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APPENDIX A
SUMMARY OF RELATED WORK

Table 5, provides a summary of metrics-driven refac-
toring approaches that have been proposed in the
past and highlights the contribution of our approach
for the cohesion-driven decomposition of service in-
terfaces. Moreover, Table 6, briefly summarizes the
relation between the cohesion metrics that we employ
in our approach, the object-oriented cohesion metrics
surveyed in [21], and the service-oriented cohesion
metrics that have been proposed in [5], [6], [22].

TABLE 5
A summary of metrics-driven refactoring approaches.

Refactoring Purpose Type of relations
Approach
[18] Class coupling Implementation-level
[7] Class cohesion Implementation-level
[8] Class cohesion Implementation-level
[9] Class cohesion Implementation-level
[10] Class coupling, Implementation-level

cohesion
[11] Class coupling, Implementation-level

cohesion
[12] Class coupling, Implementation-level

cohesion,
code complexity

[13] Class coupling, Implementation-level
cohesion,
code complexity

[14] Class coupling, Implementation-level
cohesion, code size

[15] Class coupling, Implementation-level
cohesion, code size,
code complexity

Proposed Service interfaces Interface-level
approach cohesion
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TABLE 6
A summary of cohesion metrics [21], [5], [6], [22].

Implementation-level Interface-level
Class LCOM1, LCOM2, CAMC, NHD,
cohesion LCOM3, LCOM4, SNHD, MMAC

LCOM5, TCC, LCC, CAMC,
DCD, DCI , CC,
SCOM , DMC,
CBMC, LSCC

Service SIIC, SCV SIDC, SISC, SIUC
cohesion Proposed metrics:

LoCmsg , LoCconv , LoCdom

APPENDIX B
ANALYTIC VALIDATION OF COHESION MET-
RICS

In the 90’s, Briand et al. [25] proposed a mathematical
framework for the theoretical validation of cohesion
metrics. Here, we rely on this framework for the
validation of the metrics that we employ for the
cohesion-driven decomposition of service interfaces.
Briefly, in [25], a software system is represented by
a graph S = (E,R), where E is the set of elements
that constitute the system and R ⊆ E × E is a set of
relations between elements. A module of the system
is represented by a graph m = (Em, Rm), where
Em ⊆ E, and Rm ⊆ R. According to Briand et al., a
cohesion metric has to satisfy the following properties:

• Nonnegativity and normalization: The cohesion of
a module m = (Em, Rm) belongs to a specified
interval, i.e., cohesion(m) ∈ [0,M ].

• Null value: The cohesion of a module m =
(Em, Rm) is null if Rm is empty, i.e., Rm = ∅ ⇒
cohesion(m) = 0.

• Monotonicity: Let m = (Em, Rm) and m′ =
(Em, Rm′) be two modules (with the same set
of elements), such that Rm ⊆ Rm′ . Then,
cohesion(m) ≤ cohesion(m′).

• Cohesive modules: Let m1 = (Em1 , Rm1) and m2 =
(Em2 , Rm2) be two unrelated modules and m1∪2

is the union of m1, m2. Then, cohesion(m1∪2) ≤
max(cohesion(m2), cohesion(m2)).
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For brevity, we focus our validation on LoC∗. The
three different refinements of LoC∗ can be validated
identically. Differently from [25], the metrics that we
consider measure the lack of cohesion of service in-
terfaces. Moreover, the interface-level graphs that we
employ are weighted. Hence, we appropriately adapt
the properties that should hold for the proposed
metrics. We begin our validation with the proof of
a supportive lemma, which concerns the similarity
functions that we employ. Then, we prove that LoC∗
satisfies the properties of the Briand et al. framework.

Lemma 1: The similarity functions that we use for
the different notions of cohesion belong to the interval
[0, 1].

