
Contents lists available at ScienceDirect
Information Systems

Information Systems 36 (2011) 1158–1180
0306-43

doi:10.1

� Cor

E-m

pitoura
journal homepage: www.elsevier.com/locate/infosys
Managing contextual preferences
Kostas Stefanidis �, Evaggelia Pitoura, Panos Vassiliadis

Department of Computer Science, University of Ioannina, GR-45110 Ioannina, Greece
a r t i c l e i n f o

Article history:

Received 16 February 2009

Received in revised form

1 September 2010

Accepted 12 June 2011
Recommended by: Y. Ioannidis
a set of hierarchical attributes, thus allowing context specification at various levels of
Available online 22 June 2011

Keywords:

Preferences

Personalization

Context
79/$ - see front matter & 2011 Elsevier B.V. A

016/j.is.2011.06.004

responding author. Tel.: þ30 2651098858.

ail addresses: kstef@cs.uoi.gr (K. Stefanidis),

@cs.uoi.gr (E. Pitoura), pvassil@cs.uoi.gr (P. V
a b s t r a c t

To handle the overwhelming amount of information currently available, personalization

systems allow users to specify through preferences which pieces of data interest them.

Most often, users have different preferences depending on context. In this paper, we

introduce a model for expressing such contextual preferences. Context is modeled using

detail. We formulate the context resolution problem as the problem of selecting

appropriate preferences based on context for personalizing a query. We also propose

algorithms for context resolution based on data structures that index preferences by

exploiting the hierarchical nature of the context attributes. Finally, we evaluate our

approach from two perspectives: usability and performance. Usability evaluates the

overheads imposed on users for specifying context-dependent preferences, as well as

their satisfaction from the quality of the results. Our performance results focus on the

context resolution using the proposed indexes.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Personalized information delivery aims at addressing
the explosion of the amount of data currently available to
an increasingly wider spectrum of users. Instead of over-
whelming the users with all available data, personaliza-
tion systems provide users with only the data that is of
interest to them. Preferences have been used as a means
to address this challenge. To this end, a variety of
preference models have been proposed; most of which
follow either a qualitative or a quantitative approach.
With the qualitative approach (such as the work in [1,2]),
preferences between two pieces of data are specified
directly, typically using binary preference relations. For
instance, using a qualitative model, users may explicitly
state that they prefer visiting archaeological sites than
science museums. With the quantitative approach (e.g.,
[3–5]), users employ scoring functions that associate a
ll rights reserved.

assiliadis).
numerical score with specific pieces of data to indicate
their interest in them. For instance, a preference in
archaeological sites may be expressed by assigning high
scores to such places.

However, most often users have different preferences
under different circumstances. For instance, the current
weather conditions may influence the place one wants to
visit. For example, when it rains, a museum may be
preferred over an open-air archaeological site. Context is a
general term used in several domains, such as in machine
learning and knowledge acquisition [37,39]. Our focus here
is on how context can be used in conjunction with
relational databases to personalize the results of queries.
In this respect, we consider as context any information that
can be used to characterize the situations of an entity,
where an entity is a person, place, or object that is relevant
to the interaction between a user and an application [6,7].
Common types of context include the computing context

(e.g., network connectivity, nearby resources), the user

context (e.g., profile, location), the physical context (e.g.,
noise levels, temperature) and time [8,9].

In this paper, we propose enhancing preferences with
context-related information. Preferences express user

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2011.06.004
mailto:kstef@cs.uoi.gr
mailto:pitoura@cs.uoi.gr
mailto:pvassil@cs.uoi.gr
dx.doi.org/10.1016/j.is.2011.06.004

K. Stefanidis et al. / Information Systems 36 (2011) 1158–1180 1159
interest on specific pieces of information stored in a
relational database. There has been a variety of context
models [40]. We follow a data-centric approach by repre-
senting context as a set of context parameters that take
values from multi-level domains. These parameters capture
information that is not part of the database, such as the user

location or the current weather. A specific context state or
situation corresponds to an assignment of values to context
parameters. By allowing context parameters to take values
from hierarchical domains, different levels of abstraction
for the captured context data are introduced. For instance,
the context parameter user location may take values from a
city, country or continent domain. Preferences are enhanced
with context descriptors that specify the context states
under which they hold with varying levels of detail.

Each database query is also associated with one
or more context states through context descriptors.
The context state of a query may, for example, be the
current state at the time of its submission. Furthermore, a
query may be explicitly enhanced with context descriptors
to allow exploratory queries about hypothetical context
states. A central problem that we address in this paper is
preference selection, that is, given a set of preferences and
a query, determining which of the preferences are the
most relevant to the query. We focus on context aspects
and consider as relevant those preferences whose context
states are related to those of the query. We call context

resolution the problem of selecting preferences based on
context. We consider that the context state of a preference
is related to a query context state, if it is the same or more
general than the query context state. This is captured
through a cover relation defined over context states that
relates context states expressed with different levels of
detail. For instance, with cover, we relate a context state in
which location is expressed at the level of country with a
context state in which location is expressed at the level of
continent. We also propose a number of distance metrics
that capture similarity among context states. This allows
selecting a smaller number of the qualifying preferences
thus controlling the degree of personalization.

We introduce algorithms for context resolution that
build upon two data structures, namely the preference
graph and the profile tree, that index preferences based
on their associated context states. The preference graph

explores the partial order of context states induced by the
cover relation to organize them in some form of a lattice.
A top-down traversal of the graph supports an incremen-
tal specialization of a given context state, whereas a
bottom-up traversal an incremental relaxation. The profile

tree offers a space-efficient representation of context
states by taking advantage of the co-occurrence of context
values in preferences. It supports exact matches of con-
text states very efficiently through a single root-to-leaf
traversal.

Our focus is on managing context for preferences,
i.e., expressing, storing and indexing contextual prefer-
ences. In general, preferences may be collected using
various ways. Preferences may be provided explicitly by
the users or constructed automatically, for instance, based
on the past behavior of the same or similar users. Such
methods for the automatic construction of preferences
have been the focus of much current researches (e.g., [10])
and are beyond the scope of this paper. A practical way to
create profiles that we have used in our experiments is to
assemble a number of default profiles and then ask the
users to update them appropriately.

Note that, in this paper, we take a system or designer
point of view, in that, our aim is managing context
efficiently. Another important aspect is to take the user
point of view, for example, by expanding his interaction
with the system, acquiring user feedback and supporting
incremental adaptation.

We have evaluated our approach along two perspec-
tives: usability and performance. Our usability experiments

consider the overhead imposed on the users for specifying
context-dependent preferences versus the quality of the
personalization thus achieved. We used two databases of
different sizes. The sizes of the database have two
important implications for usability. First, they affect the
number of preferences. Then, and most importantly, they
require different methods for evaluating the quality of
results. Our performance experiments focus on our context
resolution algorithms that employ the proposed data
structures to index preferences for improving response
time and storage overheads.

In a nutshell, in this paper, we
�
 propose a model for annotating preferences with
contextual information; our hierarchical model of
context allows expressing contextual preferences at
various levels of detail;

�
 formulate the problem of context resolution as the

problem of selecting appropriate preferences for per-
sonalizing a query based on context;

�
 present data structures and algorithms for implement-

ing context resolution and

�
 evaluate our approach in terms of both usability and

performance.

The rest of this paper is structured as follows.
In Section 2, we present our context and preference model,
while in Section 3, we formulate the context resolution
problem. In Section 4, we introduce data structures used
to index contextual preferences and algorithms for context
resolution. Sections 5 and 6 present our usability and
performance evaluation results, respectively. Section 7
describes related work and finally, Section 8 concludes
the paper with a summary of our contributions.
2. Contextual preferences

In this section, first we present our model of context,
then we introduce context descriptors for specifying con-
text states, and finally we introduce contextual preferences,
e.g., preferences annotated with context information.

In the rest of this paper, we use the following two
databases as our running examples.

Movie Database. The movie database (MD) maintains
information about movies. It consists of a single database
relation with schema Movies (mid, title, year, director,
genre, language, duration).

K. Stefanidis et al. / Information Systems 36 (2011) 1158–11801160
Point-of-Interest Database. The point-of-interest data-
base (PID) maintains information about interesting places
to visit. It consists of a single database relation with
schema Points_of_Interest (pid, name, type, location, open-

air, hours_of_operation, admission_cost).

2.1. Context model

We model context using a finite set of special-purpose
attributes.

Definition 1 (Context environment). Let X be an applica-
tion. The context environment, CEX, of X is a set of n

attributes, CEX ¼ fC1,C2, . . . ,Cng, n Z 1, where each
attribute Ci, 1 r i r n, is called a context parameter.

For example, for the movie database, we consider three
context parameters as relevant, namely, accompanying_
people, mood and time_period. That is, its context environ-
ment is CEMD ¼ {accompanying_people, mood, time_period}.
Preferences about movies depend on the values of these
context parameters. For instance, a high preference score
may be associated with movies of the genre cartoons, for
users accompanied by their children and a low preference
score for those accompanied by their friends. The context
environment for the point-of-interest database is CEPID ¼

{user_location, weather, accompanying_people}. For instance,
a point of interest of type zoo may be a more preferable
place to visit than a brewery when accompanied by family

and an open-air place like Acropolis a better place to visit
than a non-open-air museum, when weather is good.

To allow flexibility in defining context specifications,
we model context parameters as attributes that can take
values with different granularities. In particular, each
context parameter has multiple levels organized in a
hierarchy schema. Let C be a context parameter with m

levels, m 4 1. We denote its hierarchy schema as L ¼

(L1, . . . ,Lm). L1 is called the lowest or most detailed level of
the hierarchy schema and Lm the highest or most general
one. We define a total order among the levels of each
hierarchy schema L such that L1! � � �!Lm and use the
notation Li $ Lj between two levels to mean Li ! Lj or
Li¼Lj. Fig. 1 depicts the hierarchy schemas of the context
parameters of our running examples. For instance, the
hierarchy schema of context parameter user_location has
four levels: city (L1), country (L2), continent (L3) and the
highest level ALL (L4).

Each level Lj, 1 r j r m, is associated with a domain
of values, denoted by domLj

ðCÞ. For any two levels Lj, Lk, j
Fig. 1. Hierarchy schema and concept hierarchy of accompanyi
a k, domLj
ðCÞ \ domLk

ðCÞ ¼ fg. For all parameters, we
require that their highest level has a single value All,
i.e., domLm

ðCÞ ¼ fAllg. We define the domain, dom(C), of C

as: domðCÞ ¼
Sm

j ¼ 1 domLj
ðCÞ. A concept hierarchy is an

instance of a hierarchy schema. Similar to [11], a concept
hierarchy of a context parameter C with m levels is
represented by a tree with m levels with nodes at each
level j, 1 r j r m, representing values in domLj

ðCÞ.
The root node (i.e., level m) represents the value All. Fig. 1
depicts the concept hierarchies of the context parameters of
our running examples. For instance, for the context para-
meter user_location, Greece is a value of level country. Such
concept hierarchies may be constructed using, for example,
the WordNet [13] or other ontologies.

