Macro-level Scheduling of ETL Workflows

Anastasios Karagiannis
University of loannina
loannina, Greece

ktasos@cs.uoi.gr

ABSTRACT

Extract-Transform-Load (ETL) workflows (a) extract data
from various sources, (b) transform, cleanse and homoge-
nize these data, and (c) populate a target data store (e.g.,
a data warehouse). Typically, such processes should termi-
nate during strict time windows and thus, ETL workflow
optimization is of significant interest. In this paper, we deal
with the problem of scheduling the execution of ETL ac-
tivities, with the goal of minimizing ETL execution time
and allocated memory. Apart from a simple, fair scheduling
policy we also experiment with two policies, the first aim-
ing to empty the largest input queue of the workflow and
the second to activate the activity with the maximum tuple
consumption rate. We experimentally show that the use of
different scheduling policies can improve ETL performance
in terms of memory consumption and execution time.

1. INTRODUCTION

Extract-Transform-Load (ETL) processes constitute the
backbone of a Data Warehouse (DW) architecture, and hence,
their performance and quality are of significant importance
for the accuracy, operability, and usability of data ware-
houses. ETL processes involve a large variety of activities
(a.k.a. stages, transformations, operations) organized as
a workflow. Typical activities are schema transformations
(e.g., pivot, normalize), cleansing activities (e.g., duplicate
detection, check for integrity constraint violations), filters
(e.g., based on some regular expression), sorters, groupers,
flow operations (e.g., router, merge), function application
(e.g., built-in function, script written in a declarative pro-
gramming language, call to an external library —hence, func-
tions having ‘black-box’ semantics) and so on.

One of the main practical problems involves the timely
ETL-ing of large data volumes under pressing time con-
straints. To give an example, we mention a case study for
mobile network traffic data, involving around 30 data flows,
10 sources, and around 2TB of data, with 3 billion rows [1].
In that case study, it is reported that user requests indi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at the 9th International
Workshop on Quality in Databases (QDB) 2011.

Copyright 2011.

Panos Vassiliadis
University of loannina
loannina, Greece

pvassil@cs.uoi.gr

Alkis Simitsis
HP Labs
Palo Alto, CA, USA

alkis@hp.com

cated a need for data with freshness at most 2 hours. Since
the data warehouse refreshment process must be completed
within a short time window with completeness and accuracy
guarantees for the data (and allowing some extra time for
resumption processes in the case of failures) it is important
to perform the ETL process as fast as possible.

The ideal execution of ETL workflows suggests pipelin-
ing the flow of tuples all the way from the source to the
target data stores. Typically, this cannot happen due to
the blocking nature of many ETL activities (e.g., sorters)
and to the structural nature of the flow (e.g, activities with
multiple input/output schemata). An appropriate schedul-
ing policy is required for orchestrating the smooth flow of
data towards the target data stores. In that sense, activ-
ity scheduling during the ETL workflow execution results in
efficient prioritization of which activities are active at any
time point, with the goal of minimizing the overall execution
time without any data losses.

In available ETL tools —and in the corresponding indus-
trial articles and reports, as well- the notion of scheduling
refers to a higher design level than the one considered here,
and specifically, to the functionality of managing and au-
tomating the execution of either the entire, or parts of the
ETL workflow, according to business needs, and based on
time units manually specified by the designer. In this pa-
per, we deal with the problem of scheduling ETL workflows
at the data level and in particular, we answer the question:
“what is the appropriate scheduling protocol and software
architecture for an ETL engine in order to minimize the
execution time and the allocated memory?”.

Although scheduling policies have been studied before, in
the context of ETL workflows, related work has only par-
tially dealt with such problems so far. There are some first
results in the areas of ETL optimization [10, 12, 16] and up-
date scheduling in the context of near-real time warehousing
[13, 14]. The former efforts do not consider scheduling is-
sues. The latter efforts are not concerned with the typical
case of data warehouse refreshment in a batch, off-line mode;
moreover, the aforementioned papers are concerned with the
scheduling of antagonizing updates and queries at the data
warehouse side (i.e., during loading) without a view to the
whole process.

We experiment with scheduling algorithms specifically tai-
lored for batch ETL processes and try to find an ETL con-
figuration that optimizes two performance objectives: exe-
cution time and memory requirements. To the best of our
knowledge (based on our experience and publicly available
documentation for ETL tools), state of the art tools use two

main techniques for scheduling ETL activities: the schedul-
ing is relied on the operating system’s default configuration
or is realized in a round robin fashion, which decides the
execution order of activities in FIFO order. Our implemen-
tations showed that deadlocks are possible in the absence of
scheduling; hence, scheduling is necessary for an ETL en-
gine. We demonstrate that two scheduling techniques, MIN-
IMUM COST and MINIMUM MEMORY, serve our goals better,
as compared to a simple Round Robin scheduling. The first
technique improves the execution time by favoring at each
step the execution of the activity having more data to pro-
cess at that given time. The second reduces the memory
requirements by favoring activities with large input queues,
thus keeping data volumes in the system low.

Moreover, we discuss how these results can be incorpo-
rated into an ETL engine and for that, we present our im-
plementation of a generic and extensible software architec-
ture of a scheduler module. We are using a realistic, multi-
threading environment (which is not a simulation), where
each node of the workflow is implemented as a thread. A
generic monitor module orchestrates the execution of ETL
activities based on a given policy and guarantees the correct
execution of the workflow.

Finally, the evaluation of and experimentation with rep-
resentative ETL workflows is not a trivial task, due to their
large variety. An additional problem is that the research
landscape is characterized by the absence of a commonly
agreed, realistic framework for experimentation with ETL
flows. That said, for evaluating our techniques against a
realistic ETL environment, we have used a set of ETL pat-
terns built upon a taxonomy for ETL workflows that classi-
fies typical real-world ETL workflows in different template
structures. By studying the behavior of these patterns on
their own, we come up with interesting findings for their
composition, and thus, for the scheduling of large-scale ETL
processes.