Proof: In the case of message-level cohesion, the simi-
larity, OpSmsg(opi, opj), between two operations is the
average of the similarities between the input/output
messages of opi, opj . The similarity, MsgS(mi,mj),
between two messages is measured based on the
message-level graphs Gmi , Gmj of the messages. On
the one extreme, the maximum common subgraph
Gmi∩mj of Gmi , Gmj may be trivial if Gmi , Gmj have
nothing in common. In this case we have:

|Vmi∩mj | = 0 (1)

On the other extreme, Gmi , Gmj may be identical, in
which case we have:

|Vmi | = |Vmj | = |Vmi∩mj | = |Vmi∪mj | (2)

From (1) and (2) we have:

0 ≤ MsgS(mi,mj) ≤ 1 ⇒
0 ≤ OpSmsg(opi, opj) ≤ 1 (3)

In conversation-level cohesion, the similarity
OpSconv(opi, opj) is also an average of message
similarities. Hence:

0 ≤ OpSconv(opi, opj) ≤ 1 (4)

In domain-level cohesion, the similarity OpSdom(opi, opj)
is measured based on the sets of domain-level terms
Topi and Topj . On the one extreme, Topi and Topj may
have nothing in common. In this case we have:

|Topi ∩ Topj | = 0 (5)

On the other extreme, Topi and Topj may be identical,
in which case we have:

|Topi | = |Topj | = |Topi ∪ Topj | = |Topi ∩ Topj | (6)

(5) and (6) imply that:

0 ≤ OpSdom(opi, opj) ≤ 1 (7)

Theorem 1: For a service interface, si, and the
interface-level graph, G∗

si = (Vsi, Esi), that represents
the interface, 0 ≤ LoC∗(si, OpS∗) ≤ 1.

Proof: Based on Lemma 1, for any two operations
opi, opj of si we have:

0 ≤ OpS∗(opi, opj) ≤ 1 (8)

From graph theory we further have:

|Esi| ≤
|Vsi| ∗ (|Vsi| − 1)

2
(9)

Based on (8) and (9) the following holds:

0 ≤
∑

(opi,opj)∈Esi
OpS∗(opi, opj)

|Vsi|∗(|Vsi|−1)
2

≤ 1 ⇒

0 ≤ LoC∗(si, OpS∗) ≤ 1 (10)

Theorem 2: Let si be a service interface, represented
by the interface-level graph, G∗

si = (Vsi, Esi). If Esi =
∅, then LoC∗(si, OpS∗) = 1.

Proof: Given that Esi is empty we have:

Esi = ∅ ⇒
∑

(opi,opj)∈Esi

OpS∗(opi, opj) = 0 ⇒

LoC∗(si, OpS∗) = 1 (11)

Theorem 3: Let si, si′ be two service
interfaces, represented by the interface-level
graphs, G∗

si = (Vsi, Esi), G∗
si = (Vsi, Esi′).

G∗
si and G∗

si′ have the same nodes. Moreover,
Esi ⊆ Esi′ and

∑
(opi,opj)∈Esi

OpS∗(opi, opj) ≤∑
(opi,opj)∈Esi′

OpS∗(opi, opj). Then, LoC∗(si, OpS∗) ≥
LoC∗(si

′, OpS∗).
Proof: Given the initial assumptions of the theo-

rem for si and si′ (i.e., G∗
si and G∗

si′ have the same
nodes, Esi ⊆ Esi′ , and

∑
(opi,opj)∈Esi

OpS∗(opi, opj) ≤∑
(opi,opj)∈Esi′

OpS∗(opi, opj)), the following implica-
tions hold:

∑
(opi,opj)∈Esi

OpS∗(opi, opj)

|Vsi|∗(|Vsi|−1)
2

≤∑
(opi,opj)∈Esi′

OpS∗(opi, opj)

|Vsi|∗(|Vsi|−1)
2

⇒

1−
∑

(opi,opj)∈Esi
OpS∗(opi, opj)

|Vsi|∗(|Vsi|−1)
2

≥

1−
∑

(opi,opj)∈Esi′
OpS∗(opi, opj)

|Vsi|∗(|Vsi|−1)
2

⇒

LoC∗(si, OpS∗) ≥ LoC∗(si
′, OpS∗) (12)

Theorem 4: Let si1, si2 be two unrelated ser-
vice interfaces, represented by the interface-level



IEEE TRANSACTIONS ON SERVICES COMPUTING, JUNE 2013 3

graphs, G∗
si1

= (Vsi1 , Esi1), G∗
si2

= (Vsi2 , Esi2).
Let si1∪2 be the union of si1, si2, represented by,
G∗

si1∪2
= (Vsi1∪2 , Esi1∪2). Then, LoC∗(si1∪2, OpS∗) ≥

max(LoC∗(si1, OpS∗), LoC∗(si2, OpS∗)).
Proof: Without loss of generality, we assume that

si2 is more cohesive than si1. Based on this assump-
tion, we have:

