
Cohesion-Driven Decomposition of Service
Interfaces without Access to Source Code

Dionysis Athanasopoulos, Apostolos V. Zarras,Member, IEEE, George Miskos,

Valerie Issarny, and Panos Vassiliadis,Member, IEEE

Abstract—Software cohesion concerns the degree to which the elements of a module belong together. Cohesive software is easier to

understand, test and maintain. In the context of service-oriented development, cohesion refers to the degree to which the operations of

a service interface belong together. In the state of the art, software cohesion is improved based on refactoring methods that rely on

information, extracted from the software implementation. This is a main limitation towards using these methods in the case of web

services: web services do not expose their implementation; instead all that they export is the web service interface specification. To

deal with this problem, we propose an approach that enables the cohesion-driven decomposition of service interfaces, without

information on how the services are implemented. Our approach progressively decomposes a given service interface into more

cohesive interfaces; the backbone of the approach is a suite of cohesion metrics that rely on information, extracted solely from the

specification of the service interface. We validate the approach in 22 real-world services, provided by Amazon and Yahoo. We assess

the effectiveness of the proposed approach, concerning the cohesion improvement, and the number of interfaces that result from the

decomposition of the examined interfaces. Moreover, we show the usefulness of the approach in a user study, where developers

assessed the quality of the produced interfaces.

Index Terms—Cohesion, decomposition, service interface

Ç

1 INTRODUCTION

ALICE in the web services world: Alice is an ordinary
Java developer. Some time ago, she discovered the

benefits of using web services for developing software.
Alice finds them very handy. As it is typically done, the
applications that she develops access services via JAX-WS1

proxies, generated from the WSDL specifications of the
services. A JAX-WS proxy looks much like an ordinary Java
class, but its methods delegate calls to service operations
and bring the results back to the application.

However, using services also has its drawbacks. Often,
new versions of the web service interfaces are released
and Alice spends quite some time to test and maintain
her software, when this happens. For instance, one of the
projects that Alice is involved in relies on the Amazon
simple queue service (SQS). 2 SQS facilitates message-
based communication for applications running on the
Amazon Cloud via queues; it provides operations for (a)
the creation and management of message queues, (b) mes-
sage storage and retrieval to/from message queues, (c)
the management of queue access grants, and, (d) the

management of message visibility timeouts. Developers
blend calls to SQS operations in their code to allow their
applications communicate via SQS message queues. Since
2007, the main interface of the service has been changed
more than four times.3 Whenever the MessageQueue

interface changes, the continuous integration develop-
ment platform (CIDP) that is used in Alice’s project traces
that the MessageQueue proxy has changed. Following,
the CIDP rebuilds the whole application and retests all
the classes since they depend on the changed proxy. This
overall process takes too long. Worst, Alice spends much
time on checking the built logs and the test results to find
out which tasks went right, or wrong.

On the back of her head, Alice has an idea that could
save her from this burden. The idea is to split the Messa-

geQueue interface into a set of new interfaces and
develop a corresponding set of surrogate classes that
implement these interfaces (Fig. 1). The methods of the
surrogate classes would then call the actual Message-

Queue operations, via the MessageQueue proxy. Making
the application use the surrogate classes, instead of
directly using the MessageQueue proxy, will decouple
the constituent parts of the application from service oper-
ations that are not actually used in these parts. In this set-
ting, changes to the MessageQueue interface shall affect
certain surrogate classes. Then, only the parts of the
application that use the affected surrogate classes will
have to be re-built and re-tested. In fact, this idea would
be useful for many others that use Amazon SQS. So, Alice
plans to make her new interfaces and the surrogate clas-
ses that implement them available as an open source Java

1. download.oracle.com/otndocs/jcp/jaxws-2_0-fr-eval-oth-JSpec/.
2. aws.amazon.com/sqs/.

� D. Athanasopoulos, A.V. Zarras, G. Miskos, and P. Vassiliadis are with
the Department of Computer Science, University of Ioannina, Greece.
E-mail: {dathanas, zarras, pvassil}@cs.uoi.gr, gmiskos@gmail.com.

� V. Issarny is with the INRIA Research Center of Paris-Rocquencourt,
France. E-mail: Valerie.Issarny@inria.fr.

Manuscript received 1 July 2013; revised 27 Dec. 2013; accepted 6 Feb. 2014.
Date of publication 10 Mar. 2014; date of current version 7 Aug. 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2014.2310195 3. aws.amazon.com/articles/Amazon-SQS/1148.

550 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 4, JULY/AUGUST 2015

1939-1374� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

API. Alice thinks that the same idea could also be useful
in the case of services that provide a large number of
operations. Amazon EC2,4 for instance, provides 87 oper-
ations grouped in a single interface. Similarly, Yahoo
KeywordService5 provides 34 operations, grouped in a
single interface. The decomposition of such large interfa-
ces could be used to develop APIs that provide the devel-
opers with higher-level views of what the services do.

Having in mind a larger community of developers that
could benefit from her idea, puts Alice into deeper
thoughts about the proper splitting of service interfaces.
The decomposition of service interfaces should be done in
a principled way. Alice recalls the fundamental notion of
cohesion. In general, software cohesion refers to the degree
to which the elements of a module belong together [1]. Cohe-
sive software is easier to understand, test and maintain.
In the case of web service interfaces, the splitting should
rely on a certain notion of cohesion that reflects the relat-
edness of the operations which are grouped in the same
interface [2], [3], [4], [5], [6].

Technical challenge. Unfortunately, Alice cannot obtain
her desideratum of splitting a service interface into a set of
cohesive interfaces via the state of the art cohesion-driven
refactoring methods [7], [8], [9], [10], [11], [12], [13], [14],
[15]. On the one hand, like all web services, the ones that
Alice uses do not expose their internals, i.e., their source code; on
the contrary, the very philosophy of web services dictates
that all that is exported by a web service is the web service
interface specification. On the other hand, the cohesion-driven
refactoring methods are tailored to operate by taking the
source code into consideration. To overcome this problem,
in this paper we propose an approach that facilitates the
cohesion-driven decomposition of service interfaces, without infor-
mation on how the services are implemented.

Contribution. The backbone of our approach is a suite of
cohesion metrics for service interfaces. Specifically, to keep
our approach independent from the way that cohesion is
measured, we introduce a generic cohesion metric that quan-
tifies the degree to which the operations of a service inter-
face are related, based on interface-level relations, extracted
from the service interface specification. Following, we

reformulate the metrics of [6], as refinements of the generic
cohesion metric; the lack of message-level cohesion
(LoCmsg) and the lack of conversation-level cohesion
(LoCconv), account for interface-level relations, between
operations that have similar types of inputs/outputs. We
further extent [6], with a new metric, which is also intro-
duced as a refinement of the generic cohesion metric;
the lack of domain-level cohesion (LoCdom), considers
interface-level relations, between operations that are char-
acterized by similar domain-level terms, which are
extracted from the names of the operations. Our cohesion-
driven decomposition method accepts as input a cohesion
metric and a service interface. The given interface is pro-
gressively split into more cohesive interfaces. If it is no lon-
ger possible to produce more cohesive interfaces, the
decomposition stops.