Contributions. Our main contributions are as follows.

e This paper is the first that deals with the problem
of scheduling batch ETL processes, as we discuss in
Section 2. First, we formally setup the problem (Sec-
tion 3) and discuss scheduling mechanisms that opti-
mize ETL execution in terms of execution time and
memory requirements (Section 4).

e Then, we propose a generic software architecture for
incorporating a scheduler to an ETL engine and present
such an ETL engine as a proof of concept (Section 5).

Finally, we demonstrate through a series of experi-
ments the benefits of our scheduling techniques. The
findings are based on template ETL structures that
constitute representative patterns of real-world ETL
processes (Section 6).

2. RELATED WORK

Related work revolves around the scheduling of concur-
rent updates and queries in real-time warehousing and the
scheduling of operators in Data Streams Management Sys-
tems. In this section, we briefly present related work, and
especially, we argue that the problem considered in this pa-
per has not been tackled so far in the context of ETL work-
flows. We also discuss related work on stream scheduling,
and we justify why a fresher look is needed for ETL.

2.1 Scheduling for ETL

Related work in the area of ETL involves efforts towards
the optimization of entire ETL workflows [10, 11, 12, 16]
and of individual operators, such as the DataMapper [4].
To forestall any possible criticism, we would like to mention
that traditional query optimization, although related in a
broader sense (and integrated in our work in terms of alge-
braic optimization) is (a) based on assumptions that do not
necessarily hold for ETL workflows like left-deep plans (as
opposed to arbitrary trees in ETL settings), and (b) orthog-
onal to the problem of scheduling operators.

Thiele et al. deal with workload management in real
time warehouses [13]. The scheduler at the warehouse han-
dles data modifications that arrive simultaneously with user
queries, resulting in an antagonism for computational re-
sources. Thomsen et al. discuss a middleware-level loader
for near real time data warehouses [14]. The loader synchro-
nizes data load with queries that require source data with
a specific freshness guarantee. Luo et al. deal with dead-
locks in the continuous maintenance of materialized views
[8]. To avoid deadlocks, the paper proposes reordering of
transactions that refresh join or aggregate-join views in the
warehouse. Golab et al. discuss the scheduling of the re-
freshment process for a real time warehouse [6], based on
average warehouse staleness i.e., the divergence of freshness
of a warehouse relation with respect to its corresponding
source relation.

Interestingly, despite the plethora of ETL tools in the
market, there is no publicly available information for the
scheduling of operators in their internals. Overall, related
work for ETL scheduling has invested mostly on the loading
part in the real-time context and specifically, on the antag-
onism between queries and updates in the warehouse. Here,
we deal with workflows involving the entire ETL process all
the way from the source to the warehouse and we consider
the off-line, batch case.

2.2 Stream scheduling

The Aurora system [3] can execute more than one contin-
uous query for the same input stream(s). Every stream is
modeled as a graph with operators (a.k.a. boxes). Schedul-
ing each operator separately is not very efficient, so se-
quences of boxes are scheduled and executed as an atomic
group. The Aurora stream manager has three techniques
for scheduling operators in streams, each with the goal of
minimizing one of the following criteria: (a) execution time,
(b) latency time, and (c) memory. The Chain scheduler re-
duces the required memory when executing a query in a data
stream system [2]. This work focuses on the aspect of real-
time resource allocation. The basic idea for this scheduler
is to select an operator path which will have the greatest
data consumption than the others. The scheduler favors the
path that will remove the highest amount of data from the
system’s memory as soon as possible. Urhan and Franklin
present two scheduling algorithms that exploit the pipelining
in query execution [17]. Both algorithms aim to improve the
system’s response time: the first by scheduling the stream
with the biggest output rate and the second by favoring im-
portant data, especially, at joins.

Stream scheduling is very relevant to our problem since
it involves the optimization of response time or memory
consumption for flows of operations processing (consuming)
tuples (possibly with a data shedding facility for volumi-

Max (S. C.),

Min (S. C.) Max (S. C.),

Group by Min (S.C.)

Not Null (Nation Key, Group by
(Part Key, Derive Fnc Part Key) (Part Key)

Supp Key) (Total Cost)

Sum(T.C.)
Group by Sum (T.C.)
Group by

(Supp Key)

(Nation Key,
Supp Key)

Not Null Phone Format
(Nation Key) (Phone)

Figure 1: Example ETL workflow

nous streams). Still, compared to stream scheduling, ETL
flows present different difficulties, since they involve complex
processing (e.g., user-defined functions, blocking operations,
cleansing operations, data and text analytics operations [5])
and they must respect a zero data loss constraint (as op-
posed to stream shedding). Moreover, in the special case of
off-line ETL, the goal is to minimize the overall execution
time (and definitely meet a time-window constraint) instead
of providing tuples as fast as possible to the end-users.

3. PROBLEM FORMULATION

Conceptually, an ETL workflow is divided into three generic
phases. First, data are extracted from data sources (e.g.,
text files, database relations, XML files, and so on). Then,
appropriate transformation, cleaning, and/or integration ac-
tivities are applied to the extracted data for making them
free of errors and compliant to target (e.g., data warehouse)
schema. Finally, the processed data are loaded into the data
warehouse relations.

The full layout of an ETL workflow, involving activities
and recordsets can be modeled as a directed acyclic graph
(DAG) [19]. ETL activities and recordsets (either relations
or files) constitute the graph nodes. According to their
placement into one of the three ETL phases, recordsets can
be classified as source, intermediate (including any logging,
staging or temporary data store), and target. The relation-
ships among the nodes constitute the graph edges. Being a
workflow, each node has input and output schemata, which
can be empty as well; e.g., a source recordset has an empty
input schema. A producer node feeds its successor node,
which in its turn, is the consumer of the first one. The
workflow is an abstract design at the logical level, which has
to be implemented physically, i.e., to be mapped to a com-
bination of executable programs/scripts that perform the
ETL workflow.