The relationship between the values at the different
levels of a concept hierarchy is achieved through the use

of a family of ancestor functions ancLk

Lj
[12],1 r j o k r

m. The functions anc
Ljþ 1

Lj
,1 r j o m,assign each value of

the domain of Lj to a value of the domain of Ljþ1. An edge

from a node at level Lj to a node at level Ljþ1 in the

concept hierarchy represents that the latter is the ances-
tor of the former. Given three levels Lj,Lk and Ll,1 r j o k

o l r m,the function ancLl

Lj
is equal to the composition

ancLk

Lj
J ancLl

Lk
. Finally, desc

Lj

Ll
ðvÞ,1 r l o j r m,gives the

level l descendants of v 2 domLj
ðCÞ,that is,

desc
Lj

Ll
ðvÞ ¼ fx 2 domLl

ðCÞjanc
Lj

Ll
ðxÞ ¼ vg. For example,for the

concept hierarchies in Fig. 1, ancL2

L1
ðAthensÞ ¼ Greece

whereas descL2

L1
ðweekendÞ ¼ fSa,Sug.

A context state corresponds to an assignment of values
to context parameters.

Definition 2 (Context state). A context state cs of a con-
text environment CEx ¼ {C1,C2, . . . ,Cn} is an n-tuple of the
form ðc1,c2, . . . ,cnÞ, where ci 2 domðCiÞ, 1 r i r n.

For instance, (friends, good, holidays) and (friends, All,
summer_holidays) are context states for our movie exam-
ple. The set of all possible context states, called world CW,
is the Cartesian product of the domains of the context
parameters: CW ¼ domðC1Þ � domðC2Þ � � � � � domðCnÞ.

2.2. Context descriptors

Context states can be specified through context
descriptors. Specifically, a single parameter context
descriptor specifies values of one context parameter.
ng_people, weather, time_period, user_location and mood.

mid title year director genre language duration

t1 Casablanca 1942 Curtiz Drama English 102
t2 Psycho 1960 Hitchcock Horror English 109
t3 Schindler’s List 1993 Spielberg Drama English 195

Fig. 2. Database instance.

K. Stefanidis et al. / Information Systems 36 (2011) 1158–1180 1161
Definition 3 (Single parameter context descriptor). A sin-
gle parameter context descriptor cod(C) of a context
parameter C is an expression of the form cod(C) ¼ C 2

fv1, . . . ,vlg, where vk 2 domðCÞ, 1 r k r l.

For example, for the context parameter time_period, a
single parameter context descriptor can be time_period 2

fChristmasg or time_period 2 fChristmas, Easter, summer_
holidaysg. Let cod(C) be the single context descriptor Ci 2

fv1, . . . ,vlg, we shall use the notation ContextðcodðCiÞÞ ¼

fv1, . . . ,vlg.
Context states are specified using multi-parameter

context descriptors that combine single parameter ones.

Definition 4 (Multi-parameter context descriptor). Let CEx

¼ {C1,C2, . . . ,Cn} be a context environment. A multi-
parameter context descriptor is an expression of the formVk

j ¼ 0 codðCij Þ, 1 r k r n, where ij 2 {1, 2, . . . ,n}, codðCij Þ is
a single context parameter descriptor for Cij and there
is at most one single parameter context descriptor for
each Cij .

A multi-parameter context descriptor specifies a set of
context states. These states are computed by taking the
Cartesian product of the contexts of all the single para-
meter context descriptors that appear in the descriptor.
If a multi-parameter context descriptor does not contain
descriptors for all context parameters, we assume that the
values of the absent context parameters are indifferent.
In particular, if a context parameter Ci is missing from a
multi-parameter context descriptor, we assume the impli-
cit condition Ci 2 fAllg to be part of the descriptor.

Definition 5 (Context of a multi-parameter context descrip-

tor). Let CEX ¼ {C1, C2, . . ., Cn} be a context environment
and cod ¼

Vk
j ¼ 0 codðCij Þ, 1rkrn, be a multi-parameter

context descriptor. The set of context states of cod,
denoted Context(cod), is S1 � S2 � � � � � Sn, where for 1
r i r n, Si ¼ ContextðcodðCiÞÞ, if codðCiÞ appears in cod

and Si ¼ fAllg, otherwise.

For the movie example, consider the multi-parameter
context descriptor (accompanying_people 2 {friends,
family} 4 time_period 2 fsummer_holidaysg). This descrip-
tor defines the following two context states: (friends, All,
summer_holidays) and (family, All, summer_holidays).

2.3. Contextual preference model

We annotate preferences with context descriptors that
specify the context states under which a preference holds.
Regarding preference specification, there are, in general,
two different approaches: a quantitative and a qualitative
one. In the quantitative approach (e.g., [3]), preferences
are expressed indirectly by using scoring functions
that associate a numeric score or degree of interest with
each item. In the qualitative approach (e.g., [1,2]), prefer-
ences between two items are specified directly, typically
using binary preference relations. Context descriptors
can be used with both a quantitative and a qualita-
tive approach. Here, we use a simple quantitative pre-
ference model to demonstrate the basic issues underlying
contextualization.
In particular, we assume that preferences for specific
tuples of a database are expressed by providing a numeric
score which is a real number between 0 and 1. This score
expresses a degree of interest, where value 1 indicates
extreme interest and value 0 indicates no interest. Interest
is expressed for specific values of attributes of a database
relation, for instance, for the various attributes (e.g., genre,

language) of our movie database relation. This is similar to the
general quantitative framework of Agrawal and Wimmers
[3]. Formally, a contextual preference is defined as follows:

Definition 6 (Contextual preference). Given a database
schema R(A1, A2, . . . ,AdÞ, a contextual preference p on R is
a triple (cod, Pred, score), where
1.
 cod is a multi-parameter context descriptor,

2.
 Pred is a predicate of the form Ai1yi1 ai1 4 Ai2 yi2 ai2 4
� � �4 Aikyik aik that specifies conditions yij on the values
aij 2 domðAij Þ of attributes Aij , 1 r ij r d, of R and
3.
 score is a real number between 0 and 1.

The meaning of such a contextual preference is that in

the set of context states specified by cod, the database
tuples that satisfy the predicate Pred are assigned the
indicated interest score. In this paper, we assume that y 2
f ¼ ,o ,4 , r ,Z ,ag for the numerical database attributes
and y 2 f ¼ ,ag for the remaining ones. As an example,
take the instance of our movie database shown in Fig. 2.
The contextual preference ((accompanying_people 2

faloneg 4 mood 2 fbadg 4 time_period 2 fweekend,
holidaysg), genre¼ horror, 0.8) expresses the fact that
when in a bad mood, alone at a weekend or during a
holiday, horror movies are preferred with interest
score 0.8.

Note that preferences that hold irrespectively of the
values of the context parameters, i.e., non-contextual
preferences, may be expressed using an empty context
descriptor, whose context is context state ðAll,All, . . . ,AllÞ.

By using multi-parameter context descriptors, one can
express preferences that depend on the values of more
than one context parameter. Furthermore, hierarchies
allow the specification of preferences at various levels of
detail. For instance, one can specify preferences at the
country, or city levels or both.

Finally, we define profile P as follows:

Definition 7 (Profile). Given an application X, a profile P

is the set of all contextual preferences that hold for X.

An example profile for the movie database is shown in
Fig. 3. The context Context(P) of a profile P is the union of
the contexts of all context descriptors that appear in P,
that is, Context(P) ¼ [iContextðcodiÞ, for each ðcodi,Predi,
scoreiÞ 2 P.

p1 = ((accompanying people ∈ {f riends}), genre = horror, 0.8)
p2 = ((accompanying people ∈ {f riends}),

director = Hitchcock, 0.7)
p3 = ((accompanying people ∈ {alone}), genre = drama, 0.9)
p4 = ((accompanying people ∈ {alone}),

(genre = drama ∧ director = S pielberg), 0.5)

Fig. 3. Example profile.

K. Stefanidis et al. / Information Systems 36 (2011) 1158–11801162
3. Contextual preference selection

In this section, we consider the problem of selecting
appropriate contextual preferences from a profile so as to
personalize a given query. Our focus is on the context
part. First, we define contextual queries. Then, given a
contextual query, for a contextual preference to be
selected, its context must be the same with or more
general than the context of the query. This is formalized
by the cover relation between context states that relates
context states expressed at different hierarchy levels.
Among such qualified candidate preferences, we select
the ones whose context is the most similar to the context
of the query based on two proposed distance metrics
between context states. Once the appropriate preferences
are selected, the query can be extended to take the
selected preferences into account, as in the case of non-
contextual preferences (e.g., [14,15]).
3.1. Contextual queries

Contextual queries are queries annotated with infor-
mation regarding context.

Definition 8 (Contextual query). A contextual query Q is a
query enhanced with a multi-parameter context descrip-
tor denoted codQ which specifies its context, Context(Q) ¼
ContextðcodQ

Þ.

The context descriptor may be postulated by the
application or be explicitly provided by the users as part
of their queries. Typically, in the first case, the context
implicitly associated with a contextual query corresponds
to the current context, that is, the context surrounding the
user at the time of the submission of the query. To capture
the current context, context-aware applications use
various devices, such as temperature sensors or GPS-enabled
devices for location. Methods for capturing context are
beyond the scope of this paper.

Besides this implicit context, we also envision queries
that are explicitly augmented with multi-parameter
context descriptors by the users issuing them. For example,
such descriptors may correspond to exploratory queries of
the form: what is a good film to watch with my family this
Christmas or what are the interesting points not to be
missed when I visit Athens with my friends next summer.

The context associated with a query may correspond
to a single context state, where each context parameter
takes a specific value from its most detailed domain.
However, in some cases, it may be only possible to specify
the query context using rough values, for example, when
the context values are provided by sensor devices with
limited accuracy. In such cases, a context parameter may
take a single value from a higher level of the hierarchy or
even more than one value.

3.2. The cover relation

Let us first consider a simple example related to the
movie database. Assume a contextual query Q enhanced
with the context descriptor codQ

¼ (accompanying_people

2 {friends} 4 mood 2 fgoodg 4 time_period 2 fsummer_
holidaysg). If a preference with exactly the same context
descriptor exists in the profile, preference selection is
straightforward, i.e., this preference is selected. Assume
now that this is not the case. For example, take a profile P

that consists of three preferences: p1 ¼ ((accompanying_
people 2 {friends} 4 mood 2 fgoodg 4 time_period 2

fholidaysg), Pred1, score1) and p2 ¼ ((accompanying_
people 2 {friends} 4 mood 2 fgoodg 4 time_period 2

fAllg), Pred2, score2) and p3 ¼ ((accompanying_people 2

{friends} 4 mood 2 fgoodg 4 time_period 2 fworking_
daysgÞ, Pred3, score3). Intuitively, in the absence of an
exact match, we would like to use those preferences in
P whose context descriptor is more general than the query
descriptor, in the sense that its context ‘‘covers’’ that of
the query.

