Growing up with Stability: how Open-Source Relational Databases Evolve

Toannis Skoulis®!, Panos Vassiliadis®, Apostolos V. Zarras®

%Opera, Helsinki, Finland
b University of Toannina, Ioannina, Hellas

Abstract

Like all software systems, databases are subject to evolution as time passes. The impact of this evolution
can be vast as a change to the schema of a database can affect the syntactic correctness and the semantic
validity of all the surrounding applications. In this paper, we have performed a thorough, large-scale study
on the evolution of databases that are part of larger open source projects, publicly available through open
source repositories. Lehman’s laws of software evolution, a well-established set of observations on how
the typical software systems evolve (matured during the last forty years), has served as our guide towards
providing insights on the mechanisms that govern schema evolution. Much like software systems, we found
that schemata expand over time, under a stabilization mechanism that constraints uncontrolled expansion
with perfective maintenance. At the same time, unlike typical software systems, the growth is typically
low, with long periods of calmness interrupted by bursts of maintenance and a surprising lack of complexity

increase.

A truly stable system expects the unexrpected, is
prepared to be disrupted, waits to be transformed.
Tom Robbins, Even Cowgirls Get the Blues

1. Introduction

Software evolution is the change of a software
system over time, typically performed via a re-
markably difficult, complicated and time consum-
ing process, software maintenance. Schema evolu-
tion is the most important aspect of software evo-
lution that pertains to databases, as it can have a
tremendous impact to the entire information sys-
tem built around the evolving database, severely
affecting both developers and end-users. Quite fre-
quently, development waits till a ”schema back-
bone” is stable and applications are build on top
of it. This is due to the ” dependency magnet” na-
ture of databases: a change in the schema of a
database may immediately drive surrounding ap-
plications to crash (in case of deletions or renam-
ings) or be semantically defective or inaccurate (in

Email addresses: giskou@gmail.com (Ioannis Skoulis),
pvassil@cs.uoi.gr (Panos Vassiliadis), zarras@cs.uoi.gr
(Apostolos V. Zarras)

IWork conducted while in the Univ. of Ioannina

Preprint submitted to Elsevier

the case of information addition, or restructuring).
Therefore, discovering laws, patterns and regulari-
ties in schema evolution can result in great bene-
fits, as we would be able to design databases with
a view to their evolution and minimize the impact
of evolution to the surrounding applications: (a)
by avoiding ”design anti-patterns” leading to cu-
mulative complexity for both the database and the
surrounding applications, and, (b) by planing ad-
ministration and maintenance tasks and resources,
instead of just responding to emergencies.

In sharp distinction to traditional software sys-
tems, and disproportionately to the severity of its
implications, database evolution has hardly been
studied throughout the entire lifetime of the data
management discipline. It is only amazing to find
out that, in the history of the discipline, just a
handful of studies had been published in the area.
The deficit is really amazing in the case of tradi-
tional database environments, where only two(!)
studies [1], [2] have been published. Apart from
amazing, this deficit should also be expected: al-
lowing the monitoring, study and eventual publica-
tion of the evolution properties of a database would
expose the internals of a critical part of the core of
an organization’s information system. Fortunately,
the open-source movement has provided us with the

March 4, 2015

possibility to slightly change this landscape. As
public repositories (git, svn, ...) keep the entire
history of revisions of software projects, including
the schema files of any database internally hosted
within them, we are now presented with the oppor-
tunity to study the version histories of such open
source databases. Hence, within only a few years in
the late ’00’s, several research efforts [3], [4], [5], [6]
have studied of schema evolution in open source en-
vironments. Those studies, however, focus on the
statistical properties of the evolution and do not
provide details on the mechanism that governs the
evolution of database schemata.

To contribute towards amending this deficit, the
research goal of this paper involves the identification
of patterns and regqularities of schema evolution that
can help us understand the underlying mechanism
that governs it. To this end, we study the evolu-
tion of the logical schema of eight databases, that
are parts of publicly available, open-source software
projects (Sec. 3). We have collected and cleansed
the available versions of the database schemata for
the eight case studies, extracted the changes that
have been performed in these versions and, finally,
we have come up with usable datasets that we sub-
sequently analyzed.

Our main tool for this analysis came from the
area of software engineering. In an attempt to
understand the mechanics behind the evolution of
software and facilitate a smoother, lest disruptive
maintenance process, Meir Lehman and his col-
leagues introduced a set of rules in mid seventies
[7], also known as the Laws on Software Evolution
(Sec. 2). Their findings, that were reviewed and
enhanced for nearly 40 years [8], [9], have, since
then, given an insight to managers, software de-
velopers and researchers, as to what evolves in the
lifetime of a software system, and why it does so.
Other studies (see [10] for a survey) have comple-
mented these insights in this field, typically with
particular focus to open-source software projects.
In our case, we adapted the laws of software evo-
lution to the case of schema evolution and utilized
them as a driver towards understanding how the
studied schemata evolve. Our findings (Sec. 4) in-
dicate that the schemata of open source databases
expand over time, with long periods of calmness
connected via bursts of maintenance effort focused
in time, and with significant effort towards the per-
fective maintenance of the schema that appears to
result in an unexpected lack of complexity increase.
Incremental growth of the schema is typically low

and its volume follows a Zipfian distribution. In
both the presentations of our results and in our
concluding notes (Sec. 5) we also demonstrate that
although the technical assessment of Lehman’s laws
shows that the typical software systems evolve quite
differently than database schemata, the essence of
the laws is preserved: evolution is not about uncon-
trolled expansion; on the contrary, there appears to
be a stabilization mechanism that employs perfec-
tive maintenance to control the otherwise growing
trend of increase in the information capacity of the
database.

Roadmap. In Sec. 2, we summarize Lehman’s
laws for the non-expert reader and survey related
efforts, too. In Sec. 3 we discuss the experimen-
tal setup of this study and in Sec. 4, we detail our
findings. We conclude our deliberations with a sum-
mary of our findings and their implications in Sec. 5.

2. Lehman Laws of Software Evolution in a
Nutshell

Meir M. Lehman and his colleagues, have intro-
duced, and subsequently amended, enriched, and
corrected a set of rules on the behavior of software
as it evolves over time [7], [8], [9]. Lehman’s laws fo-
cus on E-type systems, that concern “software solv-
ing a problem or addressing an application in the
real-world” [8]. The main idea behind the laws of
evolution for E-type software systems is that their
evolution is a process that follows the behavior of
a feedback-based system. Being a feedback-based
system, the evolution process has to balance (a)
positive feedback, i.e., the need to adapt to a chang-
ing environment and grow to address the need for
more functionality, and, (b) negative feedback, i.e.,
the need to control, constrain and direct change in
ways that prevent the deterioration of the main-
tainability and manageability of the software. In
the sequel, we list the definitions of the laws as they
are presented in [9], in a more abstract form than
previous versions and with the benefit of retrospect,
after thirty years of maturity and research findings.

(I) Law of Continuing Change An E-type sys-
tem must be continually adapted or else it be-
comes progressively less satisfactory in use.

(IT) Law of Increasing Complexity As an E-
type system is changed its complexity increases
and becomes more difficult to evolve unless
work is done to maintain or reduce the com-
plexity.

(IIT) Law of Self Regulation Global
system evolution is feedback regulated.

E-type

system (VII), with particular emphasis to its inter-
nal quality (IT). The effort consumed for the above
process s typically constant over phases, with the

(IV) Law of Conservation of Organisational Stab}}h%es disrupted with bursts of effort from time to

The work rate of an organisation evolving an
E-type software system tends to be constant
over the operational lifetime of that system or
phases of that lifetime.

(V) Law of Conservation of Familiarity In
general, the incremental growth (growth ratio
trend) of E-type systems is constrained by the
need to maintain familiarity.

(VI) Law of Continuing Growth The func-
tional capability of E-type systems must
be continually enhanced to maintain user
satisfaction over system lifetime.

(VII) Law of Declining Quality Unless rigor-
ously adapted and evolved to take into account
changes in the operational environment, the
quality of an E-type system will appear to be
declining.

(VIII) Law of Feedback System E-type evolu-
tion processes are multi-level, multi-loop,
multi-agent feedback systems.

Before proceeding with our study, we present a first
apodosis of the laws, taking into consideration both
the wording of the laws, but most importantly their
accompanying explanations [9].

An E-Type software system continuously changes
over time (I) obeying a complex feedback-based evo-
lution process (VIII). On the one hand, due to the
need for growth and adaptation that acts as positive
feedback, this process results in an increasing func-
tional capacity of the system (VI), produced by a
growth ratio that is slowly declining in the long term
(V). The process is typically guided by a pattern of
growth that demonstrates its self-requlating nature:
growth advances smoothly; still, whenever there are
excessive deviations from the typical, baseline rate
of growth (either in a single release, or accumulated
over time), the evolution process obeys the need
for calibrating releases of perfective maintenance,
i.e., code restructuring and documentation for bet-
ter maintainability and comprehension (expressed
via minor growth and demonstrating negative feed-
back) to stop the unordered growth of the system’s
complexity (IIT). On the other hand, to regulate the
ever-increasing growth, there is negative feedback in
the system controlling both the overall quality of the

time (IV).

2.1. Lehman’s Laws & Related Empirical Studies

Software evolution is an active research field for
more than 40 years and concerns different levels
of abstraction, including the software architecture
[11], design [12] and implementation [10]. Lehman’s
theory of software evolution is the cornerstone of
the efforts that have been performed all these years.
For a detailed historical survey on the evolution of
Lehman’s theory and other related works the in-
terested reader can refer to [10]. Following, we
briefly discuss the milestones and key findings that
resulted from these efforts.

Lehman’s theory of software evolution was first
introduced in the 70’s. Back then, the theory in-
cluded the first three laws, concerning the continu-
ous change, the increasing complexity and the self
regulating properties of the software evolution pro-
cess [7]. The experimental evidence that produced
these laws was based on a single case study, namely
the OS/360 operating system. During the 70’s and
the 80’s the formulation of the first three laws has
been revised, with respect to further results and em-
pirical observations that came up [13]. Moreover,
Lehman’s theory has been extended with the forth
and the fifth law that concerned the issues of orga-
nizational stability and conservation of familiarity
[13]. In the 90’s, based on additional case stud-
ies, the laws have been revised again and extended
with the last three laws, referring to the continu-
ous growth, the declining quality and to the feed-
back mechanism that governs the evolution process
[14, 8, 15]. Lehman’s theory did not grow since
then, the set of laws has been stabilized, and most
of the activity around them concerned moderate
changes in their formulation, performed in the 00’s
[9].

During all these years there have also been stud-
ies by other authors on the validity of the laws
[16, 17]. An interesting finding uncovered from
these efforts is that the behavior of commercial soft-
ware differs from that of academic and research soft-
ware, with the former kind being much more faith-
ful to the laws, compared to the latter two kinds.
The partially validity of the laws is also highlighted
in [18], along with the need for a more formal frame-

work that would facilitate the assessment of the
laws.