We have validated the proposed approach in 22 case
studies that concern services provided by Amazon and
Yahoo. We have evaluated the effectiveness of our approach
concerning the cohesion improvement, and the number of
interfaces that result from the decomposition of the exam-
ined interfaces. Moreover, we have assessed the usefulness
of the approach in a user study, where developers evaluated
the quality of the produced interfaces, as well as the success
of each of the proposed cohesion metrics.

The rest of this paper is structured as follows. In Section 2,
we discuss our contribution with respect to the state of the
art. In Section 3, we present our metrics suite. In Section 4,
we detail the modus operandi of the decomposition method.
In Section 5, we discuss the results that we obtained. Finally,
in Section 6 we summarize our contribution and discuss the
future perspectives of this work.

2 RELATED WORK

In this section, we discuss in further detail the contribution
of our approach with respect to the state of the art. More
specifically, in Section 2.1 we discuss the relation of our
approach with previous efforts on software refactoring.
Then, in Section 2.2 we focus on cohesion metrics that
have been proposed in the object-oriented and the service-
oriented paradigms.

2.1 Refactoring

Refactoring is a behavior preserving changing process
that improves the quality of a software system [16]. For
an excellent survey on refactoring the interested reader
may refer to [17].

Our approach, is more closely related to metrics-driven
refactoring methods, which employ metrics to discover
and repair design problems. To achieve this goal, the
state of the art methods rely on implementation-level rela-
tions, derived from source code (Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSC.2014.2310195,
Table 5). Specifically, in [18], Harman and Tratt focus on
the improvement of coupling. To this end, they rely on
dependencies between classes, quantified based on the
well-known CBO metric [19]. In [8], [9] and [7], the goal is
to improve the cohesion of classes, by taking into account
relations between class methods and attributes (or other

Fig. 1. A client application that relies on a cohesive decomposition of the
MessageQueue interface.

4. aws.amazon.com/ec2/.
5. developer.searchmarketing.yahoo.com/docs/V6/reference/

services/.

ATHANASOPOULOS ET AL.: COHESION-DRIVEN DECOMPOSITION OF SERVICE INTERFACES WITHOUT ACCESS TO SOURCE CODE 551

methods), used by the methods. Certain approaches con-
sider the improvement of multiple quality properties. In
particular, the methods proposed in [10] and [11] focus on
both coupling and cohesion. The methods proposed in
[12], [13] account for coupling, cohesion and code complex-
ity. In [14] the proposed method considers the improve-
ment of coupling, cohesion and code size. Finally, the
method proposed in [15] accounts for coupling, cohesion,
code complexity and size.

Concerning their modus operandi, the metrics-driven
refactoring methods can be divided in two categories. In
the first category, the methods require more involvement
from the developer [7], [8], [13]. In particular, based on
the values of the metrics that are considered, the methods
identify possible refactorings that can improve the values
of the metrics. Following, the developer is supposed to
select and apply the refactoring that suits his/her prefer-
ences. In the second category, the methods do more work
on behalf of the developer. These methods consider the
refactoring as an iterative process. As long as the design
of the classes can be improved the refactoring process
keeps going. The algorithms that are used to realize the
refactoring process vary. We have methods that rely on
meta-heuristic optimization algorithms (e.g., hill-climbing
[14], [18], simulated annealing [14], genetic algorithms
[10], [12], [15]). Moreover, we have methods that are
based on clustering [9].

Concerning the state of the art, our approach is the first one
that deals with the cohesion-driven decomposition of service inter-
faces. We address this problem without assuming knowledge
on how the services are implemented. Instead, we rely on inter-
face-level relations, extracted from the specification of the ser-
vice interfaces.

2.2 Cohesion Metrics

In the early 90’s Chidamber and Kemerer proposed the
well-known LCOM metric (Lack of Cohesion of Methods)
for measuring the cohesion of object-oriented software [19].
The interested reader may refer to [20] and [21] for two
detailed surveys of the cohesion metrics that have been pro-
posed since the seminal work of Chidamber and Kemerer.
In the service-oriented paradigm, cohesion was recognized
as an important principle of service design in several
approaches that concern the overall service-oriented devel-
opment methodology [2], [3], [4]. The first efforts for mea-
suring cohesion have been made in the work of
Perepletchikov et al. [5]. The first study that investigated
the issue of cohesion in the case of real-world services is
reported in Athanasopoulos and Zarras [6]. Finally, another
interesting work that concerns the cohesion of services is
presented in [22].

In the object-oriented paradigm, the majority of the
cohesion metrics measure the degree to which the meth-
ods of a class are related based on implementation-level
relations (Appendix A, available in the online supplemen-
tal material, Table 6). Two class methods are considered
as being related if they use common class attributes (or
methods). In the object-oriented paradigm, we also have
cohesion metrics that assess the relatedness of methods
based on interface-level relations. In these metrics, two

methods are considered as being related if they have
parameters of the same type.

In the service-oriented paradigm, the SIIC metric [5]
measures the relatedness of service operations, with
respect to implementation-level relations. The value of
SIIC for a service is the fraction of the number of the com-
mon service implementation elements used by the service
operations, over the total number of service implementa-
tion elements used by the service operations. Similarly, the
SCV metric [22] also relies on implementation-level rela-
tions. The value of SVC for a service is the normalized sum
of the relatedness values that characterize the business
entities, used by the service operations. A business entity
is an information entity used by the service operation; the
relatedness between business entities is calculated using a
mathematical method called singular value decomposition
(SVD). SIDC and SISC [5] rely on interface-level relations.
In particular, the value of SIDC for a service is the normal-
ized sum of the pairs of service operations that have at
least one input parameter type in common, and the pairs
of service operations that have the same return type. The
value of SISC is the fraction of the pairs of service opera-
tions that have sequential dependencies, over the total
number of pairs; a sequential dependency signifies that the
output of one operation satisfies the input of another oper-
ation. The SIUC metric [5], also operates at the interface-
level. The value of SIUC for a service is the normalized
sum of the number of service operations that are used by
the clients of the service.

Our cohesion metrics focus on interface-level relations,
because implementation-level information is typically not
exposed by the services. For the same reason, we do not
consider information concerning the usage of operations by
the service clients. LoCmsg and LoCconv are more closely
related with SIDC and SISC, in the sense that these metrics
also focus on the input/output parameters of service opera-
tions. SIDC and SISC consider equality between parameter
types. On the other hand, LoCmsg and LoCconv consider simi-
larity between parameter types. The LoCdom metric follows a
completely different direction for measuring the cohesion of
service interfaces, as it relies on relations between opera-
tions that are characterized by similar domain-level terms,
which are extracted from the names of the operations.

The specification of service interfaces may further
include ontology-based annotations (e.g., SA-WSDL6). At
this stage, our metrics take into account the parts of the
specification of service interfaces, concerning their names
and input/output parameters. Nevertheless, the extension
of the metrics to account for ontology-based annotations is
an interesting issue for future research that can be achieved
based on the recent advances in the field of ontology-based
similarity and cohesion metrics (e.g., [23]).

From a broader perspective, our metrics are related with
similarity-based cohesion metrics that have been employed
in document clustering techniques (e.g., [24]). Nevertheless,
the specification of a service interface is a document that
has a specific structure and semantics and our metrics are
tailored to these aspects.

6. www.w3.org/2002/ws/sawsdl/.