Definition 9 (Covering context state). A context state
cs1 ¼ ðc1

1 ,c1
2 , . . . ,c1

nÞ 2 CW covers a context state
cs2 ¼ ðc2

1 ,c2
2 , . . . , c2

nÞ 2 CW if 8 k, 1 r k r n, c1
k ¼ c2

k or
c1

k ¼ anc
Lj

Li
ðc2

k Þ for some levels Li ! Lj.

In the example above, the context states of p1 and p2

cover that of q, whereas those of p3 do not.
It can be shown that the cover relation imposes a

partial order among context states.

Theorem 1. The cover relation over context states is a

partial order.

Proof. We must show that the cover relation is (i)
reflexive (i.e., cs covers cs), (ii) antisymmetric (if cs1 covers
cs2 and cs2 covers cs1, then cs1 ¼ cs2) and (iii) transitive
(if cs1 covers cs2 and cs2 covers cs3, then cs1 covers cs3).
(i)
 Reflexivity is straightforward.

(ii)
 Assume for the purpose of contradiction that the

antisymmetric property does not hold. In this case,
there is a certain parameter Ck for which
c1

k ¼ anc
Lj

Li
ðc2

k Þ and c2
k ¼ ancLi

Lj
ðc1

k Þ. But this cannot hap-
pen due to the total order of levels in a hierarchy.
(iii)
 Assume that cs1 covers cs2 (1) and cs2 covers cs3 (2).

From (1), 8k, 1rkrn, c1
k ¼ c2

k or c1
k ¼ anc

Lj

Li
ðc2

k Þ, Li !

Lj (3). Respectively, from (2), 8k, 1rkrn, c2
k ¼ c3

k or

c2
k ¼ anc

Lj

Li
ðc3

k Þ, Li ! Lj (4). Therefore, from (3), (4), we

get that, 8k, 1rkrn, c1
k ¼ c3

k or c1
k ¼ anc

Lj

Li
ðc3

k Þ, Li !

Lj, that is, cs1 covers cs3. &
Going back to our example, although the context states
of both p1 and p2 cover those of the query Q, p1 is more

K. Stefanidis et al. / Information Systems 36 (2011) 1158–1180 1163
closely related to the descriptor of the query and it is the
one that should be used. Next, we formalize this notion of
the most specific state or tight cover.

Definition 10 (Tight cover). Let P be a profile and cs1 be a
context state. We say that a context state cs2

2 Context(P)
is a tight cover of cs1 in P, if and only if:
(i)
 cs2 covers cs1 and

(ii)
 :(cs3

2 Context(P), cs3 a cs2, such that cs2 covers cs3

and cs3 covers cs1.
In general, there may be more than one tight cover of a
query context state. For example, consider again the

previous query context descriptor codQ and assume now
that P includes a fourth preference, p4 ¼ ((accompanying_
people 2 ffriendsg 4 mood 2 fAllg 4 time_period 2

fsummer_ holidaysg), Pred4, score4). Both the context states
of p1 and p4 are tight covers of the query context state.

We can now provide a formal definition of context
resolution, that is, of the process of selecting appropriate
preferences from a profile based on context.

Definition 11 (Context resolution set). Given a profile P

and a contextual query Q, a set RS of context states, RS D
Context(P), is called a context resolution set for Q if (a) for
each context state csQ

2 Context(Q), there exists at least
one context state cs in RS such that cs is a tight cover of csQ

in P and (b) cs belongs to RS only if there is a csQ
2

Context(Q) for which cs is a tight cover in P.

After identifying such a set of context states, we use
the contextual preferences associated with the corre-
sponding descriptors for personalizing the query. Note
that for a specific query Q and profile P, there may be no
context resolution set. In this case, query Q is executed as
a regular query, without using any preferences.

As shown above, for a query context state, there may
be more than one tight cover. For a set of context states to
qualify as a context resolution set, it must include at least

one of them. Thus, there may be more than one context
resolution sets depending on which of the tight covers of
each query context state they include.

In the next section, we provide a systematic way of
selecting for a given query context state which of its tight
covers to include in a context resolution set by defining
distances among context states. Such distances can be
used to select exactly one, i.e., the most similar, tight cover
of each query state, thus, creating the smallest context
resolution sets. They can also be used to include in the
context resolution set more than one tight cover per
query context state, for example, by selecting among the
tight covers of a query context state, the k (k 4 1) most
similar to it. This provides a means for controlling the
degree of personalization. Using too many preferences
may lead to over-specializing a query, whereas using too
few preferences may result in too general results. Our
usability study indicates that using exactly one tight cover
produces slightly more satisfying results than using more
than one tight cover.
3.3. Distances between context states

To select the most appropriate among a number of tight
covers, we introduce a distance metric between context
states. The motivation is to choose the most specific among
the candidate context states, that is, the context states
defined in the most detailed hierarchy levels. We define
first the level of a context state as follows.

Definition 12 (Levels of a context state). Let cs¼ ðc1,c2,
. . . ,cnÞ be a context state. The hierarchy levels that
correspond to this state are levelsðcsÞ ¼ ½Lj1

,Lj2
, . . . ,Ljn

� such
that ci 2 domLji

ðCiÞ, i¼ 1, . . . ,n.

The distance between two levels is defined as their
path distance in their hierarchy schema.

Definition 13 (Level distance). Let C be a context para-
meter with m levels. The level distance, distLðLi,LjÞ,
between two levels Li and Lj, 1 r i,j r m, is defined as:

distLðLi,LjÞ ¼ jj�ij:

We can now define a level-based distance between
two context states.

Definition 14 (Hierarchy state distance). Let cs1
¼ðc1

1 ,

c1
2 , . . . ,c1

nÞ and cs2
¼ ðc2

1 ,c2
2 , . . . ,c2

nÞ be two context states

with levelsðcs1Þ ¼ ½l11,l12, . . . ,l1n� and levelsðcs2Þ ¼ ½l21,l22, . . . , l2n�.

The hierarchy state distance, distHðcs1,cs2Þ, is defined as:

distHðcs1,cs2Þ ¼
Xn

i ¼ 1

distLðl
1
i ,l2i Þ:

For example, let cs1
¼ (Athens, cold, alone) be a query

context state and cs2
¼ (Europe, cold, alone) and cs3

¼

(Athens, bad, alone) be two context states in the profile.
In that case, distHðcs1,cs2Þ ¼ 2 and distHðcs1,cs3Þ ¼ 1. Both
cs2 and cs3 cover cs1, but cs2 and cs3 do not cover each
other. If we assume that both cs2 and cs3 are tight covers
of cs1, then, using the hierarchy state distance, we would
choose the preference associated with cs3.

We show next that the hierarchy state distance
produces an ordering of context states that is compatible
with the cover partial order in the sense expressed by the
following property.

Property 1. Let cs1 ¼ ðc1
1 ,c1

2 , . . . ,c1
nÞ be a context state.

For any two different context states cs2 ¼ ðc2
1 ,c2

2 , . . . ,c2
nÞ and

cs3 ¼ ðc3
1 ,c3

2 , . . . ,c3
nÞ, cs2acs3, such that cs2 covers cs1 and cs3

covers cs1, if cs3 covers cs2, then distHðcs1,cs3Þ4

distHðcs1,cs2Þ.

Proof. Let levelsðcs1Þ ¼ ½l11,l12, . . . ,l1n�, levelsðcs2Þ ¼ ½l21,l22, . . . ,l2n�

and levelsðcs3Þ ¼ ½l31,l32, . . . ,l3n�. From Definition 9, since cs2

covers cs1 and the fact that the level of any ancestor of ci is

larger than the level of ci, it holds that l2i kl1i , 8i, 1r irn

(1). Similarly, since cs3 covers cs1, it holds that l3i k l1i , 8i, 1

r i r n (2) and, since cs3 covers cs2, it holds that l3i k l2i ,

8i, 1 r i r n (3). From (1), (2) and (3), we get l3i k l2i k l1i ,

8i, 1 r i r n (4). Since cs2 a cs3, for at least one j, 1 r j

K. Stefanidis et al. / Information Systems 36 (2011) 1158–11801164
r n, it holds that l3j � l2j (5). Thus, from (4), (5) and

Definition 14, it holds that distHðcs1,cs3Þ 4 distHðcs1,

cs2Þ. &

Property 1 states that between two context states that
cover cs1, if one of them is a tight cover, then it is the one
with the smallest hierarchy state distance between them.

The context state with the minimum hierarchy state
distance is not necessarily unique. For instance, assume
that we want to select the context state that is most
similar to cs1

¼ (friends, good, summer_holidays) between
cs2
¼ (All, warm, holidays) and cs3

¼ (friends, All, All).
For these context states, distHðcs1,cs2Þ ¼ distHðcs1,cs3Þ ¼ 3.
To resolve such ties, again we choose those context states
that are more specific but now in terms of the values of
the detailed (lowest) level of the hierarchy that they
include. The motivation is that context values that have
few detailed values as descendants are more specific than
those that have many such values. Clearly this is not true
for all domains. But, in the absence of any other applica-
tion-specific information, we assume that a value that
covers many detailed values is more general than one that
covers fewer ones.

For two values of two context states corresponding to
the same context parameter, we measure the fraction of
the intersection of their corresponding lowest level value
sets over the union of these two sets and consider as a
better match, the ‘‘smallest’’ context state in terms of
cardinality. Formally, this is expressed through the Jac-
card distance.

Definition 15 (Jaccard distance). Let C be a context para-
meter with m levels. The Jaccard distance, distJðco,cpÞ, of
two context values co and cp, co 2 domLi

ðCÞ and
cp 2 domLj

ðCÞ, 1 r i,j r m, is defined as:

distJðco,cpÞ ¼ 1�
jdescLi

L1
ðcoÞ

T
desc

Lj

L1
ðcpÞj

jdescLi

L1
ðcoÞ

S
desc

Lj

L1
ðcpÞj

:

It is easy to show that values at higher levels in the
hierarchy have larger Jaccard distances than their descen-
dants at lower levels, as the following lemma states:

Lemma 1. Let C be a context parameter with m levels and

co, cp, cq be three values of C, such that co 2 domLj
ðCÞ, cp 2

domLk
ðCÞ and co 2 domLl

ðCÞ, Lj ! Lk ! Ll, 1 r j,k,l r m.

If cq¼ancLl

Lk
ðcpÞ and cp ¼ ancLk

Lj
ðcoÞ, then distJðco,cqÞZ

distJðco,cpÞ.