The diverse behavior of software concerning the
validity of Lehman’s laws is emphasized in sub-
sequent studies that investigated the evolution of
open source software. Most of these studies found
only partial support for the validity of the laws.
The efforts in this line of research vary from the
pioneer studies of Godfrey and Tu [19, 20], fo-
cusing mainly on Linux, to large scale studies
[21, 22, 23, 24]. The common ground in all these
studies is that they found support for the laws of
continuing change and growth. [23, 25] concluded
in the validation of more laws, including the ones
of self-regulation and conservation of familiarity.
Moreover, [26] revealed that the laws may be valid
after a certain point in the software lifecycle. In
particular, taking a step further from the efforts
of Godfrey and Tu, [26] found that after a certain
version the evolution of Linux follows, at least par-
tially, most of the laws.

2.2. Empirical Studies on Database Evolution

Being at the very core of most software,
databases are also subject to evolution, which con-
cerns changes in their contents and, most impor-
tantly, their schemas. Database evolution can con-
cern (a) changes in the operational environment of
the database, (b) changes in the content of the
databases as time passes by, and (c) changes in
the internal structure, or schema, of the database.
Schema evolution, itself, can be addressed at (a)
the conceptual level, where the understanding of
the problem domain and its representation via an
ER schema evolves, (b) the logical level, where the
main constructs of the database structure evolve
(for example, relations and views in the relational
area, classes in the object-oriented database area,
or (XML) elements in the XML/semi-structured
area), and, (¢) the physical level, involving data
placement and partitioning, indexing, compression,
archiving etc.

Interestingly, the related literature on the actual
mechanics of schema evolution includes only a few
case studies, as the research community would find
it very hard to obtain access to monitor database
schemata for an in depth study over a significant
period of time. Despite the fact that in our work
we study schema evolution at the logical level of
databases in open-source software, here, we proceed
to survey all the works we are aware about in the
broader area of schema evolution.

The first paper [1] discusses the evolution of the
database of a health management system over a pe-
riod of 18 months, monitored by a tool specifically
constructed for this purpose. A single database
schema was examined, and the monitoring revealed
that all the tables of the schema were affected and
the schema had a 139% increase in size for relations
and 274% for attributes. The consequences of this
evolution were significantly large as a cumulative
45% of all the names that were used in the queries
had to be deleted or inserted.

Fifteen years later, the authors of [3] made an
analysis on the database back-end of MediaWiki,
the software that powers Wikipedia. The study
conducted over the versions of four years, revealed a
100% increase in schema size, the observation that
around 45% of changes do not affect the information
capacity of the schema (but are rather index adjust-
ments, documentation, etc), and a statistical study
of lifetimes, change breakdown and version com-
mits. Special mention should be made to this line
of research [27], as it is based on PRISM (recently
re-engineered to PRISM++ [28]), a change man-
agement tool, that provides a language of Schema
Modification Operations (SMO) (that model the
creation, renaming and deletion of tables and at-
tributes, and their merging and partitioning) to ex-
press schema changes. More importantly, the peo-
ple involved in this line of research should be cred-
ited for providing a large collection of links? for
open source projects that include database support.

A work in the area of data warehousing [2] moni-
tored the evolution of seven ETL scripts along with
the evolution of the source data. The experimen-
tal analysis of the authors is based in a six-month
monitoring of seven real-world ETL scenarios that
process data for statistical surveys. The findings
of the study indicate that schema size and module
complexity are important factors for the vulnerabil-
ity of an ETL flow to changes. This work has been
part of an effort to provide what-if analysis facili-
ties to the management of schema evolution via the
Hecataeus tool (see [29, 30]).

Finally, certain efforts studied the evolution of
databases, while taking into account the applica-
tions that use them. In particular, in [5] the authors
considered 4 case studies of embedded databases
(i.e., databases tightly coupled with corresponding
applications that rely on them) and studied the

2http://yellowstone.cs.ucla.edu/schema-
evolution/index.php/Benchmark_Extension

different kinds of changes that occurred in these
cases. Moreover, they performed a respective fre-
quency and timing analysis, which showed that the
database schemas tend to stabilize over time. In [4],
the authors focused on two case studies. The results
of this effort revealed that database schema changes
and that the source code of dependent applications
does not always evolve in sync with changes to
the database schema. [4] further provides a dis-
cussion concerning the impact of database schema
changes on the application code. [6] takes a step
further with an empirical study of the co-evolution
of database schemas and code. This effort inves-
tigated ten case studies. The results indicate that
database schemas evolve frequently during the ap-
plication lifecycle, with schema changes implying a
significant amount of code level modifications.

2.3. Nowelty With Respect to the State of the Art

Going beyond the related literature on soft-
ware evolution, in general, and database evolu-
tion, in particular, our CAiSE’14 paper [31] inves-
tigated for the first time patterns and regularities
of database evolution, based on Lehman’s laws. To
this end, we conducted a large scale case study of
eight databases, that are parts open-source software
projects. This paper extends our prior work with
further details concerning the intuition and the rel-
evance of the laws in the case of databases, the
metrics that have been used in the literature for
the assessment of the laws, and the metrics that
we employed in the case of databases. More im-
portantly, we provide detailed presentations of the
results and thorough discussions of our findings.

3. Experimental Setup of the Study

Datasets. We have studied eight database
schemata from open-source software projects. Fig-
ure 1 lists the datasets along with some interesting
properties.

ATLAS? is a particle physics experiment at the
Large Hadron Collider at CERN, Geneva, Switzer-
land with the goal of learning about the basic forces
that have shaped our universe. ATLAS Trigger is
the software responsible for filtering the immense
data (40 TB per second) collected by the Collider
and storing them in its Oracle database.

3http://atlas.web.cern.ch/Atlas/Collaboration/

BioSQL* is a generic relational model covering
sequences, features, sequence and feature anno-
tation, a reference taxonomy, and ontologies (or
controlled vocabularies) from various sources such
as GenBank or Swissport. While originally con-
ceived as a local relational store for GenBank,
the project has since become a collaboration plat-
form between the Open Bioinformatics Founda-
tion (OBF) projects (including BioPerl, BioPython,
BioJava, and BioRuby). The goal is to build a suf-
ficiently generic schema for persistent storage of se-
quences, features, and annotation in a way that is
interoperable between these Bio* projects.

Ensembl is a joint scientific project between the
European Bioinformatics Institute (EBI)® and the
Wellcome Trust Sanger Institute (WTSI)® which
was launched in 1999 in response to the imminent
completion of the Human Genome Project. The
goal of Ensembl was to automatically annotate the
three billion base pairs of sequences of the genome,
integrate this annotation with other available bio-
logical data and make all this publicly available via
the web. Since the launch of the website, many
more genomes have been added to Ensembl and
the range of available data has also expanded to
include comparative genomics, variation and regu-
latory data.

MediaWiki” was first introduced in early 2002 by
the Wikimedia Foundation along with Wikipedia,
and hosts Wikipedia’s content since then. As an
open source system (licensed under the GNU GPL)
written in PHP, it was also adopted by many com-
panies and is used in thousands of websites both as
a knowledge management system, and for collabo-
rative group projects.

Coppermine® is a photo gallery web application.
OpenCart? is an open source shopping cart system.
PhpBB!Y (PHP Bulletin Board) is an Internet fo-
rum package written in PHP. TYPO3!! is a web
content management framework based on PHP. All
these platforms are highly rated and used.

Dataset Collection and Processing. A first
collection of links to available datasets was made by
the authors of [3], [27]'2; for this, these authors de-

4http://www.biosql.org/wiki/Main_Page

Shttps://www.ebi.ac.uk/

6https://www.sanger.ac.uk/

Thttps:/ /www.mediawiki.org/wiki/MediaWiki

8http://coppermine-gallery.net/

http://www.opencart.com

1Ohttps://Www.phpbb.com/
Hhttp://typo3.org/
2http://data.schemaevolution.org

) . Tables Tables Attributes Attributes o MMt
Dataset Versions Lifetime @start @End @start @End with
change

ATLAS Trigger 84 2Y,7M,2D 56 73 709 858 82%
BiosQL 46 10Y,6M,19D 21 28 74 129 63%
Coppermine 117 8Y,6M,2D 8 22 87 169 50%
Ensembl 528 13Y,3M,15D 17 75 75 486 60%
MediaWiki 322 8Y,10M,6D 17 50 100 318 59%
OpenCart 164 4Y,4M,3D 46 114 292 731 47%

phpBB 133 6Y,7M,10D 61 65 611 565 82%

TYPO3 97 8Y,11M,0D 10 23 122 414 76%

Figure 1: The datasets employed in our study

serve honorable credit. We isolated eight databases
that appeared to be alive and used (as already men-
tioned, some of them are actually quite prominent).
For each dataset, we have gathered the schema ver-
sions (DDL files) that were available at June 2013,
directly from public source code repositories (cvs,
svn, git) for the eight data sets listed in Fig. 1.
We have targeted main development branches and
trunks to maximize the validity of the gathered re-
sources. We are interested only on changes of the
database part of the project as they are integrated
in the trunk of the project. Hence, we collected all
the commits of the trunk or master branch that
were available at the time, and ignored all other
branches of the project, as well as any commits of
other modules of the project that did not affect the
database.

For all of the projects, we focused on their re-
lease for MySQL (except ATLAS Trigger, available
only for Oracle). Those files where then renamed
with their filenames matching to the date (in stan-
dard UNIX time) the commit was made. The files
were then processed in sequential pairs from our
tool, Hecate, to give us in a fully automated way
(a) the differences between two subsequent com-
mits and (b) the measures we needed to conduct
this study. Attributes are marked as altered if they
exist in both versions and their type or participa-
tion in their tables’s primary key changed. Tables
are marked as altered if they exist in both ver-
sions and their contents have changed (attributes
inserted /deleted /altered).

All the datasets wused, along with our
tool-suite for managing the evolution of
databases can be found in our group’s git:
https://github.com/DAINTINESS-Group.

4. Assessing the Laws for Schema Evolution

The laws of software evolution where developed
and reshaped over forty years. Explaining each law
in isolation from the others is precarious, as it risks
losing the deeper essence and inter-dependencies of
the laws [9]. To this end, in this section, we organize
the laws in three thematic areas of the overall evolu-
tion management mechanism that they reveal. The
first group of laws discusses the existence of a feed-
back mechanism that constrains the uncontrolled
evolution of software. The second group discusses
the properties of the growth part of the system, i.e.,
the part of the evolution mechanism that accounts
for positive feedback. The third group of laws dis-
cusses the properties of perfective maintenance that
constrains the uncontrolled growth, i.e., the part of
the evolution mechanism that accounts for negative
feedback. To quantitatively support our study, we
utilize the following measures:

e Schema size of a version: The number of tables
of a schema version.

e Schema Growth: The difference between the
schema size of two (typically subsequent) ver-
sions (i.e., new - old).

e Heartbeat: a sequence of tuples, one per tran-
sition, with the count of the events that oc-
curred during this transition. In the con-
text of this paper, for each transition between
two subsequent versions, we produce a tuple
of measures including Table Insertions, Ta-
ble Deletions, Attribute Insertions, Attribute
Deletions, Attribute Alternations (change of
data type), Attributes Inserted at Table For-
mation, Attribute Deletions at Table Removal.
To clarify, Attribute Insertions concern addi-
tions of attributes to an existing table, whereas
Attributes Inserted at Table Formation con-
cern the number of attributes generated when-
ever a new table is born. Attribute Deletions
concern deletions from a table that continues
to exist, whereas Attribute Deletions at Ta-
ble Removal concern attributes that are re-
moved whenever their containing table is re-
moved. We sum up these measures per transi-
tion, to produce the Heartbeat of the lifetime
of the data set.

