
Contents lists available at ScienceDirect
Information Systems

Information Systems 53 (2015) 363–385
http://d
0306-43

n Corr
E-m

pvassil@
1 W
journal homepage: www.elsevier.com/locate/infosys
Growing up with stability: How open-source relational
databases evolve

Ioannis Skoulis a,1, Panos Vassiliadis b,n, Apostolos V. Zarras b

a Opera, Helsinki, Finland
b University of Ioannina, Ioannina, Greece
a r t i c l e i n f o

Available online 30 April 2015

Keywords:
Schema evolution
Software evolution
Lehman's laws
x.doi.org/10.1016/j.is.2015.03.009
79/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: giskou@gmail.com (I. Skoulis),
cs.uoi.gr (P. Vassiliadis), zarras@cs.uoi.gr (A
ork conducted while in the University of Ioa
a b s t r a c t

Like all software systems, databases are subject to evolution as time passes. The impact of
this evolution can be vast as a change to the schema of a database can affect the syntactic
correctness and the semantic validity of all the surrounding applications. In this paper, we
have performed a thorough, large-scale study on the evolution of databases that are part
of larger open source projects, publicly available through open source repositories.
Lehman's laws of software evolution, a well-established set of observations on how the
typical software systems evolve (matured during the last forty years), has served as our
guide towards providing insights on the mechanisms that govern schema evolution. Much
like software systems, we found that schemata expand over time, under a stabilization
mechanism that constraints uncontrolled expansion with perfective maintenance. At the
same time, unlike typical software systems, the growth is typically low, with long periods
of calmness interrupted by bursts of maintenance and a surprising lack of complexity
increase.

& 2015 Elsevier Ltd. All rights reserved.
A truly stable system expects the unexpected, is prepared
to be disrupted, waits to be transformed.Tom Robbins, Even
Cowgirls Get the Blues

1. Introduction

Software evolution is the change of a software system over
time, typically performed via a remarkably difficult, compli-
cated and time consuming process, software maintenance.
Schema evolution is the most important aspect of software
evolution that pertains to databases, as it can have a tremen-
dous impact to the entire information system built around the
evolving database, severely affecting both developers and
end-users. Quite frequently, development waits till a “schema
.V. Zarras).
nnina.
backbone” is stable and applications are build on top of it. This
is due to the “dependency magnet” nature of databases: a
change in the schema of a database may immediately drive
surrounding applications to crash (in case of deletions or
renamings) or be semantically defective or inaccurate (in the
case of information addition, or restructuring). Therefore,
discovering laws, patterns and regularities in schema evolu-
tion can result in great benefits, as wewould be able to design
databases with a view to their evolution and minimize the
impact of evolution to the surrounding applications: (a) by
avoiding “design anti-patterns” leading to cumulative com-
plexity for both the database and the surrounding applica-
tions and (b) by planning administration and maintenance
tasks and resources, instead of just responding to emer-
gencies.

In sharp distinction to traditional software systems, and
disproportionately to the severity of its implications, database
evolution has hardly been studied throughout the entire
lifetime of the data management discipline. It is only amazing

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.03.009
http://dx.doi.org/10.1016/j.is.2015.03.009
http://dx.doi.org/10.1016/j.is.2015.03.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.03.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.03.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.03.009&domain=pdf
mailto:giskou@gmail.com
mailto:pvassil@cs.uoi.gr
mailto:zarras@cs.uoi.gr
http://dx.doi.org/10.1016/j.is.2015.03.009


I. Skoulis et al. / Information Systems 53 (2015) 363–385364
to find out that, in the history of the discipline, just a handful
of studies had been published in the area. The deficit is really
amazing in the case of traditional database environments,
where only two(!) studies [1,2] have been published. Apart
from amazing, this deficit should also be expected: allowing
the monitoring, study and eventual publication of the evolu-
tion properties of a database would expose the internals of a
critical part of the core of an organization's information syst-
em. Fortunately, the open-source movement has provided us
with the possibility to slightly change this landscape. As public
repositories (git, svn, etc.) keep the entire history of revisions
of software projects, including the schema files of any
database internally hosted within them, we are now pre-
sented with the opportunity to study the version histories of
such open source databases. Hence, within only a few years in
the late ‘00's, several research efforts [3–6] have studied of
schema evolution in open source environments. Those stu-
dies, however, focus on the statistical properties of the
evolution and do not provide details on the mechanism that
governs the evolution of database schemata.

To contribute towards amending this deficit, the research
goal of this paper involves the identification of patterns and
regularities of schema evolution that can help us understand the
underlying mechanism that governs it. To this end, we study the
evolution of the logical schema of eight databases, that are
parts of publicly available, open-source software projects
(Section 3). We have collected and cleansed the available
versions of the database schemata for the eight case studies,
extracted the changes that have been performed in these
versions and, finally, we have come up with usable datasets
that we subsequently analyzed.

Our main tool for this analysis came from the area of
software engineering. In an attempt to understand the
mechanics behind the evolution of software and facilitate
a smoother, lest disruptive maintenance process, Meir
Lehman and his colleagues introduced a set of rules in
mid seventies [7], also known as the Laws on Software
Evolution (Section 2). Their findings, that were reviewed
and enhanced for nearly 40 years [8,9], have, since then,
given an insight to managers, software developers and
researchers, as to what evolves in the lifetime of a software
system, and why it does so. Other studies (see [10] for a
survey) have complemented these insights in this field,
typically with particular focus to open-source software
projects. In our case, we adapted the laws of software
evolution to the case of schema evolution and utilized
them as a driver towards understanding how the studied
schemata evolve. Our findings (Section 4) indicate that the
schemata of open source databases expand over time, with
long periods of calmness connected via bursts of main-
tenance effort focused in time, and with significant effort
towards the perfective maintenance of the schema that
appears to result in an unexpected lack of complexity
increase. Incremental growth of the schema is typically
low and its volume follows a Zipfian distribution. In both
the presentations of our results and in our concluding
notes (Section 5) we also demonstrate that although the
technical assessment of Lehman's laws shows that the
typical software systems evolve quite differently than
database schemata, the essence of the laws is preserved:
evolution is not about uncontrolled expansion; on the
contrary, there appears to be a stabilization mechanism
that employs perfective maintenance to control the other-
wise growing trend of increase in the information capacity
of the database.

Roadmap: In Section 2, we summarize Lehman's laws
for the non-expert reader and survey related efforts, too. In
Section 3 we discuss the experimental setup of this study
and in Section 4, we detail our findings. We conclude our
deliberations with a summary of our findings and their
implications in Section 5.
2. Lehman laws of software evolution in a nutshell

Meir M. Lehman and his colleagues, have introduced,
and subsequently amended, enriched, and corrected a set
of rules on the behavior of software as it evolves over time
[7–9]. Lehman's laws focus on E-type systems that concern
“software solving a problem or addressing an application
in the real-world” [8]. The main idea behind the laws of
evolution for E-type software systems is that their evolu-
tion is a process that follows the behavior of a feedback-based
system. Being a feedback-based system, the evolution
process has to balance (a) positive feedback, i.e., the need
to adapt to a changing environment and grow to address
the need for more functionality, and, (b) negative feedback,
i.e., the need to control, constrain and direct change in
ways that prevent the deterioration of the maintainability
and manageability of the software. In the sequel, we list
the definitions of the laws as they are presented in [9], in a
more abstract form than previous versions and with the
benefit of retrospect, after thirty years of maturity and
research findings.

(I) Law of Continuing Change: An E-type system
must be continually adapted or else it becomes
progressively less satisfactory in use.

(II) Law of Increasing Complexity: As an E-type sys-
tem is changed its complexity increases and
becomes more difficult to evolve unless work is
done to maintain or reduce the complexity.

(III) Law of Self-regulation: Global E-type system evo-
lution is feedback regulated.

(IV) Law of Conservation of Organizational Stability:
The work rate of an organization evolving an E-
type software system tends to be constant over
the operational lifetime of that system or phases
of that lifetime.

(V) Law of Conservation of Familiarity: In general, the
incremental growth (growth ratio trend) of E-
type systems is constrained by the need to
maintain familiarity.

(VI) Law of Continuing Growth: The functional cap-
ability of E-type systems must be continually
enhanced to maintain user satisfaction over
system lifetime.

(VII) Law of Declining Quality: Unless rigorously
adapted and evolved to take into account
changes in the operational environment, the
quality of an E-type system will appear to be
declining.



I. Skoulis et al. / Information Systems 53 (2015) 363–385 365
(VIII) Law of Feedback System: E-type evolution pro-
cesses are multi-level, multi-loop, multi-agent
feedback systems.

Before proceeding with our study, we present a first apo-
dosis of the laws, taking into consideration both the
wording of the laws, but most importantly their accom-
panying explanations [9].

An E-Type software system continuously changes over time
(I) obeying a complex feedback-based evolution process
(VIII). On the one hand, due to the need for growth and
adaptation that acts as positive feedback, this process results
in an increasing functional capacity of the system (VI),
produced by a growth ratio that is slowly declining in the
long term (V). The process is typically guided by a pattern of
growth that demonstrates its self-regulating nature: growth
advances smoothly; still, whenever there are excessive devia-
tions from the typical, baseline rate of growth (either in a
single release, or accumulated over time), the evolution
process obeys the need for calibrating releases of perfective
maintenance, i.e., code restructuring and documentation for
better maintainability and comprehension (expressed via
minor growth and demonstrating negative feedback) to stop
the unordered growth of the system's complexity (III). On the
other hand, to regulate the ever-increasing growth, there is
negative feedback in the system controlling both the overall
quality of the system (VII), with particular emphasis to its
internal quality (II). The effort consumed for the above
process is typically constant over phases, with the phases
disrupted with bursts of effort from time to time (IV).
2.1. Lehman's laws and related empirical studies

Software evolution is an active research field for more than
40 years and concerns different levels of abstraction, including
the software architecture [11], design [12] and implementa-
tion [10]. Lehman's theory of software evolution is the
cornerstone of the efforts that have been performed all these
years. For a detailed historical survey on the evolution of
Lehman's theory and other related works the interested
reader can refer to [10]. Following, we briefly discuss the
milestones and key findings that resulted from these efforts.