Proof. By definition,

distJðco,cpÞ ¼ 1�
jdesc

Lj

L1
ðcoÞ

T
descLk

L1
ðcpÞj

jdesc
Lj

L1
ðcoÞ

S
descLk

L1
ðcpÞj

and

distJðco,cqÞ ¼ 1�
jdesc

Lj

L1
ðcoÞ

T
descLl

L1
ðcqÞj

jdesc
Lj

L1
ðcoÞ

S
descLl

L1
ðcqÞj

:

In both fractions, the numerator reduces to desc
Lj

L1
ðcoÞ due

to the transitivity property of the ancestor functions (i.e.,
all descendants of co at the detailed level are also
descendants of cp and cq). The denominator of the first

fraction is descLk

L1
ðcpÞ, whereas the denominator of the

second fraction is descLl

L1
ðcqÞ + descLk

L1
ðcpÞ, again due to

the transitivity property of the ancestor function. There-

fore distJðco,cqÞZdistJðco,cpÞ. &

The Jaccard distance between two context states is
defined as follows.

Definition 16 (Jaccard state distance). Let cs1 ¼ ðc1
1 , c1

2 , . . . ,

c1
nÞ and cs2 ¼ ðc2

1 ,c2
2 , . . . ,c2

nÞ be two context states. The

Jaccard state distance, distJðcs1,cs2Þ, is defined as:

distJSðcs1,cs2Þ ¼
Xn

i ¼ 1

distJðc
1
i ,c2

i Þ:

For example, the Jaccard state distance of context
1 2
states cs ¼ (friends, good, summer_holidays) and cs ¼

(All, All, holidays) is equal to: distJðcs1,cs2Þ ¼ 2. Now,

returning to our previous example for cs1
¼ (friends, good,

summer_holidays) and the two candidates states, cs2
¼

(All, All, holidays) and cs3
¼ (friends, All, All), with the same

hierarchy state distance, the following holds: distJSðcs1,cs2Þ

¼ 2 and distJSðcs1,cs3Þ ¼ 31/22. Therefore, cs3 is consid-

ered to be most similar to cs1.
It is easy to prove a property similar to Property 1,

that is:

Property 2. Let cs1 ¼ ðc1
1 ,c1

2 , . . . ,c1
nÞ be a context state.

For any two different context states cs2 ¼ ðc2
1 ,c2

2 , . . . ,c2
nÞ and

cs3 ¼ ðc3
1 ,c3

2 , . . . ,c3
nÞ, cs2acs3, such that cs2 covers cs1 and cs3

covers cs1, if cs3 covers cs2, then distJSðcs1,cs3ÞZ

distJSðcs1,cs2Þ.

Proof. Let levelðcs1Þ ¼ ½l11,l12, . . . ,l1n�, levelðcs2Þ ¼ ½l21,l22, . . . ,

l2n� and levelðcs3Þ ¼ ½l31,l32, . . . ,l3n�. From the proof of Property

1, we have that l3i k l2i k l1i , 8i, 1 r i r n. From Lemma 1,

8 c1
i , c2

i , c3
i , 1 r i r n, we get that distJðc

1
i ,c3

i Þ Z

distJðc
1
i ,c2

i Þ (1), because that distance becomes larger as

the context values belong to higher hierarchy levels. From

(1) and Definition 16, we get that distJSðcs1,cs3Þ 4

distJSðcs1,cs2Þ. &

There may still be ties. In this case, we can randomly
select any of the tight covers.

The Hierarchy and the Jaccard state distances provide a
generic means for ordering tight covers. If there is addi-
tional semantic information about the context parameters
and their domains, more precise distances can be defined,
for example, by using weights. For instance, a weighted
version of the Hierarchy state distance (Definition 14) is
given by: distHðcs1,cs2Þ ¼

Pn
i ¼ 1 wi distLðl

1
i ,l2i Þ. where the

weight wi associated with context parameter Ci is an
indication of its importance. For example, if we know
that user_location is the determining factor for choosing
a point of interest, we can assign weight 1 to this context
parameter and 0 to the other two.

K. Stefanidis et al. / Information Systems 36 (2011) 1158–1180 1165
3.4. Preference application

After determining a context resolution set RS, the
related preferences are selected for personalizing the
query. In particular, the preference set PS D P is formed,
where PS ¼ {ðcodi,Predi,scoreiÞ j csj

2 ContextðcodiÞ for csj
2

RS}. The preferences in PS can be used either (a) to
reformulate the original query Q to include them (e.g.,
[5,14]) or (b) after the execution of the original query Q, to
rank its results. A complete treatment of query persona-
lization is beyond the scope of this paper. In the following,
we focus on context-related issues. In doing so, we follow
the latter approach of ordering the results of Q.

In particular, we rank each tuple t in the result r of Q

based on the score of the preference in PS applicable to t.
A preference p¼ ðcod,Pred,scoreÞ is applicable to a tuple t,
if t satisfies predicate Pred. We shall use the notation
Pred½t� to denote that tuple t satisfies predicate Pred.

In general, more than one of the selected preferences
may be applicable to a specific tuple t in the result r.
In this case, we need to decide how to combine the scores
of the applicable preferences for assigning a final score to
t. Let us consider first the special case in which the
predicates of the applicable preferences are related by
subsumption.

Definition 17 (Predicate subsumption). Given two predi-
cates Pred1 and Pred2, Pred1 subsumes Pred2, if and only if,
8 t 2 r, Pred1½t�) Pred2½t�. In this case, we say that Pred1 is
more specific than Pred2.

For example, take the movie relation in Fig. 2 and the
profile in Fig. 3. The predicate of p4 subsumes that of
preference p3. When a tuple t satisfies predicates that one
subsumes the other, to compute a score for t, we consider
only the preferences with the most specific predicates
because these are considered specializations or refine-
ments of the more general ones. In all other cases, we use
the preference with the highest score, considering pre-
ferences to be indicators of positive interest.

Definition 18 (Tuple score). Let P be a profile, cs a context
state and t 2 r a tuple. Let P0 D P be the set of preferences
pi ¼ ðcodi, Predi, scoreiÞ such that cs 2 ContextðcodiÞ,
Predi½t� holds and : (pj ¼ ðcodj, Predj, scorejÞ 2 P0 such
that cs 2 ContextðcodjÞ, Predj½t� holds and Predj subsumes
Predi. The score of t in cs is: scoreðt,csÞ¼maxpi2P0 scorei.

For example, take context state (friends, All, All) and
preferences p3 and p4. Tuple t3 satisfies the predicates of
both preferences p3 and p4. Since the predicate of p4

subsumes the predicate of p3, t3 is assigned the score of
p4. The motivation is that p3 expresses a degree of interest
to drama movies in general, whereas p4 refines p3 by
expressing a degree of interest in drama movies directed
by Spielberg in particular. Since tuple t3 is a drama movie
directed by Spielberg, it is assigned the corresponding
score, that is, the score of p4. Now, take context state
(family, All, All) and preferences p1 and p2 whose predi-
cates are not related by subsumption. In this case, t3 is
assigned the largest between the two scores.
Definition 18 specifies how to compute the score of a
tuple under a specific context state. However, the result of
context resolution for a query Q may include more than
one context state.

Definition 19 (Aggregate tuple score). Let P be a profile,
CSDContextðPÞ be a set of context states and t 2 r a tuple.
The score of t in CS is scoreðt,CSÞ ¼maxcs2CSscoreðt,csÞ.

It is straightforward (by Definition 19) that the follow-
ing holds:

Property 3. Let cs be a context state and CS a set of context

states. If cs 2 CS, then for any t 2 r, score(t, CS) Z score(t, cs).

This means that the score of a tuple computed using a set
of context states is not less than the score of the tuple
computed using any of the context states belonging to
this set.

Our main motivation for selecting the highest among
the applicable scores is that we treat preferences as
indicators of positive interest. By using the highest score,
we may overrate a tuple in the result, potentially creating
some form of a false positive, but we never miss any
highly preferred tuple in any of the matching context
states. Other choices for aggregating the applicable scores
include taking the minimum or average score. Taking the
minimum score corresponds to a conservative approach,
where a tuple must be highly preferred in all context
states. Taking the average score is a compromise between
the potential overrating and underrating, respectively,
caused by the maximum and minimum aggregates. How-
ever, there is no direct relation between the computed
aggregated score and any of the intended scores as
expressed by the applicable preferences. Note that our
context resolution definition and the related algorithms
are orthogonal to the selection of an aggregation method.
4. Data structures and algorithms

In this section, we focus on the efficient computation
of context resolution sets. First, we consider the problem
of finding the tight cover of a single query context state.
One way to achieve this is by sequentially scanning all
context states of all preferences in P. To improve response
time and storage overheads, we consider indexing the
preferences in P based on the context states in Context(P).
To this end, we introduce two alternative data structures,
namely the preference graph and the profile tree. We show
how these structures can be used to find tight covers of a
single state and compute context resolution sets. Finally,
we present more efficient algorithms for locating tight
covers of more than one query context state.

In the following, we call score set of a context state cs

the set Wcs ¼ {(Predi, scorei) j (codi, Predi, scorei) 2 P and
cs 2 ContextðcodiÞ}, that is, the set of predicates and the
related interest scores of all preferences that include the
context state cs in their context descriptor. A context state
cs in Context(P) is an exact match of a context state csQ in
Context(Q), if cs ¼ csQ. If an exact match for csQ exists, this
is clearly the unique tight cover of csQ in Context(P).

K. Stefanidis et al. / Information Systems 36 (2011) 1158–11801166
4.1. Preference graph

The preference graph exploits the cover relation
between context states.

Definition 20 (Preference graph). The preference graph
PGP ¼ (VP, EP) of a profile P is a directed acyclic graph such
that a node v ¼ (cs, Wcs) 2 VP for each context state cs 2

Context(P) and an edge (vi, vjÞ 2 EP , if the context state of
vi is a tight cover of the context state of vj.

For example, for the movie database and the profile
with context states shown in Fig. 4, the preference graph
depicted in Fig. 5a is constructed. Note that, when there is
at least one preference with context state (All, All, . . ., All),
the graph has a single root.

The preference graph is acyclic, since the cover relation
over context states is a partial order (Theorem 1). The size of
PGP depends on the number of distinct context states in P.

Given a context state cs and a profile P, the PG_Resolu-

tion Algorithm (Algorithm 1) finds the states in Context(P)
that are tight covers of cs through a top-down traversal of
the preference graph PGP of P starting from the nodes in VP

with no incoming edges. As its result, Algorithm 1 returns
the set of nodes whose context state is a tight cover of the
input context state cs. It also returns the Hierarchy state
distance between the context state of each such node and
cs. These distances can be used to select among the tights
covers of cs those that are the most similar to cs. Search
stops at a node, if it is a leaf node or if its context state
does not cover cs. A node is included in the result only if it
is a leaf node whose context state covers cs or the context
states of all of its children do not cover cs.