Example. Fig. 1 depicts an example ETL workflow
starting with two relations PartSupp and Supplier. As-
sume that these relations stand for the differentials for the
last night’s changes over the respective source relations. The
data are first cleansed and tuples containing null values in
critical attributes are quarantined in both cases (Not Null).
Then, two transformations take place, one concerning the
derivation of a computed attribute (T'otal Cost) and another
concerning the reformatting of textual attributes (Phone

Figure 2: ETL activity structure

oo A e e
Ti.F Ti.L Ti+1.F Ti+1.L

Figure 3: Timestamps for scheduling

Format). The data are reconciled in terms of their schema
and values with the data warehouse rules and stored in the
warehouse fact and dimension tables. Still, the processing
continues and the new tuples are joined in order to update
several forms, reports, and so on, which we represent as
materialized views Views, ..., and Views via successive ag-
gregations.

Definitions. An ETL workflow comprises a graph G(V, E),
where V.= V4 U V. V4 denotes the activities of the
graph and VR the recordsets. Let V be a set containing
nodes classified regarding their execution status: candidates
(nodes that are still active and participate in the execution)
and finished (nodes that have finished their processing), i.e.,
Y = Vecanp U Vein. Obviously, V = V.

A generic ETL activity is depicted in Fig. 2. For each
activity node v€V 4 we define:

e u(v), as the consumption rate of node v,
e Q(v), as the set of all input queues of v,

e queue(v), as the sum of all input queue sizes (not ca-
pacity) of node v (of course, unary activities have only
one input queue), and queue:(v) is the queue(v) at a
certain time interval ¢.

e 0,, as the selectivity of node v.

For each queue ¢, we define size(q) as the memory size of
q at a given time point and MaxMem(q), as the maximum
memory size that the queue can obtain at any time point.
For each recordset node v € Vg we define:

e u(v), also as the consumption rate of node v.
Furthermore, for each source recordset node we define:
e volume(v), as the size of the recordset.

We consider T as an infinite countable set of timestamps
and a scheduler with policy P. The scheduler divides T into
disjoint and adjacent intervals T = T; U T2 U ... with:

e T, = [T;.first, T;.last|
e T;.last = Tiy1.first — 1 (see also Fig. 3).

The scheduler has to check which operator to activate
and for how long. So, whenever a new interval T; begins,
(at timestamp T;. first) the scheduler has to decide on the
following issues:

1. active(T;). According to the scheduling policy P used,
the scheduler las to choose the next activity to run.

2. T;.last. This is the timestamp that determines when
operator active(T;) will stop executing. (It also deter-
mines the scheduler time slot T;.length().)

3. Status of all queues at T;.last, in order to highlight
queues that have reached their maximum capacity.

The operator active(T;) will stop its processing if one of
the following occurs:

1. clock = T;.last. Then, the time slot is exhausted.

2. queue(active(T;)) = 0. Then, the active operator has
no more input data to process.

3. Jv € consumer(active(T;)) such that for any of its
queues, say q, size(q) = MaxMem(q). Then, one of
the consumers of the active activity active(T;) has a
full input queue and further populating it with more
tuples will result in data loss.

At this point we must check if active(T;) should be moved
to Vrrn. In order for an operator v to be moved to Vern,
both of the following must be valid.

e Vv € producer(active(T;)), vEVrrn, and

o queue(active(T;)) = 0 or volume(v) = 0, if v is a
source recordset.

A workflow represented by a graph G(V, E) ends when V
= Vprn. The interval during which this event takes place
is denoted as T.last.

Problem statement. Our goal is to decide a scheduling
policy P for a workflow represented by a graph G(V,E),
such that:

e P creates a division of T into intervals T; U To U ...
Tlast

o VieT, veV, Vg € Q(v) size(q) < MaxMem(q) (ie.,
all data are properly processed).

e One of the following objective functions is minimized:

— Tiast 18 minimized, where Tqs: is the interval
where G stops

— mazx Y, queuet(v) is minimized, where t€T, and
veV.

4. SCHEDULING ALGORITHMS FORETL

Related work on scheduling suggests four generic cate-
gories of scheduling algorithms based on the goal they try
to achieve: (a) token-based algorithms (e.g., round robin)
used mostly as a baseline for evaluating more sophisticated
algorithms, and then algorithms that opt for improving (b)
the total execution time, (c) the response time, and (d) the
required memory during the execution. Since in our con-
text the response time is an issue of secondary importance
(see Section 2), we investigate scheduling policies belong-
ing to the other three categories. We explore three generic
algorithms: ROUND ROBIN, MINIMUM CoOST, and MINIMUM
MEMORY, belonging to one of the aforementioned categories.

reschedule when
input queue is exhausted
input queue is exhausted
time slot

pick next

RR operator id

MC max size of input queue
MM max tuple consumption

Table 1: Decision criteria for scheduling algorithms

Table 1 shows the different criteria of the three algorithms
concerning the decision on (a) which activity is favored each
time the scheduler is called and (b) for how long the selected
activity will continue to operate until the scheduler makes a
new decision.

4.1 Round robin

The ROUND ROBIN (RR) scheduling algorithm is simple
and easy to implement. It assigns time slices to each op-
erator in equal portions and in an order based on a unique
identifier that every operator has. Assuming a list Voanp
containing activities to be scheduled, each time, the algo-
rithm picks the first activity from Voanp. Its main advan-
tages are as follows: every operator gets the same chances
to run (fairness) and the system always avoids starvation.