Lehman's theory of software evolutionwas first introduced
in the 70s. Back then, the theory included the first three laws,
concerning the continuous change, the increasing complexity
and the self-regulating properties of the software evolution
process [7]. The experimental evidence that produced these
laws was based on a single case study, namely the OS/360
operating system. During the 70s and the 80s the formulation
of the first three laws has been revised, with respect to further
results and empirical observations that came up [13]. More-
over, Lehman's theory has been extended with the fourth and
the fifth law that concerned the issues of organizational
stability and conservation of familiarity [13]. In the 90s, based
on additional case studies, the laws have been revised again
and extended with the last three laws, referring to the
continuous growth, the declining quality and to the feedback
mechanism that governs the evolution process [14,8,15]. Leh-
man's theory did not grow since then, the set of laws has been
stabilized, and most of the activity around them concerned
moderate changes in their formulation, performed in the
00s [9].

During all these years there have also been studies by
other authors on the validity of the laws [16,17]. An interesting
finding uncovered from these efforts is that the behavior of
commercial software differs from that of academic and
research software, with the former kind being much more
faithful to the laws, compared to the latter two kinds. The
partial validity of the laws is also highlighted in [18], along
with the need for a more formal framework that would fac-
ilitate the assessment of the laws.

The diverse behavior of software concerning the valid-
ity of Lehman's laws is emphasized in subsequent studies
that investigated the evolution of open source software.
Most of these studies found only partial support for the
validity of the laws. The efforts in this line of research vary
from the pioneer studies of Godfrey and Tu [19,20],
focusing mainly on Linux, to large scale studies [21–24].
The common ground in all these studies is that they found
support for the laws of continuing change and growth.
Refs. [23,25] concluded in the validation of more laws,
including the ones of self-regulation and conservation of
familiarity. Moreover, [26] revealed that the laws may be
valid after a certain point in the software lifecycle. In
particular, taking a step further from the efforts of Godfrey
and Tu, [26] found that after a certain version the evolu-
tion of Linux follows, at least partially, most of the laws.
2.2. Empirical studies on database evolution

Being at the very core of most software, databases are also
subject to evolution, which concerns changes in their contents
and, most importantly, their schemas. Database evolution can
concern (a) changes in the operational environment of the
database, (b) changes in the content of the databases as time
passes by, and (c) changes in the internal structure, or schema,
of the database. Schema evolution, itself, can be addressed at
(a) the conceptual level, where the understanding of the
problem domain and its representation via an ER schema
evolves, (b) the logical level, where the main constructs of the
database structure evolve (for example, relations and views in
the relational area, classes in the object-oriented database
area, or (XML) elements in the XML/semi-structured area),
and (c) the physical level, involving data placement and
partitioning, indexing, compression, archiving, etc.

Interestingly, the related literature on the actual mechanics
of schema evolution includes only a few case studies, as the
research community would find it very hard to obtain access
to monitor database schemata for an in depth study over a
significant period of time. Despite the fact that in our work we
study schema evolution at the logical level of databases in open-
source software, here, we proceed to survey all the works we
are aware about in the broader area of schema evolution.

The first paper [1] discusses the evolution of the database
of a health management system over a period of 18 months,
monitored by a tool specifically constructed for this purpose.
A single database schema was examined, and the monitoring



I. Skoulis et al. / Information Systems 53 (2015) 363–385366
revealed that all the tables of the schema were affected and
the schema had a 139% increase in size for relations and 274%
for attributes. The consequences of this evolution were
significantly large as a cumulative 45% of all the names that
were used in the queries had to be deleted or inserted.

Fifteen years later, the authors of [3] made an analysis on
the database back-end of MediaWiki, the software that
powers Wikipedia. The study conducted over the versions of
four years, revealed a 100% increase in schema size, the
observation that around 45% of changes do not affect the
information capacity of the schema (but are rather index
adjustments, documentation, etc.), and a statistical study of
lifetimes, change breakdown and version commits. Special
mention should be made to this line of research [27], as it is
based on PRISM (recently re-engineered to PRISMþþ [28]), a
change management tool that provides a language of Schema
Modification Operations (SMO) (that model the creation,
renaming and deletion of tables and attributes, and their
merging and partitioning) to express schema changes. More
importantly, the people involved in this line of research
should be credited for providing a large collection of links2

for open source projects that include database support.
A work in the area of data warehousing [2] monitored the

evolution of seven ETL scripts along with the evolution of the
source data. The experimental analysis of the authors is based
in a six-month monitoring of seven real-world ETL scenarios
that process data for statistical surveys. The findings of the
study indicate that schema size and module complexity are
important factors for the vulnerability of an ETL flow to
changes. This work has been part of an effort to provide
what-if analysis facilities to the management of schema
evolution via the Hecataeus tool (see [29,30]).

Finally, certain efforts studied the evolution of databases,
while taking into account the applications that use them. In
particular, in [5] the authors considered 4 case studies of
embedded databases (i.e., databases tightly coupled with
corresponding applications that rely on them) and studied
the different kinds of changes that occurred in these cases.
Moreover, they performed a respective frequency and timing
analysis, which showed that the database schemas tend to
stabilize over time. In [4], the authors focused on two case
studies. The results of this effort revealed that database
schema changes and that the source code of dependent
applications does not always evolve in sync with changes to
the database schema. Ref. [4] further provides a discussion
concerning that the impact of database schema changes on
the application code. Ref. [6] takes a step further with an
empirical study of the co-evolution of database schemas and
code. This effort investigated ten case studies. The results
indicate that database schemas evolve frequently during the
application lifecycle, with schema changes implying a sig-
nificant amount of code level modifications.
3 http://atlas.web.cern.ch/Atlas/Collaboration/
2.3. Novelty with respect to the state of the art

Going beyond the related literature on software evolution,
in general, and database evolution, in particular, our CAiSE'14
2 http://yellowstone.cs.ucla.edu/schema-evolution/index.php/
Benchmark_Extension
paper [31] investigated for the first time patterns and
regularities of database evolution, based on Lehman's laws.
To this end, we conducted a large scale case study of eight
databases, that are parts open-source software projects. This
paper extends our prior work with further details concerning
the intuition and the relevance of the laws in the case of
databases, the metrics that have been used in the literature
for the assessment of the laws, and the metrics that we
employed in the case of databases. More importantly, we
provide detailed presentations of the results and thorough
discussions of our findings.
3. Experimental setup of the study

Datasets: We have studied eight database schemata from
open-source software projects. Fig. 1 lists the datasets along
with some interesting properties.

ATLAS3 is a particle physics experiment at the Large
Hadron Collider at CERN, Geneva, Switzerland, with the
goal of learning about the basic forces that have shaped
our universe. ATLAS Trigger is the software responsible for
filtering the immense data (40 TB per second) collected by
the Collider and storing them in its Oracle database.

BioSQL4 is a generic relational model covering sequences,
features, sequence and feature annotation, a reference taxon-
omy, and ontologies (or controlled vocabularies) from various
sources such as GenBank or Swissport. While originally
conceived as a local relational store for GenBank, the project
has since become a collaboration platform between the Open
Bioinformatics Foundation (OBF) projects (including BioPerl,
BioPython, BioJava, and BioRuby). The goal is to build a
sufficiently generic schema for persistent storage of sequ-
ences, features, and annotation in a way that is interoperable
between these Bion projects.

Ensembl is a joint scientific project between the Eur-
opean Bioinformatics Institute (EBI)5 and the Wellcome
Trust Sanger Institute (WTSI)6 which was launched in
1999 in response to the imminent completion of the
Human Genome Project. The goal of Ensembl was to
automatically annotate the three billion base pairs of
sequences of the genome, integrate this annotation with
other available biological data and make all this publicly
available via the web. Since the launch of the website,
many more genomes have been added to Ensembl and the
range of available data has also expanded to include
comparative genomics, variation and regulatory data.

MediaWiki7 was first introduced in early 2002 by the
Wikimedia Foundation along with Wikipedia, and hosts
Wikipedia's content since then. As an open source system
(licensed under the GNU GPL) written in PHP, it was also
adopted by many companies and is used in thousands of
websites both as a knowledge management system, and
for collaborative group projects.
4 http://www.biosql.org/wiki/Main_Page
5 https://www.ebi.ac.uk/
6 https://www.sanger.ac.uk/
7 https://www.mediawiki.org/wiki/MediaWiki

http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Benchmark_Extension
http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Benchmark_Extension
http://atlas.web.cern.ch/Atlas/Collaboration/
http://www.biosql.org/wiki/Main_Page
https://www.ebi.ac.uk/
https://www.sanger.ac.uk/
https://www.mediawiki.org/wiki/MediaWiki


Fig. 1. The datasets employed in our study.

I. Skoulis et al. / Information Systems 53 (2015) 363–385 367
Coppermine8 is a photo gallery web application. OpenCart9

is an open source shopping cart system. PhpBB10 (PHP Bulletin
Board) is an Internet forum package written in PHP. TYPO311

is a web content management framework based on PHP. All
these platforms are highly rated and used.

Dataset Collection and Processing: A first collection of
links to available datasets was made by the authors of
[3,27]12; for this, these authors deserve honorable credit.
We isolated eight databases that appeared to be alive and
used (as already mentioned, some of them are actually
quite prominent). For each dataset, we have gathered the
schema versions (DDL files) that were available at June
2013, directly from public source code repositories (cvs,
svn, git) for the eight datasets listed in Fig. 1. We have
targeted main development branches and trunks to max-
imize the validity of the gathered resources. We are inte-
rested only on changes of the database part of the project as
they are integrated in the trunk of the project. Hence, we
collected all the commits of the trunk or master branch
that were available at the time, and ignored all other
branches of the project, as well as any commits of other
modules of the project that did not affect the database.

For all of the projects, we focused on their release for
MySQL (except ATLAS Trigger, available only for Oracle).
Those files were then renamed with their filenames
matching to the date (in standard UNIX time) the commit
was made. The files were then processed in sequential
pairs from our tool, Hecate, to give us in a fully automated
way (a) the differences between two subsequent commits
and (b) the measures we needed to conduct this study.
Attributes are marked as altered if they exist in both
versions and their type or participation in their tables's
primary key changed. Tables are marked as altered if they
exist in both versions and their contents have changed
(attributes inserted/deleted/altered).
8 http://coppermine-gallery.net/
9 http://www.opencart.com
10 https://www.phpbb.com/
11 http://typo3.org/
12 http://data.schemaevolution.org
All the datasets used, along with our tool-suite for
managing the evolution of databases can be found in our
group's git: https://github.com/DAINTINESS-Group.
4. Assessing the laws for schema evolution

The laws of software evolution where developed and
reshaped over forty years. Explaining each law in isolation
from the others is precarious, as it risks losing the deeper
essence and inter-dependencies of the laws [9]. To this
end, in this section, we organize the laws in three thematic
areas of the overall evolution management mechanism
that they reveal. The first group of laws discusses the
existence of a feedback mechanism that constrains the
uncontrolled evolution of software. The second group
discusses the properties of the growth part of the system,
i.e., the part of the evolution mechanism that accounts for
positive feedback. The third group of laws discusses the
properties of perfective maintenance that constrains the
uncontrolled growth, i.e., the part of the evolution
mechanism that accounts for negative feedback. To quan-
titatively support our study, we utilize the following
measures:
�
 Schema size of a version: The number of tables of a
schema version.
�
 Schema Growth: The difference between the schema
size of two (typically subsequent) versions (i.e., new–

old).