For example, consider the preference graph in Fig. 5a
and the input context state csQ

¼ (family, All, Christmas).
Search starts from the root node whose context state is
cs0
¼ (All,All,All). Since cs0 covers csQ, search proceeds to

nodes with context states cs6
¼ (All, All, holidays) and cs5

¼ (family, All, All). Both these states cover csQ, so the
nodes with context states cs3

¼ (friends, All, holidays) and
Fig. 4. Context states with score sets.

Fig. 5. An instance of (a) a preferenc
cs4
¼ (family, All, holidays) are visited. Context state cs3

does not cover csQ, so search at this node stops, while cs4

covers csQ, so the node with context state cs2
¼ (family,

good, summer_holidays) is visited. Context state cs2 does
not cover csQ, and since v2 is the only child of v4, v4 with
context state cs4

¼ (family, All, holidays) is returned.

Theorem 2 (Correctness). Let PGP be the preference graph

of a profile P and Q a contextual query. If the PG_Resolution

Algorithm is applied to all context states csQ
2 Context(Q),

the context states of the nodes returned by the algorithm

constitute a context resolution set for Q.

Proof. The correctness of the algorithm is based on the
following observation. Let csv be the context state of a
node v 2 VP. Then csv is a tight cover of a context state
csQ, if and only if, csv covers csQ and (i) v is a leaf node or
(ii) v is an internal node and none of its children covers csQ.
This holds because, in both cases, there is no other context
state cs 2 Context(P) that is covered by csv and covers csQ,
since if there were one, then there should be an edge in EP

from node v to the node with context state cs. &

Let us now discuss the complexity in the case of an exact
match. Let CEX be a context environment with n context
parameters C1, C2, . . ., Cn with h1, h2, . . ., hn levels, respectively.
Let csQ be a query context state and cs0 be the context state of
a node with no incoming edges, i.e., one of the nodes from
where search for csQ starts. Let us compute the maximum
length of any search path from any cs0 to csQ. In the worst
case, all values in csQ belong to the most detailed hierarchy
levels and cs0

¼ (All, All, . . ., All). The length of a path in this
case is at most h1þh2þ � � � þhn�n. To see this, take any
edge in the search path from say a node with context state csi

to a node with context state csj. In the worst case, exactly one
value in csi is replaced in csj by a value of one of its immediate
descendants in the corresponding concept hierarchy.

Hybrid Traversal. The PG_Resolution Algorithm follows a
top-down approach, starting from the nodes with the
most general context states and moving towards nodes
with less specific context states. Alternatively, we can
follow a bottom-up approach and traverse the graph
starting from the nodes with the most specific context
states (i.e., the leaf nodes) and move up to nodes with
more general states. In this case, at each search path,
search stops when the first node whose context state
covers the query context state is met, since this is a tight
cover. Intuitively, the bottom-up traversal is expected to
outperform the top-down one for query context states
that include relatively specific values, that is, for query
e graph and (b) a profile tree.

K. Stefanidis et al. / Information Systems 36 (2011) 1158–1180 1167
context states whose values belong to the lower levels of
their corresponding concept hierarchies. Based on this
simple observation, we consider the following heuristic
for selecting the appropriate type of traversal.

We associate with each context state cs a level score ls(cs)
that corresponds to the average hierarchy level of its values.
Specifically, let cs be a context state with levels(cs) ¼
½l1,l2, . . . ,ln�, then ls(cs) ¼

Pn
i ¼ 1 li=n. For example, for the

context state cs5
¼ (family, All, All), we have lsðcs5Þ¼

ð1þ2þ3Þ=3¼2. For each preference graph, we compute a
level score lpðPGPÞ that is equal to the average level score of
its nodes. Let nG be the number of nodes of PGP, lsðPGGÞ ¼P

vi2VP
lsðcsiÞ=nG, where csi is the context state of node vi.

For example, the level score of the preference graph in Fig. 5a
is 1.67.

For each query context state csQ, we use a top-down
traversal, if lsðcsQ Þ Z lpðnGÞ, and a bottom-up traversal,
otherwise. The motivation is that if the query context state
has level score greater (resp. less) than the level score of the
graph, then the matching state of cs will probably appear
high (resp. low) in the graph. For example, for the query
context state csQ1 ¼ (family, All, holidays), with lsðcsQ1 Þ ¼

1.67, a top-down traversal is used, whereas for csQ2 ¼

(family, good, holidays) with lsðcsQ2 Þ ¼ 1.33, a bottom-up
traversal is used starting from nodes v1 and v2.

Algorithm 1. PG_Resolution Algorithm

Input: A preference graph PGP¼ (VP, EP), an input context state cs.

Output: A ResultSet of (vi, d) pairs, such that vi ¼ ðcsi ,WSiÞ 2 VP, csi is

a tight cover of cs and d ¼ distHðcsi ,csÞ.

Begin

ResultSet ¼ |;

tmpVP ¼ |;

for all nodes vi 2 VP do
if vi has no incoming edges then
tmpVP ¼ tmpVP [fvig;

end if
end for

while tmpVP not empty do

for all vi 2 tmpVP do
if csi covers cs then

if vi has no outgoing edges then

ResultSet¼ResultSet [fðvi ,distHðcsi ,csÞÞg;

else
if 8 vj s. t. (vi, vj) 2 EP , csj does not cover cs then

ResultSet¼ResultSet [fðvi ,distHðcsi ,csÞÞg;

else
for all vq s. t. (vi, vq) 2 EP and vq unmarked do

tmpVP ¼ tmpVP [fvqg;

mark vq;

end for
end if

end if
end if

tmpVP ¼ tmpVP�fvig;

end for
end while
End

4.2. Profile tree

Let CEX be a context environment with n context
parameters Ci, 1 r i r n. We say that a value c 2

domðCiÞ appears in a context state cs ¼ ðc1, c2, . . ., ci, . . ., cn),
if ci ¼ c. The profile tree explores any common prefixes of
context states in the profile, where the length k prefix of
ðc1, c2,y,cky, cn) is ðc1, c2,y,ck). In particular, a profile
tree has nþ1 levels. Each one of the first n levels
corresponds to one of the context parameters. We use
Cti

to denote the parameter mapped to level i, ti 2 f1,2, . . .,
n}. The last level, level nþ1, includes the leaf nodes.

Definition 21 (Profile tree). Let CEX¼ fC1,C2, . . . ,Cng be a
context environment with n context parameters. The
profile tree TP of a profile P is a tree with nþ1 levels
constructed as follows.
(i)
 Each internal node at level k, 1 r k r n, contains a
set of cells of the form ½val,pt� where val 2 domðCtk

)
and pt is a pointer to a node at the next tree level, i.e.,
level kþ1.
(ii)
 Each leaf node at level nþ1 contains a score set.

(iii)
 At the first level of the tree, there is a single root node

that contains a ½c,p� cell for each value c 2 domðCt1
Þ

that appears in a context state cs 2 context(P).

(iii)
 At level k, 1okrn, there is one node, say node vo, for

each ½co,po� cell of each node at level k�1. Node vo

includes a ½c,p� entry for each value c 2 Ctk
that

appears in a context state cs such that cs 2 Context(P)
and co also appears in cs. The corresponding pointer
po points to vo.
(iv)
 There is a leaf node, say node vl for each ½c,p� cell of a
node at level n. Pointer p points to this leaf node. Let
cs ¼ (ct1

, ct2
, . . . ,ctn) be the context formed by the

values of the cells on the path from the root node to
vl. The leaf node vl contains the score set Wcs of the
context state cs ¼ (c1, c2, . . ., cn).
For example, for the movie database, and the profile
with context states shown in Fig. 4, the profile tree
depicted in Fig. 5b is constructed. Note that there is
exactly one root-to-leaf path for each context state cs in
Context(P). For example, the context state (friends, good,
summer_holidays) corresponds to the path from the root
to the left-most leaf node. Each leaf node maintains the
score set of its corresponding context state.

The size of the profile tree TP of a profile P depends on
the number of common prefixes of the context states in
Context(P). It also depends on the assignments of context
parameters to tree levels. Let mi, 1r irn, be the cardin-
ality of the domain of parameter Cti

, that is, of the
parameter assigned to tree level i. The maximum number
of cells is m1 � ð1þm2 � ð1þ � � � ð1þmnÞÞÞ. This number is
as small as possible when m1rm2r � � �rmn, thus, in
general, it is better to place context parameters that have
domains with small cardinalities in the upper levels of the
profile tree.

Given a context state cs and a profile P, the PT_Resolu-

tion Algorithm (Algorithm 2) finds the context states in
Context(P) that cover cs through a top-down breadth-first
traversal of the profile tree TP. At each level i, Algorithm 2
maintains all paths of length i whose context state is
either the same or covers the prefix ðct1

,ct2
,y,cti

Þ of the
input context state. For each candidate path, its Hierarchy
state distance from the corresponding prefix of cs is also
maintained. Algorithm 2 returns as its result the score

K. Stefanidis et al. / Information Systems 36 (2011) 1158–11801168
sets of the leaf nodes at level n þ 1 and the Hierarchy
state distances of the corresponding context states
from cs.

For example, for the profile tree of Fig. 5b and input
context state csQ

¼ (family, All, Christmas), we start from
the root node and follow the pointers of the cells contain-
ing the values family and All (i.e., the same or ancestor
values of family) to nodes v3 and v4, respectively. At the
next level (level 2), we follow the pointer associated with
value All, from node v3 to node v8 and from node v4 to
node v9. At the next level (level 3), we follow the pointers
associated with values holidays and All at both nodes v8

and v9 that lead to leaf nodes with score sets Wcs4 , Wcs5

and Wcs6 , Wcs0 , respectively. Thus, the score sets of context
states cs0, cs4, cs5 and cs6 are returned, which are the
context states in P that cover csQ.

Lemma 2. Let TP be the profile tree of a profile P and csQ a

context state. The PT_Resolution Algorithm with input TP and

csQ returns the set of score sets that correspond to the set of

context states CR such that CR D Context(P) and cs 2 CR if

and only if cs covers csQ.

Proof. Let cs ¼ (c1, c2,y,cn) 2 CR. For each i, 1 r i r n,
from the way the paths are formed, we have either ci ¼ cQ

i

or ci ¼ ancLl

Lk
ðcQ

i Þ, for some levels Lk ! Ll. Thus, from
Definition 9, if cs 2 CR, then cs covers cQ. Assume now for
the purpose of contradiction that there is a cs 2 Context(P)
such that cs covers csQ but cs =2 CR. Since cs covers csQ, then
8 i, 1 r i r n, ci ¼ cQ

i or ci ¼ ancLl

Lk
ðcQ

i Þ. Then, at each level
i, the corresponding value should have been included as a
candidate path and cs should have been in CR. &

Algorithm 2. PT_Resolution Algorithm

Input: A profile tree TP, an input context state cs ¼ (c1, c2 . . . cn).

Output: A ResultSet of (Wcsi
, d) pairs such Wcsi

is the score set of a

leaf node in TP whose context state csi covers cs and d ¼ distHðcsi ,csÞ.