4.2 Minimum Cost

The MINIMUM CoST (MC) scheduling algorithm opts for
reducing the execution time of ETL workflows. Therefore,
the overhead imposed by the scheduler (e.g., the communi-
cations among the activities) is minimized. Each time, the
selected operator should have data ready for processing, and
typically, this operator is the one having the largest volume
of input data. Since there are no time slots, the selected op-
erator processes all data without any interruption from the
scheduler. Without loss of generality, in our implementation
we have considered that all operators that read data from
an external source are always available for execution.

Algorithm MiNniMuM CoOST

Input: A list Voanyp containing activities
Output: The next activity MC_next
1 begin
MazInput = —1;
for v € Voanp do
if (MaxInput < vy) then
MC_next = v;
MazInput = vg;

O Uk WN

7 | return MC_next;
8 end

4.3 Minimum Memory

The MINIMUM MEMORY (MM) scheduling algorithm sched-
ules the operators in a way that minimizes the system mem-
ory required during the workflow execution. In each step,
MM selects the operator that will consume the biggest amount
of data. We can compute the consumption rate directly, con-
sidering the number of tuples consumed (input data - output
data) divided by the processing time of the input data. This
fraction shows the memory gain rate throughout the execu-
tion of operator so far. Given a specific time interval (which
is the same for all candidates), multiplying this fraction by
the input size of the candidates returns a prediction for the

one that will reduce the memory most in absolute number
of tuples. Thus, the overall memory benefit is:

MemB(p)=((In(p)—Out(p))/EzecTime(p)) x Queue(p)

where In(p) and Out(p) denote the number of input and
output tuples for operator p, ExecTime(p) is the time that
p needs for processing In(p) tuples, and, Queue(p) is the
number of tuples in p’s input queues. MM selects the op-
erator with the biggest MemB() value at every scheduling
step.

Practically, the amount of data that an operator consumes
is the data that the operator removes from memory, either
by rejecting the tuples or writing them into a file, for a
specific portion of time. Small selectivity and large process-
ing rate and input size help an operator to better exploit
this scheduling. Small selectivity helps the operator to con-
sume large portion of its input tuples. Large input size helps
the operator to process and possibly, reduce the in-memory
data. Finally, large processing rate fastens the data con-
sumption.

Note that when the workflow execution starts no operator
has processed any data, so the above formula cannot apply.
In this case, resembling MINIMUM COST, the operator with
the biggest input size is selected.

Algorithm MINIMUM MEMORY

Input: A list Vo anp containing activities
Output: The next activity MM_next

1 begin

MazxInput = —1;

MMem = —oo;

for v € Voanp do
if (MMem < vmem) then
LMM,next = v;

MMem = vmem;

if (MaxInput < vg) then
MC_next = v;
MazxInput = vg;

OO ®W NO WUk WN

=

11 |if (MMem <0) then
12 | | MM next = MC_next;
13 | return MM _nezxt;

14 end

S. SOFTWARE ARCHITECTURE

We have implemented a scheduler and a generic ETL en-
gine in a multi-threaded fashion. One reason for our choice
is that, in general, industrial ETL tools are not amenable to
modification of their scheduling policy. Our software archi-
tecture is generic enough to be maintained and extended.
Each workflow node is a unit that performs a portion of
processing; even if that is simply reading or writing data.
Hence, we consider every node (either activity or recordset)
as an execution item or operator and represent it as a single
thread. (Representing a recordset as a thread means that
a dedicated thread is responsible for reading from or writ-
ing data to the recordset.) A messaging system facilitates
communication among threads.

All intermediate data processed by the various operators
are stored in data queues and thus, we enable pipelined ex-
ecution. Processing every tuple separately is not efficient
(see also [3]), so data queues contain and exchange blocks of
tuples, called row packs. Each operator (a) has a mailbox

Optimizer Executionltem Status
Id : Integer * +Finished : Boolean
1

W | FmyBox ; MailBox +Stalled ; Boolean

>
z E n +LasiMassage : Boolean
+LogicalToPhysical() Yecita() 1 1 |+Countar : Integer

1 il 1)
«| [#DataProcess() 1
Monitor
1 [Scenario 1
FhonOptimizer : Optimizer | 1 i ol
HuvonSchaduler . [Size
[Fhdonitaring() [+GetDatal)
+Rise() +PutData()
- [+Limit() : Boolean
Scheduler
Fembiat ExecutionRSet MailBox
[FNEXACTVII) : Inteper DnEtiiIRecorSet - Riscondset e
[*Remove()(} inboxManagerment) [+Send()
ﬁl tReceivel) | Message
[]

Reader Writer Message
-MyProxy : ProxyReader -MyProxy . ProwyWriter 1d - String
+DalaProcess() +DataProcess() * Type : Sting

]] Info @ String

1 ? 1 $ | — — +GelSenderdd() - String

" bl +GelType() : String

ProxyReader Y onstructActivity | Activity | f+Getlnfol) : String

]]
+Read Tuple() Hlrite Tuple()
+Destray() +Destroy(}
FilerReader FileWriter [Filter [Hu [GenericActivity
-Path : String HPath String

DataProcess() | #DataProcess() | #DataProcess()

Figure 4: Software architecture of the scheduler

for supporting the messaging system, (b) knows the mailbox
of its producers and consumers, and (¢) knows the monitor’s
mailbox. The monitor is a system component that super-
vises and directs workflow execution.

Fig. 4 shows the class diagram of our system architecture.
Next, we elaborate on two core system components, namely
the Ezxecution Item and Monitor.

5.1 Execution Item

When flow execution starts, a function called Ezecute() is
called for each operator. An operator’s execution completes
when the respective Ezecute() terminates. For a short pe-
riod, an operator may not have data to process. Then, for
performance reasons, we stall that operator for a small time
fragment (every thread sleeps for a while).

Ezecute() implements a loop in which (a) the respective
operator checks its inbox regularly for messages either from
the monitor or some other operator and (b) decides whether
to process some data or to stall for a small time fragment.
FEach operator has two flags: status indicates whether it
must process data or not and finished indicates whether
the operator should terminate Ezecute(). The DataPro-
cess() function is implemented independently of the Exe-
cutionltem; therefore, in our extensible and customizable
scheduling and data processing framework, each operator
implements its own data processing algorithm.