552 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 4, JULY/AUGUST 2015

3 INTERFACE-LEVEL COHESION METRICS

In this section, we focus on the cohesion metrics that
we employ for the decomposition of service interfaces. In
Section 3.1, we introduce a generic cohesion metric, LoC�, that
quantifies the lack of cohesion of a service interface, based
on a generic similarity function, OpS�, between operations. In
Section 3.2, we define three concrete refinements of the
generic cohesion metric that rely on corresponding concrete
similarity functions, which account for different kinds of
interface-level relations between operations. In Appendix B,
available in the online supplemental material, we validate
the metrics with respect to the theoretical framework of
Briand et al. [25].

3.1 Basic Concepts

Our overall approach for measuring cohesion is based on a
generic view of the notion of service interface, which is
given in the following definition.

Definition 1 (Service Interface). A service interface, si, is char-
acterized by a name and a set of operations, si:O (Table 1(1)).
An operation is characterized by a name, an input message
and an output message (Table 1(2)). A message is a set of
parameters (Table 1(3)). Each parameter has a name and a
type, which may be either an XML build-in type, or an XML
complex type (Table 1(4)).

To measure cohesion, we further employ the concept of
interface-level graph, which represents the interface-level
relations between the operations of a given service interface.
In general, two operations are related if their properties
(e.g., names, parameters) are similar to some extent, accord-
ing to a particular similarity function. More formally, the
definition of the interface-level graph, with respect to a
generic similarity function, OpS�, is given below.

Definition 2 (Interface-LevelGraph).An interface-level graph,
G�

si ¼ ðVsi; Esi; OpS�Þ, for a service interface, si, and a similar-
ity function, OpS� : si:O� si:O ! ½0; 1� that reflects the
degree to which the operations of si are related, is a weighted
graph with the following properties (Table 1(5)): (a) the nodes,
Vsi, of the graph represent the operations of si; (b) the edges,Esi,
of the graph represent interface-level relations between pairs of
operations; (c) an edge, ðopi; opjÞ, belongs to Esi, iff
OpS�ðopi; opjÞ > 0; the weight that characterizes the edge is
OpS�ðopi; opjÞ.
Ideally, a service interface, si, would be fully cohesive if

every operation of si is related with all the others and the

similarity between every pair of operations is maximum
(Fig. 2, left). To this end, we define an ideal interface-level
graph as follows.

Definition 3 (Ideal Interface-Level Graph). The ideal inter-
face-level graph G�

ideal ¼ ðVsi; Eideal; OpS�Þ for a service inter-
face, si, has two properties: (1) G�

ideal is complete; (2) for all,
ðopi; opjÞ 2 Eideal; OpS�ðopi; opjÞ ¼ 1.

Intuitively, the lack of cohesion for a service interface, si,
measures the amount of transformation that the actual inter-
face-level graph G�

si ¼ ðVsi; Esi; OpS�Þ of si (Fig. 2, right)
must withstand to become identical to the ideal graph,
G�

ideal (Fig. 2, left). This practically amounts to adding the
missing edges and complementing the weights of the exist-
ing edges to become equal to 1.

Definition 4 (Lack of Interface-Level Cohesion). The lack of

cohesion of a service interface si, LoC�ðsi; OpS�Þ, is defined as
the relative difference between the ideal interface-level graph,

G�
ideal, and the interface-level graph, G�

si, as follows:

LoC�ðsi;OpS�Þ¼
jEideal j�

P
ðopi;opjÞ2Esi

ðOpS�ðopi;opjÞÞ
jEideal j .

Given that jEidealj ¼ jVsij�ðjVsij�1Þ
2 , with simple algebraic cal-

culations we get the formula that is given in Table 1(6).

3.2 Metrics Definitions

The proposed cohesion metrics refine the generic definition
of LoC� that was given in Section 3.1. In particular, the defi-
nitions of the metrics that we provide in the following para-
graphs employ the notion of interface-level graph; the
interface-level graph that is used for each metric relies on a
different similarity function between operations.

3.2.1 Message-Level Cohesion

The notion of message-level cohesion assumes that two opera-
tions are related if their input (respectively, output) mes-
sages are similar. To measure the similarity between two
messages we employ the notion of message-level graph that is
defined below.

Definition 5 (Message-Level Graph). A message-level graph,
Gm ¼ ðVm;EmÞ, for a message, m, is a graph representation of
the structure ofm. The nodes of Vm are partitioned in three dis-
joint subsets Vm ¼V m

m [V p
m [V t

m, defined as follows: (a)
V m
m ¼fvmg, a single node representing the message itself, (b)

V p
m, a set of nodes, one per parameter of the message, and, (c)

V t
m, a set of nodes representing the elements of the structure of

the parameter types. All edges of the graph, Em denote whole-
part relationships.

TABLE 1
Basic Concepts

Fig. 2. The meaning of LoC�.

ATHANASOPOULOS ET AL.: COHESION-DRIVEN DECOMPOSITION OF SERVICE INTERFACES WITHOUT ACCESS TO SOURCE CODE 553

An explanation of Definition 5 is also worth here, con-
cerning the types of the parameters: V t

m includes nodes that
represent primitive XML elements, or complex XML ele-
ments that consist of further (primitive or complex) XML
elements. Bear in mind, that due to the XML nature of these
types, they can contain cycles (thus, in general, they are
graphs and not trees). Moreover, note that as in [6] nodes
that correspond to generic meta-data elements are not
included in a message-level graph, because they are not
related to a particular service functionality.

Intuitively, two messages are similar if they have com-
mon parameters, or similar types of parameters. As parame-
ter types are complex XML elements, whose specification
comprises references to common subordinate (primitive or
complex) XML elements, the message-level graphs of two
similar messages contain a common subgraph that reflects
the degree to which they are similar.

Definition 6 (Message Similarity). The similarity between the
two messages, mi, mj, (Table 2(1)) is measured with respect to
the message-level graphs, Gmi

, Gmj
, of mi, mj. Specifically, let

Gmi\mj
¼ ðVmi\mj

; Emi\mj
Þ denote the maximum common

subgraph of Gmi
, Gmj

that represents a syntactically correct
XML schema. Moreover, letGmi[mj

¼ ðVmi[mj
; Emi[mj

Þ be the
union of Gmi

, Gmj
(i.e., Vmi[mj

¼ Vmi
[Vmj

and Emi[mj
¼

Emi
[Emj

). Then, the similarity, MsgSðmi;mjÞ, between mi

andmj is the number of nodes ofGmi\mj
, divided by the number

of nodes ofGmi[mj
.

The maximum common subgraph problem involves
finding the largest subgraph of a graph Gmi

that is isomor-
phic to a subgraph of a graph Gmj

[26]. Solving the problem
for two message-level graphs is simple; we match each sub-
set of the nodes of Gmi

to its respective subset of Gmj
; as the

nodes are uniquely labeled, the isomorphism is directly
deduced by the nodes’ labels.

Taking a step further, we define the message-level simi-
larity between two operations as follows.

Definition 7 (Message-Level Operation Similarity). The
message-level similarity, OpSmsg, between two operations,
opi; opj 2 si:O of a service interface, si, is the average of
(Table 2(2)):

1) the similarity between the input messages of opi and
opj and

2) the similarity between the output messages of opi and
opj.