SN, SN0: sets of (v, d) pairs, where v is a tree node and d a distance

value.

Initially: SN¼ fðRP ,0Þg, where RP is the root of TP. SN0 ¼ |
ancðc0 ,cÞ returns true if value c0 is an ancestor of value c

lev(c): the level of context value c

p:next: the node pointer p points to

Begin
for level i¼1 to n do

for all pairs (v, d) 2 SN do
for all cells (y, p) of node v do

if y¼ ¼ cti
or ðancðy,cti

ÞÞ then

if ion then

SN0 ¼ SN0[{(p:next, d þ distLðlevðcÞ,levðyÞÞ};

else if i¼n then
W ¼ p:next;

ResultSet¼ResultSet [fðW ,dÞg;

end if
end if
endfor

end for

SN¼ SN0;

SN0 ¼ |;

end for
end

To compute the tight covers of each query context
state csQ, csQ

2 Context(Q), we sort all returned context
states for csQ on the basis of their Hierarchy state distance
from csQ and select the one with the minimum such
distance. If there are more than one such state, we select
the context state with the smallest Jaccard state distance
from csQ. If there are still ties, we select one of them at
random. We call this algorithm, PT_Resolution Algorithm

with Sorting.
For instance, for the covering context states of csQ

¼

(family, All, Christmas), computed by the PT_Resolution

Algorithm in our previous example, the following holds:
distH ðcsQ ,cs0Þ¼3, distHðcsQ ,cs4Þ ¼ 1, distHðcsQ ,cs5Þ ¼ 2 and
distHðcsQ ,cs6Þ ¼ 2. Thus, context state cs4

¼ (family, All,
holidays) is selected as the tight cover of csQ.

Theorem 3 (Correctness). Let TP be the preference graph of

a profile P and Q a contextual query. If the PT_Resolution

Algorithm with Sorting is applied to all context states csQ
2

Context(Q), the score sets returned by the algorithm corre-

spond to context states that constitute a context resolution

set for Q.

Proof. Let cs1 be a context state returned by the algo-
rithm. For the purpose of contradiction, let us assume that
cs1 is not a tight cover of any query context state csQ. From
Lemma 2, cs1 covers csQ. Since cs1 is not a tight cover of
csQ, there exists another context state cs2, cs2 a cs1, such
that cs2

2 Context(P), cs2 covers csQ and cs2 covers cs1.
From Property 1,

distHðcs1cQ Þ4distHðcs2,cQ Þ ð1Þ

From Lemma 2, since cs2 covers csQ, cs2 is returned by the
PT_Resolution Algorithm. From (1), cs2 should have been
the context state returned after sorting, which contradicts
our assumption that cs1 is returned. &

Let csQ be a query context state. Let us now consider
the complexity of the algorithm. Assume that each con-
text parameter Cti

, ti 2 {1, 2,y,n}, has hti
hierarchy levels

and that there are valðCti
Þ distinct values in the profile. In

the case of an exact match, i.e., that is, if there is a context
state cs in Profile(P), such that, cs ¼ csQ, then we can use
the profile tree to locate this state very efficiently. At each
level i, we search for value cti

and descend to the next
level, following the corresponding pointer. Thus, there is
just a single candidate path. At each level i, we just visit
one node, search for the cell with value cti

in it and follow
the corresponding pointer. Thus, we visit as many nodes
as the height of the profile tree. At each level i, we need to
search at most valðCti

Þ cells. Note that this can be
improved, if we keep the values in the cells of each node
sorted. Then, we can use binary search for locating the
value cti

in the corresponding node. For the general case of
looking for all covers, for each value cti

, we need to
consider also its ancestors in the concept hierarchy. Thus,
the number of cells that are considered for each query
context state is at most valðCt1

ÞþvalðCt2
Þ� ht1

þvalðCt3
Þ �

ht2
� ht1

þ � � � þvalðCtn Þ � htn�1 � � � �� ht1
.

Enhanced Profile Tree. We present several improve-
ments of context resolution using the profile tree. For
notational simplicity, assume that each parameter Ci is
mapped to level i, that is, ti ¼ i, 8 1 r i r n. Let csQ

¼

(cQ
1 , cQ

2 ,y,cQ
i , cQ

iþ1,y., cQ
n) be a query context state.

K. Stefanidis et al. / Information Systems 36 (2011) 1158–1180 1169
The first improvement is with regards to the test at the
last internal level, i.e., level n. In this case, for the
corresponding value, i.e., cQ

n , instead of considering all
values in the tree node that are equal to or more general
than cQ

n , we select the most specific among them, i.e, the
value that corresponds to the lower hierarchy level. For
instance, for our example query, csq

¼ (family, All, Christ-

mas), at the last level, we select holidays and discard All.
Now, the returned context states are cs4 and cs6. This
improvement uses the fact that the context state formed
using the most specific value is a tight cover of all other
context states that would be formed by including less
specific values.

The second improvement is applicable to the case of
selecting just the most similar tight cover. In this case, we
can reduce further the number of candidate paths main-
tained. In particular, we can prune those paths under
construction for which there is at least another sub-path
that has smaller distance to the one searched, indepen-
dently of the rest of the values of the path. Assume that at
level i of the tree, we have two candidate sub-paths with

values sp1
¼ ðsp1

1, . . . ,sp1
i Þ and sp2

¼ ðsp2
1, . . . ,sp2

i Þ. If for the

Hierarchy state distances between the states cs1
¼

ðsp1
1, . . . ,sp1

i ,ciþ1, . . . ,cnÞ and cs2
¼ ðsp2

1, . . . ,sp2
i ,All, . . . ,AllÞ

and the query context state csQ, it holds that distHðcs1,csQ Þ

4 distðcs2,csQ Þ, then we can safely prune sub-path sp1.
The reason is that, even if, for the rest of the values of sp1,
we could find in the tree values equal to that of the query
(best case scenario), its distance from the context query
state would still be greater than that of sp2 even if we
could not find anything better than All for the remaining
values of sp2 (worst case scenario).

Finally, to speed up context resolution, we add cross
edges, called hierarchical pointers, among context values
that belong to a specific node. In particular, we link each
value with its first ancestor that exists in the node, that is,
the value that belongs to the first upper level of the
corresponding hierarchy. For instance, for the profile tree
of Fig. 5b, we add cross edges from good to All at level
mood and edges from holidays to All at level time period.
The values within each node are sorted according to the
hierarchy level to which they belong. Now, instead of
searching within each node for the more general values of
each context value, we just follow the hierarchical poin-
ters of the tree to locate them.
4.3. Resolution for multiple context states

In the previous sections, we have used the preference
graph and the profile tree to locate tight covers of each
context state csQ

2 Context(Q) individually. In this section, we
propose algorithms for locating tight covers of more than
one query context state. The idea is to use a representation
corresponding to a preference graph or profile tree for
Context(Q). The only difference is that there are no score sets.
4.3.1. Using the preference graph

Let us consider first a preference graph based repre-
sentation of Context(Q).
Definition 22 (Query graph). The query graph GQ ¼

ðVQ ,PQ Þ of a contextual query Q is a directed acyclic graph
with a node v 2 VQ for each context state cs 2 Context(Q)
and an edge ðvi,vjÞ 2 PQ, if the context state of vi is a tight
cover of the context state of vj.

Our approach is based on the following observation.

Lemma 3. Let P be a profile and cs1 and cs2 be two context

states such that cs1 covers cs2. Let csz
2 Context(P) be a tight

cover of cs1 in P and let z be the corresponding node in the

preference graph PGP of P. Then, none of the predecessors

of z in PGP corresponds to a context state that is a tight cover

of cs2.

Proof. For the purpose of contradiction, assume that
there is a node v with context state csv in PGP such that
v is a predecessor of z and its context state csv is a tight
cover of cs2. Since v is a predecessor of z, csv covers csz (1).
Since csz covers cs1 and cs1 covers cs2, csz covers cs2 (2).
From (1), (2), csv cannot be a tight cover of cs2. &

We use Lemma 3 as follows. Let csQ be a query context
state of a node in GQ with no incoming edge. We form a
set SðcsQ Þ � Context(Q) with the context states that csQ

covers. Assume that we use the PG_Resolution Algorithm to
locate a tight cover of csQ in P, say the context state of
node v. Then, when looking for tight covers for the
context states in SðcsQ Þ, we can ignore all predecessors
of v in PGP. We use the query graph GQ to compute SðcsQ Þ.
From the definition of the query graph, a context state cs 2

SðcsQ Þ, if and only if, there exists a path in GQ from
the node with context state csQ to the node with context
state cs.

We further improve the above procedure by proces-
sing nodes in SðcsQ Þ gradually as follows. We first locate
all context states in Context(Q) that are tight covers of csQ

(these are the context states for which there is an edge in
GQ from the node that corresponds to context state csQ to
their corresponding node). Let cs be such a context state.
We use the PG_Resolution Algorithm to locate a tight cover
of cs excluding the predecessors of the tight covers of csQ.
Then, we proceed similarly for cs. That is, we find all tight
covers of cs and use the PG_Resolution Algorithm to locate
a tight cover for them excluding the predecessors of the
tight covers of cs. This procedure repeats until we locate
tight covers of all context states in Context(P). We call this
algorithm, QG_Resolution Algorithm.

4.3.2. Using the profile tree

The context states in Context(Q) are represented by a
data structure similar to the profile tree, that we call query

tree. The only difference is that the leaf nodes are empty;
there is no score set associated with the root-to-leaf
paths. The mapping of the context parameters to the
levels of the query tree is the same with the mapping of
context parameters to the levels of the profile tree. For
simplicity, assume that 8 i, 1 r i r n, context parameter
Ci is mapped to level i of both the profile and the
query tree.

The QT_Resolution Algorithm (Algorithm 3) processes
pairs of nodes that belong to the same level, i.e., values

K. Stefanidis et al. / Information Systems 36 (2011) 1158–11801170
that belong to the same context parameter. Each pair
consists of a node of the query tree and a node of the
profile tree. Initially, there is one pair of nodes, (RQ, RP, 0),
where RQ and RP are the root nodes of the query and the
profile tree, respectively, (level i¼1). For each value in any
cell of the query node RQ that is equal to a value in any cell
of the profile node RP or belongs to a lower hierarchy
level, we create a new pair of nodes at the next level
(iþ1). After checking all values of all pairs at a specific
level, we examine the pairs of nodes created for the
immediately next level and so on. At level nþ1, we
retrieve from the profile tree the associated score set.
Observe that the QT_Resolution Algorithm tests for all
query states in a single pass of the profile tree.

Algorithm 3. QT_Resolution Algorithm

Input: A profile tree TP, a query tree TQ

Output: A ResultSet of ðWcs ,dÞ pairs such that Wcs is the score set of a

leaf node in TP whose context state cs covers at least one context

state csQ in Context(Q) and d ¼ distHðcs,csQ Þ.