We would like to remind the reader that we study
the evolution of the logical schema of databases in

350
300 |
250 1
200
150

100 |

o |

60 |
50 -
405
305
20;
10 |

|

1]
200

Figure 2: Combined demonstration of heartbeat (number of changes per version) and schema size (no.

i

2004

[J:L‘.u.ml I

| |||...\|\.‘”
3 2004

mmChanges

—size(Tables)

2005

L I.‘ I

Coppermine

25
r 23

l L |1l 1 ‘I_I‘II“I_ ||

2006 2007 2008 2009 2010 2011

Ensembl

. Changes
——size(Tables)

1 hh.. had L

1993 2000 2001 2002 2003

|.||..“,.|.ll]. ‘ by l

2004 2005 2006 2007 2008 2009

ol

P TR
2010

Mediawiki

mmChanges
—size(Tables)

L |HH

2010 2011

Lo bl

Lk L
2006 2007 2008

‘ ‘\..n»
2009

signifies the amount of change and the right axis the number of tables.

21
19
17
15
13
11

90
80
70
- 60
b 50
- 40

30

20

2011 2012

40

30

-0

of tables). The left axis

70
60
50
40
30
20 ':
10

o 1

Aug-06
140 4

120 |

100

a0 |

20

Atlas

mEmChanges
——size(Tables)

[

YA

Feb-07 Aug-07 Feb-08 Aug-08

TYPO3

ué .l|| || | . L

2003

700 -

500 -
400 -~
300 -

200 -~

I
2004 2005 2006 2007 2008 2009

Opencart

2010 2011 202

mm Changes
—size(Tables)

i
2010

—

Feb-09

]

2011 2012

j

EEChanges
—size{Tables)

75

70

b5

60

55

50

25

20

120

B0

- &0

40

20

Figure 3: Combined demonstration of heartbeat (continued)

phpBB

(713}

b5

mm Changes 64
—size|{Tables)

b3
{ B2
61
&0
59
58

20
‘ | I)
0 -k . alill 55

2009 2010 2011 2012

120
biosql 20

100
V 27

Ho . changes
25
——size(Tables)

23

40
21
20 19
0 il || 17

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Figure 4: Combined demonstration of heartbeat (continued)

open-source software. In all our deliberations, we
take the above context as granted and avoid re-
peating it for reasons of better presentation of our
results.

4.1. Is There a Feedback-based System for Schema
Evolution?
4.1.1. Law of continuing change (Law I)
The first law argues that the system continuously
changes over time.

An E-type system must be continually
adapted or else it becomes progressively
less satisfactory in use.

The main idea behind this law is simple: as the
real world environment evolves, the software that is

intended to address its problems has to evolve too.
If this does not happen, the system becomes less
satisfactory.

Metrics for the assessment of the law’s validity.
To establish the law, one needs to show that the
software shows signs of evolution as time passes.
Possible metrics from the field of software engi-
neering [23] include (a) the cumulative number of
changes and (b) the breakdown of changes over
time.

Assessment. To validate the hypothesis that the
law of continuing change holds, we study the heart-
beat of the schema’s life (see Fig. 2 to 4 for a com-
bined demonstration of heartbeat and schema size).

With the exception of BioSQL that appeared
to be “sleeping” for some years and was later re-

activated, in all other cases, we have changes (some-
times moderate, sometimes even excessive) over the
entire lifetime of the database schema. An impor-
tant observation stemming from the visual inspec-
tion of our change-over-time data, is that the term
continually in the law’s definition is challenged: we
observe that database schema evolution happens in
bursts, in grouped periods of evolutionary activity,
and not as a continuous process! Take into account
that the versions with zero changes are versions
where either commenting and beautification takes
place, or the changes do not refer to the information
capacity of the schema (relations, attributes and
constraints) but rather, they concern the physical
level properties (indexes, storage engines, etc) that
pertain to performance aspects of the database.

Can we state that this stillness makes the schema
“unsatisfactory” (referring back to the wording of
the first law by Lehman)? We believe that the
answer to the question is negative: since the sys-
tem hosting the database continues to be in use,
user dissatisfaction would actually call for continu-
ous growth of the database, or eventual rejection of
the system. This does not happen. On the other
hand, our explanation relies on the reference nature
of the database in terms of software architecture: if
the database evolves, the rest of the code, which is
basically using the database (and not vice versa),
breaks.

Overall, if we account for the exact wording of
the law, we conclude that the law partially holds.

4.1.2. Law of self-requlation (Law III).

The third law of software evolution is known as
the law of ”self regulation” and comes with a laconic
definition.

Global E-type system evolution is feed-
back regulated.

The main idea behind this law is that the system
under development is actually a feedback-regulated
system: development and maintenance take place
and there is positive and negative feedback to the
system. As the clients of the system request more
functionality, the system grows in size to address
this demand; at the same time, as the system grows,
corrective and perfective maintenance has to take
place to remove bugs and improve the internal qual-
ity of the software (reduced complexity, increased
understandability) [8].

Thus, the system’s growth cannot continually
evolve with the same rate; on the contrary, what

10

Growth (tables) over version id

10 6
5 4
0 2
-5 0
-10 -2
ATLAS Trigger BioSQL
3 10
2 5
1
0
0
5
1
2 -10
3 -15
Coppermine Ensembl
30 6
4
20
2
10 0
2
0
-4
-10 -6
OpenCart phpBB
6 4
4 2
2
0
0
-2 -2
-4 -4
TYPO3 MediaWiki

Figure 5: Growth (tables) over version id for all the data
sets

one expects is to see a typical “baseline” growth,
interrupted with releases of perfective maintenance.
This trend is so strong, that, in the long run, the
system’s size demonstrates what the authors of [8]
call "cyclic effects” and the authors of [9] call ”pat-
terns of growth”.

Metrics for the assessment of the law’s validity.
Whereas the law simply states that the evolution of
software is feedback regulated, its experimental val-
idation in the area of software systems is typically
supported by the observation of a recurring pat-
tern of smooth expansion of the system’s size that
is interrupted with releases with size reductions or
abrupt growth. Moreover, due to a previous word-
ing of the law (e.g., see [8]) that described change to
follow a normal distribution, the experimental as-
sessment included the validation of whether growth
demonstrates oscillations around an average value
[7, 8, 9]. The ripples in the size of the system are

Growth (attributes) over version id

P (NI
S S o © &
2o oN

b o w6 &G 8

ATLAS Trigger BioSQL

20 40
20

-40
-60

X = =
5] S 5]
o
S o

Coppermine Ensembl

140 50

90

40 -50

i
1

-10 -100

OpenCart phpBB

130 30

20
80

30
-10

-
i

-20 -20

TYPO3 MediaWiki

Figure 6: Growth (attributes) over version id for all the data
sets; we measure attribute growth as the difference in the
total number of attributes of all tables, between two subse-
quent versions

assumed to indicate the existence of feedback in
the system: positive feedback results in the sys-
tem’s expansion and negative feedback involves per-
fective maintenance coming with reduced rate of
growth (which is not due to functional growth but
re-engineering towards better code quality) — if not
with system shrinking (due to removal of unneces-
sary parts or their merging with other parts).

Assessment. We organize the discussion of our
findings around size and growth, both of which
demonstrate some patterns, although not the ones
expected by the previous literature.

Size. The evolution of size can be observed in
Fig. 2 to 4. Concerning the issue of a recurring,
fundamental pattern of smooth expansion, inter-
rupted with abrupt changes or, more generally, ver-
sions of perfective maintenance, we have to say

11

that we simply cannot detect the behaviour that
Lehman did (contrast Fig. 2, 3, 4 to the respec-
tive figures of articles [7] and [8]): in sharp contrast
to the smooth baseline growth that Lehman has
highlighted, the evolution of the size of the stud-
ied database schemata provides a landscape with
a large variety of sequences of the following three
fundamental behaviors.

e In all schemata, we can see periods of increase,
especially at the beginning of their lifetime or
after a large drop in the schema size. This is
an indication of positive feedback, i.e., the need
to expand the schema to cover the information
needs of the users — especially since the overall
trend in almost all of the studied databases is
to see an increase in the schema size as time
passes.

e In all schemata, there are versions with drops
in schema size. Those drops are typically sud-
den and steep and usually take place in short
periods of time. Sometimes, in fact, these
drops are of significantly larger size than the
typical change. We can safely say that the ex-
istence of these drops in the schema size in-
dicates perfective maintenance and thus, the
existence of a negative feedback mechanism in
the evolution process.

e In all schemata, there are periods of calmness,
i.e., periods of non-modification to the logi-
cal structure of the schema. This is especially
evident if one observes the heartbeat of the
database, where changes are grouped to very
specific moments in time.

Growth and its oscillations. Growth (i.e.,
the difference in the size between two subsequent
versions) comes with common characteristics in all
datasets. In most cases, growth is small (typically
ranging within 0 and 1). As Fig. 5 demonstrates,
we have too many occurrences of zero growth, typ-
ically iterating between small non-zero growth and
zero growth. Due to perfective maintenance, we
also have negative values of growth (less than the
positive ones). We do not have a constant flow
of versions where the schema size is continuously
changing; rather, we have small spikes between one
and zero. Thus, we have to state that the growth
comes with a pattern of spikes. Due to this charac-
teristic, the average value is typically very close to
zero (on the positive side) in all datasets, both for

300
Ensemble: frequencies of attribute change
(x-axis: size of delta, y-axis: no of occurences) 20

200

150

P
Ensemble: frequencies of attribute change

without considering zero's o

(x-axis: size of delta, y-axis: no of occurences)

Figure 7: Frequency of change values for Ensembl attributes

tables and attributes. There are few cases of large
change too; we forward the reader to Law V for a
discussion and to Fig. 9 for a graphical depiction of
their characteristics.

The oscillations of growth demonstrates other
patterns too: it is quite frequent, especially at the
attribute level, to see sequences of oscillations of
large size: i.e., an excessive positive delta followed
immediately by an excessive negative growth (see
Fig. 9). We do, however, observe the oscillations
between positive and negative values (remember,
the average value is very close to zero), much more
on the positive side, however, with several occasions
of excessive negative growth (clearly demonstrating
perfective maintenance).

We would like to put special emphasis to the ob-
servation that change is small. In terms of tables,
growth is mostly bounded in small values. This
is not directly obvious in the charts, because they
show the ripples; however, almost all numbers are
in the range of [-2..2] — in fact, mostly in the range
[0..2]. Few abrupt changes occur. In terms of at-
tributes (Fig. 6), the numbers are higher, of course,
and depend on the dataset. Typically, those values
are bounded within [-20,20]. However, the devia-
tions from this range are not many.

12

In the course of our deliberations, we have ob-
served a pattern common in all datasets: there is
a Zipfian model in the distribution of frequencies.
Observe Fig. 7 that comes with two parts, both de-
picting how often a growth value appears in the
attributes of Ensemble. The x-axis keeps the delta
size and the y-axis the number of occurrences of
this delta. In the upper part we include zeros in the
counting (343 occurrences out of 528 data points)
and in the lower part we exclude them (to show
that the power law does not hold only for the most
popular value). We observe that there is a small
range of deltas, between -2 and 4 that takes up 450
changes out of the 528. This means that, despite
the large outliers, change is strongly biased towards
small values close to zero.