LoC∗(si1, OpS∗) ≥ LoC∗(si2, OpS∗) ⇒∑
(opi,opj)∈Esi1

OpS∗(opi, opj)

|Vsi1 |∗(|Vsi1 |−1)

2

≥∑
(opi,opj)∈Esi2

OpS∗(opi, opj)

|Vsi2 |∗(|Vsi2 |−1)

2

⇒

|Vsi2 | ∗ (|Vsi2 | − 1) ∗
∑
Esi1

OpS∗(opi, opj) ≥

|Vsi1 | ∗ (|Vsi1 | − 1) ∗
∑
Esi2

OpS∗(opi, opj) (13)

Given that si1, si2 are unrelated we have that:

∀(opsi1 , opsi2) ∈ Vsi1 × Vsi2 ,

OpS∗(opsi1 , opsi2) = 0 (14)

From (14) we derive the following for the interface-
level graph G∗

si1∪2
that represents the union of si1, si2:

Vsi1∪2 = Vsi1 ∪ Vsi2 (15)
Esi1∪2 = Esi1 ∪ Esi2 (16)

From (15), (16) we have that:

LoC∗(si1∪2, OpS∗) = (17)

1−
∑

Esi1
OpS∗(opi, opj) +

∑
Esi2

OpS∗(opi, opj)

(|Vsi1 |+|Vsi2 |)∗(|Vsi1 |+|Vsi2 |−1)

2

Given (17), to prove the theorem we have to show
that the following inequality holds:

1−
∑

Esi1
OpS∗(opi, opj) +

∑
Esi2

OpS∗(opi, opj)

(|Vsi1 |+|Vsi2 |)∗(|Vsi1 |+|Vsi2 |−1)

2

≥

1−
∑

(opi,opj)∈Esi1
OpS∗(opi, opj)

|Vsi1 |∗(|Vsi1 |−1)

2

(18)

From (18), with trivial algebraic operations, we derive
the following inequality that must hold to prove the
theorem:

2 ∗ |Vsi1 | ∗ |Vsi2 |+ (19)

|Vsi2 | ∗ (|Vsi2 | − 1) ∗
∑

(opi,opj)∈Esi1

OpS∗(opi, opj) ≥

|Vsi1 | ∗ (|Vsi1 | − 1) ∗
∑

(opi,opj)∈Esi2

OpS∗(opi, opj)

Given that (13) holds, (19) is also true.

APPENDIX C
DECOMPOSITION METHOD TERMINATION &
COMPLEXITY

The analysis of the proposed decomposition method
focuses on two issues. First, we prove that the
cohesion-driven decomposition of service interfaces
terminates. Second, we show that the complexity of
decomposing a given interface with the proposed
method is, in the worst case, cubic to the number of
operations, offered by the given interface.

Theorem 5: Given a service interface si, Algo-
rithm decomposeInterface terminates.

Proof: decomposeInterface performs a number of
iterations, until the size of Q is 0. During each itera-
tion, decomposeInterface picks a service interface ri
from Q. If the cohesion of ri can not be improved, ri
is put in the results set RI . Otherwise, the cohesion
of ri is improved by splitting it in two new interfaces
rr, rs, which are stored in Q. decomposeInterface can
not perform infinite splits because:

• The lower bound for the lack of cohesion of a
service interface is 0 (Theorem 1).

• The lower bound for the number of operations of
a service interface is 1.

Therefore, the size of Q eventually becomes 0 and
decomposeInterface terminates.

Theorem 6: In the worst case, the complexity of
decomposing a service interface, si, is cubic to the
number of operations of si.

Proof: In the worst case scenario,
Algorithm decomposeInterface starts with si
that provides |si.O| operations and results in |si.O|
new interfaces, one per operation. To achieve this,
the algorithm starts with si and splits it in two
new interfaces rr and rs. The new interfaces are
enqueued in Q. In the i-th iteration, one of the
intermediate interfaces, ri is chosen and split again.
Hence, at the end of the i-th iteration, Q contains i+1
new interfaces. Once, the size of Q becomes |si.O|,
there are another |si.O| iterations to dequeue the
interfaces that are held in Q (again in the worst case).
Therefore, in the worst case decomposeInterface
performs 2 ∗ |si.O| iterations.

The two factors that affect the complexity of split-
ting an intermediate interface ri in two interfaces is
the creation (Algorithm createSplinter) and the pop-
ulation (Algorithm populateSplinter) of the splinter
interface rs.