�
 Heartbeat: A sequence of tuples, one per transition,

with the count of the events that occurred during this
transition. In the context of this paper, for each transi-
tion between two subsequent versions, we produce a
tuple of measures including Table Insertions, Table
Deletions, Attribute Insertions, Attribute Deletions,
Attribute Alternations (change of data type), Attributes
Inserted at Table Formation, Attribute Deletions at
Table Removal. To clarify, Attribute Insertions concern
additions of attributes to an existing table, whereas
Attributes Inserted at Table Formation concern the
number of attributes generated whenever a new table

https://github.com/DAINTINESS-Group
http://coppermine-gallery.net/
http://www.opencart.com
https://www.phpbb.com/
http://typo3.org/
http://data.schemaevolution.org


Fig. 2. Combined demonstration of heartbeat (number of changes per version) and schema size (no. of tables). The left axis signifies the amount of change
and the right axis the number of tables.

I. Skoulis et al. / Information Systems 53 (2015) 363–385368



Fig. 3. Combined demonstration of heartbeat (continued).

I. Skoulis et al. / Information Systems 53 (2015) 363–385 369



I. Skoulis et al. / Information Systems 53 (2015) 363–385370
is born. Attribute Deletions concern deletions from a
table that continues to exist, whereas Attribute Dele-
tions at Table Removal concern attributes that are
removed whenever their containing table is removed.
We sum up these measures per transition, to produce
the Heartbeat of the lifetime of the dataset.
We would like to remind the reader that we study the
evolution of the logical schema of databases in open-source
software. In all our deliberations, we take the above context as
granted and avoid repeating it for reasons of better presenta-
tion of our results.
4.1. Is there a feedback-based system for schema evolution?

4.1.1. Law of continuing change (Law I)
The first law argues that the system continuously

changes over time.
Fig. 4. Combined demonstration
An E-type systemmust be continually adapted or else it
becomes progressively less satisfactory in use.

The main idea behind this law is simple: as the real world
environment evolves, the software that is intended to address
its problems has to evolve too. If this does not happen, the
system becomes less satisfactory.

Metrics for the assessment of the law's validity: To establish
the law, one needs to show that the software shows signs
of evolution as time passes. Possible metrics from the field
of software engineering [23] include (a) the cumulative
number of changes and (b) the breakdown of changes
over time.

Assessment: To validate the hypothesis that the law of
continuing change holds, we study the heartbeat of the
schema's life (see Figs. 2–4 for a combined demonstration
of heartbeat and schema size).

With the exception of BioSQL that appeared to be “sleep-
ing” for some years and was later re-activated, in all other
cases, we have changes (sometimes moderate, sometimes
of heartbeat (continued).



Fig. 5. Growth (tables) over version id for all the datasets.

I. Skoulis et al. / Information Systems 53 (2015) 363–385 371
even excessive) over the entire lifetime of the database
schema. An important observation stemming from the visual
inspection of our change-over-time data, is that the term
continually in the law's definition is challenged: we observe
that database schema evolution happens in bursts, in grouped
periods of evolutionary activity, and not as a continuous process!
Take into account that the versions with zero changes are
versions where either commenting and beautification takes
place, or the changes do not refer to the information capacity
of the schema (relations, attributes and constraints) but
rather, they concern the physical level properties (indexes,
storage engines, etc.) that pertain to performance aspects of
the database.

Can we state that this stillness makes the schema “unsa-
tisfactory” (referring back to the wording of the first law by
Lehman)? We believe that the answer to the question is
negative: since the system hosting the database continues to
be in use, user dissatisfaction would actually call for contin-
uous growth of the database, or eventual rejection of the
system. This does not happen. On the other hand, our
explanation relies on the reference nature of the database in
terms of software architecture: if the database evolves, the
rest of the code, which is basically using the database (and not
vice versa), breaks.

Overall, if we account for the exact wording of the law, we
conclude that the law partially holds.

4.1.2. Law of Self-regulation (Law III)
The third law of software evolution is known as the law

of “Self-regulation” and comes with a laconic definition.



I. Skoulis et al. / Information Systems 53 (2015) 363–385372
Global E-type system evolution is feedback regulated.

The main idea behind this law is that the system under
development is actually a feedback-regulated system: devel-
opment and maintenance take place and there is positive and
negative feedback to the system. As the clients of the system
request more functionality, the system grows in size to
address this demand; at the same time, as the system grows,
corrective and perfective maintenance has to take place to
remove bugs and improve the internal quality of the software
(reduced complexity, increased understandability) [8].

Thus, the system's growth cannot continually evolve
with the same rate; on the contrary, what one expects is to
see a typical “baseline” growth, interrupted with releases
of perfective maintenance. This trend is so strong, that, in
the long run, the system's size demonstrates what the
authors of [8] call “cyclic effects” and the authors of [9] call
“patterns of growth”.

Metrics for the assessment of the law's validity: Whereas
the law simply states that the evolution of software is
feedback regulated, its experimental validation in the area
of software systems is typically supported by the observa-
tion of a recurring pattern of smooth expansion of the
system's size that is interrupted with releases with size
reductions or abrupt growth. Moreover, due to a previous
wording of the law (e.g., see [8]) that described change to
follow a normal distribution, the experimental assessment
included the validation of whether growth demonstrates
oscillations around an average value [7–9]. The ripples in
the size of the system are assumed to indicate the exis-
tence of feedback in the system: positive feedback results
in the system's expansion and negative feedback involves
perfective maintenance coming with reduced rate of
growth (which is not due to functional growth but re-
engineering towards better code quality) – if not with
system shrinking (due to removal of unnecessary parts or
their merging with other parts).

Assessment: We organize the discussion of our findings
around size and growth, both of which demonstrate some
patterns, although not the ones expected by the previous
literature.

Size: The evolution of size can be observed in Figs. 2–4.
Concerning the issue of a recurring, fundamental pattern of
smooth expansion, interrupted with abrupt changes or, more
generally, versions of perfective maintenance, we have to say
that we simply cannot detect the behavior that Lehman did
(contrast Figs. 2–4 to the respective figures of articles [7,8]): in
sharp contrast to the smooth baseline growth that Lehman
has highlighted, the evolution of the size of the studied
database schemata provides a landscape with a large variety
of sequences of the following three fundamental behaviors.
�
 In all schemata, we can see periods of increase, espe-
cially at the beginning of their lifetime or after a large
drop in the schema size. This is an indication of positive
feedback, i.e., the need to expand the schema to cover
the information needs of the users – especially since
the overall trend in almost all of the studied databases
is to see an increase in the schema size as time passes.
�
 In all schemata, there are versions with drops in schema
size. Those drops are typically sudden and steep and
usually take place in short periods of time. Sometimes,
in fact, these drops are of significantly larger size than
the typical change. We can safely say that the existence
of these drops in the schema size indicates perfective
maintenance and thus, the existence of a negative
feedback mechanism in the evolution process.
�
 In all schemata, there are periods of calmness, i.e., periods
of non-modification to the logical structure of the schema.
This is especially evident if one observes the heartbeat of
the database, where changes are grouped to very specific
moments in time.

Growth and its oscillations: Growth (i.e., the difference
in the size between two subsequent versions) comes with
common characteristics in all datasets. In most cases,
growth is small (typically ranging within 0 and 1). As
Fig. 5 demonstrates, we have too many occurrences of zero
growth, typically iterating between small non-zero growth
and zero growth. Due to perfective maintenance, we also
have negative values of growth (less than the positive
ones). We do not have a constant flow of versions where
the schema size is continuously changing; rather, we have
small spikes between one and zero. Thus, we have to state
that the growth comes with a pattern of spikes. Due to this
characteristic, the average value is typically very close to
zero (on the positive side) in all datasets, both for tables and
attributes. There are few cases of large change too; we
forward the reader to Law V for a discussion and to Fig. 9
for a graphical depiction of their characteristics.

The oscillations of growth demonstrates other patterns
too: it is quite frequent, especially at the attribute level, to see
sequences of oscillations of large size: i.e., an excessive positive
delta followed immediately by an excessive negative growth
(see Fig. 9). We do, however, observe the oscillations between
positive and negative values (remember, the average value is
very close to zero), much more on the positive side, however,
with several occasions of excessive negative growth (clearly
demonstrating perfective maintenance).

We would like to put special emphasis to the observation
that change is small . In terms of tables, growth is mostly
bounded in small values. This is not directly obvious in the
charts, because they show the ripples; however, almost all
numbers are in the range of [�2‥2] – in fact, mostly in the
range [0‥2]. Few abrupt changes occur. In terms of attributes
(Fig. 6), the numbers are higher, of course, and depend on the
dataset. Typically, those values are bounded within [�20,20].
However, the deviations from this range are not many.

In the course of our deliberations, we have observed a
pattern common in all datasets: there is a Zipfian model in
the distribution of frequencies. Observe Fig. 7 that comes
with two parts, both depicting how often a growth value
appears in the attributes of Ensemble. The x-axis keeps the
delta size and the y-axis the number of occurrences of this
delta. In the upper part we include zeros in the counting
(343 occurrences out of 528 data points) and in the lower
part we exclude them (to show that the power law does
not hold only for the most popular value). We observe that
there is a small range of deltas, between �2 and 4 that
takes up 450 changes out of the 528. This means that,
despite the large outliers, change is strongly biased
towards small values close to zero.



Fig. 6. Growth (attributes) over version id for all the datasets; we measure attribute growth as the difference in the total number of attributes of all tables,
between two subsequent versions.