In fact, both phenomena observed here, i.e., (a)
the bounded small change around zero, (b) following
a Zipfian distribution of frequencies, constitute two
of the patterns that are global to all datasets and
without any exceptions whatsoever.

Despite the fact that change does not follow the
pattern of baseline smooth growth of Lehman and
the fact that change obeys a Zipfian distribution
with a peak at zero, we believe that the presence of
feedback in the evolution process is clear; thus the
law holds.

4.1.3. Law of feedback system (Law VIII)
The eighth law of software evolution is known as
the law of “Feedback System”.

E-type evolution processes are multi-level,
multi-loop, multi-agent feedback systems.

The main idea around this law refers to the fact
that original “observation has shown that the sys-
tem behaves as self-stabilizing feedback system”
[14]. There is a big discussion in the literature on
various components and actors whose interactions
limit and guide the possible ways via which the sys-
tem can evolve. We refer the interested reader to [9]
for this. From our part, we do not presume to fully
know the mechanics that constraint the growth of
a database schema. However, we can focus to the
part that there is indeed a mechanism that stabi-
lizes the tendency for uninterrupted growth of the
schema — and in fact we can try to assess whether
this is a regressive mechanism whose behavior can
be generally estimated.

Metrics for the assessment of the law’s validity.
To assume the law as valid we need to establish

that it is possible to simulate the evolution of the
schema size via an accurate formula. Following [8]
and [15], we will perform regression analysis to es-
timate number of relations for each version of the
schema. We adopt the formulas found at [8] and [15]
on the relationship of the new size of the system as
a function of the previous size of it, adapted via
an "inverse square” feedback effect. The respective
formula is:

Si i-1 1+ =

E=avg(E;), i=1...

3

where S refers to the estimated system size and E
is a model parameter approximating effort. Related
literature [8] suggests computing FE as the average
value of individual FE;, one per transition. To es-
timate these individual effort approximations, F;,
the authors of [8] suggest two alternative formulae:

E; = (si—si1) 874 (2)
S; — 81
——

Assessment. We now move on to discuss what
seems to work and what not for the case of schema
evolution. We will use the OpenCart data set as
a reference example; however, all datasets demon-
strate exactly the same behavior.

The main challenge with formula (1) is the esti-
mation of E. As a first step, we have generalized

the formulae (2) and (3) via a parameterized ex-
pression:

E; = (3)

Si — Sa
!
where s; refers to the actual size of the schema at
version ¢ and « refers to the version from which
counting starts. The model of [8] comes with two
values for «, specifically (i) @ = ¢ — 1 for formula
2, and (ii) @ = 1 for formula 3. The essence of the
formula is that, to compute F;, we use « previous
versions to estimate effort.

Then we began our assessment. First, we as-
sessed the formulae of [8]. In this case, we com-
pute the average E of the individual E; over the en-
tire dataset. We employ four different values for «,
specifically i —1 (last version), 1 (for the entire data
set) and 5 and 10 for the respective past versions.

E; = (4)

13

We depict the result in Fig. 8(top), where the actual
size is represented by the blue solid line. The results
indicate that the approximation modestly succeeds
in predicting an overall increasing trend for all four
cases, and, in fact, all four approximations targeted
towards predicting an increasing tendency that the
actual schema does not demonstrate. At the same
time, all four approximations fail to capture the in-
dividual fluctuations within the schema lifetime.

Then, we tried to improve on this result, and in-
stead of computing E as the total average over all
the values of the dataset, we compute it as the run-
ning average (not assuming a global average, but
tuning the average effort with every added release).
In this case, depicted in Fig. 8(middle), the results
are less satisfactory than our first attempt.

After these attempts, we decided to alter the
computation of E again. A better estimation oc-
curred when we realized that back in 1997 people
considered that the parameter E was constant over
the entire lifetime of the project; however, later ob-
servations (see [9]) led to the revelation that the
project was split in phases. So, for every version
i, we compute E as an average over the last 7 E;
values, with small values for 7 (1/5/10) — contrast
this to the previous two attempts where £ was com-
puted as a total average over the entire dataset (i.e.,
constant for all versions) or a running average from
the beginning of the versions till the current one.

So, the main formula of the law is restated (and
actually generalized), by replacing a global parame-

ter E with a varying parameter E' that can change
per version (thus the superscript notation signifies
the value of the effort estimation at version). The
versions used for this calculation are within the
range [7°,7€].

P E
Si = Si—l + 2
Sifl

) E’L = avg}iTS (E]) (5)

For the three simulation attempts that we have
run, we have the following configurations:

Method Values for |72, 7¢]
global average 751 T n
running average ™1 7% i-1

last 7 v. (7 € {1,5,10}) 7% -7 7% i—1

We also decided to use the last 5 or 10 versions
to compute Fj;, i.e., a is 5 or 10. This has already
been used in the past experiments too.

Actual and estimated schema sizes
R (avg effort, E, computed as total average over
the entire data set)

40

Actual size
= - =Est-lastsize
= = Est-fullavg
Est-last5
====Est-last 10

$= S+ (E/ (52
Eis the total avg of E,
E;is computed over the last

. 1/5/10/allv.

93 103 113 123 133 143 153 163

Actual and estimated schema sizes
120 (avg effort, E, computed as running average)

——— Actual size

$=5, 48/ (Su)

Eis the running avg of E;,
E;is computed over the last
1/5/10/allv.

= + =Est-last size
20 - = Est-full avg
———Est-last5
===-=Est-last 10

1 13 23 33 43 53 63 73 83 93 103 113 123 133 143 153 163

Actual and estimated schema sizes
120 (avg effort, E, computed over last 1/5/10 v.)

100

80

60

— Actual size S8 (E/ (G
Ejis computed over the last 5/10 v. (first
‘last’)

Eis the avg of the last 1/5/10FE;
(second‘last’)

40 Est-lastSlast 1
e Est - last 10 last 1
——————— Est-last5last 5

20 ===~ Est-last5last 10

- ==~ Est-last 10 last 10

1 13 23 33 43 53 63 73 83 93 103 113 123 133 143 153 163

Figure 8: Actual and estimated schema size for OpenCart via
a total(top), running(middle) or bounded(bottom) averages
of individual E;

As we can see in Fig. 8(bottom), the idea of com-
puting the average E with a short memory of 5 or 10
versions produced extremely accurate results. This
holds for all data sets. This observation also sug-
gests that, if the phases that [9] mentioned actually

14

exist for the case of database schema, they are re-
ally small, or non-existent, and a memory of 5-10
versions is enough to produce very accurate results.
The fact that this works with 7=1, and in fact, bet-
ter than the other approximations is puzzling and
counters the existence of phases.

We do not have a convincing theory as to why
the formula works. We understand that there are
no constants in the feedback system and in fact,
the feedback mechanism needs a second feedback
loop, with a short memory for estimating the model
parameter £. In plain words, this signifies that
both size and effort approximation are intertwined
in a multi-level feedback mechanism.

Overall, the evolution of the database schema ap-
pears to obey the behavior of a feedback-based mech-
anism, as the schema size of a certain version of the
database can be accurately estimated via a regres-
sive formula that exploits the amount of changes in
recent, Previous versions.

4.2. Properties of Growth for Schema Evolution

Growth occurs as positive feedback to the system,
in an attempt to expand the system with more func-
tionality, or address new assumptions that make its
operation acceptable, e.g., new user requirements,
an evolving operational environment, etc. In this
subsection, we study the properties of the growth.

4.2.1. Law of continuing growth (Law VI).
The sixth law of software evolution is known as
the law of “Continuing Growth”.

The functional capability of E-type sys-
tems must be continually enhanced to
maintain user satisfaction over system life-
time.

The sixth law resembles the first law (continuing
change) at a fist glance; however, as explained in
[8], these two laws cover different phenomena. The
first law refers to the necessity of a software system
to adapt to a changing world. The sixth law refers
to the fact that a system cannot include all the
needed functionality in a single version; thus, due
to non-elastic time and resource constraints, several
desired functionalities of the system are excluded
from a version. As time passes, these functionali-
ties are progressively blended in the system, along
with the new requirements stemming from the first
law’s context of an evolving world. As [9] eloquently

states “the former is primarily concerned with func-
tional and behavioural change, whereas the latter
leads, in general, directly to additions to the exist-
ing system and therefore to its growth”.

Metrics for the assessment of the law’s validity.
Possible metrics for the sixth law that come from
the software engineering community [23] include:
LOC, number of definitions (of types, functions and
global variables) and number of modules. We ex-
press again a point of concern here: it is impossible
to discern, from this kind of ”black-box” measure-
ments, the percentage of change that pertains to the
context of the law of continuing growth. Ideally, one
should count the number of recorded ”ToDo” func-
tionalities blended within each version. However,
we do recognize that this task is extremely hard to
automate at a large scale. In our case, as we mainly
refer to information capacity rather than physical
level schema properties, we can utilize the schema
size as a safe measure of observing ” additions to the
existing system”.

Assessment. In all occasions, the schema size in-
creases in the long run (Fig. 2 to 4). We frequently
observe some shrinking events in the timeline of
schema growth in all data sets. However, all data
sets demonstrate the tendency to grow over time.

At the same time, we also have differences from
traditional software systems: as with Law I, the
term ”continually” is questionable. As already
mentioned (refer to Law III and Fig. 2 to 4), change
comes with frequent (and sometimes long) periods
of calmness, where the size of the schema does not
change (or changes very little). Calmness is clearly
a phenomenon not encountered in the study of tra-
ditional software systems by Lehman and acquires
extra importance if one also considers that in our
study we have isolated only the commits to the
files with the database schema and not the com-
mits to the entire information system that uses it:
this means that there are versions of the system,
for which the schema remained stable while the sur-
rounding code changed.

Therefore we can conclude that the law holds
(the information capacity of the database schema
is enhanced in the long run), albeit modified to ac-
commodate the particularities of database schemata
(changes are not continuous but rather, they come
within large periods of calmness).

4.2.2. Law of conservation of familiarity (Law V).
The fifth law of software evolution is known as
the law of ”Conservation of Familiarity”.

15

In general, the incremental growth
(growth ratio trend) of E-type systems is
constrained by the need to maintain famil-
iarity.

As the system evolves, all the stakeholders that
are associated to it (developers, users, managers,
etc) must spend effort to understand and actually,
master its content and functionality. Whenever
there is excessive growth in a version, the feedback
mechanism tends to diminish the growth in sub-
sequent versions, so that the change’s contents are
absorbed by people. Interestingly, whereas the orig-
inal form of the law refers to a constant (”statisti-
cally invariant”) rate, the new version of the law
is accompanied by explanations strongly indicat-
ing a “long term decline in incremental growth and
growth ratio . .. of all release-based systems studied”
[9]. This result came as experimental evidence from
the observation of several systems, accompanied by
the anecdotal evidence of a growing imbalance in
volume in favor of corrective versus adaptive main-
tenance. [23] and [15] also give a corollary of the law
stating that versions with high volume of changes
are followed by versions performing corrective or
perfective maintenance.

Metrics for the assessment of the law’s wvalid-
ity. [9] gives a large list of possible metrics: ob-
jects, lines of code, modules, inputs and outputs, in-
terconnections, subsystems, features, requirements,
and so on. [23] propose metrics that include: (i) the
growth of the system, (ii) the growth ratio of the
system, and (iii) the number of changes performed
in each version. We align with these tactics and use
the schema growth of the involved datasets.