Taking the example of Amazon SQS, Fig. 3a shows
the message-level graph for the input message of the
GetQueueAttributes operation. The GetQueueAttri-

butesRequestMsg node represents the message. The
GetQueueAttributes node is a parameter that comprises
a sequence of attributes. The Attribute node represents a
primitive XML string element. Fig. 3a, further gives the
message-level graph for the output message of the Get-

QueueAttributes operation. The GetQueueAttribu-

tesResponseMsg node represents the message. The
GetQueueAttributes node represents a parameter that
comprises a sequence of attribute value pairs. The Attrib-
utedValue node represents a complex XML element,
which consists of two primitive XML string elements, repre-
sented by the Attribute and the Value nodes. Similarly,
Fig. 3b gives the message-level graphs for the input and the
output messages of the SetQueueAttributes operation.

The maximum common subgraph for the message-level
graphs of the two input messages comprises only the
Attribute node. The union of the two graphs consists of
seven nodes. Hence, the similarity between the two input
messages is 1

7. On the other hand, the message-level graphs
of the two output messages have nothing in common.
Thus, the similarity between the two output messages is 0.
Overall, the message-level similarity between the two
operations is

1
7þ0

2 .
Based on the message-level similarity between opera-

tions, we refine the LoC� metric.

Definition 8 (Lack of Message-Level Cohesion). For a ser-
vice interface, si, the lack of message-level cohesion,
LoCmsgðsiÞ, is an alias for LoC�ðsi; OpSmsgÞ. Specifically,
LoCmsgðsiÞ measures the relative difference between the inter-
face-level graph, Gmsg

si ¼ ðVsi; Esi; OpSmsgÞ, defined based on
the message-level similarity function, OpSmsg, and the ideal
interface-level graph, Gmsg

ideal.

TABLE 2
Similarity Functions

Fig. 3. Examples of message-level graphs for MessageQueue.

554 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 4, JULY/AUGUST 2015

Fig. 4, gives the interface-level graph for the Message-

Queue interface that is derived with respect to OpSmsg. For
presentation purposes the edges’ width is proportional to
the similarity between the operations. We see that the graph
is not complete. Moreover, the message-level relations
between the operations are weak; the similarities between
the operations range from 0.07 to 0.21. Overall, the lack of
message-level cohesion is LoCmsgðMessageQueueÞ ¼ 0:98.

3.2.2 Conversation-Level Cohesion

The notion of conversation-level cohesion assumes that an
operation is related with another if the former’s input
(respectively output) message is similar with the latter’s
output (respectively input) message. More formally, we
define the conversation-level similarity between two opera-
tions as follows.

Definition 9 (Conversation-Level Operation Similarity).
The conversation-level similarity between two operations,
opi; opj 2 si:O, of a service interface, si, is the average of
(Table 2(3)):

1) the similarity between the input message of opi and the
output message of opj and

2) the similarity between the output message of opi and
the input message of opj.

Returning to our example, the input message of Get-

QueueAttributes (Fig. 3a) and the output message of

SetQueueAttributes (Fig. 3b), have nothing in common.

On the other hand, the maximum common subgraph for the

output message of GetQueueAttributes and the input

message of SetQueueAttributes includes three nodes

(AttributedValue, Attribute and Value). Hence, the

conversation-level similarity between the two operations is
3
7þ0

2 .
Given the conversation-level similarity between opera-

tions, we introduce the following refinement of the LoC�
metric.

Definition 10 (Lack of Conversation-Level Cohesion). For a
service interface, si, the lack of conversation-level cohesion,
LoCconvðsiÞ, is an alias for LoC�ðsi; OpSconvÞ. In particular,
LoCconvðsiÞ measures the relative difference between the inter-
face-level graph, Gconv

si ¼ ðVsi; Esi; OpSconvÞ, defined with
respect to the conversation-level similarity function, OpSconv,
and the ideal interface-level graph, Gconv

ideal.

Regarding our example, the interface-level graph that
shows the conversation-level relations for the Message-

Queue interface is given in Fig. 5. As in the case of message-
level cohesion, the graph is not ideal. The overall lack of con-
versation-level cohesion is LoCconvðMessageQueueÞ ¼ 0:98.

3.2.3 Domain-Level Cohesion

The basic intuition behind the notion of domain-level cohesion
is that the names of the operations that are provided by a
service reflect what these operations do. More specifically,
the names of the operations comprise terms that correspond to
certain actions (e.g., set, get) and terms that correspond to con-
cepts of the domain that is targeted by the service (e.g., queue,
attribute, message). Based on this intuition, two operations
are considered as being related if their names share
domain-level terms.

In our approach, we assume that the names of the opera-
tions follow standard naming conventions of widely
adopted coding styles; we extract the domain-level terms
from the names of the operations based on this assumption.
Following standard naming conventions is quite typical in
practice in the case of major service providers. For instance,
the Amazon services follow the PascalCase coding style7

(the names of operations are sequences of terms with the
first letter of each term being capitalized). On the other
hand, the Yahoo services follow the Java coding style.8

Then, we measure the domain-level similarity between two
operations with the following similarity function.

Definition 11 (Domain-level Operation Similarity). Let Topi

and Topj denote the sets of the domain-level terms that are
extracted from the names of two operations, opi; opj 2 si:O, of
a service interface, si. The domain-level similarity between the
two operations (Table 2(4)) is the Jaccard similarity for Topi

and Topj (i.e., the size of the intersection divided by the size of
the union of Topi and Topj).

Getting back to our example, the name of GetQueueAt-
tributes consists of the action term Get, which is related
with two domain-level terms, Queue and Attributes.
The name of SetQueueAttributes comprises the action

Fig. 4.Gmsg
MessageQueue for MessageQueue.

Fig. 5. Gconv
MessageQueue for MessageQueue.

7. msdn.microsoft.com/en-us/library/x2dbyw72(v=vs.71).aspx.
8. www.oracle.com/technetwork/java/codeconventions-135099.

html.

ATHANASOPOULOS ET AL.: COHESION-DRIVEN DECOMPOSITION OF SERVICE INTERFACES WITHOUT ACCESS TO SOURCE CODE 555

term Set, which is also related with Queue and Attrib-

utes. Therefore, the domain-level similarity between the
two operations is 2

2.
The refinement of the LoC� metric, with respect to the

domain-level similarity between two operations, is given
below.

Definition 12 (Lack of Domain-Level Cohesion). The lack of
domain-level cohesion, LoCdomðsiÞ, for a service interface, si,
is an alias for LoC�ðsi;OpSdomÞ. LoCdomðsiÞ measures the
relative difference between the interface-level graph, Gdom

si ¼
ðVsi; Esi; OpSdomÞ, defined with respect to the domain-level
similarity function, OpSdom, and the ideal interface-level
graph, Gdom

ideal.

Concerning our example, in Fig. 6, we have the interface-
level graph that shows the domain-level relations for the
MessageQueue interface. As in Figs. 4 and 5 the graph is
not complete. However, the domain-level relations are gen-
erally strong; the similarities between operations range
from 0.3 to 1. Overall, the lack of domain-level cohesion is
LoCdomðMessageQueueÞ ¼ 0:81.