I. Skoulis et al. / Information Systems 53 (2015) 363–385 373
In fact, both phenomena observed here, i.e., (a) the bou-
nded small change around zero, (b) following a Zipfian
distribution of frequencies, constitute two of the patterns
that are global to all datasets and without any exceptions
whatsoever.

Despite the fact that change does not follow the pattern of
baseline smooth growth of Lehman and the fact that change
obeys a Zipfian distribution with a peak at zero, we believe
that the presence of feedback in the evolution process is
clear; thus the law holds.

4.1.3. Law of Feedback System (Law VIII)
The eighth law of software evolution is known as the

law of “Feedback System”.
E-type evolution processes are multi-level, multi-loop,
multi-agent feedback systems.

The main idea around this law refers to the fact that
original “observation has shown that the system behaves as
self-stabilizing feedback system” [14]. There is a big discussion
in the literature on various components and actors whose
interactions limit and guide the possible ways via which the
system can evolve. We refer the interested reader to [9] for
this. From our part, we do not presume to fully know the
mechanics that constraint the growth of a database schema.
However, we can focus to the part that there is indeed a
mechanism that stabilizes the tendency for uninterrupted
growth of the schema – and in fact we can try to assess



Fig. 7. Frequency of change values for Ensembl attributes.

I. Skoulis et al. / Information Systems 53 (2015) 363–385374
whether this is a regressive mechanism whose behavior can
be generally estimated.

Metrics for the assessment of the law's validity: To
assume the law as valid we need to establish that it is
possible to simulate the evolution of the schema size via
an accurate formula. Following [8,15], we will perform
regression analysis to estimate the number of relations for
each version of the schema. We adopt the formulas found
at [8,15] on the relationship of the new size of the system
as a function of the previous size of it, adapted via an
“inverse square” feedback effect. The respective formula is

bSi ¼ bSi�1þ
E

bS2i�1

E ¼ avgðEiÞ; i¼ 1…n ð1Þ

where bS refers to the estimated system size and E is a
model parameter approximating effort. Related literature
[8] suggests computing E as the average value of individual
Ei, one per transition. To estimate these individual effort
approximations, Ei, the authors of [8] suggest two alter-
native formulae:

Ei ¼ ðsi�si�1Þ � s2i�1 ð2Þ

Ei ¼
si�s1

Pi�1
j ¼ 1

1
s2j

ð3Þ

Assessment: We now move on to discuss what seems to
work and what not for the case of schema evolution. We will
use the OpenCart dataset as a reference example; however, all
datasets demonstrate exactly the same behavior.

The main challenge with formula (1) is the estimation
of E . As a first step, we have generalized the formulae (2)
and (3) via a parameterized expression:

Ei ¼
si�sα

Pi�1
j ¼ α

1
s2j

ð4Þ



I. Skoulis et al. / Information Systems 53 (2015) 363–385 375
where si refers to the actual size of the schema at version i
and α refers to the version fromwhich counting starts. The
model of [8] comes with two values for α, specifically (i)
α¼ i�1 for formula (2), and (ii) α¼1 for formula (3). The
essence of the formula is that, to compute Ei, we use α
previous versions to estimate effort.

Then we began our assessment. First, we assessed the
formulae of [8]. In this case, we compute the average E of
the individual Ei over the entire dataset. We employ four
different values for α, specifically i�1 (last version), 1 (for
the entire dataset) and 5 and 10 for the respective past
versions. We depict the result in Fig. 8(top), where the
actual size is represented by the blue solid line. The results
indicate that the approximation modestly succeeds in
predicting an overall increasing trend for all four cases,
and, in fact, all four approximations targeted towards
predicting an increasing tendency that the actual schema
does not demonstrate. At the same time, all four approx-
imations fail to capture the individual fluctuations within
the schema lifetime.

Then, we tried to improve on this result, and instead of
computing E as the total average over all the values of the
dataset, we compute it as the running average (not
assuming a global average, but tuning the average effort
with every added release). In this case, depicted in Fig. 8
(middle), the results are less satisfactory than our first
attempt.

After these attempts, we decided to alter the computa-
tion of E again. A better estimation occurred when we
realized that back in 1997 people considered that the
parameter E was constant over the entire lifetime of the
project; however, later observations (see [9]) led to the
revelation that the project was split into phases. So, for
every version i, we compute E as an average over the last τ
Ej values, with small values for τ (1/5/10) – contrast this to
the previous two attempts where E was computed as a
total average over the entire dataset (i.e., constant for all
versions) or a running average from the beginning of the
versions till the current one.

So, the main formula of the law is restated (and actually
generalized), by replacing a global parameter E with a
varying parameter E

i
that can change per version (thus the

superscript notation signifies the value of the effort
estimation at version i). The versions used for this calcula-
tion are within the range ½τs; τe�:

bSi ¼ bSi�1þ
E
i

bS2i�1

; E
i ¼ avgτ

e

j ¼ τs Ej
� � ð5Þ

For the three simulation attempts that we have run, we
have the following configurations:

Method
 Values for ½τs; τe�
Global average
 τs: 1
 τe: n

Running average
 τs: 1
 τe: i�1

Last τ vs. ðτAf1;5;10gÞ
 τs: i–τ
 τe: i�1
We also decided to use the last 5 or 10 versions to com-
pute Ei, i.e., α is 5 or 10. This has already been used in the
past experiments too.
As we can see in Fig. 8(bottom), the idea of computing the
average E with a short memory of 5 or 10 versions produced
extremely accurate results. This holds for all datasets. This
observation also suggests that, if the phases that [9] men-
tioned actually exist for the case of database schema, they are
really small, or non-existent, and a memory of 5–10 versions
is enough to produce very accurate results. The fact that this
works with τ¼1, and in fact, better than the other approx-
imations is puzzling and counters the existence of phases.

We do not have a convincing theory as to why the
formula works. We understand that there are no constants
in the feedback system and in fact, the feedback mechan-
ism needs a second feedback loop, with a short memory
for estimating the model parameter E . In plain words, this
signifies that both size and effort approximation are
intertwined in a multi-level feedback mechanism.

Overall, the evolution of the database schema appears to
obey the behavior of a feedback-based mechanism, as the
schema size of a certain version of the database can be
accurately estimated via a regressive formula that exploits
the amount of changes in recent, previous versions.

4.2. Properties of growth for schema evolution

Growth occurs as positive feedback to the system, in an
attempt to expand the system with more functionality, or
address new assumptions that make its operation accep-
table, e.g., new user requirements, and an evolving opera-
tional environment. In this subsection, we study the
properties of the growth.

4.2.1. Law of Continuing Growth (Law VI)
The sixth law of software evolution is known as the law

of “Continuing Growth”.

The functional capability of E-type systems must be
continually enhanced to maintain user satisfaction over
system lifetime.

The sixth law resembles the first law (continuing
change) at a fist glance; however, as explained in [8],
these two laws cover different phenomena. The first law
refers to the necessity of a software system to adapt to a
changing world. The sixth law refers to the fact that a
system cannot include all the needed functionality in a
single version; thus, due to non-elastic time and resource
constraints, several desired functionalities of the system
are excluded from a version. As time passes, these func-
tionalities are progressively blended in the system, along
with the new requirements stemming from the first law's
context of an evolving world. As [9] eloquently states “the
former is primarily concerned with functional and beha-
vioral change, whereas the latter leads, in general, directly
to additions to the existing system and therefore to its
growth”.

Metrics for the assessment of the law's validity: Possible
metrics for the sixth law that come from the software
engineering community [23] include LOC, number of
definitions (of types, functions and global variables) and
number of modules. We express again a point of concern
here: it is impossible to discern, from this kind of “black-



Fig. 8. Actual and estimated schema size for OpenCart via a total (top), running (middle) or bounded (bottom) averages of individual Ei. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)

I. Skoulis et al. / Information Systems 53 (2015) 363–385376



I. Skoulis et al. / Information Systems 53 (2015) 363–385 377
box” measurements, the percentage of change that per-
tains to the context of the law of continuing growth.
Ideally, one should count the number of recorded “ToDo”
functionalities blended within each version. However, we
do recognize that this task is extremely hard to automate
at a large scale. In our case, as we mainly refer to info-
rmation capacity rather than physical level schema proper-
ties, we can utilize the schema size as a safe measure of
observing “additions to the existing system”.

Assessment: In all occasions, the schema size increases
in the long run (Figs. 2–4). We frequently observe some
shrinking events in the timeline of schema growth in all
datasets. However, all datasets demonstrate the tendency to
grow over time.

At the same time, we also have differences from tra-
ditional software systems: as with Law I, the term “con-
tinually” is questionable. As already mentioned (refer to
Law III and Figs. 2–4), change comes with frequent (and
sometimes long) periods of calmness, where the size of the
schema does not change (or changes very little). Calmness
is clearly a phenomenon not encountered in the study of
traditional software systems by Lehman and acquires extra
importance if one also considers that in our study we have
isolated only the commits to the files with the database
schema and not the commits to the entire information
system that uses it: this means that there are versions of
the system, for which the schema remained stable while
the surrounding code changed.

Therefore we can conclude that the law holds (the info-
rmation capacity of the database schema is enhanced in the
long run), albeit modified to accommodate the particularities
of database schemata (changes are not continuous but rather,
they come within large periods of calmness).
4.2.2. Law of Conservation of Familiarity (Law V)
The fifth law of software evolution is known as the law

of “Conservation of Familiarity”.

In general, the incremental growth (growth ratio trend)
of E-type systems is constrained by the need to main-
tain familiarity.

As the system evolves, all the stakeholders that are
associated to it (developers, users, managers, etc.) must
spend effort to understand and actually, master its content
and functionality. Whenever there is excessive growth in a
version, the feedback mechanism tends to diminish the
growth in subsequent versions, so that the change's con-
tents are absorbed by people. Interestingly, whereas the
original form of the law refers to a constant (statistically
invariant) rate, the new version of the law is accompanied
by explanations strongly indicating a “long term decline in
incremental growth and growth ratio … of all release-based
systems studied” [9]. This result came as experimental
evidence from the observation of several systems, accom-
panied by the anecdotal evidence of a growing imbalance
in volume in favor of corrective versus adaptive mainte-
nance. Refs. [23,15] also give a corollary of the law stating
that versions with high volume of changes are followed by
versions performing corrective or perfective maintenance.
Metrics for the assessment of the law's validity: Ref. [9]
gives a large list of possible metrics: objects, lines of code,
modules, inputs and outputs, interconnections, subsys-
tems, features, requirements, and so on. Ref. [23] proposes
metrics that include (i) the growth of the system, (ii) the
growth ratio of the system, and (iii) the number of changes
performed in each version. We align with these tactics and
use the schema growth of the involved datasets.