To validate the law we need to establish the fol-
lowing facts:

e The growth of the schema is not increasing over
time; in fact, it is —at best- constant or, more
realistically, it declines over time/version. A
question, typically encountered in the litera-
ture, is: ”"What is the effect of age over the
growth and the growth ratio of the schema?”
Is it slowly declining, constant or oblivious to
age? To address this question, we produce a
linear interpolation of the growth per data set
to show its overall trend (Fig. 5).

e Another question of interest in the related
literature is: ”What happens after excessive
changes? Do we observe small ripples of
change, showing the absorbing of the change’s

MediaWiki: growth (attributes)

20 Typical

pattern for
conservation
15 of familiarity

4

10

whhd
F

Both (a) oscillation and close
big changes, and (b) tail of
rather low deltas after these
changes

-10

Large changes, oscillating around
zero and close to one another

-15

Figure 9: Different patterns of change in attribute growth of
Mediawiki (over version-id, concealed for fig. clarity)

impact in terms of corrective maintenance and
developer acquaintance with the new version of
the schema?” In this case, the pattern we can
try to establish is that abrupt changes are fol-
lowed by versions where developers absorb the
impact of the change and produce minor modi-
fications/corrections, thus resulting in versions
with small growth following the version with
significant difference in size.

Assessment. Before proceeding, we would like
to remind the reader on the properties of growth,
discussed in Law III of self-regulation: the changes
are small, come with spike patterns between zero
and non-zero deltas and the average value of growth
is very close to zero (from the positive side).

Concerning the ripples after large changes, we
can detect several patterns. Observe Fig. 9, de-
picting attribute growth for the MediaWiki dataset.
Due to the fact that this involves the growth of at-
tributes, the phenomena are amplified compared to
the case of tables. Reading from right to left, we can
see that there are indeed cases where a large spike
is followed by small or no changes (case 1). How-
ever, within the small pool of large changes that
exist overall, it is quite frequent to see sequences
of large oscillations one after the other, and quite
frequently being performed around zero too (case
2). In some occurrences, we see both (case 3).

Concerning the effect of age, we do not see a di-
minishing trend in the values of growth; however,
age results to a reduction in the density of changes
and the frequency of non-zero values in the spikes.

16

This explains the drop of the growth in almost all
the studied data sets (Fig. 5): the linear interpola-
tion drops; however, this is not due to the decrease
of the height of the spikes, but due to the decrease
of their density.

The heartbeat of the systems tells a similar story:
typically, change is quite more frequent in the be-
ginning, despite the fact that existence of large
changes and dense periods of activities can occur
in any period of the lifetime. Fig. 2 to 4 clearly
demonstrate this by combining schema size and ac-
tivity. This trend is typical for almost all of the
studied databases. phpBB is the only exception,
demonstrating increased activity in its latest ver-
sions with the schema size oscillating between 60
and 63 tables, which is actually a very small differ-
ence (as all figures are fitted to show the lines as
clearly as possibly, they can be deceiving as to the
amount of change — phpBB is such a case).

Concerning the validity of the law, we believe
that the law is possible but not confirmed. The law
states that the growth is constrained by the need
to maintain familiarity. However, the peculiarity of
databases, compared to typical software systems, is
that there can be other good reasons to constrain
growth, such as the high degree of dependence of
other modules from the database. Therefore, con-
servation of familiarity, although important, cannot
solely justify the limited growth. The extent of the
contribution of each reason is unclear.

4.2.8. Law of conservation of organizational stabil-
ity (Law IV).

The fourth law of software evolution is known as

the law of ”Conservation of Organizational Stabil-

ity” also known as law of the ”invariant work rate”.

The work rate of an organization evolv-
ing an E-type software system tends to be
constant over the operational lifetime of
that system or phases of that lifetime.

This is the only law with a fundamental change
between the two editions of 1996 and 2006. The
previous form of the law did not recognize phases
in the lifetime of a project ("The average effective
global activity rate in an evolving E-type system
is invariant over product lifetime”). Plainly put,
the law states that the impact of any managerial
actions to improve productivity is balanced by the
increasing complexity of software as time passes as
well as the role of forces external to the software
(availability of resources, personnel, etc).

Metrics for the assessment of the law’s validity.
As [23] excellently states, it is very hard to as-
sess effort from the data that we can typical ac-
quire from a project, as "effort does not equate
progress”. Therefore, we can only approximate the
work rate by observing the published versions of a
system. Possible metrics [23] include (i) the number
of changes per version, (ii) the average number of
changes per day, and (iii) change and growth ratios.

To validate the law of conservation of organi-
zational stability, we need to establish that the
project’s lifetime is divided in phases, each of which
(a) demonstrates a constant growth, and, (b) is con-
nected to the next phase with an abrupt change.
Moreover, abrupt changes should occur from time
to time and not all the time (resulting in extremely
short phases).

Assessment. If we focus on the essence of the law,
we can safely say that it does not hold. The heart-
beats of Fig. 2 to 4 and the arbitrary sequencing
of spikes and calmness (Fig. 5, 9) make it impossi-
ble to speak about constant growth, even in phases.
The open-source nature of our cases plays a role to
that too [23].

4.3. Perfective Maintenance for Schema Evolution

Lehman has indicated the battle between two
antagonizing processes over a fixed amount of re-
sources for the maintenance of software [14]: on
the one hand, the need to evolve the system (“sys-
tem growth”) and on the other the “anti-regressive”
effort to attack the growing complexity of the sys-
tem. To achieve this, perfective maintenance must
be performed from time to time, in order to re-
move redundant code, to restructure code for better
maintainability and comprehension, to document
the code, etc. As [9] puts it: “these activities have
minor or no impact in functionality, performance
or other properties of the software in execution”.
In this subsection, we are interested in the perfec-
tive maintenance part and we adopt the [32] defini-
tion (emphasis is ours): “modification of a software
product after delivery to provide enhancements for
users, improvement of program documentation, and
recoding to improve software performance, main-
tainability or other software attributes”.

4.3.1. Law of increasing complezity (Law II).

The second law of software evolution is known as
the law of “increasing complexity”.

17

As an E-type system is changed its com-
plexity increases and becomes more diffi-
cult to evolve unless work is done to main-
tain or reduce the complexity.

The law states that complexity increases with
age, unless effort is taken to prevent this. The ra-
tionale behind verifying the law dictates the ob-
servation of (a) an increasing trend in complexity
of a software system, battled by (b) a perfective
maintenance activity that attempts to reduce it and
demonstrated by drops in the system size and rate
of expansion.

Metrics for the assessment of the law’s validity.
Since we will ultimately resort to measurements
for verifying the law, before proceeding further, we
need to confront a fundamental problem: the law’s
definition -as it stands- requires a more precise def-
inition of complezity. Unfortunately, complexity is
a meta-property, practically involving a wide spec-
trum of specific measureable properties of software.
To give an example, Fenton and Pfleegler [33] men-
tion four kinds of complexity: (i) problem com-
plexity (computational complexity of the underly-
ing problem), (ii) algorithmic complezity (of the al-
gorithm eventually implemented to solve the prob-
lem), (iii) structural complexity (typically measured
as the control flow or class hierarchy or modularity
structure) and (iv) cognitive complexity (measur-
ing the effort required to understand the software).
Lehman and Ramil [9] take a more process-oriented
approach and refer to application and functional
complexity, specification and requirements complex-
ity, architectural complezity, design and implemen-
tation complexity and structural complezity.

Unfortunately, all the above are very hard to de-
fine and measure, especially if measurement is to
be performed on evidence automatically extracted
from electronic logs or version management sys-
tems. The automatic isolation of the subset of
changes that pertain to perfective maintenance is
an interesting and vast topic of research; for the mo-
ment, however, it appears that we will have to re-
sort to approximations. Related literature is based
on such approximations (see for example, [34]). No-
tably, in the latest of Lehman’s series of papers, the
law is supported via rationalization: the complexity
increase that age brings to a system is considered
responsible for the decline of the growth ratio over
time (laws V and VI).

To surpass all these difficulties, we will try to as-
sess the validity of the law based on the combination

of the following observations:

First, we will focus on the essence of the law: ulti-
mately, the law requires identifying releases or ver-
sions where perfective maintenance is performed.
To actually achieve with 100% certainty would
require some project management documentation
that this is performed. Thus, we resort to the clos-
est possible approximation and try to detect ver-
stons with drops in the size and the growth of the
system. Assuming that the overall trend of the sys-
tem is to grow, the existence of such points from
time to time will give a strong indication of the
law.

A second indication for the validity of the law is
the respect of the VIII law of feedback, i.e., the ex-
istence of a regressive formula to which the size of
the system conforms. The validity of this law would
strongly insinuate the existence of a feedback-based
system and therefore, the existence of negative feed-
back as discussed in this second law of evolution.

Third, we take a definition already found in
Lehman [7] and [34] and attempt to approzimate
the measurement of complexity as the fraction of
the evolution-affected relations (i.e., the number of
relations modified or added to the schema) between
two subsequent versions of the schema over the dif-
ference in the number of relations of the involved
versions. This formula approximates how much ef-
fort has been invested in expanding the system over
the actual difference achieved (large values demon-
strate too much effort for too small change). So,
for each transition, we approximate the complex-
ity of the original schema by dividing the extent of
the involved changes over the actual increment of
the schema size. To understand this better, assume
that we compare two transitions with the same de-
nominator (i.e., difference in number of relations);
if one transition had more relations updated than
the other, it means we paid more effort for this
transition, and thus, we assume that the starting
complexity is higher. More precisely, we divide the
effort (number of relations that we modified in any
way in a revision), by the growth (size of the result
in that revision). In case the denominator is zero,
we have no escape than to define complexity as zero
(which is another approximation we cannot avoid).

relations handled
(6)
|S; — Si—1]
Assessment. Related literature typically speaks
for increasing complexity [7], [8], [9], [23], although
there have been counterarguments for the case of

complexity; ~

18

Coppermine:
complexity

Ensembl: complexity

Figure 10: Complexity for Coppermine and Ensembl (over
version-id, concealed for clarity)

open source software [35]. In our case, in all the
datasets but phpBB, complexity, as defined in the
previous paragraph, does not increase'® (see Fig. 10,
where a linear interpolation of complexity is also
depicted). The phenomenon must be coupled with
the drop in change density (Law V) and although
we cannot provide undisputable explanation, we of-
fer the synergy of two causes: (a) the increasing de-
pendence of the surrounding code to the database
that makes developers more cautious to perform
schema changes as they incur higher maintenance
costs, and, (b) the success of the perfective main-
tenance, which results in a clean schema, requiring
less corrective maintenance in the future.

Although we cannot confirm or disprove the law
based on undisputed objective measurements, we
have indications that the second law partially holds,
albeit with completely different connotations than
the ones reported by Lehman for typical software
systems: n the case of database schemata, com-
plexity, when measured as the fraction of expansion
effort over actual growth, drops.

4.8.2. Law of declining quality (Law VII)
The seventh law of software evolution is known
as the law of “Declining Quality”.

Unless rigorously adapted and evolved to
take into account changes in the opera-
tional environment, the quality of an E-
type system will appear to be declining.