An operator’s inbox receives messages from the monitor
with directives on when the current execution round com-
pletes (and hence, another operator should be activated).
For relating an operator to such notifications, DataProcess()
processes ‘small’ data volumes, which are small enough, so
that their processing has been completed before the desig-
nated deadline arrives. In addition, DataProcess() respects
the constraint that whenever the output queue is full, the
operator must be stalled; hence, it does not allow data loss.

The Execution Item class is extended to the FEzecution
Recordset and Execution Activity abstract classes, and can

Function EXECUTE()

Function DATAPROCESS() for a Filter

1 begin

while (ezecution item not finished) do
check inbox for scheduler messages;
if (stalled) then
| thread sleep;

else
| DataProcess();

N

B =T, BN)

8 end

be appropriately specialized depending on the functionality
of the recordset or activity represented by this execution
item. Next, we discuss these two as an example for illus-
trating the mechanics of DataProcess().

Recordsets. Recordsets are instantiated as Readers or
Writers. These classes are responsible for feeding the work-
flow with input data or storing the output data, respectively.
Each Reader or Writer uses a proxy inside DataProcess().
The proxy is a wrapper for objects that read from (or write
to) text files, XML files, database tables, and so on. Depend-
ing on whether the recordset is used for reading, writing or
both, we define the correct proxy to instantiate; e.g., a Fil-
eReader or FileWriter class. Next, we present an abstract
implementation of DataProcess() for Reader. The Status
variable keeps track of the consumer’s data queues; if these
queues are full, the operator must stop processing data.

Function DATAPROCESS() for Reader

1 begin

2 | for all tuples t in current pack do

3 read tuple t;

4 if ¢t is NULL then

5 | status = finished;

6 | | else

7 status = forward ToConsumers(t);

8 if status = false then stall thread;
9 end

Activities. For an activity, DataProcess() (a) reads from
its data queues, (b) processes the tuples, and then, (c) for-
wards them to its producers. Next, we present an abstract
implementation of DataProcess() for a Filter. The operator
checks the status of the consumer’s queue, and if it is full
the data processing temporarily stops. For more complex
activities, the logic of DataProcess() remains the same, al-
though its implementation is more complicated. In all cases,
DataProcess() processes small batches of input data, so that
the operator can check its inbox frequently.

Status. Every FEzxecution Item has a Status that keeps
track of the status of an operator, which can be one of the
following;:

e Stalled allows the operator to call the DataProcess().

e LastMessage indicates whether the operator will re-
ceive or not more messages from its producers.

e Finished indicates whether the operator’s execution is
complete.

1 begin

2 | if no pack then

3 if last message then

4 | | | status = finished;

5 | | else

6 | | | stall thread;

7 | else

8 while exists next tuple in input do

9 if can process current tuple then
10 | status = status & forwardToConsumers(t);
11 | | if status = false then stall thread;

12 end

5.2 Monitor

The Monitor is responsible for the correct initialization
and execution of the workflow. It initiates a thread for ev-
ery operator by calling the Ezecute() function and starts
monitoring the entire process. Monitor uses a Scheduler to
select the next thread to activate. The interface of Sched-
uler is as follows: (a) on creation it creates a list with all
threads, (b) a NexztActivity() function returns the id of the
selected thread, and, (c) a Remove(Id) function removes a
thread from the list whenever this thread has finished its op-
eration. When the monitor needs to activate and execute a
thread, it uses NextActivity() for selecting the best operator
according to the scheduling policy enforced.

Once initialized, the monitoring process is a loop in which
the monitor thread checks its mailbox and gathers statistics
for the required memory during flow execution. The monitor
checks whether an operator has stalled or finished its execu-
tion and acts accordingly. Each operator has a mailbox and
knows also the mailbox of the monitor and of its neighbors.
All these objects communicate by sending messages. Table
2 lists the most important of them.

Note that the scheduler exploits queues and the DAG na-
ture of the graph for avoiding starvation. In general, an ac-
tivity may starve when its output queue is always full. How-
ever, this is infeasible in our approach, since the graph struc-
ture is such that writers eventually empty the final queues
and that propagates the activation of the appropriate activ-
ities all the way toward the end. Starvation might happen
in a distributed setting when some source disappears; this
case is out of the context of this paper.

5.3 Extensibility of the architecture

Extensibility, has been an important design goal for our
architecture and involves (a) the engine, (b) the scheduler,
and, (c) a variety of supported activity types. The last part
is facilitated via an extensible approach to implementing Ez-
ecution Activity and DataProcess(). Therefore, our sched-
uler supports an extensible library of ETL activities and it
can be smoothly linked to an open-source ETL via the ap-
propriate wrapping of the ETL engine’s operations within
the DataProcess() functions of the respective classes.

Our implementation classifies operators into different cat-
egories. Pipelining operators (e.g., filters and functions),
are applied over individual records having only one input
edge and a simple task to perform over each input tuple in
isolation. A simple hierarchy of classes overloads the data

Message Receiver’s reaction

type
MsgEndOf Receiver knows that its producer has finished
Data producing data

MsgTerminate] Receiver terminates even if its processing is
not complete. If sent to the monitor, it signi-
fies that the sender has terminated.

MsgResume Receiver resumes the data processing by
switching the flag Stalled to false.
MsgStall Receiver temporarily stops processing data by

switching the flag Stalled to true.
MsgDummy- | Used to force all operators to execute Dat-
Resume aProcess() once. This is used only when the
scheduler cannot select the next thread and it
gives the chance to operators to update some
flags used internally.