4 COHESION-DRIVEN DECOMPOSITION

In this section, we detail the method that exploits the met-
rics defined in Section 3 for the cohesion-driven decomposi-
tion of service interfaces. Moreover, in Appendix C,
available in the online supplemental material, we provide a
complementary analysis that concerns the stopping criteria
and the complexity of the method.

From a broader perspective, the decomposition of a
given service interface, si, into a set of more cohesive inter-
faces is a combinatorial optimization problem. The com-
plexity of finding the optimal solution to this problem is
exponential, since the powerset, 2si:O, of the set of opera-
tions of si should be examined. To deal with this issue, we
employ a greedy approach, which progressively splits si in
more cohesive interfaces (Algorithm 1). Note that although
we assume as input a single service interface, the method
can be easily applied in the case of a service that provides
multiple interfaces. In such a case, the interfaces of the

service can be merged into a single interface. Then, this
interface can be given as input to the cohesion-driven
decomposition method. As the decomposition proceeds, si
is split in several interfaces, all of which are candidates to
be further divided. To this end, we employ a queue, Q,
which contains the interfaces that are candidates for decom-
position (Algorithm 1, line 1). Initially, Q contains only the
given interface, si (Algorithm 1, line 2). During each step
(Algorithm 1, lines 4-16), the method dequeues from Q an
intermediate interface ri and checks whether it is possible to
improve the cohesion of ri, by removing a set of operations,
which form a new interface rs. Hereafter, we use the term
splinter interface to refer to rs, while rr denotes the interface
that comprises the rest of the operations of ri.

The construction of the splinter interface takes place in
two phases. The first phase, called createSplinter, checks
if it is possible to improve the cohesion of ri, by removing
an operation (Algorithm 1, line 8). If this phase fails
to find such an operation, ri is inserted in the results set,
RI (Algorithm 1, lines 9-10). Otherwise, the splinter inter-
face, rs, that contains the operation is returned as a result
of createSplinter, along with the interface rr that contains
the remaining operations of ri. The second phase, called
populateSplinter, further improves the cohesion of rs and
rr, by moving operations from rr to rs (Algorithm 1,
line 12). Finally, the two interfaces, rs, rr are inserted in Q
(Algorithm 1, line 13).

In further detail, the two phases of the decomposition are
discussed below.

The createSplinter phase accepts as input the intermedi-
ate interface, ri, that is picked from Q (Algorithm 2). Follow-
ing, it iterates over the operations of ri (lines 5-12). Each
iteration checks whether the removal of a single operation,
opi, from ri improves the cohesion of the interface (line 8).
To this end, the removal of opi is simulated with the help of
a temporary interface, rtmp. Moreover, each iteration keeps
track of the maximum cohesion improvement, dmax, that can
be achieved, and of the operation, ops, that should be
removed to achieve this improvement (lines 8-11). After this
iterative process, if dmax > 0, the splinter interface, rs, that
contains ops is created, along with the interface, rr that con-
tains the remaining operations of ri (lines 13-16). The two

Fig. 6.Gdom
MessageQueue for MessageQueue.

556 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 4, JULY/AUGUST 2015

new interfaces are returned as the results of createSplinter
(line 17). On the other hand, if is not possible to improve the
cohesion of ri, by removing an operation (i.e., dmax ¼ 0), the
results of createSplinter are null.

The populateSplinter phase accepts as input the interme-
diate interface, ri, and the newly created interfaces, rs, rr
(Algorithm 3). Then, it repeatedly moves operations from rr
to rs (lines 8-27) as follows:

� The populateSplinter iterates over the operations of
rr (lines 11-23). Each iteration checks if an operation,

opi, can be moved from rr to rs. To perform this
check, the movement of the operation is simulated
with the help of two temporary interfaces, rrtmp , rstmp .
In particular, rrtmp is employed to calculate the cohe-
sion improvement, drr , that can be achieved for rr, if
the operation is moved (lines 12-14). Similarly, rstmp

is employed to calculate the cohesion improvement,
drs , that can be achieved for rs (lines 15-17). The oper-
ation, opi, is considered as a candidate to be moved if
the following conditions hold (line 18): (a) the cohe-
sion of rr, after the move, is improved, i.e., drr > 0,
(b) the cohesion of rs, after the move, is also
improved, i.e., drs > 0, and (c) the lack of cohesion
of rs, after the move, is smaller than the lack of cohe-
sion of the intermediate interface ri that was picked
from Q. Each iteration further keeps track of the total
cohesion improvement that can be achieved, by
moving opi, from rr to rs. Moreover, it keeps track of
the operation ops that maximizes the total cohesion
improvement that can be achieved (lines 19-21).

� The operation, ops, that maximizes the total cohesion
improvement, dtotal, ismoved fromrr to rs (lines24-26).

� The whole process stops when ops ¼ null (line 27)
and the updated rs, rr are returned (line 28).

Back to our example, Figs. 7, 8 and 9, give the three
different decompositions of MessageQueue that result
based on LoCmsg, LoCconv and LoCdom, respectively.9 In
particular, the message-level decomposition of Messa-

geQueue consists of six interfaces. The average lack of
message-level cohesion of the interfaces is 0,92. Hence,
an improvement has been made compared to the initial
interface (Fig. 4), but the improvement is small. This
result is anticipated because the message-level relations
between the operations of MessageQueue are not strong
(Fig. 4). The conversation-level decomposition consists of
seven interfaces. The average lack of conversation-level
cohesion in this case is 0.88. Again, the improvement
compared to the initial interface is small, because the
conversation-level relations between the operations of
MessageQueue are not strong (Fig. 5). The domain-level

Fig. 7. Decomposition of MessageQueue, based on LoCmsg.

Fig. 8. Decomposition of MessageQueue, based on LoCconv.

Fig. 9. Decomposition of MessageQueue, based on LoCdom.

9. The input to the method was the 2007 version of the interface,
aws.amazon.com/articles/Amazon-SQS/1148.

ATHANASOPOULOS ET AL.: COHESION-DRIVEN DECOMPOSITION OF SERVICE INTERFACES WITHOUT ACCESS TO SOURCE CODE 557

decomposition of MessageQueue consists of four inter-
faces and the average lack of domain-level cohesion is
0.13. The improvement in this case is high, since the
domain-level relations between the operations of Messa-
geQueue are quite strong (Fig. 6).

In the case of LoCdom, the detailed execution of
Algorithm 1 consists of three main steps. In the first step,
the general queue management operations (Delete-
Queue, SetQueueAttributes and GetQueueAttri-

butes) are removed from MessageQueue. These
operations constitute the splinter interface, rs1 (in Fig. 1,
this interface appears with the name QueueMgt). The
remaining operations form rr1 . Overall, the lack of cohe-
sion of rs1 is 0:33, while the lack of cohesion of rr1 is 0.72.
In the second step, rr1 is decomposed. In particular, the
timeout management operations (GetVisibilityTime-
out and SetVisibilityTimeout) are removed from
rr1 , and the splinter interface, rs2 , is formed (in Fig. 1, this
interface is called TimeoutMgt). The rest of the operations
of rr1 , form rr2 . The lack of cohesion of rs2 is 0, while the
lack of cohesion of rr2 is 0.61. In the last step, rr2 is decom-
posed, by removing the access rights management opera-
tions (AddGrant, RemoveGrant and ListGrants),
which constitute the splinter interface, rs3 (in Fig. 1,
this interface is named GrantsMgt). The rest of the opera-
tions (SendMessage, ReceiveMessage, PeekMessage,
DeleteMessage and ChangeMessageVisibility) are

related to messaging and form rr3 (in Fig. 1, this interface
appears as MsgMgt). The lack of cohesion of rs3 is 0, while
the lack of cohesion of rr3 is 0.2. To sum up, the results of
the decomposition of MessageQueue are RI ¼ frs1 ; rs2 ;
rs3 ; rr3g.

