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Abstract. Most database researchers have studied data warehouses (DW) in 
their role as buffers of materialized views, mediating between update
intensive OLTP systems and query-intensive decision support. This neglects 
the organizational role of data warehousing as a means of centralized 
information flow control. As a consequence, a large number of quality aspects 
relevant for data warehousing cannot be expressed with the current DW meta 
models. This paper makes two contributions towards solving these problems. 
Firstly, we enrich the meta data about DW architectures by explicit enterprise 
models. Secondly, many very different mathematical techniques for 
measuring or optimizing certain aspects of DW quality are being developed. 
We adapt the Goal-Question-Metric approach from software quality 
management to a meta data management environment in order to link these 
special techniques to a generic conceptual framework of DW quality. Initial 
feedback from ongoing experiments with a partial implementation of the 
resulting meta data structure in three industrial case studies provides a partial 
validation of the approach. 

1 Introduction 

Data warehouses provide large-scale caches of historic data. They sit between 

information sources gained externally or through online transaction processing 

systems (OLTP), and decision support or data mining queries following the vision of 
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online analytic processing (OLAP). Three main arguments have been put forward in 

favor of this caching approach: 

1. Peiformance and safety considerations: The concurrency control methods of 

most DBMSs do not react well to a mix of short update transactions (as in 

OLTP) and OLAP queries that typically search a large portion of the database. 

Moreover, the OLTP systems are often critical for the operation of the 

organization and must not be under danger of corruption of other applications. 

2. Logical interpretability problems: Inspired by the success of spreadsheet 

techniques, OLAP users tend to think in terms of highly structured multi

dimensional data models, whereas information sources offer at best relational, 

often just semi-structured data models. 

3. Temporal and granularity mismatch: OLTP systems focus on current 

operational support in great detail, whereas OLAP often considers historical 

developments at a somewhat less detailed granularity. 

Thus, quality considerations have accompanied data warehouse research from the 

beginning. A large body of literature has evolved over the past few years in addressing 

the problems introduced by the DW approach, such as the trade-off between freshness 

of DW data and disturbance of OLTP work during data extraction; the minimization 

of data transfer through incremental view maintenance; and a theory of computation 

with multi-dimensional data models. 

However, the heavy use of highly qualified consultants in data warehouse applications 

indicates that we are far from a systematic understanding and usage of the interplay 

between quality factors and design options in data warehousing. The goal of the 

European DWQ project [JV97] is to address these issues by developing, prototyping 

and evaluating comprehensive Foundations for Data Warehouse Quality, delivered 

through enriched meta data management facilities in which specific analysis and 

optimization techniques are embedded. 

This paper develops the DWQ architecture and quality management framework and 

describes first steps towards its implementation and validation. The main 

contributions include an extension of the standard DW architecture used in the 

literature by enterprise modeling aspects, and a strategy for embedding special

purpose mathematical reasoning tools in the architecture which will enable a 

computationally tractable yet rich quality analysis or quality-driven design process. 

Interaction with DW tool vendors, DW application developers and administrators has 

shown that the standard framework used in the DW literature is insufficient to capture 

in particular the business role of data warehousing. A DW is a major investment made 
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to satisfy some business goal of the enterprise; quality model and DW design should 

reflect this business goal as well as its subsequent evolution over time. In section 2, 

we discuss this problem in detail; our new architectural framework separates (and 

links) explicitly the concerns of conceptual enterprise perspectives, logical data 

modeling (the main emphasis of DW research to date), and physical information flow 

(the main concern of commercial DW products to date). 

In section 3, we first build on literature frameworks for data and software quality to 

come up with a suitable set of DW quality dimensions, as perceived by different 

groups of stakeholders. We then adapt a variant of the so-called Goal-Question

Metric approach used in software quality management. Through materialized quality 

views, we link conceptual quality goals to specific analysis techniques developed in 

DW research and practice, and enable trade-offs between heterogeneous quality goals. 

Initial experiences with a prototypical implementation of the resulting meta database 

using the ConceptBase deductive object manager have been gained in cooperation 

with industrial case studies. Section 4 relates our approach to other work in data 

warehousing, data and software quality, while section 5 provides a summary and 

conclusions. 