To validate the law we need to establish the following
facts:
�
 The growth of the schema is not increasing over time;
in fact, it is – at best – constant or, more realistically, it
declines over time/version. A question, typically
encountered in the literature, is: “What is the effect of
age over the growth and the growth ratio of the
schema?” Is it slowly declining, constant or oblivious
to age? To address this question, we produce a linear
interpolation of the growth per dataset to show its
overall trend (Fig. 5).
�
 Another question of interest in the related literature is:
“What happens after excessive changes? Do we observe
small ripples of change, showing the absorbing of the
change's impact in terms of corrective maintenance
and developer acquaintance with the new version of
the schema?” In this case, the pattern we can try to
establish is that abrupt changes are followed by ver-
sions where developers absorb the impact of the
change and produce minor modifications/corrections,
thus resulting in versions with small growth following
the version with significant difference in size.
Assessment: Before proceeding, we would like to rem-
ind the reader on the properties of growth, discussed in
Law III of self-regulation: the changes are small, come with
spike patterns between zero and non-zero deltas and the
average value of growth is very close to zero (from the
positive side).

Concerning the ripples after large changes, we can
detect several patterns. Observe Fig. 9, depicting attribute
growth for the MediaWiki dataset. Due to the fact that this
involves the growth of attributes, the phenomena are
amplified compared to the case of tables. Reading from
right to left, we can see that there are indeed cases where
a large spike is followed by small or no changes (case 1).
However, within the small pool of large changes that exist
overall, it is quite frequent to see sequences of large
oscillations one after the other, and quite frequently being
performed around zero too (case 2). In some occurrences,
we see both (case 3).

Concerning the effect of age, we do not see a diminish-
ing trend in the values of growth; however, age results to a
reduction in the density of changes and the frequency of non-
zero values in the spikes. This explains the drop of the growth
in almost all the studied datasets (Fig. 5): the linear
interpolation drops; however, this is not due to the dec-
rease of the height of the spikes, but due to the decrease of
their density.

The heartbeat of the systems tells a similar story: typically,
change is quite more frequent in the beginning, despite the



Fig. 9. Different patterns of change in attribute growth of MediaWiki
(over version-id, concealed for fig. clarity).

I. Skoulis et al. / Information Systems 53 (2015) 363–385378
fact that existence of large changes and dense periods of
activities can occur in any period of the lifetime. Figs. 2–4
clearly demonstrate this by combining schema size and
activity. This trend is typical for almost all of the studied
databases. phpBB is the only exception, demonstrating incre-
ased activity in its latest versions with the schema size
oscillating between 60 and 63 tables, which is actually a very
small difference (as all figures are fitted to show the lines as
clearly as possible, they can be deceiving as to the amount of
change – phpBB is such a case).

Concerning the validity of the law, we believe that the law
is possible but not confirmed. The law states that the growth is
constrained by the need to maintain familiarity. However, the
peculiarity of databases, compared to typical software sys-
tems, is that there can be other good reasons to constrain
growth, such as the high degree of dependence of other
modules from the database. Therefore, conservation of famil-
iarity, although important, cannot solely justify the limited
growth. The extent of the contribution of each reason is
unclear.

4.2.3. Law of Conservation of Organizational Stability (Law
IV)

The fourth law of software evolution is known as the
law of “Conservation of Organizational Stability” also
known as law of the “invariant work rate”.

The work rate of an organization evolving an E-type
software system tends to be constant over the opera-
tional lifetime of that system or phases of that lifetime.

This is the only law with a fundamental change between
the two editions of 1996 and 2006. The previous form of the
law did not recognize phases in the lifetime of a project (the
average effective global activity rate in an evolving E-type
system is invariant over product lifetime). Plainly put, the law
states that the impact of any managerial actions to improve
productivity is balanced by the increasing complexity of
software as time passes as well as the role of forces external
to the software (availability of resources, personnel, etc.).
Metrics for the assessment of the law's validity: As [23]
excellently states, it is very hard to assess effort from the
data that we can typically acquire from a project, as “effort
does not equate progress”. Therefore, we can only approx-
imate the work rate by observing the published versions of
a system. Possible metrics [23] include (i) the number of
changes per version, (ii) the average number of changes
per day, and (iii) change and growth ratios.

To validate the law of conservation of organizational
stability, we need to establish that the project's lifetime is
divided into phases, each of which (a) demonstrates a
constant growth and (b) is connected to the next phase
with an abrupt change. Moreover, abrupt changes should
occur from time to time and not all the time (resulting in
extremely short phases).

Assessment: If we focus on the essence of the law, we can
safely say that it does not hold. The heartbeats of Figs. 2–4
and the arbitrary sequencing of spikes and calmness
(Figs. 5, 9) make it impossible to speak about constant
growth, even in phases. The open-source nature of our
cases plays a role to that too [23].

4.3. Perfective maintenance for schema evolution

Lehman has indicated the battle between two antagoniz-
ing processes over a fixed amount of resources for the
maintenance of software [14]: on the one hand, the need to
evolve the system (system growth) and on the other the
“anti-regressive” effort to attack the growing complexity of
the system. To achieve this, perfective maintenance must be
performed from time to time, in order to remove redundant
code, to restructure code for better maintainability and
comprehension, to document the code, etc. As [9] puts it:
“these activities have minor or no impact in functionality,
performance or other properties of the software in execution”.
In this subsection, we are interested in the perfective main-
tenance part and we adopt the [32] definition (emphasis is
ours): “modification of a software product after delivery to
provide enhancements for users, improvement of program
documentation, and recoding to improve software performance,
maintainability or other software attributes”.

4.3.1. Law of Increasing Complexity (Law II)
The second law of software evolution is known as the

law of “Increasing Complexity”.

As an E-type system is changed its complexity increases
and becomes more difficult to evolve unless work is
done to maintain or reduce the complexity.

The law states that complexity increases with age, unless
effort is taken to prevent this. The rationale behind verifying
the law dictates the observation of (a) an increasing trend in
complexity of a software system, battled by (b) a perfective
maintenance activity that attempts to reduce it and demon-
strated by drops in the system size and rate of expansion.

Metrics for the assessment of the law's validity: Since wewill
ultimately resort to measurements for verifying the law,
before proceeding further, we need to confront a fundamental
problem: the law's definition – as it stands – requires a more
precise definition of complexity. Unfortunately, complexity is a



13 In our CAiSE'14 paper [31], we erroneously refer to BioSQL instead
of phpBB.

I. Skoulis et al. / Information Systems 53 (2015) 363–385 379
meta-property, practically involving a wide spectrum of
specific measurable properties of software. To give an exam-
ple, Fenton and Pfleegler [33] mention four kinds of complex-
ity: (i) problem complexity (computational complexity of the
underlying problem), (ii) algorithmic complexity (of the algo-
rithm eventually implemented to solve the problem),
(iii) structural complexity (typically measured as the control
flow or class hierarchy or modularity structure) and (iv)
cognitive complexity (measuring the effort required to under-
stand the software). Lehman and Ramil [9] take a more
process-oriented approach and refer to application and func-
tional complexity, specification and requirements complexity,
architectural complexity, design and implementation complexity
and structural complexity.

Unfortunately, all the above are very hard to define and
measure, especially if measurement is to be performed on
evidence automatically extracted from electronic logs or
version management systems. The automatic isolation of
the subset of changes that pertain to perfective maintenance
is an interesting and vast topic of research; for the moment,
however, it appears that we will have to resort to approxima-
tions. Related literature is based on such approximations (see
for example, [34]). Notably, in the latest of Lehman's series of
papers, the law is supported via rationalization: the complex-
ity increase that age brings to a system is considered
responsible for the decline of the growth ratio over time
(laws V and VI).

To surpass all these difficulties, we will try to assess the
validity of the law based on the combination of the following
observations:

First, we will focus on the essence of the law: ultimately,
the law requires identifying releases or versions where
perfective maintenance is performed. To actually achieve with
100% certainty would require some project management
documentation that this is performed. Thus, we resort to
the closest possible approximation and try to detect versions
with drops in the size and the growth of the system. Assuming
that the overall trend of the system is to grow, the existence
of such points from time to time will give a strong indication
of the law.

A second indication for the validity of the law is the
respect of the VIII law of feedback, i.e., the existence of a
regressive formula to which the size of the system con-
forms. The validity of this law would strongly insinuate the
existence of a feedback-based system and therefore, the
existence of negative feedback as discussed in this second
law of evolution.

Third, we take a definition already found in Lehman [7,34]
and attempt to approximate the measurement of complexity as
the fraction of the evolution-affected relations (i.e., the number of
relations modified or added to the schema) between two
subsequent versions of the schema over the difference in the
number of relations of the involved versions. This formula
approximates how much effort has been invested in expand-
ing the system over the actual difference achieved (large
values demonstrate too much effort for too small change). So,
for each transition, we approximate the complexity of the
original schema by dividing the extent of the involved
changes over the actual increment of the schema size. To
understand this better, assume that we compare two transi-
tions with the same denominator (i.e., difference in the
number of relations); if one transition had more relations
updated than the other, it means we paid more effort for this
transition, and thus, we assume that the starting complexity
is higher. More precisely, we divide the effort (number of
relations that we modified in any way in a revision), by the
growth (size of the result in that revision). In case the
denominator is zero, we have no escape than to define
complexity as zero (which is another approximation we
cannot avoid).

complexityi �
relations handled

jSi�Si�1j
ð6Þ

Assessment: Related literature typically speaks for increas-
ing complexity [7–9,23], although there have been counter-
arguments for the case of open source software [35]. In our
case, in all the datasets but phpBB, complexity, as defined in the
previous paragraph, does not increase13 (see Fig. 10, where a
linear interpolation of complexity is also depicted). The
phenomenon must be coupled with the drop in change
density (Law V) and although we cannot provide undispu-
table explanation, we offer the synergy of two causes: (a) the
increasing dependence of the surrounding code to the data-
base that makes developers more cautious to perform schema
changes as they incur higher maintenance costs and (b) the
success of the perfective maintenance, which results in a
clean schema, requiring less corrective maintenance in the
future.