Table 2: Example message types

process methods with the appropriate semantics and per-
forms the checks and transformations needed. Binary and
blocking activities constitute two other different categories.
As an example, representative, proof of concept, operators
implemented in our system include (a) the unary Aggrega-
tor class and (b) Join, Surrogate Key, Diff (all three with
sort-merge and nested-loops variants, with the latter being
blocking only for their right input). As with traditional rela-
tional engines, whenever these operators are blocking, they
have (a) to gather all input data to text files and prepare
them (e.g., sort them) and (b) to perform the appropriate
data processing (e.g., the matching of the two inputs or the
aggregation, depending on the operator’s class).

6. EXPERIMENTS

In this section, we report on the experimental assessment
of the proposed algorithms. We start with presenting a prin-
cipled set of experimental configurations for ETL workflows,
which we call butterflies due to their structure. Then, we
compare the various algorithms for their performance with
respect to memory consumption and efficiency. Finally, we
demonstrate that a mixed scheduling policy provides im-
proved benefits.

6.1 Archetype ETL patterns

A particular problem one has to resolve when working
with ETL workflows is to decide what workflows to use for
the experimental assessment of any suggested methods. To
contribute with a solution to the problem, we have proposed
a benchmark with characteristic cases of ETL workflows [9].
The main design artifact upon which we base the workflow
construction is the notion of butterfly which is an archetype
ETL workflow composed of three parts: (a) the left wing,
which deals with the combination, cleaning and transforma-
tion of source data on their way to the warehouse; (b) the
body of the butterfly, which involves the main points of stor-
age of these data in the warehouse; and (c) the right wing,
which involves the maintenance of data marts, reports, and
so on, after the fact table has been refreshed —all are ab-
stracted as materialized views that have to be maintained.

A butterfly workflow can be recursively decomposed to
components that have an archetype structure themselves

(e.g., surrogate key assignment, slowly changing dimensions).

The internal structure of the butterfly ultimately results in
composing a left wing as a tree of subflows converging to-

ward the body (with the tree’s root at the body), whereas
the right wing can be viewed as the inverse tree. The de-
tails of the employed workflow patterns can be found in [9].
Here, we briefly sketch some example workflow archetype
patterns (see Fig. 5). The line workflow has the simplest
form of all since it linearly combines a set of filters, transfor-
mations, and aggregations over the data of a single table on
their way to a singe warehouse target. A wishbone work-
flow joins two parallel lines into one and refers, for example,
(a) to the case when data from two lines, stemming from
the sources should be combined in order to be loaded to
the data warehouse, or, (b) to the case where we perform
similar operations to different data that are later “joined”
(possibly via a sorted union operation). The primary flow
is a common archetype workflow in cases where the source
table must be enriched with several surrogate keys; there-
fore, source data pass via a sequence of surrogate key as-
signment activities which use lookup tables to replace pro-
duction keys with surrogate keys. The tree workflow joins
several source tables and applies aggregations on the result
recordset. The join can be performed over either hetero-
geneous relations, whose contents are combined, or homo-
geneous relations, whose contents are integrated into one
unified (possible sorted) data set. The fork workflow is an
archetype heavy on the right wing and is used to apply a
large set of different aggregations over the data arriving to
a warehouse table.

Having such archetypes in hand, one may compose them
for producing large-scale ETL workflows according to the
desired characteristics. For example, a number of primary
flows can be combined with a number of trees for produc-
ing an ETL workflow having a really heavy load among the
sources and the data warehouse. Clearly, such workflow of-
fers opportunities for parallelization as well.

6.2 Experimental setting

The experimental assessment of the constructed schedul-
ing and the proposed scheduling policies aims at the evalu-
ation of two metrics: (a) execution time that measures the
necessary time for the completion of each workflow and (b)
memory consumption that measures the memory require-
ments of every scheduling policy during execution.

The assessment of memory requirements has been per-
formed as follows: in regular time intervals, we get a snap-
shot of the system, keeping information for the size of all
queues. We keep the maximum value and a sum, which
eventually gives the average memory per experiment.

Important parameters that affect the performance of the
alternative scheduling policies are: (a) the size and com-
plexity of a workflow; (b) the size of data processed by a
workflow; and (c) the selectivity of a workflow (or, in other
words, the degree of cleansing performed due to the ‘dirt-
iness’of source data). Workflow complexity is determined
via the variety of butterfly workflows used. In the next sub-
section, we demonstrate results regarding the other param-
eters. Our test data has been generated with the TPC-H
[15] generator.

Workflow execution requires the fine-tuning of both the
engine and scheduler. Specifically, we need to tune: (a) the
stall time, i.e., the duration for which a thread will remain
stalled; (b) the time slot (TmSl) given each time to an acti-
vated operator; (c) the data queue size (DQS), which gives
the maximum size of the system’s data queues; and (d) the

Nothul ~ DateKey
(Part Key, (Ship Date, Currency
Supp Key, Receipt Derive Fnc (Ext. Price,

Date) (Profit) Discount,

SK (Part
Key)

>

Not Null -
(Supp Key, erive
Part Key) (Total Cost)

Join
PS_PartKey =
E_Partkey)
Not Null
(Part Key) Join (SuppKey

=8_Suppkey)

Not Null
(Supp Key)

Phone Format
(Phone)

SK (Supp
Key)

Max (TC),
Min(TC)
Group by
(SuppKey,
PartKey)

SK (Order
Key)

Not Null
(Nation Key)

Phone Format
(Phone)

Sum (T. P.),
Max (T.P.) Sum(T.P.),
Group by Max (T. P.)
C_CustKey = (Nation Key, ~ Group by

O_CustKey Order Date) (Nation Key)

Not Null
(Cust Key)

Date Key ~ Currency
(Order Date) (Total Price)

Sum (Profit),
Return Sum (Ext. Price)
Status = Group by (Part

True Key, Line Status)

Sum (Profit),
Sum (Ext. Price)