2 The Architecture of a Data Warehouse 

Physically, a data warehouse system consists of databases (source databases, 

materialized views in the distributed data warehouse), data transport agents that ship 

data from one database to another and a data warehouse repository which stores all 

kinds of meta data about the system. The content of the repository determines to a 

large extent how the data warehouse system can be used and evolved. The main goal 

of our approach is therefore to define a meta database schema which can capture and 

link all relevant aspects of DW architecture and quality. We shall tackle this very 

difficult undertaking in several steps. 

2.1 Three Perspectives of Data Warehouse Meta Data 

Almost all current research and practice understand a data warehouse architecture as a 

stepwise information flow from information sources through materialized views 

towards analyst clients, as shown in figure 2.1. Our key observation is that this 

architecture covers only partially the tasks faced in data warehousing and is therefore 

unable to even express, let alone support, a large number of important quality 

problems and management strategies. 
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Figure 2.1: Current Understanding of a Data Warehouse 

As a consequence, we propose a separation of three perspectives as shown in figure 

2.2: a conceptual enterprise perspective, a logical data modeling perspective, and a 

physical data flow perspective. 

The main argument we wish to make is the need for a conceptual enterprise 

perspective. To explain, consider the left two columns of figure 2.2. Suppose an 

analyst wants to know something about the business -- the question mark in the figure. 

She does not have the time to observe the business directly but must rely on existing 

information gained by operational departments, and documented as a side effect of 

OL TP systems. This way of information gathering implies already a bias which needs 

to be compensated when selecting OL TP data for uploading and cleaning into a DW 

where it is then further pre-processed and aggregated in data marts for certain analysis 

tasks. Considering the long path the data has taken, it is obvious that also the last step, 

the formulation of conceptually adequate queries and the conceptually adequate 

interpretation of the answers presents a major problem to the analyst. 

The traditional DW literature only covers two of the five steps in figure 2.2. Thus, it 

has no answers to typical practitioner questions such as "how come my operational 

departments put so much money in their data quality, and still the quality of my DW is 

terrible?" (answer: the enterprise views of the operational departments are not easily 

compatible with each other or with the analysts view), or "what is the effort required 
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to analyze problem X for which the DW currently offers no information?" (could 

simply be a problem of wrong aggregation in the materialized views, could require 

access to not-yet-integrated OLTP sources, or even involve setting up new OLTP 

sensors in the organization). 

An adequate answer to such questions requires an explicit model of the conceptual 

relationships between an enterprise model, the information captured by OLTP 

departments, and the OLAP clients whose task is the decision analysis. We have 

argued that a DW is a major investment undertaken for a particular business purpose. 

We therefore do not just introduce the enterprise model as a minor part of the 

environment, but demand that all other models are defined as views on this enterprise 

model. Perhaps surprisingly, even information source schemas define views on the 

enterprise model -- not vice versa as suggested by figure 2.1 ! 

Client 
Model 

Enterprise 
Model 

? 

Operational 
Department 

Model 

Logical 
Perspective 

Physical 
Perspective 

Client 
Data Store 

---- Transportation 
Agent 

ow 
Data Store 

Source 
Data Store 

Figure 2.2 The Data Warehouse Meta Data Framework 

The wrapping and aggregation transformations performed in the (traditionally 

discussed) logical perspective can thus be checked for interpretability, consistency or 

completeness with respect to the enterprise model -- provided an adequately powerful 

representation and reasoning mechanism is available. At the same time, the logical 

transformations need to be implemented safely and efficiently by physical storage and 

transportation -- the third perspective in our approach. It is clear that physical quality 

aspects require completely different modeling formalisms than the conceptual factors, 

typical techniques stemming from queuing theory and combinatorial optimization. 
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There is no single decidable formalism that could handle all of these aspects 

uniformly in a meta database. We have therefore decided to capture the architectural 

framework in a deductive object data model in a comprehensive but relatively 

shallow manner. Special-purpose reasoning mechanisms such as the ones mentioned 

above can be linked to the architectural framework as discussed in secti9n 3, below. 