The main idea behind this law concerns the fact
that the software will each time be based on as-
sumptions on the user requirements or the real
world environment that will progressively be in-
valid. As assumptions are invalidated, action must
be undertaken to maintain the affected software

B3In our CAiSE’14 paper [31], we erroneously refer to
BioSQL instead of phpBB

parts in order to reflect the actual user needs. Thus,
the ageing of the system, along with the increase
in complexity, also calls for a reestablishment of
assumptions and functionalities to serve the users’
needs. [14] specifically refers to the external quality
of a software system, practically expressing a sys-
tem’s quality as ‘user satisfaction’. However, this
point of view is drastically different in [9], where
the viewpoint on quality is generalized to all pos-
sible kinds of quality an organization might deem
necessary (based on the viewpoint of users, man-
agers, developers, each carrying his own interpreta-
tion and measures).

Metrics for the assessment of the law’s wvalid-
ity. Possible metrics [23] for the internal quality
of typical software systems include: (i) the number
of known defects associated with each version, (ii)
defect density for each version, (iii) percentage of
modules whose bodies have been changed. Much
like the authors of [23], however, we are not really
in a position to fully automate the accurate mea-
surement of external quality as perceived by the end
users, the management, etc. It is noteworthy that
Lehman and Fernandez-Ramil [15], [9] avoid giving
any other support to the law than a logical proof: as
the system expands over time, its complexity rises
and thus the addressing of user requirements and
removal of defects becomes more and more difficult,
unless work is done to confront the phenomenon
(”the decline in software quality with age, appears
to relate to a growth in complexity that must be
associated with ageing”).

Assessment. We follow [9] and use logical induc-
tion to assess whether the law holds; specifically,
we can assume that the law holds if it is strongly
established that the laws of feedback (III, VIII) and
complezity (II) hold.

We have already demonstrated that the ratio-
nale behind complexity increase is not supported
by our observations. At the same time, we can-
not assess schema quality with undisputed means.
Therefore, we cannot confirm or disprove the law
based on undisputed objective measurements.

4.4. Threats to Validity

In this subsection, we discuss threats to the va-
lidity of our conclusions. We structure our deliber-
ations around three kinds of validity threats, specif-
ically, construct validity, assessing the appropriate-
ness of our measures, internal validity, assessing the
possibility that cause-effect relationships are pro-
duced on an erroneous interpretation of causality,

19

and external validity, assessing the extent to which
our results can be generalized.

4.4.1. Construct Validity

Construct validity concerns the appropriateness
of the employed measures for the theoretical con-
structs they purportedly assess. In our case, to
assess construct validity, we review the appropri-
ateness of the metrics used for each law, also with
a view to the metrics used in the studies of software
evolution. Fig. 11 summarizes our assessment.

1. Continuing change. As the goal is to establish
the continuity of change, the usage of the (accu-
rately measured) heartbeat raises no concern about
its appropriateness and the validity of our results.

II. Increasing complezity. The main metric to as-
sess this law is the schema complexity. As we men-
tioned before, we do not have a way to accurately
measure the complexity of a database schema as
similar studies have done with software’s complex-
ity. We approximate the complexity with the effort
spent between two schema versions divided by the
increment in size between those versions. The later
can be accurately measured but this is not the case
with the effort. Effort cannot be measured from
the data that we have extracted for the databases
that we studied. The only accurate way to measure
effort would be to have the actual man-hours that
every developer has spent in the development of the
database. Moreover, given the fact that databases
are parts of larger software ecosystems, the possi-
bility of accurately assessing effort would require
a measure able to differentiate the work done on
the database and the work pertaining to the rest of
the software system — a possibility which we dim
quite slim, in fact. On the other hand, the reason-
ing behind the formula used makes sense and it is
consistent with the related literature. Overall, the
complexity, as we approximate it, poses a threat to
our construct validity that we cannot ignore; to a
large extent, this is also due to the abstract wording
of the law. This is also the reason why we are very
skeptic towards verifying the validity of the law in
the case of schema evolution. Future work needs to
be invested in the area for a more solid grounding
of automated complexity assessment.

II1. Self regulation. To assess this law, we used
schema size and growth as measures. Both met-
rics can be accurately measured. The usage of the
measure is consistent with the bibliography and the
intuition behind the law.

Appropriateness

Law Measured via ...
[. Continuing Change Heartbeat
II. Increasing Complexity =~ Complexity

III. SelfRegulation Size, Growth
IV. Conserv. Org. Stability Size
V. Conserv. Familiarity Growth
VI. Continuing Growth Size
VII. Declining quality Rationalization
VIII. Feedback System Regr. Formula

Appropriate for detecting change events
Approximation via change ratio
Appropriate for finding recurring patterns
Approximation of work rate

Appropriate for growth rate and oscillations
Appropriate for seeing schema expansion
Insufficient metrics for quality

Appropriate, typically used in the past

Figure 11: Summary of measures employed per law and their appropriateness

IV. Conservation of organizational stability. The
involved metric in order to assess this law is the
work rate (and the existence of periods during
which it remains constant). As previously men-
tioned, work rate cannot be easily measured, based
on the available information To this end, we pri-
marily use schema growth as an approximation of
output, and secondarily the heartbeat as an ap-
proximation of activity, both of which are accurate.
Overall, we are satisfied with our choice, as it ap-
pears that this is the best possible approximation
we can get from automatically extracted data; at
the same time, we have to acknowledge that it is
an approximation and not an undisputed measure-
ment of the work rate.

V. Conservation of familiarity. The metric used
for the assessment of this law is growth, which is
accurately measured. On the other hand, we have
no way to indisputably know the exact mechanics
behind the observations; hence, despite the accu-
racy of the observations, the law requires further
elaboration.

VI. Continuing growth. For this law, we em-
ployed schema size again, which is accurately ex-
tracted by our tools and fit for assessing the law.

VII. Declining quality. As schema quality is not
clearly defined in the area of databases, the assess-
ment of quality via metrics requires specific stud-
ies on the topic, before we are able to converge to
a widely accepted solution. Rationalization about
the law has typically been used in the related liter-
ature as a solution to the problem.

VIII. Feedback system. The main measure we
used for assessing this law, is the estimated size
of the database schema. This measure has previ-
ously been used in the case of software evolution,
again with an approximation for the measurement

20

of effort. However, the regression formula used is
consistent with its usage in the bibliography (al-
beit with novelty in terms of the memory of the
feedback) and all the results in all data sets are
surprisingly consistent. Therefore, we believe that
the specific formulae used pose no threat to validity,
although a better understanding of the mechanics
behind the feedback mechanism have to be part of
future studies.

4.4.2. Internal Validity

Internal validity refers to the case where a conclu-
sion on the behavior of a dependent variable is made
as a cause-effect relationship with an independent
variable. We are very careful to treat our observa-
tions only as such and avoid relating the observed
phenomena with specific causes without supporting
evidence.

Having said that, we extend the discussion, as
the observant reader might be tempted to intro-
duce a cause-effect relationship between age (as a
cause) and the following phenomena: (a) dropping
density of change, (b) dropping complexity, and (c)
size growth in the long run. We conjecture (but
cannot prove) that we could attribute the behav-
ior of density and complexity to the existence of
a confounding variable: schema quality, improving
over time due to perfective maintenance and caus-
ing the observed behavior. Still, this remains to
be proved with undisputed data and metrics. For
size, the confounding variable is user requirements
for more information capacity; although reasonable
enough (in our minds, practically certain), this is
also a topic to be proved indisputably by dedicated
studies.

4.4.8. External Validity

External validity refers to the possibility of gen-
eralizing the findings of a study to a broader con-
text. Concerning the external validity of our study,
we repeat that its context concerns the study of
the evolution of the logical schema of databases in
open-source software. We avoid generalizing our
findings to databases operating in closed environ-
ments and we stress that our study has focused
only on the logical structure of databases, avoiding
physical properties (let alone instance-level obser-
vations).

Concerning the validity of our study within this
context, we believe we have provided a safe, rep-
resentative experiment. In this study, we have tar-
geted a significant number of database schemas that
serve different purposes in the real world and come
with a quite broad range of time spans. Concerning
the time span, the schemas collected had an ade-
quate number of versions from rather few (40) to
quite many (500+). Despite these degrees of vari-
ability, our findings are consistent in practically all
of the datasets (with few exceptions that we men-
tioned). Thus we believe that the case of logical
database schema in open source software is well rep-
resented.

On the other hand, we would be hesitant to gen-
eralize our findings in databases in closed software
or outside the scope of the logical schema. Open-
source software comes with a larger development
community, and less control on the development ef-
fort. This is not the case for closed software, es-
pecially when dealing with mission critical compo-
nents like databases. At the same time, we have not
worked with the information concerning the physi-
cal schema or the extension of the studied databases
and thus, we would take the opportunity to warn
the reader not to generalize the results outside the
scope of a schema’s information capacity as ex-
pressed by the logical-level schema.

5. Discussion

In this section, we summarize fundamental o0b-
servations and patterns that have been detected in
our study. We intentionally avoid the term law,
as we do not have unshakeable evidence for their
explanation: apart from the empirical grounding,
due a very large amount of datasets that obey the
same patterns (which we believe we have fairly at-
tained), we would require an undisputed rational-

21

ized grounding, i.e., a clear explanation of the un-
derlying mechanism that guides them, also estab-
lished on measured, undisputed facts.

In case the reader has skipped our discussion
of threats to validity, we clarify once more that
the context under which our observations are made
concerns the study of the evolution of the logical
schema of databases in open-source software. In
all our subsequent deliberations, we take the above
context as granted and avoid repeating it for rea-
sons of better presentation of our results.

Before proceeding, however, to our conclusions,
we devote the first part of this subsection to a dis-
cussion on the validity of the problem per se.

5.1. Does the problem make sense in the first place?

We start with a fundamental inquiry: is it mean-
ingful to try assessing Lehman’s laws for schema
evolution in the first place? Does it make sense
to try to observe evolutionary patterns in the way
schemata evolve by following Lehman’s method and
laws?

Surely, there are fundamental differences between
the general case of E-type software systems and
databases in open-source systems. First, whereas
software systems export functionality to their users,
databases, on the contrary, export information ca-
pacity, i.e., the ability to store data and answer
queries. Second, databases are not complete and
independent software systems but parts of larger
information systems. Is it then meaningful, to pur-
sue this research?

Again, let us revisit the fundamental lesson
learned by Lehman’s laws: software systems are
complex, multi-level systems, involving several
stakeholders, that have to evolve or face eviction;
this evolution is governed by the antagonism be-
tween (a) positive feedback, pushing the system to
adapt to new environments and add new functional-
ities according to the users’ needs, and, (b) negative
feedback, that constrains the uncontrolled growth
and complexity of the system, by imposing perfec-
tive maintenance actions that result in an improved,
more maintainable internal structure of the system.

Can we replace the term ’software systems’ with
‘database’ in the above wording? We believe we
can, and the fundamental reason is that the an-
tagonism between positive and negative feedback is
there too. On the one hand, a database schema
has to obey the part of the positive feedback and
its moderators need to adapt, tune and expand it

over time (and this concerns all kinds of databases,
as well as the ones involved in open-source soft-
ware). This concerns both the expansion due to
user requirements concerning the availability of in-
formation and the adaptation to new environments.
At the same time, growth cannot be unconstrained:
developers of open-source software are highly sen-
sitive and attentive when it comes to database-
related code, as changes in the database can in-
cur both syntactic and semantic failures. Thus,
it would be reasonable to expect that leaving the
schema grow without any complexity control, espe-
cially in an open-source environment where devel-
opers are not organized in a strict hierarchy, can
result to maintenance nightmares. The a-posteriori
observations verify this intuition: we do observe
schema size contractions, where renamings, restruc-
turings and removal of tables and attributes are ev-
ident in an attempt to keep schemata clean, under-
standable and well-structured.