Not Null Date Key Currency Group by (Part
(Part Key, (Ship Date, Derive (Ext. Price, Key 'i)neys(tatus)
Order Key, Receipt Fnc Discount, '

Supp Key) Date) (Profit) Tax)

2

Sum (Profit),
Avg (Discount)
Group by (Part
Key, Supp Key)

1

Sum (Profit),
Sum (Ext. Price)
Group by (Part

Key, Line
Status)

Disgount =0

Figure 5: Selected workflows used in our experiments: (clockwise from top left) primary flow, wishbone,

fork, and tree

Line Workflow Wishbone Workflow Primary Flow Workflow
300 —RR = -MC 150 1000
...... MM

] e T 800
L 2 &
g 200 g 100 H

£ < E £ 600
< T c c
2 2 K]

3 H s 400
§ 100 g so §
& & &

200

0 0 0

0.1 0.5 1 0.1 05 1 0.1 05 1
Input Size (GB) Input Size (GB) Input Size (GB)
Butterfly Workflow Tree Workflow Fork Workflow

150 150 1200

_ _ __ 1000
= S m
2 8 2

@ 100 @ 100 o 800
£ E E

£ (= T 600
2 2 2
=1] =1

2 5 2 5 2 400
4 3 4

200

0 T 0 0

0.1 0.5 1 0.1 05 1 0.1 0.5 1

Input Size (GB)

Figure 6:

Input Size (GB) Input Size (GB)

Effect of data size and scheduling protocol to execution time for different workflows

RR MC MM

TmSI(ms) | 0 0 70 (60-70)

DQS 100 (30-150) | 100 (80-150) | 100

RPS 400 (200-500) | 400 (200-450) | 400

Table 3: Fine tuning for different scheduling policies

row pack size (RPS), i.e., the size (number of tuples) of every
row pack.

Stall time is used as parameter for the system command
Thread. Sleep(EngineStallTime). This parameter should be
kept small enough, as large values lead the system to an idle
state for some time. (Large values make operators idle for a
long period of time and also, make them read their messages
long after they are sent.) Other techniques can be used for
stalling threads, as well. However, since each activity runs
as a different thread and each queue is connected with a
single provider, there is no concurrent access to write in a
queue. Thus, after executing various micro-benchmarks on
stall time, and on the aforementioned parameters too, we
tuned the sleeping period in a reasonably small value of 4ms
and used that value for all experiments.

The treatment of time slot depends on the policy tested.
Using time slots in the RR and MC scheduling policies
would lead to more communication and scheduling overhead
and finally to a longer execution time. In MC, consider for
example an operator p than needs 150 msec to empty its
data queue. If the time slot is 50 msec, the scheduler will
interrupt p two times before its queue is empty. These two
interrupts are unnecessary and add additional cost to the
execution. Since our concern is to minimize execution time,
we avoid such unnecessary scheduling interrupts by not us-
ing time slots.

For all remaining parameters requiring tuning, we have ex-
perimented with different values for various ETL archetypes.
The results show that we can always find a stable region of
values that perform best and thus, we used such stable val-
ues for the assessment of data size and selectivity effects.
Table 3 depicts the values used and also, good value ranges
(inside the parentheses) for time slot, queue, and row pack
sizes. For additional details, we refer the interested reader
to the long version of the paper [7].

All experiments have been conducted on a Dual Core 2
PC at 2.13 GHz with 1GB main memory and a 230Gb SATA
disk. All findings reported here are based on actual execu-
tions and not simulations.

6.3 Experimental results with single policies

In this subsection, we report on our findings on the be-
havior of the measured scheduling policies with respect to
their execution time and memory requirements when vary-
ing data size, selectivity, and structure of the flow. In these
experiments, a single scheduling policy was used for each
single scenario. Results on selectivity impact are omitted
for lack of space; still our findings are consistent with the
effect of data size.

Effect of data size and selectivity on execution
time. The effect of data size processed by the scheduling
algorithms to the total execution time is linear in almost all
occasions (Fig. 6). Typically, the MINIMUM MEMORY al-
gorithm behaves worst of all the others. MINIMUM COST is
slightly better than the ROUND ROBIN algorithm. Still, the
difference is small and this is mainly due to the fact that

the ROUND ROBIN scarcely drives the execution to a state
with several idle activities; therefore, the pipelining seems
to work properly. The effect of selectivity to the execution
time is similar. However, each workflow type performs dif-
ferently. Workflows with heavy load due to blocking and
memory-consuming operators, as the Primary Flow and the
Fork, demonstrate significant delays in their execution.

Effect of data size and selectivity on average mem-
ory. The average memory used throughout the entire work-
flow execution shows the typical requirements of the schedul-
ing protocol normalized over the time period of execution.
In all occasions, the MINIMUM MEMORY algorithm signifi-
cantly outperforms the other two, with the ROUND ROBIN al-
gorithm being worse than MINIMUM CoOST. The effect is the
same if we vary data size (Fig. 7) or the selectivity of the
workflow. Workflows containing a large number of activi-
ties, especially the ones with a right butterfly wing (e.g.,
fork) necessarily consume more memory than others. Still,
the benefits of MINIMUM MEMORY are much more evident
in these cases (bottom three graphs of Fig. 7), as this algo-
rithm remains practically stable to its memory requirements
independently of workflow type.

Observations. We used a real implementation —not a
simulation— to evaluate three scheduling policies with re-
spect to execution time and memory requirements. We used
several ETL workflows as our experimental platform for as-
sessing the effect of data size and workflow selectivity to the
aforementioned measures. Overall, we argue that ROUND
ROBIN does not perform satisfactory compared to the other
two. In all cases, ROUND ROBIN behaves worse than MIN-
IMUM COST in terms of memory consumption (frequently
with significant differences), although it is quite close to the
best values in terms of execution time. MINIMUM MEM-
ORY manages to outperform the other two, when it comes
to average memory requirements. MINIMUM MEMORY can
be used in an environment where more than one concur-
rent operations run, being memory efficient is important,
and memory has to be available at peak times. Finally, the
MiniMUM CosT scheduling policy outperforms the other two
policies concerning the execution time metric, in all cases.