2.2 A Notation for Data Warehouse Architecture 

We use the meta database to store an abstract representation of data warehouse 

applications in terms of the three-perspective scheme. The architecture and quality 

models are represented in Telos [MBJK90], a metadata modeling language. Its 

implementation in the ConceptBase system [JGJ+95] provides query facilities, and 

definition of constraints and deductive rules. Telos is well suited because it allows to 

formalize specialized modeling notations by means of meta classes. Preloaded with 

these metaclasses, the ConceptBase system serves as the meta database for quality

oriented data warehouses. 

A condensed graphical overview of the architecture notation is given in Figure 2.3. 

Bold arrows denote specialization links. The most general meta class is DW_Object. It 

subsumes objects at any perspective (conceptual, logical, or physical) and at any level 

(source, data warehouse, or client). 

Figure 2.3: Overview of the Architecture Notation 

Within each perspective, we distinguish between the modules it offers (e.g. client 

model) and the kinds of information found within these modules (e.g. concepts and 

their subsumption relationships). The horizontal links hasSchema and isViewOn 

establish the way how the horizontal links in Figure 2.2 are interpreted: the types of a 
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schema (i.e., relational or multidimensional structures) are defined as logical views on 

the concepts in the conceptual perspectives. On the other hand, the components of the 

physical perspective get a schema from the logical perspective as their schema. 

Each object can have an associated set of materialized views called 

QualityMeasurements. These materialized views (which can also be specialized to the 

different perspectives -- not shown in the figure) constitute the bridge to the quality 

model discussed in section 3. 

The horizontal levels of the objects are coded by the three subclasses attached to 

Model, Schema, and DataStore. We found this notation adequate to represent physical 

data warehouse architectures of commercial applications, such as the SourcePoint tool 

marketed by Software AG [SAG96] or the DW architecture underlying a data mining 

project at Swiss Life [SKR97]. The logical perspective currently supports relational 

schema definitions whereas the conceptual perspective supports the family of 

extended entity-relationship and similar semantic data modeling languages. Note that 

all objects in Figure 2.3 are meta classes: actual conceptual models, logical schemas, 

and data warehouse components are represented as instances of them in the meta 

database. In the following subsections, we elaborate on the purpose of representing 

each of the three perspectives. 

2.3 Conceptual Perspective 

The conceptual perspective describes the business models underlying the information 

systems of an enterprise. The central role is played by the enterprise model, which 

gives an integrative overview of the conceptual objects of an enterprise. The models 

of the client and source information systems are views on the enterprise model, i.e. 

their contents are described in terms of the enterprise model. One goal of the 

conceptual perspective is to have a model of the information independent from 

physical organization of the data, so that relationships between concepts can be 

analyzed by intelligent tools, e.g. to simplify the integration of the information 

sources. On the client side, the interests of user groups can also be described as views 

on the enterprise model. 

In the implementation of the conceptual perspective in the meta database, the central 

class is Model. A model is related to a source, a client or the relevant section of the 

enterprise, and it represents the concepts which are available in the corresponding 

source, client or enterprise. The classes ClientModel, SourceModel and 

EnterpriseModel are needed, to distinguish the models of several sources, clients and 

the enterprise itself. A model consists of Concepts, each representing a concept of the 
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real world, i.e. the business world. If the user provides some information about the 

relationship between concepts in a formal language like description logics, a reasoner 

can check for subsumption of concepts [CDL97]. 

The results of the reasoning process _are stored in the model as attribute isSubsumedBy 

of the corresponding concepts. Essentially, the repository can serve as a cache for 

reasoning results. Any tool can ask the repository for containment of concepts. If the 

result has already been computed, it can directly be answered by the repository. 

Otherwise, a reasoner is invoked by the repository to compute the result. 

2.4 Logical Perspective 

The logical perspective conceives a data warehouse from the view point of the actual 

data models involved, i.e. the data model of the logical schema is given by the 

corresponding physical component, which implements the logical schema. The central 

point in the logical perspective is Schema. As a model consists of concepts a schema 

consists of Types. We have implemented the relational model as an example for a 

logical data model; other data models such as the multi-dimensional or the object

oriented data model are also being integrated in this framework. 