5 VALIDATION

To validate the proposed approach we developed a proto-
type tool in Java which is available, upon request, under a
GPL license.10 Our validation is based on real-world serv-
ices, provided by Amazon and Yahoo. Specifically, we
selected services that provide interfaces with at least 10
operations. Overall, we used 11 Amazon services and 11
Yahoo services.11 Hereafter, we use identifiers A1-A11 and
Y1-Y11 to refer, respectively, to the interfaces of the Amazon
and the Yahoo services that we used. Table 3 provides the
mapping between the identifiers and the service interfaces,
along with the sizes of the interfaces (i.e., the number of pro-
vided operations) and the values of LoCmsg, LoCconv and
LoCdom for the interfaces.

In the rest of this section we detail our findings. In
Section 5.1 we concentrate on the effectiveness of the
proposed approach from a quantitative perspective. In
Section 5.2, we discuss the usefulness of the approach
from the developers’ perspective. Finally, in Section 5.3
we discuss threats to validity.

5.1 Effectiveness

To assess the effectiveness of the approach from a quantita-
tiveperspectivewe focuson the following researchquestions:

� RQ1. To what extent is cohesion improved by adopt-
ing the proposed method?

TABLE 3
Amazon and Yahoo Case Studies

10. For information on requesting a copy of the tool see www.cs.uoi.
gr/~dathanas/software/software.htm.

11. The WSDL specifications of the Amazon and the Yahoo services
can be found at: www.cs.uoi.gr/~zarras/WS-Decomp-Material/.

558 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 4, JULY/AUGUST 2015

� RQ2. Is the number of produced interfaces reason-
able with respect to the size of the decomposed
interface?

To respond to these questions we decomposed the exam-
ined service interfaces, based on the metrics that we defined
in Section 3, and the method that we detailed in Section 4.
To address RQ1, we measured the cohesion improvement,
CIðsiÞ, that is achieved for a service interface si. Formally,
for a set of interfaces, RI , produced by the proposed method
for si, the cohesion improvement is:

CIðsiÞ ¼ LoC�ðsi;OpS�Þ�
P

r2RI
ðLoC�ðr;OpS�ÞÞ
jRI j

LoC�ðsi;OpS�Þ � 100%:

To address RQ2, we measured the number of interfaces,
DSðsiÞ ¼ jRI j, produced by the proposed method for si. We
further examined the relation between the number of opera-
tions offered by si (the independent variable) and DSðsiÞ
(the dependent variable), using ordinary least squares
regression (OLS). Hereafter, we use the term, decomposition
of si, to refer to the set of interfaces, RI , that is produced by
the proposed method for si. Moreover, we use to term, size
of decomposition, to refer toDSðsiÞ.

RQ1. Fig. 10 (left column), gives the values of CI that we
obtained for the examined service interfaces. Concerning
our first question, the combination of the proposed method
with the domain-level cohesion metric (i.e., LoCdom) was
effective in all cases. The cohesion improvement for the
domain-level decompositions is medium-high (CI ranges
from 38 to 100 percent). The combination of the proposed
method with the message-level cohesion metric (i.e.,
LoCmsg) was also effective in all cases. The cohesion
improvement for the message-level decompositions is
medium (CI is up to 41.9 percent). Finally, the combination
of the proposed method with the conversation-level cohe-
sion metric (i.e., LoCconv) was effective in 77 percent of the
cases. The cohesion improvement for the conversation-level
decompositions is low. In five cases (A9, Y2, Y4, Y7, Y10),
the similarities between the operations of the examined

interfaces were such that the conversation-level cohesion of
the initial interfaces could not be further improved.

RQ2. Fig. 10 (middle column), gives the values of DS
that resulted for the examined interfaces. Moreover,
Fig. 10 (right column) gives the results of the OLS analy-
sis; in the x-axis of the scatter plots we have the number
of the operations that are offered by the examined inter-
faces, in the y-axis we have the values of DS, and at the
lower left corner of the scatter plots we have the regres-
sion equations and the values of the R2 statistic. In gen-
eral, the values of the R2 statistic range from 0 to 1; high
R2 values indicate that a regression equation explains
well the relationship between the variables involved in
the equation. In our analysis, the values of the R2 statis-
tic are quite high (ranging from 0.71 to 0.89). Thus, the
size of the decompositions, produced by the proposed
method, linearly increases with the number of operations
that are offered by the decomposed interfaces. The
regression equations that we obtained for the different
cohesion metrics are similar. The maximum value of the
regression coefficients that could result from the OLS
analysis is 1. A regression coefficient that equals to 1,
would mean that the number of interfaces that are pro-
duced by the decomposition method equals to the num-
ber of operations of the decomposed interface. In our
analysis, the regression coefficients are quite small, rang-
ing from 0.33 to 0.35. Hence, the size of the produced
decompositions is reasonable, with respect to the number
of operations of the decomposed interface. Nevertheless,
there are certain cases where the size of the produced
decompositions is relatively high—see Fig. 10 (middle
column). For instance, for the combination of the decom-
position method with the domain-level cohesion metric
we have the cases of A3 and Y3. Similarly, for the combi-
nation of the decomposition method with the message-
level cohesion metric we have the cases of A3 and Y7.
Finally, for the combination of the decomposition
method with the conversation-level cohesion metric we
have the cases of A2 and Y5.

Fig. 10. Effectiveness assessment.

ATHANASOPOULOS ET AL.: COHESION-DRIVEN DECOMPOSITION OF SERVICE INTERFACES WITHOUT ACCESS TO SOURCE CODE 559

5.2 The Developers’ Opinions

To evaluate the usefulness of the approach from the devel-
opers’ perspective we investigate the following research
questions:

� RQ1. Does the proposed approach produce useful
results for the developers?

� RQ2. What are the developers’ preferences (if any)
concerning the metrics that are employed?

� RQ3. To what extent should the results be refined to
fully satisfy the developers’ needs?

To address the aforementioned questions we looked for
volunteers with the following skills: software development
experience; knowledge of the service-oriented computing
paradigm, related technologies and standards. Overall, 10
volunteers participated in our study. The participants had
three to 15 years experience in software development. They
were all familiar with the service-oriented computing para-
digm. We organized the participants in two groups. The
first group assessed the decompositions of the Amazon ser-
vice interfaces, while the second group assessed the decom-
positions of the Yahoo service interfaces.