Are databases, then, mini E-type systems with
a life of their own? We should be clear that we do
not postulate that databases can be completely iso-
lated from the rest of their surrounding ecosystem.
Still, studying schema evolution in an attempt to
discover regularities and patterns is certainly worth
the effort, given the high degree of dependence of
the rest of the code over the database structure.
With the benefit of the hindsight, we do believe
that considering the laws of Lehman as a starting
point for the study of schema evolution has been a
legitimate and rewarding effort as it revealed both
commonalities (mainly due to the same fundamen-
tal feedback mechanism) and differences (due to the
specificities of the database case) with the general
theory of Lehman’s laws.

5.2. Major Findings

In this section, we provide a critical discussion of
our findings, accompanied by concise summaries,
where we also annotate each of our observations
with reference to the law where we have discussed
it in detail. Fig. 12 further distils these findings in
a single table.

5.2.1. Is the process of schema evolution behaving
like a feed-back based system? (hypothesis of
the feedback-based process)

We believe that we can indeed claim that schema
evolution is guided by a feedback based mechanism.

Positive feedback brings the need to increase the

22

information capacity of the database, resulting in
expansion of the number of relations and attributes
over time. At the same time, there is negative feed-
back too, from the need to do some house-cleaning
of the schema for redundant attributes or restruc-
turing to enhance schema quality. We have also
observed that the inverse square models for the
prediction of size expansion holds for all the eight
schemata that we have studied. However, we do
not come with a good explanation as to why this
holds. The supporting observations in this context
can be listed as follows:

e As an overall trend, the information capacity
of the database schema is enhanced — i.e., the
size grows in the long term (VI).

e The existence of perfective maintenance is evi-
dent in almost all datasets with the existence of
relation and attributes removals, as well as ob-
servable drops in growth and size of the schema
(sometimes large ones). In fact, growth fre-
quently oscillates between positive and nega-
tive values (III).

e The schema size of a certain version of the
database can be accurately estimated via a re-
gressive formula that exploits the amount of
changes in recent, previous versions (VIII).

As in all feedback-based systems, the negative
feedback prevents the uncontrolled growth and re-
tains the quality of the schema at a high level,
allowing thus the subsequent releases to operate
smoothly. This is a true sign of stability: the system
is maintained adequately to minimize the effects of
its unavoidable subsequent modifications and con-
tinue evolving smoothly.

Overall, we can state: Schema evolution demon-
strates the behavior of a stable, feedback-regulated
system, as the need for expanding its information
capacity to address user needs is controlled via per-
fective maintenance that retains quality; this antag-
onism restrains unordered expansion and brings sta-
bility.

5.2.2. Hypothesis of schema size expansion (and
properties of its growth)

The size of the schema expands over time, albeit
with versions of perfective maintenance due to the
negative feedback. As already mentioned, the in-
verse square model seems to work.

The growth of the database schema does not fol-
low a pattern of smooth growth — even considering

doup o1 swass

uononpul [ed18og

- (pareunxoxdde 11aqe) Ayxa(durod se ‘pifea se poy] o3 apqissoduuy £qainpaluo) awIr 1340 SauIpap Lend
Aypnd Bunuaa 1A
Lixspdwon
(pus a3 u1 poriad sdusngqImy PUIBYDS
e Suiaey) ggdyd 105 1daaxa s19s€1ED IV sdoip fixeidwon (e1eW1IX01ddE) awn 1940 saseanoul fxajduion
Axajdutos Buisvatour 1
suondarxe MOYIIM SI9SEIED [V mzoﬁmuc_uoEuo spoLiad pesnoj BIA PRIDAULOD BZIS FIe9qLIESsH 1109 JO 51SINQ [RIM PRlDauuod fImols fc.a_Em
Anniqess jo sportad J1aqre ‘3moas Juelsuod Jo saseyd ou ale st aIsy], (syernrxoadde) Jo saseyd uryiIm JUe}SU0d ST 31eI-HI10M “SAY
3D HAOMIUDLIDAUT A]
suiajjed snoLIeA JIqIYXS S]195eIep [V (01az punoie suone[so adref ‘saxids
19110 ‘SSBUMI[ED) SUONEUIqUIOD 3[qIssod [[e Aq pamo[[o] a1e saqids - MOIH ;saBuen aarssaoxe Iayye suaddey 1eym -
(sewumayipateyy
J0 pus a3 ul HIANOE BIIXS SLIOS YILM) sauipap asueyd jo Lousnbay oy ‘Apuertodur Sumuipap Lmors
TOso1g pue sey 1ojideoxe sieselep [y ‘e[qels sAeis 1o sdoap A[ea1d£ yamois jo uonejodiequr.reauyy sy, - 9ZI§ 1EaqUIERH SISU0[SI9A UBaMIAq [1M0I5 afelaae oL -
Ao/ fo uonvassuo) A
UONEIYIPOW Jo spoLiad pasnioj
suondedxa INOYILM SI8SEIED [V urIng ‘A[[ENunU0d J0ul2q[e ‘Pespul ‘UNI Suo|) U] SISLSIIU] SZIS azIS uni Suof a8y ur SuIsesIOUI ST JZIS BUIDYDS S L
yamoul Buinupuod 1A
18118 10M MODPULM BUIN [[BUIS [1IM SBUO 21} ‘UONEUINSS 110]j8 sisf[eue B[NULIOJ
suondeoxe INOYILM SI9SEIED [[V 10 SRANEWISYE JUAIBIP 211 JO 1IN0 ‘PaAd[YDE 8q UED UOLEWINS? JZI§ uorssaifey @Alsseddad BlA 9Z1S BUIDYIS B[] 91BWINSE UBD 9 AL
waysAS yI0qpasd 1A
151%8 Op 9218 881e[JO SUOTIEPISO - anfea aferane
[epow ueydiz e Surmor(o] ‘018z 01 8502 A[[eatdA ‘[rews s1yIMoIn - Mo ue punote panquusip £[jeuttou afueyy -
o) . (sreqpasy
aanedau) suolsIaa SUMULIYS Jo 80UISIXT -
suondsdxa NOMIM SISEIEP [V JUBPIA® ST 8IUBUSIUIEW BATIIBLIA] - azZIS aBueyo
Mme[a3 Jo uoissaidxa a1 woaj Apuaiayip Anqels 1dnaqe £q pajdniisiul ‘uorsuedxs yjoows jo
() pue Supjuriys (q) ‘uorsuedxs (&) apnut a8ueyd Jo suianed - suraned SuLLindal yim spuedxa 3z1s ewayds -
uonvinbal-f1as I
poriad sousngany e ypm ggdyd -
siead swos jo ,dasls, B y3m "TOSOIG - wonEsgIpo jo spovad pasnooy
suondaoxo uring ‘A[fenunuod joutaqe ‘unl Suof sy ur paldepe s eWLYIS YL 1eaquesy paidepe A[fenunuod s1 ewsyds ay L
04 L “me(a1y Aq apiqe sjaselep [y affupyo Buinunuoy |
SLASVIVA SLNIWWOD ¥ SONIANIA STINSVAN SNOLLSAND HOUVASTH B MVT

, findings and validity over the datasets

0ons

Summary of research questi

Figure 12

23

the amendment where phases of constant growth
are assumed. The expansion is mainly character-
ized by three kinds of phases, including (i) abrupt
change (positive and negative), (ii) smooth growth,
and, (iii) calmness (meaning large periods of no
change, or very small changes). We observe that in
the case of schema evolution, the schema’s growth
(i.e., its change from one version to the follow-
ing) mainly occurs with spikes oscillating between
zero and non-zero values. The changes are typi-
cally small, following a Zipfian distribution of oc-
currences, with high frequencies in deltas that in-
volved small values of change, close to zero.

At the same time, in contrast to the case of soft-
ware systems, we observe a very strong inclination
to avoid changes to the database schema. Change
in the database impacts surrounding code, so the
change is constrained by the need to minimize this
impact. So, we frequently see versions with no
change to the information capacity of the schema
and large time periods where the schema is still (or
almost still). Bear in mind that we monitor only
the subset of versions that pertain to the database
schema and ignored any versions where the infor-
mation system surrounding the database changed
while the schema remained the same. This enforces
our argument for the tendency towards stillness.

Although we do not believe conservation of famil-
iarity to be the only cause, we see that the feedback
mechanism of the evolution demonstrates a reduc-
tion in the density of changes as the schema ages..
We also observe unexpected patterns of changes
with sequences of high spikes, sometimes oscillat-
ing around zero. Such patterns require further in-
vestigation for their verification and explanation.
The average growth is close to zero, and with the
tendency to drop as time passes, not due to the di-
minishing of the (already small) deltas, whenever
they occur, but mainly due to the diminishing of
their density.

Concerning the size of the system, our support-
ing evidence has been already summarized via laws
VI and VIII (see the previous paragraph). Con-
cerning the heartbeat of the system, our support-
ing evidence for the above statements can be listed
as follows:

e The database is not continuously adapted, but
rather, alterations occur from time to time (I).

e Change does not follow patterns of constant
behaviour (IV).

24

e Age results in a reduction of the density of
changes to the database schema in most cases
(V).

Concerning the growth of the system, our sup-
porting evidence for the above statements can be
listed as follows:

e Growth is typically small in the evolution of
database schemata, compared to traditional
software systems (III). The distribution of oc-
currences of the amount of schema change fol-
lows a Zipfian distribution, with a predominant
amount of zero growth in all data sets. Plainly
put, there is a very large amount of versions
with zero growth, both in the case of attributes
and in the case of tables. The rest of the fre-
quently occurring values are close to zero, too.

e The average value of growth is typically close
to zero (although positive) (III) and drops with
time, mainly due to the drop in change density
(V).

5.2.3. Hypothesis of perfective maintenance to fight
complexity and user dissatisfaction

We also believe that there is sufficient evidence
to support the claim that perfective maintenance is
part of the process. This is mainly demonstrated by
the drops in the schema size as well as the drops in
actwity rate and growth with age. In fact, growth
frequently oscillates between positive and negative
values (III). Thus, based on simple reasoning, one
can accept the wording of Lehman’s laws on nega-
tive feedback, as they both state that quality (in-
ternal and external) declines unless confronted.

However, despite the adoption of the hypothesis
for a feedback-based mechanism, we cannot adopt
the corroborating observations of the related liter-
ature for software systems that accompany the two
laws of negative feedback (IT and VII). In the sys-
tems we have studied we observe that age results in
a reduction of the complexity to the database schema
(1I), although we need to remember that the mea-
surement of complexity is an approximation. The
interpretation of the observation is that perfective
maintenance seems to do a really good job and com-
plexity drops with age (in sharp contrast to what is
observed in the related literature for software sys-
tems where more and more effort is devoted to bat-
tle complexity). Also, in the case of schema evo-
lution, activity is typically less frequent with age.
Although one can attribute this to the inefficacy of

the approximating measure, we anticipate that it
should mainly be attributed to the truth lying in
the essence of law II: ‘complexity increases unless
work is done to reduce it’. We conjecture that due
to the criticality of the database layer in the overall
information system, this process is done with care
and achieves the reduction of complexity over time,
coming hand in hand with the strong tendency to-
wards minimum or no changes to the schema.