Like in the conceptual perspective, we distinguish in the logical perspective between 

ClientSchema, DWSchema and SourceSchema for the schemata of clients, the data 

warehouse and the sources. For each client or source model, there is one 

corresponding schema. This restriction is guaranteed by a constraint in the 

architecture model. The link to the conceptual model is implemented by the relation

ship between concepts and types: each type is expressed as a view on concepts. 

2.5 Physical Perspective 

Data warehouse industry has mostly explored the physical perspective, so that many 

aspects in the physical perspective are taken from the analysis of commercial data 

warehouse solutions such as Software AG's SourcePoint tool [SAG96], the data 

warehouse system of RedBrick [RedB97], Informix's MetaCube[lnfo97], Essbase of 

Arbor Software [Arbo96] or the product suite of MicroStrategy [MStr97]. We have 

observed that the basic physical components in a data warehouse architecture are 

agents and data stores. Agents are programs that control other components or 

transport data from one physical location to another. Data stores are databases which 

store the data that is delivered by other components. 
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The basic class in the physical perspective is DW_Component. A data warehouse 

component may be composed out of other components. This fact is expressed by the 

attribute hasPart. Furthermore, a component deliversTo another component a Type, 

which is part of the logical perspective. Another link to the logical model is the 

attribute hasSchema of DW_Component. Note that a c;omponent may have a schema, 

i.e. a set of several types, but it can only deliver a type to another component. This is 

due to the observation that agents usually transport only "one tuple at a time" of a 

source relation rather than a complex object. 

One type of component in a data warehousing environment is an Agent. There are two 

types of agents: ControlAgent which controls other components and agents, e.g. it 
notifies another agent to start the update process, and TransportationAgent which 

transports data from one component to another component. An Agent may also notify 

other agents about errors or termination of its process. 

Another type of component is a DataStore. It physically stores the data which is 

described by models and schemata in the conceptual and logical perspective. As in the 

other perspectives, we distinguish between ClientDataStore, DW_DataStore and 

SourceDataStore for data stores of clients, the data warehouse and the sources. 

3 Managing Data Warehouse Quality 

In this section, we discuss how to extend the DW architecture model by explicit 

quality models and their support. There are two basic issues to be resolved. On the 

one hand, quality is a subjective phenomenon so we must organize quality goals 

according to the stakeholder groups that pursue these goals. On the other hand, quality 

goals are highly diverse in nature. They can be neither assessed nor achieved directly 

but require complex measurement, prediction, and design techniques, often in the 

form of an interactive process. The overall problem of introducing quality models in 

meta data is therefore to achieve breadth of coverage without giving up the detailed 

knowledge available for certain criteria. Only if this combination is achieved, 

systematic quality management becomes possible. 

3.1 Stakeholders in Data Warehouse Quality 

There exist different roles of users in a data warehouse environment. The Decision 

Maker usually employs an OLAP query tool to get answers interesting to him. A 

decision maker is usually concerned with the quality of the stored data, their 

timeliness and the ease of querying them through the OLAP tools. The Data 
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Warehouse Administrator needs facilities like error reporting, metadata accessibility 

and knowledge of the timeliness of the data, in order to detect changes and reasons for 

them, or problems in the stored information. The Data Warehouse Designer needs to 

measure the quality of the schemata of the data warehouse environment (both existing 

~r newly produced) and the quality of the metadata as well. Furt~ermore, he needs 

software evaluation standards to test the software packages he considers purchasing. 

The Programmers of Data Warehouse Components can make good use of software 

implementation standards in order to accomplish and evaluate their work. Metadata 

reporting can also facilitate their job, since they can avoid mistakes related to schema 

information. 

Based on this analysis, we can safely argue that different roles imply a different 

collection of quality dimensions, which a quality model should be able to address in a 

consistent and meaningful way. In the following, we summarize the quality 

dimensions of three stakeholders, the data warehouse administrator, the programmer, 

and the decision maker. A more detailed presentation can be found in [DWQ97b]. 