Although we cannot confirm or disprove the law based on
undisputed objective measurements, we have indications that
the second law partially holds, albeit with completely differ-
ent connotations than the ones reported by Lehman for
typical software systems: in the case of database schemata,
complexity, when measured as the fraction of expansion
effort over actual growth, drops.
4.3.2. Law of Declining Quality (Law VII)
The seventh law of software evolution is known as the

law of “Declining Quality”.

Unless rigorously adapted and evolved to take into
account changes in the operational environment, the
quality of an E-type system will appear to be declining.

The main idea behind this law concerns the fact that the
software will each time be based on assumptions on the user
requirements or the real world environment that will pro-
gressively be invalid. As assumptions are invalidated, action
must be undertaken tomaintain the affected software parts in
order to reflect the actual user needs. Thus, the aging of the
system, along with the increase in complexity, also calls for a
reestablishment of assumptions and functionalities to serve
the users' needs. Ref. [14] specifically refers to the external
quality of a software system, practically expressing a system's
quality as ‘user satisfaction’. However, this point of view is
drastically different in [9], where the viewpoint on quality is
generalized to all possible kinds of quality an organization
might deem necessary (based on the viewpoint of users,



I. Skoulis et al. / Information Systems 53 (2015) 363–385380
managers, developers, each carrying his own interpretation
and measures).

Metrics for the assessment of the law's validity: Possible
metrics [23] for the internal quality of typical software
systems include (i) the number of known defects asso-
ciated with each version, (ii) defect density for each
version, (iii) percentage of modules whose bodies have
been changed. Much like the authors of [23], however, we
are not really in a position to fully automate the accurate
measurement of external quality as perceived by the end
users, the management, etc. It is noteworthy that Lehman
and Fernandez-Ramil [15,9] avoid giving any other support
to the law than a logical proof: as the system expands over
time, its complexity rises and thus the addressing of user
requirements and removal of defects becomes more and
more difficult, unless work is done to confront the phe-
nomenon (the decline in software quality with age appears
to relate to a growth in complexity that must be associated
with aging).

Assessment: We follow [9] and use logical induction to
assess whether the law holds; specifically, we can assume
that the law holds if it is strongly established that the laws of
feedback (III, VIII) and complexity (II) hold.

We have already demonstrated that the rationale behind
complexity increase is not supported by our observations. At
the same time, we cannot assess schema quality with
undisputed means. Therefore, we cannot confirm or disprove
the law based on undisputed objective measurements.

4.4. Threats to validity

In this subsection, we discuss threats to the validity of our
conclusions. We structure our deliberations around three
Fig. 10. Complexity for Coppermine and Ensem

Fig. 11. Summary of measures employed
kinds of validity threats, specifically, construct validity, asses-
sing the appropriateness of our measures, internal validity,
assessing the possibility that cause–effect relationships are
produced on an erroneous interpretation of causality, and
external validity, assessing the extent to which our results can
be generalized.

4.4.1. Construct validity
Construct validity concerns the appropriateness of the

employed measures for the theoretical constructs they
purportedly assess. In our case, to assess construct validity,
we review the appropriateness of the metrics used for
each law, also with a view to the metrics used in the
studies of software evolution. Fig. 11 summarizes our
assessment.

I. Continuing change: As the goal is to establish the
continuity of change, the usage of the (accurately mea-
sured) heartbeat raises no concern about its appropriate-
ness and the validity of our results.

II. Increasing complexity: The main metric to assess this
law is the schema complexity. As we mentioned before, we
do not have a way to accurately measure the complexity of a
database schema as similar studies have done with software's
complexity. We approximate the complexity with the effort
spent between two schema versions divided by the increment
in size between those versions. The later can be accurately
measured but this is not the case with the effort. Effort cannot
be measured from the data that we have extracted for the
databases that we studied. The only accurate way to measure
effort would be to have the actual man-hours that every
developer has spent in the development of the database.
Moreover, given the fact that databases are parts of larger
software ecosystems, the possibility of accurately assessing
bl (over version-id, concealed for clarity).

per law and their appropriateness.



I. Skoulis et al. / Information Systems 53 (2015) 363–385 381
effort would require a measure able to differentiate the work
done on the database and the work pertaining to the rest of
the software system – a possibility which we dim quite slim,
in fact. On the other hand, the reasoning behind the formula
used makes sense and it is consistent with the related
literature. Overall, the complexity, as we approximate it, poses
a threat to our construct validity that we cannot ignore; to a
large extent, this is also due to the abstract wording of the
law. This is also the reason why we are very skeptic towards
verifying the validity of the law in the case of schema
evolution. Future work needs to be invested in the area for
a more solid grounding of automated complexity assessment.

III. Self regulation: To assess this law, we used schema size
and growth as measures. Both metrics can be accurately
measured. The usage of the measure is consistent with the
bibliography and the intuition behind the law.

IV. Conservation of organizational stability: The involved
metric in order to assess this law is the work rate (and the
existence of periods during which it remains constant). As
previously mentioned, work rate cannot be easily measured,
based on the available information. To this end, we primarily
use schema growth as an approximation of output, and
secondarily the heartbeat as an approximation of activity,
both of which are accurate. Overall, we are satisfied with our
choice, as it appears that this is the best possible approxima-
tion we can get from automatically extracted data; at the
same time, we have to acknowledge that it is an approxima-
tion and not an undisputed measurement of the work rate.

V. Conservation of familiarity: The metric used for the
assessment of this law is growth, which is accurately mea-
sured. On the other hand, we have no way to indisputably
know the exact mechanics behind the observations; hence,
despite the accuracy of the observations, the law requires
further elaboration.

VI. Continuing growth: For this law, we employed schema
size again, which is accurately extracted by our tools and fit
for assessing the law.

VII. Declining quality: As schema quality is not clearly
defined in the area of databases, the assessment of quality
via metrics requires specific studies on the topic, before we
are able to converge to a widely accepted solution. Ratio-
nalization about the law has typically been used in the
related literature as a solution to the problem.

VIII. Feedback system: The main measure we used for
assessing this law is the estimated size of the database sch-
ema. This measure has previously been used in the case of
software evolution, again with an approximation for the
measurement of effort. However, the regression formula used
is consistent with its usage in the bibliography (albeit with
novelty in terms of the memory of the feedback) and all the
results in all datasets are surprisingly consistent. Therefore,
we believe that the specific formulae used pose no threat to
validity, although a better understanding of the mechanics
behind the feedback mechanism have to be part of future
studies.

4.4.2. Internal validity
Internal validity refers to the case where a conclusion on

the behavior of a dependent variable is made as a cause–
effect relationship with an independent variable. We are very
careful to treat our observations only as such and avoid
relating the observed phenomena with specific causes with-
out supporting evidence.

Having said that, we extend the discussion, as the obser-
vant reader might be tempted to introduce a cause–effect
relationship between age (as a cause) and the following
phenomena: (a) dropping density of change, (b) dropping
complexity, and (c) size growth in the long run. We con-
jecture (but cannot prove) that we could attribute the
behavior of density and complexity to the existence of a
confounding variable: schema quality, improving over time
due to perfective maintenance and causing the observed
behavior. Still, this remains to be proved with undisputed
data and metrics. For size, the confounding variable is user
requirements for more information capacity; although rea-
sonable enough (in our minds, practically certain), this is also
a topic to be proved indisputably by dedicated studies.

4.4.3. External validity
External validity refers to the possibility of generalizing the

findings of a study to a broader context. Concerning the
external validity of our study, we repeat that its context
concerns the study of the evolution of the logical schema of
databases in open-source software. We avoid generalizing our
findings to databases operating in closed environments and
we stress that our study has focused only on the logical
structure of databases, avoiding physical properties (let alone
instance-level observations).

Concerning the validity of our study within this con-
text, we believe we have provided a safe, representative
experiment. In this study, we have targeted a significant
number of database schemas that serve different purposes
in the real world and come with a quite broad range of
time spans. Concerning the time span, the schemas col-
lected had an adequate number of versions from rather
few (40) to quite many (500þ). Despite these degrees of
variability, our findings are consistent in practically all of
the datasets (with few exceptions that we mentioned).
Thus we believe that the case of logical database schema in
open source software is well represented.

On the other hand, we would be hesitant to generalize our
findings in databases in closed software or outside the scope
of the logical schema. Open-source software comes with a
larger development community, and less control on the
development effort. This is not the case for closed software,
especially when dealing with mission critical components like
databases. At the same time, we have not worked with the
information concerning the physical schema or the extension
of the studied databases and thus, we would take the
opportunity to warn the reader not to generalize the results
outside the scope of a schema's information capacity as
expressed by the logical-level schema.

5. Discussion

In this section, we summarize fundamental observations
and patterns that have been detected in our study. We
intentionally avoid the term law, as we do not have unshake-
able evidence for their explanation: apart from the empirical
grounding, due to a very large amount of datasets that obey
the same patterns (which we believe we have fairly attained),
we would require an undisputed rationalized grounding, i.e., a



I. Skoulis et al. / Information Systems 53 (2015) 363–385382
clear explanation of the underlying mechanism that guides
them, also established on measured, undisputed facts.

In case the reader has skipped our discussion of threats to
validity, we clarify once more that the context under which
our observations are made concerns the study of the evolution
of the logical schema of databases in open-source software. In
all our subsequent deliberations, we take the above context as
granted and avoid repeating it for reasons of better presenta-
tion of our results.

Before proceeding, however, to our conclusions, we
devote the first part of this subsection to a discussion on
the validity of the problem per se.

5.1. Does the problem make sense in the first place?

We start with a fundamental inquiry: Is it meaningful to
try assessing Lehman's laws for schema evolution in the
first place? Does it make sense to try to observe evolu-
tionary patterns in the way schemata evolve by following
Lehman's method and laws?

Surely, there are fundamental differences between the
general case of E-type software systems and databases in
open-source systems. First, whereas software systems
export functionality to their users, databases, on the con-
trary, export information capacity, i.e., the ability to store
data and answer queries. Second, databases are not com-
plete and independent software systems but parts of larger
information systems. Is it then meaningful to pursue this
research?

Again, let us revisit the fundamental lesson learned by
Lehman's laws: software systems are complex, multi-level
systems, involving several stakeholders, that have to
evolve or face eviction; this evolution is governed by the
antagonism between (a) positive feedback, pushing the
system to adapt to new environments and add new
functionalities according to the users’ needs and
(b) negative feedback, that constrains the uncontrolled
growth and complexity of the system, by imposing per-
fective maintenance actions that result in an improved,
more maintainable internal structure of the system.

