
 Focus on the one(s) you ‘re interested in!

 Complexity is typically high with the tendency to increase
 … but this can happen in a smooth way …
 Neither panic (refrain from using an otherwise healthy

service), nor relax

Can we forecast …

 … the heartbeat of changes?
 No!
 Prepare (accommodate resources) for the worst.

 … the quality of the service?
 No!
 Again: focus on the quality aspects that you’re interested in!

 … the amount of new functionalities?
 Coarsely, yes!

In summary…

Plan for this in advance

There is time to absorb
the changes

Can eventually deduce
what part of the service
is relevant

 We can monitor web services as
external observers and assess their
evolution patterns

 Normal life: spikes of increase between

calmness
 Few deletions, although a lot of internal

maintenance
 High complexity, but manageable

Keep Calm & Wait for the Spike!

Thank you!

Najlepša hvala!

Keep Calm & Wait for the Spike!

Q & A

My answer to your question is:

YES, I think I can agree with that

Keep Calm & Wait for the Spike!

Q & A

My answer to your question is:

NO, I do not think I can agree

Keep Calm & Wait for the Spike!

Q & A

My answer to your question is:

It’s complicated, let me tell you what
I think…

Keep Calm & Wait for the Spike!

My answer to your question is:
I don’t know about that

…and the only thing I can add is …

Q & A

Keep Calm & Wait for the Spike!

Auxiliary slides

Threats to validity

External Validity
 DO NOT over-generalize the

results to the overall population of
existing Web services

 The findings are representative
of the overall population of
Amazon services

 The assessment approach is
general and can be used to
perform further similar studies.

 The recommendations for
service selection and usage are
general

Construct Validity
 Membrane SOA, for the accurate

construction of evolution histories
 Manual inspection of random samples

of the collected data

Conclusion Validity
 Validation of observed relations and

trends with well-known statistic
methods

What did we measure

Interface Complexity:

() []
][.

.1
OpersSizer

InterfacesSizerrC s
i

s
is

i −=

What did we measure

()][.][., 11 OpersSizerOpersSizerrrIG s
i

s
i

s
i

s
i −= ++

Incremental Growth:

Growth:

()][. OpersSizerrG s
i

s
i =

What did we measure

() ()
()

()
() ()() ()211

2
1

1

*

,

s
j

s
j

s
jj

jH

s
i

s
i

s
i

rGrGrGE

EavgE
where

rG

ErGrG

s

−−

−

−

−=

=

+=

Inverse Square Model:

IS model

() ()
()

()
() ()() ()211

2
1

1

*

,

s
j

s
j

s
jj

jH

s
i

s
i

s
i

rGrGrGE

EavgE
where

rG

ErGrG

s

−−

−

−

−=

=

+=

Keep Calm & Wait for the Spike!

Focaefs+ @ ICWS11
 Present a tool, VTracker for detecting changes
 Analyze AWS EC2, FedEx Rate, FedEx Movement Inf.

Serv., Paypal, Bing Search
 Findings include
 Domination of operation additions in some WS
 Domination of operation updates in some others + some

specific versions of the former group
 Absence of operation deletions

 Taxonomy & discussion of data type changes

Romano & Pinzger @ ICWS12
 Present a tool, WSDLDiff for detecting changes (more

fine-grained than VTracker)
 Analyze AWS EC2, FedEx Rate, FedEx Ship, FedEx Package

Movement Inf. Serv.
 Findings include:
 Domination of operation additions @ AWS
 Domination of operation updates @ Fedex
 Absence of operation deletions
 Too many data type updates in 3 out of 4 services
 Each service comes with its own change profile, where some

type of changes dominates (element additions for EC2,
enumeration additions for Fedex.*)