Design and Administration Quality. The design and administration quality can be 

analyzed into more detailed dimensions, as depicted in Figure 3.1. The schema quality 

refers to the ability of a schema or model to represent adequately and efficiently the 

information. The correctness dimension is concerned with the proper comprehension 

of the entities of the real world, the schemata of the sources (models) and the user 

needs. The completeness dimension is concerned with the preservation of all the 

crucial knowledge in the data warehouse schema (model). The minimality dimension 

describes the degree up to which undesired redundancy is avoided during the source 

integration process. The traceability dimension is concerned with the fact that all 

kinds of requirements of users, designers, administrators and managers should be 

traceable to the data warehouse schema. The interpretability dimension ensures that 

all components of the data warehouse are well described, so as to be administered 

easily. The metadata evolution dimension is concerned with the way the schema 

evolves during the data warehouse operation. 

Software Implementation Quality. Software implementation and/or evaluation is not 

a task with specific data warehouse characteristics. We are not actually going to 

propose a new model for this task, but adopt the ISO 9126 standard [IS091]. The 

quality dimensions of ISO 9126 are Functionality (Suitability, Accuracy, 

Interoperability, Compliance, Security), Reliability (Maturity, Fault tolerance, 

Recoverability), Usability (Understandability, Learnability, Operability), Software 

Efficiency (Time behavior, Resource Behavior), Maintainability (Analyzability, 

Changeability, Stability, Testability), Portability (Adaptability, Installability, 

Conformance, Replaceability). 
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Figure 3.1 Design and administration quality dimensions 

Data Usage Quality. Since databases and -in our case- data warehouses are built in 

order to be queried, the most basic process of the warehouse is the usage and querying 

of its data. Figure 3.2 shows the hierarchy of quality dimensions related to data usage. 

Figure 3.2 Data usage quality dimensions 

The accessibility dimension is related to the possibility of accessing the data for 

querying. The security dimension describes the authorization policy and the privileges 

each user has for the querying of the data. System availability describes the percentage 

of time the source or data warehouse system is available (i.e. the system is up and no 

backups take place, etc.). The transactional availability dimension, as already 

mentioned, describes the percentage of time the information in the warehouse or the 

source is available due to the absence of update processes which write-lock the data. 
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The usefulness dimension describes the temporal characteristics (timeliness) of the 
data as well as the responsiveness of the system. The responsiveness is concerned 
with the interaction of a process with the user (e.g. a query tool which is self reporting 
on the time a query might take to be answered). The currency dimension describes 
when the information was entered in the sources or/and the data warehouse. The 
volatility dimension describes the time period for which the information is valid in the 
real world. The interpretability dimension, as already mentioned, describes the extent 
to which the data warehouse is modeled efficiently in the information repository. The 
better the explanation is, the easier the queries can be posed. 

3.2 From Architecture to Quality 

We now turn to the formal handling and repository-based management of OW quality 
goals such as the ones described in the previous section. 

A first formalization could be based on a qualitative analysis of relationships between 
the quality factors themselves, e.g. positive or negative goal-subgoal relationships or 
goal-means relationships. The stakeholders could then enter their subjective 
evaluation of individual goals as well as possible weightings of goals and be 
supported in identifying good trade-offs. The entered as well as computed evaluations 
could be used as quality measurements in the architecture model of figure 2.3, thus 
enabling a very simple integration of architecture and quality model. 

Such an approach is widely used in industrial engineering under the label of Quality 
Function Deployment, using a special kind of matrix representation called the House 
of Quality [Akao90]. Formal reasoning in such a structure has been investigated in 
works about the handling of non-functional requirements in software engineering, e.g. 
[MCN92]. Visual tools have shown a potential for negotiation support under multiple 
quality criteria [GJJ97]. 