Can we replace the term ‘software systems’ with
‘database’ in the above wording? We believe we can,
and the fundamental reason is that the antagonism
between positive and negative feedback is there too. On
the one hand, a database schema has to obey the part of
the positive feedback and its moderators need to adapt,
tune and expand it over time (and this concerns all kinds
of databases, as well as the ones involved in open-source
software). This concerns both the expansion due to user
requirements concerning the availability of information
and the adaptation to new environments. At the same
time, growth cannot be unconstrained: developers of
open-source software are highly sensitive and attentive
when it comes to database-related code, as changes in the
database can incur both syntactic and semantic failures.
Thus, it would be reasonable to expect that leaving the
schema grow without any complexity control, especially
in an open-source environment where developers are not
organized in a strict hierarchy, can result to maintenance
nightmares. The a posteriori observations verify this
intuition: we do observe schema size contractions, where
renamings, restructurings and removal of tables and
attributes are evident in an attempt to keep schemata
clean, understandable and well-structured.

Are databases, then, mini E-type systems with a life of
their own? We should be clear that we do not postulate
that databases can be completely isolated from the rest of
their surrounding ecosystem. Still, studying schema evolu-
tion in an attempt to discover regularities and patterns is
certainly worth the effort, given the high degree of
dependence of the rest of the code over the database
structure. With the benefit of the hindsight, we do believe
that considering the laws of Lehman as a starting point for
the study of schema evolution has been a legitimate and
rewarding effort as it revealed both commonalities (mainly
due to the same fundamental feedback mechanism) and
differences (due to the specificities of the database case)
with the general theory of Lehman's laws.

5.2. Major findings

In this section, we provide a critical discussion of our
findings, accompanied by concise summaries, where we
also annotate each of our observations with reference to
the law where we have discussed it in detail. Fig. 12 further
distils these findings in a single table.

5.2.1. Is the process of schema evolution behaving like a
feed-back based system? (hypothesis of the feedback-based
process)

We believe that we can indeed claim that schema evolu-
tion is guided by a feedback based mechanism. Positive
feedback brings the need to increase the information
capacity of the database, resulting in expansion of the
number of relations and attributes over time. At the same
time, there is negative feedback too, from the need to do
some house-cleaning of the schema for redundant attri-
butes or restructuring to enhance schema quality. We have
also observed that the inverse square models for the
prediction of size expansion holds for all the eight sche-
mata that we have studied. However, we do not come with
a good explanation as to why this holds. The supporting
observations in this context can be listed as follows:
�
 As an overall trend, the information capacity of the
database schema is enhanced – i.e., the size grows in
the long term (VI).
�
 The existence of perfective maintenance is evident in
almost all datasets with the existence of relation and
attributes' removals, as well as observable drops in
growth and size of the schema (sometimes large ones).
In fact, growth frequently oscillates between positive
and negative values (III).
�
 The schema size of a certain version of the database can
be accurately estimated via a regressive formula that
exploits the amount of changes in recent, previous
versions (VIII).

As in all feedback-based systems, the negative feedback
prevents the uncontrolled growth and retains the quality
of the schema at a high level, allowing thus the subsequent



Fig. 12. Summary of research questions, findings and validity over the datasets.

I. Skoulis et al. / Information Systems 53 (2015) 363–385 383
releases to operate smoothly. This is a true sign of stability
: the system is maintained adequately to minimize the
effects of its unavoidable subsequent modifications and
continue evolving smoothly.

Overall, we can state: Schema evolution demonstrates
the behavior of a stable, feedback-regulated system, as the
need for expanding its information capacity to address user
needs is controlled via perfective maintenance that retains
quality; this antagonism restrains unordered expansion and
brings stability.

5.2.2. Hypothesis of schema size expansion (and properties
of its growth)

The size of the schema expands over time, albeit with
versions of perfective maintenance due to the negative
feedback. As already mentioned, the inverse square model
seems to work.

The growth of the database schema does not follow a
pattern of smooth growth – even considering the amendment
where phases of constant growth are assumed. The expansion
is mainly characterized by three kinds of phases, including (i)
abrupt change (positive and negative), (ii) smooth growth,
and (iii) calmness (meaning large periods of no change, or
very small changes). We observe that in the case of schema
evolution, the schema's growth (i.e., its change from one
version to the following) mainly occurs with spikes oscillating
between zero and non-zero values. The changes are typically
small, following a Zipfian distribution of occurrences, with
high frequencies in deltas that involved small values of
change, close to zero.

At the same time, in contrast to the case of software
systems,we observe a very strong inclination to avoid changes to
the database schema. Change in the database impacts sur-
rounding code, so the change is constrained by the need to
minimize this impact. So, we frequently see versions with no
change to the information capacity of the schema and large
time periods where the schema is still (or almost still). Bear in
mind that we monitor only the subset of versions that pertain
to the database schema and ignored any versions where the
information system surrounding the database changed while
the schema remained the same. This enforces our argument
for the tendency towards stillness.

Although we do not believe conservation of familiarity
to be the only cause, we see that the feedback mechanism
of the evolution demonstrates a reduction in the density of
changes as the schema ages. We also observe unexpected
patterns of changes with sequences of high spikes, some-
times oscillating around zero. Such patterns require
further investigation for their verification and explanation.
The average growth is close to zero, and with the tendency
to drop as time passes, not due to the diminishing of the
(already small) deltas, whenever they occur, but mainly
due to the diminishing of their density.

Concerning the size of the system, our supporting evidence
has been already summarized via laws VI and VIII (see the
previous paragraph). Concerning the heartbeat of the system,
our supporting evidence for the above statements can be
listed as follows:
�
 The database is not continuously adapted, but rather,
alterations occur from time to time (I).
�
 Change does not follow patterns of constant behavior (IV).

�
 Age results in a reduction of the density of changes to

the database schema in most cases (V).
Concerning the growth of the system, our supporting
evidence for the above statements can be listed as follows:



I. Skoulis et al. / Information Systems 53 (2015) 363–385384
�
 Growth is typically small in the evolution of database
schemata, compared to traditional software systems (III).
The distribution of occurrences of the amount of schema
change follows a Zipfian distribution, with a predominant
amount of zero growth in all datasets. Plainly put, there is
a very large amount of versions with zero growth, both in
the case of attributes and in the case of tables. The rest of
the frequently occurring values are close to zero, too.
�
 The average value of growth is typically close to zero
(although positive) (III) and drops with time, mainly
due to the drop in change density (V).
5.2.3. Hypothesis of perfective maintenance to fight
complexity and user dissatisfaction

We also believe that there is sufficient evidence to
support the claim that perfective maintenance is part of the
process. This is mainly demonstrated by the drops in the
schema size as well as the drops in activity rate and growth
with age. In fact, growth frequently oscillates between
positive and negative values (III). Thus, based on simple
reasoning, one can accept the wording of Lehman's laws
on negative feedback, as they both state that quality
(internal and external) declines unless confronted.

However, despite the adoption of the hypothesis for a
feedback-based mechanism, we cannot adopt the corroborat-
ing observations of the related literature for software systems
that accompany the two laws of negative feedback (II and VII).
In the systems we have studied we observe that age results in
a reduction of the complexity to the database schema (II),
although we need to remember that the measurement of
complexity is an approximation. The interpretation of the
observation is that perfective maintenance seems to do a
really good job and complexity drops with age (in sharp
contrast to what is observed in the related literature for
software systems where more and more effort is devoted to
battle complexity). Also, in the case of schema evolution,
activity is typically less frequent with age. Although one can
attribute this to the inefficacy of the approximating measure,
we anticipate that it should mainly be attributed to the truth
lying in the essence of law II: “complexity increases unless
work is done to reduce it”. We conjecture that due to the
criticality of the database layer in the overall information
system, this process is done with care and achieves the
reduction of complexity over time, coming hand in hand with
the strong tendency towards minimum or no changes to the
schema.

As for law VII, as already mentioned, we are even more
hesitant to adopt it, as we are already in doubt towards
internal quality and have no actual evidence as to what
happens with external quality.

Overall: although our research seems to keep the negative
feedback laws in place in the case of schema evolution, this is
done with (a) a degree of uncertainty and (b) with the strong
indication of fundamental differences with E-type program
evolution. We would not be surprised if future research
establishes with more certainty that the feedback mechanism
for schema evolution improves the quality and complexity of
a database as time passes.
5.3. Opportunities for future work

There are several opportunities for follow-up work. As one
would normally expect, verifying the findings of this study
with more datasets can further solidify our confidence to
them. The extension of this work to evolution histories of
proprietary databases in closed environments, over large
periods of time, would be of extreme value; albeit one can
only be pessimistic on the possibility of obtaining such data
and being able to publish them. Novel developments in
database technology allow the extension of this kind of study
to non-relational data too. This includes all kinds of semi-
structured data (evolution of XML data alone is a vast area of
research, where the nesting of the elements provides trans-
formations of the schema that are not present in the relational
case), but also, the so-called “NoSQL” data, where structures
like graphs and text evolve over time. In the latter case, the
identification of patterns in the evolution of the data at the
instance level is clearly a challenging topic of research.

A second large area of research concerns the identification
of patterns in the correlation of the evolution of the database
and the evolution of the surrounding applications. This invo-
lves both the alignment of the application code to the new
schema and, as a reviewer of this paper has pointed out,
possible workarounds in the code to avoid modifying the
database. Even more challenging is the relationship of user
requirements to database evolution. Remember that in order
to be able to come up with results in long histories with many
versions, automated processing of the available data is para-
mount. The possibility of automating the processing of tickets,
bug reports and to-do lists in a way that can be correlated to
the subsequent evolution of the database is a topic with a
significant amount of technical challenge.

At the same time, the techniques used in this study
provide opportunities for improvement. A first area of future
research concerns the findings of aging and complexity (Law
II). We need to establish better measures for complexity of
database schemata and see how this complexity behaves over
time. Similar considerations hold for estimating effort and
work-rate by exploiting the available information in the sof-
tware repositories as automatically as possible.