• createSplinter performs |ri.O| iterations to find
the operation, ops, whose removal maximizes the
cohesion improvement of ri. Then, it creates rs
that contains ops, and rr that contains the rest of
the ri operations.
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TABLE 7
Amazon services: Changes per participant: % of
moved operations and % of decomposition size

decrease.

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5
ID % move % DS % move % DS % move % DS % move % DS % move % DS

oper. decr. oper. decr. oper. decr. oper. decr. oper. decr.
A1 01.15 14.81 02.30 03.70 03.45 11.11 02.30 14.81 00.00 07.41
A2 03.70 00.00 00.00 10.00 03.70 10.00 03.70 10.00 00.00 30.00
A3 00.00 00.00 07.41 06.25 07.41 12.50 00.00 00.00 00.00 16.67
A4 04.35 16.67 00.00 16.67 04.35 16.67 04.35 16.67 00.00 00.00
A5 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
A6 00.00 00.00 00.00 00.00 - - 00.00 00.00 00.00 25.00
A7 - - 06.25 00.00 06.25 00.00 12.50 16.67 - -
A8 00.00 16.67 00.00 16.67 00.00 00.00 00.00 16.67 00.00 16.67
A9 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
A10 07.69 00.00 07.69 00.00 15.38 00.00 07.69 00.00 00.00 00.00
A11 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 15.38 00.00

TABLE 8
Yahoo services: Changes per participant: % of moved

operations and % of decomposition size decrease.

Participant 6 Participant 7 Participant 8 Participant 9 Participant 10
ID % move % DS % move % DS % move % DS % move % DS % move % DS

oper. decr. oper. decr. oper. decr. oper. decr. oper. decr.
Y1 00.00 20.00 00.00 00.00 00.00 13.33 - - - -
Y2 00.00 11.11 00.00 00.00 00.00 11.11 03.57 22.22 00.00 33.33
Y3 14.29 00.00 07.14 18.18 10.71 14.29 00.00 14.29 00.00 28.57
Y4 00.00 00.00 13.04 00.00 17.39 12.50 13.04 12.50 00.00 20.00
Y5 - - 00.00 00.00 05.00 18.18 00.00 09.09 - -
Y6 - - 00.00 11.11 00.00 22.22 00.00 11.11 - -
Y7 00.00 00.00 00.00 00.00 00.00 11.11 00.00 11.11 00.00 33.33
Y8 08.33 00.00 16.67 00.00 25.00 14.29 00.00 00.00 08.33 25.00
Y9 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Y10 00.00 25.00 20.00 00.00 00.00 00.00 20.00 00.00 00.00 00.00
Y11 00.00 00.00 00.00 00.00 - - 00.00 00.00 00.00 00.00

• populateSplinter, takes as input the interfaces
rr, rs that result from createSplinter. Hence,
|rr.O| = |ri.O| − 1 and |rs.O| = 1. To improve the
cohesion of the two interfaces populateSplinter
moves operations from rr to rs. In the worst case,
we can have |rr.O| − 1 = |ri.O| − 2 operations
moved, i.e., the outer loop of populateSplinter
performs |ri.O| − 1 iterations. To find the first
operation, the inner loop of populateSplinter per-
forms |ri.O| − 1 iterations. To find the i-th opera-
tion, the inner loop of populateSplinter performs
|ri.O| − 1− i+ 1 iterations, and so on. Therefore,
the overall number of iterations performed is∑|ri.O|−1

i=1 |ri.O|−i =
∑|ri.O|−1

i=1 i = |ri.O|∗(|ri.O|−1)
2 .

Based on the previous analysis, in the worst case
the complexity of decomposing si is O(|si.O|3).

APPENDIX D
INDIVIDUAL PARTICIPANTS’ SUGGESTIONS
FOR IMPROVEMENT

Tables 7, 8 give a detailed summary of the changes
that have been performed by the participants on the
decompositions that they selected. In particular, for
each one of the examined interfaces and each partici-
pant we provide the percentage of the moved opera-
tions (over the size of the examined interface) and the
percentage of the decomposition size decrease.

Overall, the percentage of moved operations ranged
from 1.15% to 15.38% whenever this happened in

Amazon services and 03.57% to 25% for the Yahoo
services. The percentage of the decomposition size
decrease ranged from 3.70% to 25% for Amazon and
11.11% to 33.33% for Yahoo services.
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