In a first meeting with the participants, we explained the
overall purpose of the study, without giving any details,
concerning the metrics and the method used for the decom-
position of the examined service interfaces. Following, we
gave to each participant a document12 that contained the
following information for each one of the examined interfa-
ces: (a) a high-level description (represented as a UML class)
of the interface; (b) the domain-level, the message-level and
the conversation-level decompositions of the interface. The
decompositions were given in random order. The document
further contained detailed instructions concerning the
assessment tasks that should be performed for each one of
the examined service interfaces. In the first task, the partici-
pants had to choose whether a service interface should be
decomposed, or remain as is. In the second task, the partici-
pants had to report which of the provided decompositions

is closest to their preferences; in this task the participants
could also report that none of the provided decompositions
is satisfactory. The third task was to suggest, if necessary,
further changes on a selected decomposition.

In a second meeting with each of the participants, we col-
lected the documents and we analyzed the participants’
feedback. The participants’ feedback is summarized in
Fig. 11. In this figure we use the following notations that
correspond to the possible choices that could be made by a
participant for a particular service interface: NO-SPLIT—
the participant suggested that the interface should not be
decomposed; NONE—none of the provided decompositions
was selected by the participant; Msg—the participant
selected the message-level decomposition; Conv—the par-
ticipant selected the conversation-level decomposition;
Dom—the participant selected the domain-level decomposi-
tion. Fig. 11a, gives for each service the percentage of the
participants that made a particular choice. Fig. 11b gives for
each participant the percentage of the services for which
he/she made a particular choice.

RQ1. Concerning the first question, the participants sug-
gested to decompose most of the examined interfaces. The
only exceptions are Y3, Y6, Y7 and Y11 (Fig. 11a). For Y3, Y7
and Y11, one of the participants suggested to leave the inter-
face as is, while the others were in favor of decomposing the
interface. For Y6, two of the participants suggested to leave
the interface as is. For most of the service interfaces, the par-
ticipants selected decompositions that were among the ones
that we provided. In the Amazon services, we have four
cases (A3, A6, A7, A11 in Fig. 11a), for which one of the par-
ticipants was not satisfied by any of the provided decompo-
sitions. For A6 and A7, the participants proposed their own
decompositions. Specifically, the proposed decomposition
for A6 was: “three interfaces to manage fulfilment, items
and shipments.” For A7 the suggestion was: “three interfa-
ces for objects, buckets, access policies.” In the Yahoo serv-
ices, we have the case of Y1 (Fig. 11a), for which two of the
participants were not satisfied by any of the provided
decompositions. The participants pointed out that the pro-
posed decompositions do not separate clearly the underly-
ing concepts (keywords, bids, adGroups, optimization
guidelines). Moreover, in the Yahoo services we have the
case of Y5 (Fig. 11a), for which one of the participants pro-
posed his own decomposition: “three sets of operations one
for the standard accounts, one for the mobile accounts and
one for the credit cards.”

RQ2. Regarding the second question, the domain-level
cohesion metric worked very well for the participants. Spe-
cifically, in 63 percent of the services, more than 80 percent
of the participants selected the domain-level decomposition
(Fig. 11a). Concerning each one of the participants, the per-
centage of the services for which the domain-level decom-
position was selected ranges from 36 to 100 percent
(Fig. 11b). On the other hand, the percentage of the services
for which the message-level decomposition was selected
ranges from 0 to 36 percent (Fig. 11b). Finally, the percent-
age of the services for which the conversation-level decom-
position was selected ranges from 0 to 9 percent (Fig. 11b).

RQ3. Concerning the third question, in several cases the
participants did not suggest any changes in the selected
decompositions. In the 55 decompositions that have been

Fig. 11. Usefulness from the developers’ perspective.

12. The documents can be found at www.cs.uoi.gr/~zarras/WS-
Decomp-Material/.

560 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 4, JULY/AUGUST 2015

chosen for the Amazon services (5 participants � 11 serv-
ices) there were 21 such occurrences; in the 55 decomposi-
tions of the Yahoo services this amounted to 18 occurrences.
However, we also have several cases for which the partici-
pants moved certain operations between interfaces. In the
55 decompositions that have been chosen for the Amazon
services there were 20 such occurrences; in the 55 Yahoo
decompositions, this amounted to 14 occurrences. Moreover
in several cases the participants decreased the size of the
decompositions by merging certain interfaces. Specifically,
we had 21 occurrences for the Amazon services and 24
occurrences for the Yahoo services. The details of the indi-
vidual participants’ suggestions are found in Appendix D,
available in the online supplemental material.

To conclude this study, we performed a X2 test, so as to
check the statistical significance of the results. The goal of
the test was to examine the following null hypothesis:

H0: The choices that have been made by the participants
are not significantly different from the ones that we would
have by chance alone.

Table 4 provides the details for the X2 test that we per-
formed. In particular, the first row of Table 4 gives the per-
centages of NO-SPLIT, NONE, Msg, Conv and Dom that we
observed in the study in the overall 110 choices that have
been made by the participants (22 services � 5 participants
per service). The second row of Table 4 gives the percen-
tages of NO-SPLIT, NONE, Msg, Conv and Dom, that we
would have by chance alone. Based on the squared differen-
ces between the expected and the observed percentages, the
overall X2 value that we got is 184.83. Then, according to
the X2 distribution, the probability of having a X2 as large
as 184.83, by chance alone, is too small (r � 0:001). There-
fore, we rejectedH0.

5.3 Threats to Validity

A possible threat to the internal validity of the results that
we obtained from the developers’ involved in the validation
is the developers’ fatigue or boredom. To reduce this threat
we arranged our study according to the developers’ avail-
ability, instead of imposing a strict schedule. To avoid
effects caused by interactions between the developers, we
made clear that the required tasks should not be performed
in a collaborative manner. Finally, to avoid learning effects,
the different decompositions of each interface were pro-
vided to the developers in a random order. Regarding exter-
nal validity, our validation is among the very few ones [6],
[27] that involve real services. Specifically, we used a repre-
sentative set of services, provided by two major service pro-
viders; the services offer diverse functionalities and their
interfaces vary in size and complexity. Moreover, we
employed a representative set of developers that have
knowledge of the service-oriented computing paradigm,
related technologies and standards. On the other hand, a

possible limitation is that the validation was not based on a
large number of developers. Nevertheless, the number of
developers that we considered is comparable with other
similar studies [5], [7], [9].

6 CONCLUSION

Take away. In this paper, we have proposed an approach
that enables the cohesion-driven decomposition of service
interfaces, without information on how the services are
implemented. Our experimental findings showed that
the proposed approach is able to improve cohesion. The
number of interfaces produced by the approach linearly
increases with the size of the decomposed interface. In gen-
eral, the developers found the proposed approach useful.

Limitations and future perspectives. As anticipated, the
decompositions produced by the method are not perfectly
adjusted to the developers’ needs. In certain cases, the
developers would prefer smaller and more cohesive decom-
positions, therefore there is further room to improve the
proposed method. Future work can be pursued towards
avoiding unnecessary splits and accounting for the user’s
positive/negative feedback. At the same time, although our
approach is based on the practical assumption that only ser-
vice interface specifications are available, future research
can address the problem of service interface decomposition,
based on semantic annotations that could allow a better
assessment of the functional relations between operations.
Moreover, whereas we investigate the effect of different
kinds of relations to service cohesion, one can possibly
improve the results, via a combination of naming and struc-
ture similarity; finding the right combination involves
studying several potential alternatives like linear/non-lin-
ear aggregate functions, single/multi-objective aggregate
functions, etc. Finally, the decomposition of service interfa-
ces could take into consideration other practical criteria like
management costs and reusability.