However, while this simple approach certainly has a useful role in cross-criteria 
decision making, using it alone would throw away the richness of work created by 
research in measuring, predicting, or optimizing individual DW quality factors. In the 
DWQ project, such methods are systematically adopted or newly developed for all 
quality factors found important in the literature or our own empirical work. To give an 
impression of the richness of techniques to be considered, we use a single quality 
factor-- responsiveness in the sense of good query performance -- for which the DWQ 
project has studied three different approaches, one each from the conceptual, logical, 
and physical perspective. 
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We start with the logical perspective [TS97]. Here, the quality indicator associated 
with responsiveness is taken to be a weighted average of query and update "costs" for 
a given query mix and given information sources. A combinatorial optimization 
technique is then proposed that selects a collection of materialized views as to 
minimize the total costs. This can be considered .a very simple case of the above 
Quality Function Deployment approach, but with the advantage of automated design 
of a solution. 

If we include the physical perspective, the definition of query and update "costs" 
becomes an issue in itself: what do we mean by costs -- response time, throughput, or 
a combination of both (e.g. minimize query response time and maximize update 
throughput)? what actually produces these costs -- is database access or the network 
traffic the bottleneck? A comprehensive queuing model [NJ97] enables the prediction 
of such detailed metrics from which the designer can choose the right ones as quality 
measurements for his design process. In addition, completely new design options 
come into play : instead of materializing more views to improve query response time 
(at the cost of disturbing the OL TP systems longer at update time), the designer could 
buy a faster client PC or DBMS, or use an ISDN link rather than using slow modems. 

Yet other options come into play, if a rich logic is available for the conceptual 
perspective. The description logic DWQ uses for formalizing the conceptual 
perspective [CDL97], allows to state that, e.g., information about all instances of one 
concept in the enterprise model is maintained in a particular information source, i.e. 
the source is complete with respect to the domain. This enables the DW designer to 
drop the materialization of all views on other sources, thus reducing the update effort 
semantically without any loss in completeness of the answers. 

It is clear that there can be no decidable formal framework that even comes close to 
covering all of these aspects in a uniform language. When designing the meta database 
extensions for quality management, we therefore had to look for another solution that 
still maintains the overall picture offered by the shallow quality management 
techniques discussed at the beginning of this section but is at the same time open for 
the embedding of specialized techniques. 

Our solution to this problem builds on the widely used Goal-Question-Metric (GQM) 
approach to software quality management [OB92]. The idea of GQM is that quality 
goals can usually not be assessed directly, but their meaning is circumscribed by 
questions that need to be answered when evaluating the quality. Such questions again 
can usually not be answered directly but rely on metrics applied to either the product 
or process in question; techniques such as statistical process control charts are then 
applied to derive the answer of a question from the measurements. 
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Our repository solution uses a similar approach to bridge the gap between quality goal 

hierarchies on the one hand, and very detailed metrics and reasoning techniques on the 

other. The bridge is defined through the idea of quality measurements as materialized 

views over the data warehouse which we already introduced in figure 2.3, and through 

generic queries over these quality measurements. This implementation strategy 

provides more technical support than usual GQM implementations. It is enabled 

through the powerful parameterized query class mechanism offered by the 

ConceptBase system. 

Figure 3.3: A notation for Data Warehouse Quality 

The purpose of a quality goal is usually to improve some quality values of the DW or 

to achieve a certain quality value. Quality goals are associated with types of queries 

defined over quality measurements. These queries will support the evaluation of a 

specific quality goal when parameterized with a given (part of a) DW meta database. 

Such a query usually compares the analysis goal to a certain expected interval in order 

to assess the level of quality achieved. Furthermore, goals are established by 

stakeholders, who may have several subjective quality preferences. As a consequence, 

the quality measurement must contain information about both expected and actual 

values. Both could be entered into the meta database manually, or computed 

inductively by a given metric through a specific reasoning mechanism. For example, 

for a given physical design and some basic measurements of component and network 

speeds, the queuing model in [NJ97] computes the quality values for response time 

and throughput, and it could indicate if network or database access is the bottleneck in 

the given setting. This could then be combined with conceptual or logical quality 

measurements at the level of optimizing the underlying quality goal. 