Lessons learned:

e The state-of-practice tactics of round robin scheduling
is quite efficient in terms of time behavior, but lags in
memory consumption effectiveness.

It is possible to devise a scheduling policy (i.e., MIN-
IMUM COST) with time performance similar (actually:
slightly better) to the round robin policy and observ-
able earnings in terms of average memory consump-
tion. A slower policy (i.e., MINIMUM MEMORY) can
give significant earnings in terms of average memory
consumption that range between 1/2 to 1/10 of the
memory used by the other policies.

7. CONCLUSIONS

In this paper, we have dealt with the problem of schedul-
ing off-line ETL scenarios, aiming at improving both the
execution time and memory consumption, without allowing
data losses. We have proposed an extensible architecture
for implementing an ETL scheduler based on the pipelining
of results produced by ETL operations. We have assessed a
set of scheduling policies for the execution of ETL flows and

60

Average Memory (#tuples)

200

150 -

100

50 -

Line Workflow Wishbone Workflow Primary Flow Workflow
120
_ ERR EMC EMM 60
HERR EMC mMM T 100 | 3 ERR EMC ®EMM

5 g
£ &
= 807 = 0
z z
=l o
5§ ° 5
2 =
g. 40 g., 20
g
i 0 :

0 0

0.1 05 1 0.1 0.5 1 0.1 0.5 1
Input Size (GB) Input Size (GB) Input Size (GB)
Butterfly Workflow Tree Workflow Fork Workflow
80 150
ERR EMC EMM 7 ERR EMC EMM 3 HRR EMC EMM

s s
g9 £
g g
§ g
= 2
S 5 s
g 3
2 E

Average Memory (#tuples)

0.1 0.5

Input Size (GB)

0.5
Input Size (GB)

0.1

0.5
Input Size (GB)

Figure 7: Effect of data size and scheduling protocol to average memory consumption

shown that a MINIMUM COST policy that aims at emptying
the largest input queue of the workflow, typically performs
better with respect to execution time, whereas a MINIMUM
MEMORY policy that favors each time activities with the
maximum tuple consumption rate, is better with respect to
the average memory consumption.

Future work can be directed to other prioritization schemes
(e.g, due to different user requirements) and the encompass-
ing of active data warehouses (a.k.a. real-time data ware-
houses) in the current framework. So far, the related re-
search on active warehouses has focused mostly on the load-
ing part; still there are several open problems concerning
the orchestration of the entire process from the sources all
the way to the final data marts [18].

8. REFERENCES

[1] J. Adzic and V. Fiore. Data warehouse population
platform. In DMDW, 2003.

[2] B. Babcock, S. Babu, M. Datar, and R. Motwani.

Chain : Operator scheduling for memory minimization

in data stream systems. In SIGMOD, 2003.

D. Carney, U. Cetintemel, A. Rasin, S. B. Zdonik,

M. Cherniack, and M. Stonebraker. Operator

scheduling in a data stream manager. In VLDB, 2003.

P. J. F. Carreira, H. Galhardas, J. Pereira, and

A. Lopes. Data Mapper: An Operator for Expressing

One-to-Many Data Transformations. In DaWaK, 2005.

U. Dayal, M. Castellanos, A. Simitsis, and

K. Wilkinson. Data integration flows for business

intelligence. In EDBT, 2009.

L. Golab, T. Johnson, and V. Shkapenyuk. Scheduling

updates in a real-time stream warehouse. In ICDE,

2009.

A. Karagiannis. Scheduling policies for the refresh

management of data warehouses. Master’s thesis,

Available at: http://www.cs.uoi.gr, 2007.

G. Luo, J. F. Naughton, C. J. Ellmann, and

M. Watzke. Transaction reordering and grouping for

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

continuous data loading. In BIRTE, 2006.

A. Simitsis, P. Vassiliadis, U. Dayal, A. Karagiannis,
and V. Tziovara. Benchmarking ETL workflows. In
TPCTC, 2009.

A. Simitsis, P. Vassiliadis, and T. K. Sellis.
State-Space Optimization of ETL Workflows. IFEE
Trans. Knowl. Data Eng., 17(10), 2005.

A. Simitsis, K. Wilkinson, M. Castellanos, and

U. Dayal. QoX-driven ETL Design: Reducing the
Cost of ETL Consulting Engagements. In SIGMOD
Conference, 2009.

A. Simitsis, K. Wilkinson, U. Dayal, and

M. Castellanos. Optimizing ETL Workflows for
Fault-Tolerance. In ICDE, 2010.

M. Thiele, U. Fischer, and W. Lehner. Partition-based
Workload Scheduling in Living Data Warehouse
Environments. In DOLAP, 2007.

C. Thomsen, T. B. Pedersen, and W. Lehner. Rite:
Providing on-demand data for right-time data
warehousing. In /CDE, 2008.

TPC. The TPC-H benchmark. Technical report,
Transaction Processing Council. Available at:
http://www.tpc.org/tpch/, 2007.

V. Tziovara, P. Vassiliadis, and A. Simitsis. Deciding
the Physical Implementation of ETL Workflows. In
DOLAP, 2007.

T. Urhan and M. J. Franklin. Dynamic pipeline
scheduling for improving interactive query
performance. In VLDB, 2001.

P. Vassiliadis and A. Simitsis. Annals of Information
Systems: New Trends in Data Warehousing and Data
Analysis, chapter Near Real Time ETL. Springer,
2009.

P. Vassiliadis, A. Simitsis, P. Georgantas,

M. Terrovitis, and S. Skiadopoulos. A generic and
customizable framework for the design of ETL
scenarios. Inf. Syst., 30(7), 2005.