REFERENCES

[1] W. Stevens, G. Myers, and L. Constantine, “Structured Design,”
IBM Systems J., vol. 13, no. 2, pp. 115-139, 1974.

[2] M. Papazoglou and W.-J. van den Heuvel, “Service-Oriented
Design and Development Methodology,” Int’l J. Web Eng. and
Technology, vol. 2, no. 4, pp. 412-442, 2006.

[3] C. Legner and T. Vogel, “Design Principles for B2B Services - An
Evaluation of two Alternative Service Designs,” Proc. IEEE Int’l
Conf. Service Computing (SCC), pp. 372-379, 2007.

[4] T. Kohlborn, A. KortHaus, T. Chan, and M. Rosemann,
“Identification and Analysis of Business and Software Services -
A Consolidated Approach,” IEEE Trans. Services Computing, vol. 2,
no. 1, pp. 1-15, Jan. 2009.

[5] M. Perepletchikov, C. Ryan, and Z. Tari, “The Impact of Service
Cohesion on the Analyzability of Service-Oriented Software,” IEEE
Trans. Services Computing, vol. 3, no. 2, pp. 89-103, Apr./June 2010.

[6] D. Athanasopoulos and A. Zarras, “Fine-Grained Metrics of Cohe-
sion Lack for Service Interfaces,” Proc. Ninth IEEE Int’l Conf. Web
Services (ICWS), pp. 588-595, 2011.

[7] N. Tsantalis and A. Chatzigeorgiou, “Identification of Move
Method Refactoring Opportunities,” IEEE Trans. Software Eng.,
vol. 35, no. 3, pp. 347-367, May/June 2009.

[8] F. Simon, F. Steinbr€uckner, and C. Lewerentz, “Metrics Based
Refactoring,” Proc. Fifth IEEE European Conf. Software Maintenance
and Reeng. (CSMR), pp. 30-39, 2001.

[9] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander,
“Decomposing Object-Oriented Class Modules Using an Agglom-
erative Clustering Technique,” Proc. IEEE Int’l Conf. Software
Maintenance (ICSM), pp. 93-101, 2009.

TABLE 4
X2 Test for the Overall Results

ATHANASOPOULOS ET AL.: COHESION-DRIVEN DECOMPOSITION OF SERVICE INTERFACES WITHOUT ACCESS TO SOURCE CODE 561

[10] D. Doval, S. Mancoridis, and B.S. Mitchell, “Automatic Clustering
of Software Systems Using a Genetic Algorithm,” Proc. Ninth
IEEE Software Technology and Eng. Practice (STEP), pp. 73-81, 1999.

[11] B.D. Bois, S. Demeyer, and J. Verelst, “Refactoring: Improving
Coupling and Cohesion of Existing Code,” Proc. 11th IEEE Work-
ing Conf. Reverse Eng. (WCRE), pp. 144-151, 2004.

[12] O. Seng, J. Stammel, and D. Burkhart, “Search-Based Determina-
tion of Refactorings for Improving the Class Structure of Object-
Oriented Systems,” Proc. Eighth Ann. Conf. Genetic and Evolutionary
Computation (GECCO), pp. 1909-1916, 2006.

[13] L. Tahvildari and K. Kontogiannis, “Improving Design Quality
Using Meta-Pattern Transformations: A Metric-Based Approach,”
J. Software Maintenance, vol. 16, nos. 4/5, pp. 331-361, 2004.

[14] M. O’Keeffe and M.�ı Cinn�eide, “Search-Based Refactoring for
Software Maintenance,” J. Systems and Software, vol. 81, no. 4,
pp. 502-516, 2008.

[15] M. Bowman, L.C. Briand, and Y. Labiche, “Solving the Class
Responsibility Assignment Problem in Object-Oriented Analysis
with Multi-Objective Genetic Algorithms,” IEEE Trans. Software
Eng., vol. 36, no. 6, pp. 817-837, Nov./Dec. 2010.

[16] W.F. Opdyke, “Refactoring Object-Oriented Frameworks,” PhD
dissertation, Univ. Illinois - Urbana Champaign, 1992.

[17] T. Mens and T. Tourw�e, “A Survey of Software Refactoring,” IEEE
Trans. Software Eng., vol. 30, no. 2, pp. 126-139, Feb. 2004.

[18] M. Harman and L. Tratt, “Pareto Optimal Search Based Refactor-
ing at the Design Level,” Proc. Genetic and Evolutionary Computa-
tion Conf. (GECCO), pp. 1106-1113, 2007.

[19] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6,
pp. 476-493, June 1994.

[20] L.C. Briand, J.W. Daly, and J. W€ust, “A Unified Framework for
Cohesion Measurement in Object-Oriented Systems,” Empirical
Software Eng., vol. 3, no. 1, pp. 65-117, 1998.

[21] J.A. Dallal and L. Briand, “A Precise Method-Method Interaction-
Based Cohesion Metric for Object-Oriented Classes,” ACM Trans.
Software Eng. and Methodology, vol. 21, no. 2, article 8, 2012.

[22] A. Kazemi, A. Rostampour, A. Zamiri, P. Jamshidi, H. Haghighi,
and F. Shams, “An Information Retrieval Based Approach for
Measuring Service Conceptual Cohesion,” Proc. 11th IEEE Int’l
Conf. Quality Software (QSIC), pp. 102-111, 2011.

[23] Y. Ma, k. Lu, Y. Zhang, and B. Jin, “Measuring Ontology Informa-
tion by Rules Based Transformation,” Knowledge-Based Systems,
vol. 50, pp. 234-245, 2013.

[24] G. Bordogna and G. Pasi, “A Quality Driven Hierarchical Data
Divisive Soft Clustering for Information Retrieval,” Knowledge-
Based Systems, vol. 26, pp. 9-19, 2012.

[25] L. Briand, S. Morasca, and V.R. Basili, “Property-Based Software
Engineering Measurement,” IEEE Trans. Software Eng., vol. 22,
no. 1, pp. 68-86, Jan. 1996.

[26] G. Valiente, Algorithms on Trees and Graphs. Springer, 2000.
[27] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An

Empirical Study on Web Service Evolution,” Proc. Ninth IEEE Int’l
Conf. Web Services (ICWS), pp. 49-56, 2011.

Dionysis Athanasopoulos is currently working
toward the PhD degree at the University of Ioan-
nina. His research interests include software
design principles, software maintenance, and
service-oriented computing.

Apostolos V. Zarras is an assistant professor at
the University of Ioannina. His research interests
include software architecture & design, software
maintenance, and middleware. He is a member
of the IEEE.

George Miskos received the MSc degree from
the University of Ioannina. His research focuses
on service-oriented computing.

Valerie Issarny is a research director at Inria
Paris-Rocquencourt. Her research focuses on
the architecture-based development of software-
intensive distributed systems.

Panos Vassiliadis is an associate professor at
the University of Ioannina. His research
focuses on the rigorous modeling of data, soft-
ware, and their interdependence. He is a mem-
ber of the IEEE.

562 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 8, NO. 4, JULY/AUGUST 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