174



From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998

The interplay Qf goals, queries, and metrics with the basic concepts of the architecture 

model is shown in the Telos meta model of figure 3.3. While the development and 

integration of numerous specific metrics is the goal of ongoing work in the DWQ 

project, our current implementation just covers the upper levels of the picture, such 

that only ~;Tianual entry of quality measurements is supported. A number of quality 

queries have been implemented, focusing on some that turned out to be relevant when 

validating the architecture against three case studies: creating a model of Software 

AG's SourcePoint DW loading environment, modeling data quality problems 

hindering the application of data mining techniques in Swiss Life, and conceptually 

re-constructing some design decisions underlying the administrative data warehouses 

of the City of Cologne, Germany [DWQ97a, DWQ97b]. 

Quality queries access information recorded in quality measurements. A quality 

measurement stores the following information about data warehouse components: 

1. an interval of expected quality measures 

2. the current quality measure 

3. the metric used to compute a measure 

4. dependencies to other quality measurements 

The dependencies between quality measurements can be used to trace quality 

measurements outside the expected interval to their causes. The following two queries 

exemplify how quality measurements classify data warehouse components and how 

the backtracing of quality problems can be done by queries to the meta database: 

QueryClass BadQualityMeasurement isA QualityMeasurement 
with constraint 

c: $ not (this.expected contains this.current) $ 
end 

GenericQueryClass CauseOfBadQuality isA DW_Object 
with parameter 

badObject : DW_Object 
constraint 

end 

c: $ exists ql,q2/QualityMeasurement 
(badObject measuredBy ql) and 
(ql in BadQualityMeasurement) and 
(ql dependsOn q2) and 

(q2 in BadQualityMeasurement) and 
((this measuredBy q2) or 
(exists o/DW_Object (o measuredBy q2) and 
(this in CauseOfBadQuality[o/badObject]))) $ 
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4 Related Work 

Our approach extends and merges results from data warehouse research and 
data/software quality research. 

Starting with the data warehouse literature, the well-known projects have focused 
almost exclusively on what we call the logical and physical perspectives of DW 
architecture. While the majority of early projects have focused on source integration 
aspects, the recent effort has shifted towards the efficient computation and re
computation of multi-dimensional views. The business perspective is considered at 
best indirectly in these projects. The Information Manifold (IM) developed at AT&T 
is the only one that employs a rich domain model for information gathering from 
disparate sources such as databases, SGML documents, unstructured files [LSK95, 
KLSS95, LR096] in a manner similar to our approach. 

TSIMMIS (The Stanford-IBM Manager of Multiple Information Sources) is a project 
with the goal of providing tools for the integrated access to multiple and diverse 
information sources and repositories [CGMH+94, Ull97]. Each information source is 
equipped with a wrapper that encapsulates the source, converting the underlying data 
objects to a common data model - called Object Exchange Model (OEM). On top of 
wrappers, mediators [Wie92] can be conceptually seen as views of data found in one 
or more sources which are suitably integrated and processed. 

Similarly, but with slightly different implementation strategies, the Squirrel Project 
[HZ96, ZHK96] provides a framework for data integration based on the notion of 
integration mediator. Integration mediators are active modules that support 
incrementally maintained integrated views over multiple databases. Moreover, data 
quality is considered by defining formal properties of consistency and freshness for 
integrated views. 

The WHIPS (WareHouse Information Prototype at Stanford) system [HGMW+95, 
WGL+96] has the goal of developing algorithms for the collection, integration and 
maintenance of information from heterogeneous and autonomous sources. The 
WHIPS architecture consists of a set of independent modules implemented as 
CORBA objects. The central component of the system is the integrator, to which all 
other modules report. 

Turning to data quality analysis, Wang et al. [WSF95] present a framework based on 
the ISO 9000 standard. They review a significant part of the literature on data quality, 
yet only the research and development aspects of data quality seem to be relevant to 
the cause of data warehouse quality design. In [WRK95], an attribute-based model is 
presented that can be used to incorporate quality aspects of data products. The basis of 
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this approach is the assumption that the quality design of an information system can be 

incorporated in the overall design of the system. The model proposes the extension of 

the relational model as well as the annotation of the results of a query with the 

appropriate quality indicators. Further work on data quality can be found in [BT89], 

[BWPT93], [Jans88], [LU90], [Hall78], [Kri~79], and [AA87]. 