SN, SN0 sets of ðvq ,vp ,dÞ tuples, where vq is a node in TQ, vp is a node

in TP and d a distance value.

Initially: SN¼ fðRQ ,RP ,0Þg, where RQ, RP are the root nodes of TQ and

TP, respectively. SN0 ¼ |
ancðc0 ,cÞ, lev(c), p:next as in Algorithm 2

Begin
for level i¼1 to n do

for all tuples ðvq ,vq ,dÞ 2 SN do

for all cells (x, pq) of node vq do
for all cells (y, pp) of node vqdo

if x¼ ¼ y or ðancðy,xÞÞ then

if ion then

SN0 ¼ SN0 [{(pq:next, pp:next, dþdistLðlevðxÞ,levðyÞÞÞg;

else if i¼n then
W ¼ pp :next;

ResultSet¼ResultSet [fðW ,dÞg;

end if
end if

end for
end for

SN¼ SN0;

SN0 ¼ |;

end for
End

Lemma 4. Let TP be the profile tree of a profile P and TQ the

query tree of a query Q. The QT_Resolution Algorithm returns

the set of score sets that correspond to the set of context

states CR such that CR D Context(P) and (i) cs 2 CR, if and

only if, cs covers csQ, csQ
2 Context(Q) and (ii) 8 csQ

2

Context(Q) (cs 2 CR, such that cs covers csQ.

Proof. As in Lemma 2, the proof follows from the fact that
all pairs of values of the corresponding context para-
meters are considered by the algorithm. &

5. Usability evaluation

The goal of our usability study is to justify the use of
contextual preferences. In particular, the objective is to
show that, for a reasonable effort of specifying contextual
preferences, users get more satisfying results than when
there are no preferences or when the available prefer-
ences do not depend on context.
We used two databases of different sizes: (a) a rela-
tively small point-of-interest database and (b) a relatively
large movie database. The point-of-interest database
consists of nearly 1000 real points-of-interest of the two
largest cities in Greece, namely, Athens and Thessaloniki.
The context parameters are accompanying_people, time_-
period and user_location. For the movie database, our data
comes from the Stanford Movie Database [16] with
information about 12 000 movies. The context parameters
are accompanying_people, mood and time_period. Note that
the context parameters are the same as those used in our
running examples with the exception of time_period used
in place of weather in the point-of-interest database.

The sizes of the databases have two important impli-
cations for usability. First, they affect the size of the
profile, i.e., the number of preferences. Second, they
require different methods for evaluating the quality of
results. Specifically, while for the small point-of-interest
database, we can ask users to manually provide the best
results, for the large movie database, we need to use other
metrics [17].

We conducted an empirical evaluation of our approach
with 20 users; 10 different users were used for each of the
two databases. For all users, it was the first time that they
used the system. We evaluated our approach along two
lines: overhead of profile specification and quality of
results.

5.1. Profile specification

To ease the specification of preferences, we created a
number of default profiles for each database based on
three characteristics: (a) age (below 30, between 30 and
50, above 50), (b) sex (male or female) and (c) taste
(broadly categorized as mainstream or out-of-the-beaten
track). For each of the 12 possible combinations of the
values of the above characteristics, we created one profile
with contextual-preferences and one profile with non-
contextual preferences, i.e., preferences that hold inde-
pendently of the values of the context parameters. One
contextual and one non-contextual profiles were pre-
assigned to each user based on his/her age, sex and
taste. Users were allowed to modify the default profiles
assigned to them by adding, deleting or updating
preferences.

We counted the number of modifications (insertions,
deletions, updates) of preferences of the default profile.
We also reported how long (in minutes) it took users to
specify/modify their profile. Since for all users this was
their first experience with the system, the reported time
includes the time it took the user to get accustomed with
the system. These results are reported in Table 1 for
points-of-interest and Table 2 for movies, while Table 3
summarizes them. For the point-of-interest database,
each default non-contextual profile has about 100 pre-
ferences, while each default contextual profile nearly 650
preferences, while for the movie database, the sizes are
120 and 1100, respectively.

The general impression is that predefined profiles save
time in specifying user preferences. Furthermore, having
default profiles makes it easier for someone to understand

Table 1
Point-of-interest dataset: overhead of profile specification per user.

Profiles User 1
(%)

User 2
(%)

User 3
(%)

User 4
(%)

User 5
(%)

User 6
(%)

User 7
(%)

User 8
(%)

User 9
(%)

User 10
(%)

Non-contextual profile
Number of updates 15 14 8 11 15 16 19 12 10 10

Update time (min) 13 8 5 6 6 9 16 7 9 8

Contextual profile
Number of updates 22 31 12 28 24 32 38 13 18 25

Update time (min) 30 45 20 30 30 40 45 15 20 25

Table 2
Movie dataset: overhead of profile specification per user.

Profiles User 1
(%)

User 2
(%)

User 3
(%)

User 4
(%)

User 5
(%)

User 6
(%)

User 7
(%)

User 8
(%)

User 9
(%)

User 10
(%)

Non-contextual profile
Number of updates 37 14 29 10 22 31 29 15 17 12

Update time (min) 18 7 14 6 9 19 16 6 8 8

Contextual profile
Number of updates 67 49 52 91 37 72 69 41 46 37

Update time (min) 32 28 28 55 17 44 36 22 27 46

Table 3
Average profile specification overhead.

Profiles Point-of-interest
dataset

Movie
dataset

Non-contextual profile
Number of updates 13 21.6

Update time (min) 8.7 11.1

Contextual profile
Number of updates 24.3 56.1

Update time (min) 30 33.5

K. Stefanidis et al. / Information Systems 36 (2011) 1158–1180 1171
the main idea behind the system, since the preferences in
the profile act as examples. With regards to time, there
was deviation among the time users spent on specifying
profiles: some users were more meticulous than others,
spending more time in adjusting the profiles assigned to
them. As expected, the specification of contextual profiles
is more time-consuming than the specification of non-
contextual ones, since such profiles have a larger number
of preferences and are more fine-grained. The size of the
database also affects the complexity of profile specifica-
tion basically by increasing the number of preferences
and thus, the required modifications. However, the
increase in the total time spent is not necessarily propor-
tional to the number of modifications, since this time, as
explained, also includes the time to get acquainted with
the system (Table 3).

5.2. Quality of results

In this set of experiments, our goal is to evaluate the
quality of the results of contextual queries. Queries
were executed: (i) without using any of the preferences,
(ii) using the non-contextual preferences and (iii) using
the contextual preferences. When using contextual pre-
ferences, we consider queries for which: (iii-a) there is an
exact match, (iii-b) there is no exact match and the most
similar (top-1) tight cover is used and (iii-c) there is no
exact match and the three most similar (top-3) tight
covers are used. For computing similarity, we used the
Hierarchy state distance, to resolve ties, the Jaccard state
distance and if there were still ties, random selection.

We asked the users to evaluate the quality of the
results. Since the point-of-interest database has a small
number of tuples, we asked the users to rank the results
of each contextual query manually. Then, we compare the
ranking specified by the users with what was recom-
mended by the system. We report the percentage of the
top-20 results computed by the system that also belonged
to the top-20 results given by the user, or precision(20).
As shown in Table 4, this percentage is generally high.
However, sometimes the choices of the user did not
conform even to their own preferences as shown in the
case of queries with an exact match. In this case, although
the context state of the preference used was an exact
match of the context state of the query, still some users
ranked their results differently than what the related
preference indicated. Note that in general, users who
customized their profile by making more modifications
(e.g., User 6 in Table 1) got more satisfactory results than
those that spent less time during profile specification (e.g.,
User 3 in Table 1). Exact match queries provide the best
results, while non-exact match ones provide only slightly
worse results. That is, if there are no preferences whose
context state is equal to that of the query, preferences
whose context state is a tight cover can be used. Further-
more, for such non-exact match cases, using just the most
similar (top-1) tight cover provides slightly better results
than using more (top-3) similar tight covers. Since using
just one cover is also more efficient, this seems to be the
best choice for a context resolution set.

For the movie database, due to the large number of
tuples, it was not possible for the users to manually rank

Table 5
Movie dataset: quality of results per user.

Personalization method User 1
(%)

User 2
(%)

User 3
(%)

User 4
(%)

User 5
(%)

User 6
(%)

User 7
(%)

User 8
(%)

User 9
(%)

User 10
(%)

No preferences
Precision(20) 25 20 35 35 20 30 20 35 15 30

Highly preferred movies 10 0 10 15 15 10 10 20 15 5

Overall score 3 3 3 2 4 3 3 3 2 1

Non-contextual preferences
Precision(20) 20 30 40 60 60 60 35 30 40 25

Highly preferred movies 0 5 25 20 30 35 20 15 25 15

Overall score 2 3 4 6 6 6 4 3 4 2

Contextual preferences
Exact match

Precision(20) 75 85 75 65 85 70 85 85 90 85

Highly preferred movies 70 70 75 60 65 70 75 75 85 70

Overall score 8 9 8 8 7 8 8 8 9 9

Non-exact match
Top-1 tight cover

Precision(20) 75 85 65 55 65 65 70 85 85 70

Highly preferred

movies

50 70 60 45 40 60 65 60 75 55

Overall score 6 9 7 7 6 8 8 8 8 7

Top-3 tight covers

Precision(20) 65 75 60 55 65 60 70 85 85 70

Highly preferred

movies

45 65 55 50 45 40 55 55 70 50

Overall score 6 8 7 7 6 6 7 8 8 7

Table 4
Point-of-interest dataset: quality of results per user.

Personalization
method

User 1
(%)

User 2
(%)

User 3
(%)

User 4
(%)

User 5
(%)

User 6
(%)

User 7
(%)

User 8
(%)

User 9
(%)

User 10
(%)

No preferences 10 0 0 0 0 10 5 0 0 5

Non-contextual
preferences

10 10 0 5 5 10 15 5 5 5

Contextual preferences
Exact match 100 90 90 95 90 100 100 85 100 100

Non-exact match
Top-1 tight cover 100 95 90 85 90 100 100 85 90 100

Top-3 tight covers 95 90 85 95 95 90 100 75 85 95

K. Stefanidis et al. / Information Systems 36 (2011) 1158–11801172
all results. Instead, users were asked to evaluate the
quality of the 20 higher ranked movies in the result.
For characterizing the quality of the results, users marked
each of the 20 movies with 1 or 0, indicating whether they
considered that the movie should belong to the best 20
ones or not, respectively. The number of 1 s corresponds
to the precision of the top-20 movies, or precision(20).
Furthermore, users were asked to give a specific numer-
ical interest score between 1 and 10 to each of the 20
movies. This score was in the range [1, 5], if the previous
relevance indicator was 0 and in the range [6, 10],
otherwise. We report the number of movies that were
rated highly (interest score Z 7). Finally, users were
asked to provide an overall score in the range [1, 10] to
indicate their degree of satisfaction of the overall result
set. Table 5 depicts the detailed per user scores attained
for the movie database. Again, our results show that using
contextual preferences improves quality considerably.