As for law VII, as already mentioned, we are
even more hesitant to adopt it, as we are already in
doubt towards internal quality and have no actual
evidence as to what happens with external quality.

Overall: although our research seems to keep the
negative feedback laws in place in the case of schema
evolution, this is done with (a) a degree of uncer-
tainty and (b) with the strong indication of funda-
mental differences with E-type program evolution.
We would not be surprised if future research estab-
lishes with more certainty that the feedback mecha-
nism for schema evolution improves the quality and
complexity of a database as time passes.

5.3. Opportunities for Future Work

There are several opportunities for follow-up
work. As one would normally expect, verifying the
findings of this study with more datasets can fur-
ther solidify our confidence to them. The exten-
sion of this work to evolution histories of propri-
etary databases in closed environments, over large
periods of time, would be of extreme value; albeit
one can only be pessimistic on the possibility of ob-
taining such data and being able to publish them.
Novel developments in database technology allow
the extension of this kind of study to non-relational
data too. This includes all kinds of semi-structured
data (evolution of XML data alone is a vast area
of research, where the nesting of the elements pro-
vides transformations of the schema that are not
present in the relational case), but also, the so-
called "NoSQL” data, where structures like graphs
and text evolve over time. In the latter case, the
identification of patterns in the evolution of the
data at the instance level is clearly a challenging
topic of research.

A second large area of research concerns the iden-
tification of patterns in the correlation of the evo-
lution of the database and the evolution of the sur-
rounding applications. This involves both the align-
ment of the application code to the new schema
and, as a reviewer of this paper has pointed out,

25

possible workarounds in the code to avoid modi-
fying the database. Even more challenging is the
relationship of user requirements to database evo-
lution. Remember that in order to be able to come
up with results in long histories with many ver-
sions, automated processing of the available data
is paramount. The possibility of automating the
processing of tickets, bug reports and to-do lists in
a way that can be correlated to the subsequent evo-
lution of the database is a topic with a significant
amount of technical challenge.

At the same time, the techniques used in this
study provide opportunities for improvement. A
first area of future research concerns the findings
of ageing and complexity (Law II). We need to es-
tablish better measures for complexity of database
schemata and see how this complexity behaves over
time. Similar considerations hold for estimating ef-
fort and work-rate by exploiting the available infor-
mation in the software repositories as automatically
as possibly.

Finally, one should also recognize that the
search for more patterns than the ones offered by
Lehman’s laws, via traditional or novel pattern de-
tection mechanisms, is another important possi-
bility for future work. Already, the observation
of patterns of growth (Laws III and V), or pat-
terns in the heartbeat of the evolution, are open
issues worth investigating. Going further than that,
identifying which tables are more liable to change
in the future and how, or how the effort around
schema evolution can be planned in advance by
studying the available data are research questions
with great value both for developers, who can tailor
the code to be as loosely-coupled as possibly to the
most unstable parts of the database, and project
managers, who can estimate where change will be
directed. We hope that in the context of such
endeavors, the publicly available datasets of this
paper (https://github.com/DAINTINESS-Group)
can serve the research community.

Acknowledgment. We would like to thank the
anonymous reviewers of both [31] and this paper for
their useful comments.

This research has been co-financed by the Eu-
ropean Union (European Social Fund - ESF) and
Greek national funds through the Operational Pro-
gram ”Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF)
- Research Funding Program: Thales. Investing
in knowledge society through the European Social
Fund.

6. References

(1
2]

[4]

(5]

(8]

9

(10]

(11]

(12]

(13]

(14]

(15]

[16]

D. Sjgberg, Quantifying Schema Evolution, Information
and Software Technology 35 (1) (1993) 35-44.

G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vas-
siliou, Metrics for the Prediction of Evolution Impact
in ETL Ecosystems: A Case Study, Journal on Data
Semantics 1 (2) (2012) 75-97.

C. Curino, H. J. Moon, L. Tanca, C. Zaniolo, Schema
Evolution in Wikipedia: Toward a Web Information
System Benchmark, in: Proceedings of 10th Interna-
tional Conference on Enterprise Information Systems
(ICEIS), 2008.

D.-Y. Lin, I. Neamtiu, Collateral Evolution of Applica-
tions and Databases, in: Proceedings of the Joint Inter-
national and Annual ERCIM Workshops on Principles
of Software Evolution and Software Evolution Work-
shops (IWPSE), 2009, pp. 31-40.

S. Wu, I. Neamtiu, Schema evolution analysis for em-
bedded databases, in: Proceedings of the 27th IEEE
International Conference on Data Engineering Work-
shops (ICDEW), 2011, pp. 151-156.

D. Qiu, B. Li, Z. Su, An Empirical Analysis of the
Co-evolution of Schema and Code in Database Ap-
plications, in: Proceedings of the 9th Joint Meeting
of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2013, pp. 125-135.
L. A. Belady, M. M. Lehman, A Model of Large Pro-
gram Development, IBM Systems Journal 15 (3) (1976)
225-252.

M. M. Lehman, J. C. Fernandez-Ramil, P. Wernick,
D. E. Perry, W. M. Turski, Metrics and Laws of Soft-
ware Evolution - The Nineties View, in: Proceedings
of the 4th IEEE International Software Metrics Sym-
posium (METRICS), 1997, pp. 20-34.

M. M. Lehman, J. C. Fernandez-Ramil, Software Evolu-
tion and Feedback: Theory and Practice, Wiley, 2006,
Ch. Rules and Tools for Software Evolution Planning
and Management.

I. Herraiz, D. Rodriguez, G. Robles, J. M. Gonzalez-
Barahona, The Evolution of the Laws of Software Evo-
lution: A Discussion Based on a Systematic Literature
Review, ACM Computing Surveys 46 (2) (2013) 1-28.
M. Wermelinger, Y. Yu, A. Lozano, Design Principles
in Architectural Evolution: A Case Study, in: Proceed-
ings of the 24th IEEE International Conference on Soft-
ware Maintenance (ICSM), 2008, pp. 396-405.

Z. Xing, E. Stroulia, Analyzing the Evolutionary His-
tory of the Logical Design of Object-Oriented Software,
IEEE Transactions on Software Engineering 31 (10)
(2005) 850-868.

M. Lehman, Programs, Life Cycles, and Laws of Soft-
ware Evolution, Proceedings of the IEEE 68 (9) (1980)
1060-1076.

M. M. Lehman, Laws of Software Evolution Revisited,
in: Proceedings of 5th European Workshop on Software
Process Technology, (EWSPT), 1996, pp. 108—-124.

M. M. Lehman, J. C. Fernandez-Ramil, D. E. Perry,
On Evidence Supporting the FEAST Hypothesis and
the Laws of Software Evolution, in: Proceedings of the
5th IEEE International Software Metrics Symposium
(METRICS), 1998, pp. 84-88.

S. S. Pirzada, A Statistical Examination of the Evolu-

26

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

[25]

[26]

27]

28]

29]

(30]

(31]

(32]

tion of the Unix System, Ph.D. thesis, Imperial College,
University of London (1988).

N. T. Siebel, S. Cook, M. Satpathy, D. Rodriguez, Lat-
itudinal and Longitudinal Process Diversity, Journal of
Software Maintenance Research and Practice 15 (1).
M. J. Lawrence, An Examination of Evolution Dynam-
ics, in: Proceedings of the 6th International Conference
on Software Engineering (ICSE), 1982, pp. 188-196.
M. W. Godfrey, Q. Tu, Evolution in Open Source Soft-
ware: A Case Study, in: Proceedings of the 16th
IEEE International Conference on Software Mainte-
nance (ICSM), 2000, pp. 131-142.

M. W. Godfrey, Q. Tu, Growth, Evolution, and Struc-
tural Change in Open Source Software, in: Proceedings
of the 4th International Workshop on Principles of Soft-
ware Evolution (IWPSE), 2001, pp. 103-106.

G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, I. Her-
raiz, Evolution and Growth in Large Libre Software
Projects, in: Proceedings of the 8th International Work-
shop on Principles of Software Evolution (IWPSE),
2005, pp. 165-174.

S. Koch, Software Evolution in Open Source Projects:
a Large-scale Investigation, Journal of Software Main-
tenance and Evolution 19 (6) (2007) 361-382.

G. Xie, J. Chen, I. Neamtiu, Towards a Better Under-
standing of Software Evolution: An Empirical Study
on Open Source Software, in: Proceedings of the 25th
IEEE International Conference on Software Mainte-
nance (ICSM), 2009, pp. 51-60.

I. Herraiz, G. Robles, J. M. Gonzalez-Barahon, Com-
parison Between SLOCs and Number of Files As Size
Metrics for Software Evolution Analysis, in: Proceed-
ings of the 10th European Conference on Software
Maintenance and Reengineering (CSMR), 2006, pp.
206-213.

R. Vasa, Growth and Change Dynamics in Open Source
Software Systems, Ph.D. thesis, Swinburn Univ. of
Technology, Australia (2010).

A. Israeli, D. G. Feitelson, The Linux Kernel as a Case
Study in Software Evolution, Journal of Systems and
Software 83 (3) (2010) 485-501.

C. A. Curino, H. J. Moon, C. Zaniolo, Graceful
Database Schema Evolution: the PRISM Workbench,
Proceedings of the VLDB Endowment 1 (2008) 761—
772.

C. Curino, H. J. Moon, A. Deutsch, C. Zaniolo,
Automating the Database Schema Evolution Process,
VLDB Journal 22 (1) (2013) 73-98.

G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassil-
iou, Policy-Regulated Management of ETL Evolution,
Journal on Data Semantics 13 (2009) 147-177.

G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vas-
siliou, HECATAEUS: Regulating Schema Evolution, in:
Proceedings of the 26th IEEE International Conference
on Data Engineering (ICDE), 2010, pp. 1181-1184.

I. Skoulis, P. Vassiliadis, A. Zarras, Open-Source
Databases: Within, Outside, or Beyond Lehman’s Laws
of Software Evolution?, in: Proceedings of 26th Inter-
national Conference on Advanced Information Systems
Engineering (CAiSE), 2014, pp. 379-393.

IEEE, Guide to the Software Engineer-
ing Body of Knowledge (v. 3.0), IEEE
Computer Society, 2014, available at

http://www.computer.org/portal/web/swebok, Re-

trieved at 08 July 2014.

33]

(34]

(35]

N. E. Fenton, S. L. Pfleeger, Software Metrics - A Prac-

tical and Rigorous Approach, International Thomson,

1996.

M. M. Lehman, J. F. Ramil, Software Evolution,

in: STRL Annual Distinguished Lecture, De Mont-

fort Univ., Leicester, 20 Dec. 2001, 2001, available at
http://www.eis.mdx.ac.uk/staffpages/mml/feast2/papers.html,
http://www.eis.mdx.ac.uk/staffpages/mml/feast2/papers/pdf/690c.pdf,
http://www.eis.mdx.ac.uk/staffpages/mml/feast2/papers/pdf/jfr103c.pdf.
J. Fernandez-Ramil, A. Lozano, M. Wermelinger,

A. Capiluppi, Empirical Studies of Open Source Evolu-

tion, in: Software Evolution, 2008, pp. 263—288.

27