Finally, one should also recognize that the search for more
patterns than the ones offered by Lehman's laws, via tradi-
tional or novel pattern detection mechanisms, is another
important possibility for future work. Already, the observation
of patterns of growth (Laws III and V), or patterns in the
heartbeat of the evolution, are open issues worth investigat-
ing. Going further than that, identifying which tables are more
liable to change in the future and how, or how the effort
around schema evolution can be planned in advance by
studying the available data are research questions with great
value both for developers, who can tailor the code to be as
loosely coupled as possible to the most unstable parts of the
database, and project managers, who can estimate where
change will be directed. We hope that in the context of such



I. Skoulis et al. / Information Systems 53 (2015) 363–385 385
endeavors, the publicly available datasets of this paper
(https://github.com/DAINTINESS-Group) can serve the rese-
arch community.
Acknowledgment

We would like to thank the anonymous reviewers of both
[31] and this paper for their useful comments.

This research has been co-financed by the European Union
(European Social Fund – ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) – Research Funding Program: Thales. Investing in
knowledge society through the European Social Fund.

References

[1] D. Sjøberg, Quantifying schema evolution, Inf. Softw. Technol. 35 (1)
(1993) 35–44.

[2] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou, Metrics for
the prediction of evolution impact in ETL ecosystems: a case study, J.
Data Semant. 1 (2) (2012) 75–97.

[3] C. Curino, H.J. Moon, L. Tanca, C. Zaniolo, Schema evolution in
wikipedia: toward a web information system benchmark, in: Pro-
ceedings of 10th International Conference on Enterprise Information
Systems (ICEIS), 2008.

[4] D.-Y. Lin, I. Neamtiu, Collateral evolution of applications and data-
bases, in: Proceedings of the Joint International and Annual ERCIM
Workshops on Principles of Software Evolution and Software Evolu-
tion Workshops (IWPSE), 2009, pp. 31–40.

[5] S. Wu, I. Neamtiu, Schema evolution analysis for embedded data-
bases, in: Proceedings of the 27th IEEE International Conference on
Data Engineering Workshops (ICDEW), 2011, pp. 151–156.

[6] D. Qiu, B. Li, Z. Su, An Empirical analysis of the co-evolution of
schema and code in database applications, in: Proceedings of the 9th
Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2013, pp. 125–135.

[7] L.A. Belady, M.M. Lehman, A model of large program development,
IBM Syst. J. 15 (3) (1976) 225–252.

[8] M.M. Lehman, J.C. Fernandez-Ramil, P. Wernick, D.E. Perry, W.M.
Turski, Metrics and laws of software evolution—the nineties view,
in: Proceedings of the 4th IEEE International Software Metrics
Symposium (METRICS), 1997, pp. 20–34.

[9] M.M. Lehman, J.C. Fernandez-Ramil, Rules and Tools for Software
Evolution Planning and Management, Software Evolution and Feed-
back: Theory and Practice, Wiley, Chichester, West Sussex, England,
2006.

[10] I. Herraiz, D. Rodriguez, G. Robles, J.M. Gonzalez-Barahona, The
evolution of the laws of software evolution: a discussion based on a
systematic literature review, ACM Comput. Surv. 46 (2) (2013) 1–28.

[11] M. Wermelinger, Y. Yu, A. Lozano, Design principles in architectural
evolution: a case study, in: Proceedings of the 24th IEEE Interna-
tional Conference on Software Maintenance (ICSM), 2008, pp. 396–
405.

[12] Z. Xing, E. Stroulia, Analyzing the evolutionary history of the logical
design of object-oriented software, IEEE Trans. Softw. Eng. 31 (10)
(2005) 850–868.

[13] M. Lehman, Programs life cycles and laws of software evolution,
Proc. IEEE 68 (9) (1980) 1060–1076.

[14] M.M. Lehman, Laws of software evolution revisited, in: Proceedings
of 5th European Workshop on Software Process Technology
(EWSPT), 1996, pp. 108–124.
[15] M.M. Lehman, J.C. Fernandez-Ramil, D.E. Perry, On evidence sup-
porting the FEAST hypothesis and the laws of software evolution, in:
Proceedings of the 5th IEEE International Software Metrics Sympo-
sium (METRICS), 1998, pp. 84–88.

[16] S.S. Pirzada, A statistical examination of the evolution of the unix
system (Ph.D. thesis), Imperial College, University of London, 1988.

[17] N.T. Siebel, S. Cook, M. Satpathy, D. Rodríguez, Latitudinal and
Longitudinal Process Diversity, J. Softw. Maint. Res. Pract. 15 (1)
(2003) 9–25.

[18] M.J. Lawrence, An examination of evolution dynamics, in: Proceed-
ings of the 6th International Conference on Software Engineering
(ICSE), 1982, pp. 188–196.

[19] M.W. Godfrey, Q. Tu, Evolution in open source software: a case
study, in: Proceedings of the 16th IEEE International Conference on
Software Maintenance (ICSM), 2000, pp. 131–142.

[20] M.W. Godfrey, Q. Tu, Growth, evolution, and structural change in
open source software, in: Proceedings of the 4th International
Workshop on Principles of Software Evolution (IWPSE), 2001,
pp. 103–106.

[21] G. Robles, J.J. Amor, J.M. Gonzalez-Barahona, I. Herraiz, Evolution and
growth in large Libre software projects, in: Proceedings of the 8th
International Workshop on Principles of Software Evolution
(IWPSE), 2005, pp. 165–174.

[22] S. Koch, Software evolution in open source projects: a large-scale
investigation, J. Softw. Maint. Evol. 19 (6) (2007) 361–382.

[23] G. Xie, J. Chen, I. Neamtiu, Towards a better understanding of
software evolution: an empirical study on open source software,
in: Proceedings of the 25th IEEE International Conference on Soft-
ware Maintenance (ICSM), 2009, pp. 51–60.

[24] I. Herraiz, G. Robles, J.M. Gonzalez-Barahon, Comparison between
SLOCs and number of files as size metrics for software evolution
analysis, in: Proceedings of the 10th European Conference on Soft-
ware Maintenance and Reengineering (CSMR), 2006, pp. 206–213.

[25] R. Vasa, Growth and change dynamics in open source software
systems (Ph.D. thesis), Swinburn University of Technology, Australia,
2010.

[26] A. Israeli, D.G. Feitelson, The Linux kernel as a case study in software
evolution, J. Syst. Softw. 83 (3) (2010) 485–501.

[27] C.A. Curino, H.J. Moon, C. Zaniolo, Graceful database schema evolu-
tion: the PRISM workbench, Proc. VLDB Endow. 1 (2008) 761–772.

[28] C. Curino, H.J. Moon, A. Deutsch, C. Zaniolo, Automating the
database schema evolution process, VLDB J. 22 (1) (2013) 73–98.

[29] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou, Policy-
regulated management of ETL evolution, J. Data Semant. 13 (2009)
147–177.

[30] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou, HECA-
TAEUS: regulating schema evolution, in: Proceedings of the 26th
IEEE International Conference on Data Engineering (ICDE), 2010,
pp. 1181–1184.

[31] I. Skoulis, P. Vassiliadis, A. Zarras, Open-source databases: within,
outside, or beyond Lehman's laws of software evolution? in:
Proceedings of the 26th International Conference on Advanced
Information Systems Engineering (CAiSE), 2014, pp. 379–393.

[32] IEEE, Guide to the Software Engineering Body of Knowledge (v. 3.0),
IEEE Computer Society, 2014, available at 〈http://www.computer.
org/portal/web/swebok〉, retrieved at 08 July 2014.

[33] N.E. Fenton, S.L. Pfleeger, Software Metrics—A Practical and Rigorous
Approach, International Thomson, Boston, MA, USA, 1996.

[34] M.M. Lehman, J.F. Ramil, Software Evolution, in: STRL Annual
Distinguished Lecture, De Montfort University, Leicester, 20 Decem-
ber 2001, available at 〈http://www.eis.mdx.ac.uk/staffpages/mml/
feast2/papers.html〉, 〈http://www.eis.mdx.ac.uk/staffpages/mml/
feast2/papers/pdf/690c.pdf〉, 〈http://www.eis.mdx.ac.uk/staffpages/
mml/feast2/papers/pdf/jfr103c.pdf〉.

[35] J. Fernández-Ramil, A. Lozano, M. Wermelinger, A. Capiluppi,
Empirical studies of open source evolution, in: Software Evolution,
2008, pp. 263–288.

https://github.com/DAINTINESS-Group
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref1
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref1
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref2
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref2
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref2
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref7
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref7
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref9
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref9
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref9
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref9
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref10
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref10
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref10
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref12
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref12
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref12
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref13
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref13
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref200
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref200
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref200
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref22
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref22
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref26
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref26
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref27
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref27
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref28
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref28
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref29
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref29
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref29
http://www.computer.org/portal/web/swebok
http://www.computer.org/portal/web/swebok
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref33
http://refhub.elsevier.com/S0306-4379(15)00069-1/sbref33
http://www.eis.mdx.ac.uk/staffpages/mml/feast2/papers.html
http://www.eis.mdx.ac.uk/staffpages/mml/feast2/papers.html
http://www.eis.mdx.ac.uk/staffpages/mml/feast2/papers/pdf/690c.pdf
http://www.eis.mdx.ac.uk/staffpages/mml/feast2/papers/pdf/690c.pdf
http://www.eis.mdx.ac.uk/staffpages/mml/feast2/papers/pdf/jfr103c.pdf
http://www.eis.mdx.ac.uk/staffpages/mml/feast2/papers/pdf/jfr103c.pdf

	Growing up with stability: How open-source relational databases evolve
	Introduction
	Lehman laws of software evolution in a nutshell
	Lehman's laws and related empirical studies
	Empirical studies on database evolution
	Novelty with respect to the state of the art

	Experimental setup of the study
	Assessing the laws for schema evolution
	Is there a feedback-based system for schema evolution?
	Law of continuing change (Law I)
	Law of Self-regulation (Law III)
	Law of Feedback System (Law VIII)

	Properties of growth for schema evolution
	Law of Continuing Growth (Law VI)
	Law of Conservation of Familiarity (Law V)
	Law of Conservation of Organizational Stability (Law IV)

	Perfective maintenance for schema evolution
	Law of Increasing Complexity (Law II)
	Law of Declining Quality (Law VII)

	Threats to validity
	Construct validity
	Internal validity
	External validity


	Discussion
	Does the problem make sense in the first place?
	Major findings
	Is the process of schema evolution behaving like a feed-back based system? (hypothesis of the feedback-based process)
	Hypothesis of schema size expansion (and properties of its growth)
	Hypothesis of perfective maintenance to fight complexity and user dissatisfaction

	Opportunities for future work

	Acknowledgment
	References