Variants of the Goal-Question-Metric (GQM) approach are widely adopted in 

software quality management [OB92]. A structured overview of the issues and 

strategies, embedded in a repository framework, can be found in [JP92]. Several goal 

hierarchies of quality factors have been proposed, including the GE Model [MRW78] 

and [Boeh89]. ISO 9126 [IS091] suggests six basic factors which are further refined 

to an overall 21 quality factors. In [HR96] a comparative presentation of these three 

models is offered and the SATC software quality model is proposed, along with 

metrics for all their software quality dimensions. 

5 Discussion and Conclusions 

The goal of our work is to enrich meta data management in data warehouses such that 

it can serve as a meaningful basis for systematic quality analysis and quality-driven 

design. To reach this goal, we had to overcome two limitations of current data 

warehouse research. 

Firstly, the basic architecture in which data warehouses are typically described turned 

out to be too weak to allow a meaningful quality assessment : as quality is usually 

detected only by its absence, quality-oriented meta data management requires that we 

address the full sequence of steps from the capture of enterprise reality in operational 

departments to the interpretation of DW information by the client analyst. This in turn 

implied the introduction of an explicit enterprise model as a central feature in the 

architecture. To forestall possible criticism that full enterprise modeling has proven a 

risky and expensive effort, we point out that our approach to enterprise model 

formation (including the formal language used in [CDL97]) is fully incremental such 

that it is perfectly feasible to construct the enterprise model step by step, e.g. as a side 

effect of source integration or of other business process analysis efforts. 

The second major problem is the enormous richness in quality factors, each associated 

with its own wealth of measurement and design techniques. Our quest for an open 

quality management environment that can accommodate existing or new such 

techniques led us to an adaptation and repository integration of the Goal-Question 

Metric approach where parameterized queries and materialized quality views serve as 

the missing link between specialized techniques and the general quality framework. 
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The power of the repository modeling language determines the boundary between 

precise but narrow metrics and comprehensive but shallow global repository. The 

deductive object base formalism of the Telos language provides a fairly sophisticated 

level of global quality analysis in our prototype implementation but is still fully 

adaptable and general; once the quality framework h~s sufficiently stabilized, a 

procedurally object-oriented approach could do even more, by encoding some metrics 

directly as methods, of course at the expense of flexibility. Conversely, a simple 

relational meta database could take up some of the present models with less semantics 

than offered in the ConceptBase system, but with the same flexibility. 

As of now, both the framework and its implementation can only be considered 

partially validated. One strain of current work therefore continues the validation 

against several major case studies, in order to set priorities among the quality criteria 

to be explicated in specific metrics and analysis techniques. A second overlapping 

strain concerns the development of these techniques themselves, and their linkage into 

the overall framework through suitable quality measurements and extensions to global 

design and optimization techniques. Especially when progressing from the definition 

of metrics and prediction techniques to actual design methods, it is expected that these 

will not be representable as closed algorithms but must take the form of interactive 

work processes defined over the DW architecture. 

As an example, feedback from at least two case studies suggests that, in practice, the 

widely studied strategy of incremental view maintenance in the logical sense is far less 

often problematic than the time management at the physical and conceptual level, 

associated with the question when to refresh DW views such that data are sufficiently 

fresh for analysis, but neither analysts nor OLTP applications are unduly disturbed in 

their work due to locks on their data. Our research therefore now focuses on extending 

the conceptual level by suitable (simple) temporal representation and reasoning 

mechanisms for representing freshness requirements, complemented by an array of 

design and implementation methods to accomplish these requirements and the 

definition of processes at the global level to use these methods in a goal-oriented 

manner to fulfill the requirements. 

While such extensions will certainly refine and in parts revise the approach reported 

here, the experiences gained so far indicate that it is a promising way towards more 

systematic and computer-supported quality management in data warehouse design and 

operation. 
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