48

53

58

63

68

73

1 11 21 31 41 51 61 71 81
17
19
21
23
25
27
29

1 5 9 13 17 21 25 29 33 37 41 45

5

10

15

20

1 11

21

31

41

51

61

71

81

91

10
1

11
1

10

30

50

70

1 42

83

12
4

16
5

20
6

24
7

28
8

32
9

37
0

41
1

45
2

49
3

40

60

80

100

120

1 17

31

45

59

73

87

10
1

11
5

12
9

14
3

15
7

58

60

62

64

66

1 12

23

34

45

56

67

78

89

10
0

11
1

12
2

13
3

9

14

19

24

1 10 19 28 37 46 55 64 73 82 91

10

20

30

40

50

1 26

51

76

10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

Skoulis+ @ CAiSE’14: DB Schema evolution

47 http://www.cs.uoi.gr/~pvassil/publications/2014_CAiSE/

Our goal…

We focus on

one of the most successful stories of the
service-oriented paradigm in industry

We perform a principled empirical study that
detects evolution patterns and regularities,

based on Lehman's laws of software evolution

Laws on Software Evolution

● A set of eight rules on the behavior of software as it
evolves

● Derived from a study, due to M. Lehman of proprietary
software (OS/360)

● Almost 40 years of reviewing and evaluation (first three
laws published in 1976)

● Have been recognized for their useful insights as to what
and why evolves in the lifetime of a software system

49

Laws on Software Evolution
I. Continuing change

“An E-Type system must be continually adapted or else it becomes
progressively less satisfactory.”

II. Increasing Complexity
“As an E-type system is changed its complexity increases and becomes
more difficult to evolve unless work is done to maintain or reduce the
complexity.”

III. Self Regulation
“Global E-type systems evolution is feedback regulated.”

IV. Conservation of Organizational Stability
“The work rate of an organization evolving an E-type software system
tends to be constant over the operational lifetime of that system or
phases of that lifetime.”

50

Laws on Software Evolution
V. Conservation of Familiarity

“In general, the incremental growth of E-type systems is constrained by
the need to maintain familiarity.”

VI. Continuing Growth
“The functional capacity of E-type systems must be continually enhanced
to maintain user satisfaction over system lifetime.”

VII. Declining Quality
“Unless rigorously adapted and evolved to take into account changes in
the operational environment, the quality of an E-type system will appear
to be declining.”

VIII. Feedback System
“E-type evolution process are multi-level, multi-loop, multi-agent
feedback systems.”

51

Evolution
of the laws:

1996 vs 2006

52

Keep Calm & Wait for the Spike!

	Keep Calm & Wait for the Spike!�Insights on the Evolution of Amazon Services
	Fundamental question
	Developer concerns
	Developer concerns
	External observer
	Evolution of Dependency Magnets
	Contribution
	Roadmap
	Setup & History Extraction
	What did we measure
	Roadmap
	Lehman’s laws in a nutshell
	Slide Number 13
	Growth
	Slide Number 15
	Heartbeat
	Slide Number 17
	Slide Number 18
	Complexity
	Slide Number 20
	Slide Number 21
	Incr. Growth
	Slide Number 23
	Slide Number 24
	Roadmap
	Is this service living a healthy life?
	Will I have time to absorb changes?
	Will I have time to absorb changes … … & learn about new functionalities?
	Will the complexity of the service be a problem for service usage?
	Can we forecast …
	In summary…
	Keep Calm & Wait for the Spike!
	Slide Number 33
	Keep Calm & Wait for the Spike!
	Keep Calm & Wait for the Spike!
	Keep Calm & Wait for the Spike!
	Keep Calm & Wait for the Spike!
	Keep Calm & Wait for the Spike!
	Threats to validity
	What did we measure
	What did we measure
	What did we measure
	IS model
	Keep Calm & Wait for the Spike!
	Focaefs+ @ ICWS11
	Romano & Pinzger @ ICWS12
	Skoulis+ @ CAiSE’14: DB Schema evolution�
	Our goal…
	Laws on Software Evolution
	Laws on Software Evolution
	Laws on Software Evolution
	Evolution�of the laws:�1996 vs 2006
	Keep Calm & Wait for the Spike!
	Is the amount of new functionalities predictable in some way?