When compared to the point-of-interest database
(Table 6), precision is lower. One reason for that is the
following. In the movie database, the users were not
aware of the whole result set; they were just presented
with the top 20 movies in the result. Thus, they ‘‘left
room’’ in their choices for better results that could be
lying in the dataset that was not presented to them.

6. Performance evaluation of preference selection

In the section, we present an experimental evaluation
of preference selection using the proposed data struc-
tures, namely the preference graph, the profile tree and
their enhancements. We used both real and synthetic
profiles. As real profiles, we used the ones specified by the
users in our usability study for the movie and the point-
of-interest databases.

We have generated synthetic profiles with various
characteristics and sizes. We consider preferences with
2, 3 and 4 context parameters. Context parameters have
domains with different cardinalities, namely, a small
domain with 10 values, a medium domain with 100
values and a large domain with 1000 values. Small and
medium domains correspond to context parameters such

Table 7
Input parameters for synthetic profiles.

Parameter Range Default

Number of contextual preferences 500–10 000 5000

Number of context parameters 2, 3, 4 3

Data distribution uniform, zipf

a ¼ 0 �2 a ¼ 1

Cardinality of context domains 10, 100, 1000

Hierarchy levels 2–8 4

Perc. of values at the detailed level 75–25 75

Perc. of values at the other levels 25–75 25

Table 6
Average quality of results.

Personalization method Point-of-interest
dataset

Movie dataset

Precision
(20) (%)

Precision
(20) (%)

Highly preferred
movies (%)

Overall
score

No preferences 3 26.5 11 2.7

Non-contextual preferences 7 40 19 4

Contextual Preferences
Exact match 95 80 71.5 8.2

Non-exact match
Top-1 tight cover 93.5 72 58 7.4

Top-3 tight covers 90.5 69 53 7

K. Stefanidis et al. / Information Systems 36 (2011) 1158–1180 1173
as mood or accompanying_people, whereas larger domains
to parameters such as user_location or time_period.
We also consider hierarchies with anywhere between 2
and 8 levels and different distributions of the domain
values among the levels. Since the preference graph and
the profile tree take advantage of co-occurrences of
context states and prefixes of context states, respectively,
their size depends on the distribution of context values in
the context states that appear in the profile. To populate a
profile with context states, we consider for the context
values both a uniform and a zipf data distribution with
different values of a. The context states for the queries are
generated similarly. Table 7 summarizes the parameters
used for creating the synthetic profiles.

We report results regarding (a) the size of the corre-
sponding data structures and (b) the complexity of
preference selection using the proposed data structures.
The results are averaged over 50 executions.

6.1. Storage

In this set of experiments, we evaluate the space
requirements (in number of cells) for storing context
states using the profile tree and the preference graph as
opposed to storing them sequentially (no index). For the
profile tree, this depends on the mapping of context
parameters to tree levels. Thus, we created profile trees
for all possible mappings of context parameters to levels
of the trees.

Synthetic data. First, we consider profiles of different
sizes, that is, with different numbers of contextual
preferences. We created a profile tree for all six different
mappings of parameters to tree levels. Let S stand for
the small, M for the medium and L for the large domain.
We use (S,M,L) to denote the mapping in which S is
assigned to the first level of the tree, M to the second and
L to the third one. Similarly, we use (S,L,M), (M,S,L),
(M,L,S), (L,S,M) and (L,M,S) to denote the remaining
mappings. The mapping of parameters with large
domains lower in the tree results in smaller trees as
expected (Figs. 6a,b). In the following experiments, we use
this mapping for the profile tree, unless specified otherwise.
For a zipf distribution with a¼1 (Fig. 6a), for both the profile
tree and the preference graph, the total number of cells is
smaller than that for the uniform distribution (Fig. 6b),
because ‘‘hot’’ values appear more frequently in preferences,
i.e., more preferences have overlapping context states. Over-
all, the profile tree is smaller than the preference graph,
since it takes advantage of repetitions of prefixes of context
states, whereas the preference graph considers repetitions
only of whole context states.

We also keep the size of the profile fixed to its default
value and vary the values of the other parameters.
In Fig. 7a, we present results for various values of a; the
larger the value of a, the larger the difference between the
size of the profile tree and the preference graph, since a
larger number of overlapping prefixes is created. Fig. 7b
depicts our results for profiles with different numbers of
context parameters, specifically for 2 parameters with an
M and an L domain, for three parameters and an S, M and
an L domain and for four parameters with an S, M, M and
an L domain. As expected, the size of the data structures
increases with the number of the context parameters,
since the number of overlapping context state and
prefixes reduces. Note that the size of the data structures
does not depend on the assignments of context values to
hierarchy levels or the number of hierarchy levels.

Real data. For the movie database, let A stand for
accompanying_people, M for mood and T for time_period.
As before, we use (A,M,T), (A,T ,M), (M,A,T), (M,T ,A),
(T,A,M) and (T ,M,A) for the possible mappings of para-
meters to tree levels. Accordingly, for the point-of-inter-
est database, let A stand for accompanying_people, T for
time_period and L for user_location. Then, (A, T, L), (A, L, T),
(T, A, L), (T, L, A), (L, A, T) and (L, T, A) denote the different
mappings of parameters to tree levels. As shown in Fig. 8,
both the preference graph and the profile require less
space than storing preferences sequentially, since each

 0

 5

 10

 15

 20

 25

 30

0 2 4 6 8 10 0 2 4 6 8 10

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Number of context states (in thousands)

(S,M,L)
(S,L,M)
(M,S,L)
(M,L,S)
(L,S,M)
(L,M,S)

graph
no index

 0

 5

 10

 15

 20

 25

 30

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Number of context states (in thousands)

(S,M,L)
(S,L,M)
(M,S,L)
(M,L,S)
(L,S,M)
(L,M,S)

graph
no index

Fig. 6. Size for synthetic profiles of different sizes with (a) uniform and (b) zipf with a ¼ 1 data distributions.

 0

 5

 10

 15

 20

0 0.5 1 1.5 2

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Paramater a

(S,M,L)
graph

no index

 0

 5

 10

 15

 20

 25

432

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Number of context parameters

tree
graph

no index

Fig. 7. Size for synthetic profiles generated with different (a) a values and (b) numbers of context parameters.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

(T,
M,A

),(
L,T

,A
)

(T,
A,M

),(
L,A

,T)

(M
,T,

A),(
T,L

,A
)

(M
,A

,T),(
T,A

,L)

(A
,T,

M),(
A,L,

T)

(A
,M

,T),(
A,T,

L)
gra

ph

no
 in

de
x

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s) Movie

Point-of-Interest

Fig. 8. Size for the case of real profiles.

K. Stefanidis et al. / Information Systems 36 (2011) 1158–11801174
context state and, respectively, prefix is stored only once.
For the profile tree, the mappings that result in trees with
smallest sizes are, as expected, the ones that map the
context parameters with large domains to levels lower in
the tree, namely, mappings (A, M, T) and (M, A, T) for the
movie database and mappings (A, T, L) and (T, A, L) for the

K. Stefanidis et al. / Information Systems 36 (2011) 1158–1180 1175
point-of-interest database. However, all trees occupy less
space than storing preferences sequentially.

6.2. Preference selection

In this set of experiments, we evaluate the perfor-
mance of preference selection (in term of cell accesses).
This depends on whether there is a context state in the
profile that is exactly the same as the query context state.
Thus, we study these two cases (i.e., exact and non-exact
match) separately. In the case of sequential scan (i.e., no
index), for exact matches, the profile is scanned until the
matching context state is found, while for non-exact
matches, the whole profile is scanned. With the profile
tree, exact match queries are resolved by a simple root-to-
leaf traversal, while for non-exact matches, multiple
candidate paths are maintained.

We consider first a single query context state.
We evaluate the performance of preference selection for
different profile sizes (Figs. 9a,b). Observe that the profile
tree returns covering context states, thus, to compute
tight covers, the extra step of sorting these context states
based on their distances to the query context state is
 0

 1

 2

 3

 4

 5

 6

 7

0 1 2 3 4 5 6 7 8

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Number of context states in profile (in thousands)

0 1 2 3 4
Number of context states in

profile tree
enhanced tree

preference graph
no index

 0

 2

 4

 6

 8

 10

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

top-down
bottom-up
combined

Fig. 9. Cell accesses for locating preferences related to queries using the profil

index is used, for synthetic profiles for (a) exact match and (b) non-exact matc

case of the preference graph for non-exact match (results for exact match are
required. The cost of sorting is not reported in these
experiments. Note that sorting is only required in the
case of non-exact matches. In general, excluding sorting,
the profile tree is more efficient than the preference
graph. The preference graph performs similarly for both
exact and non-exact matches. In Fig. 9c, we also evaluate
the heuristic for the preference graph. In particular, we
compare the top-down, bottom-up and hybrid traversal.
Overall, the bottom-up approach requires more cell
accesses than the top-down approach, since in general,
there are more nodes at the lower levels than in the upper
ones. In the following, we use the enhanced profile tree
and the hybrid traversal for the preference graph.

Besides the profile size, we also consider how the other
parameters affect the performance. In Fig. 10, we consider
a zipf distribution with different a values for exact
(Fig. 10a) and non-exact (Fig. 10b) matches. Larger a

values result in fewer cell accesses, since the resulting
data structures are smaller. Fig. 11 reports results when
different percentages of context values are assigned to
hierarchy levels; the larger the number of values at
the higher levels, the smaller the number of cell accesses.
The reason is that, in this case, for the preference graph,
0 1 2 3 4 5 6 7 8
Number of context states in profile (in thousands)

5 6 7 8
 profile (in thousands)

 0

 1

 2

 3

 4

 5

 6

 7

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

profile tree
enhanced tree

preference graph
no index

e tree, the enhanced profile tree and the preference graph, and when no

h and (c) for the top-down, bottom-up and the heuristic approach in the

similar for the graph).

 0

 2

 4

 6

 8

 10

0 0.5 1 1.5 2

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Parameter a

enhanced tree
heuristic graph

no index

enhanced tree
heuristic graph

no index

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

0 0.5 1 1.5 2

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Parameter a

Fig. 10. Cell accesses for locating preferences related to queries for synthetic profiles generated with different a values for (a) exact match and

(b) non-exact match.

 0

 2

 4

 6

 8

 10

75-2550-5025-75

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Percentage of context values at the
detailed and the other levels

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

75-2550-5025-75

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Percentage of context values at the
detailed and the other levels

enhanced tree
heuristic graph

no index

enhanced tree
heuristic graph

no index

Fig. 11. Cell accesses for finding preferences related to queries for synthetic profiles having different percentages of context values between the detailed

and the other hierarchy levels for (a) exact match and (b) non-exact match.

 0

 2

 4

 6

 8

 10

432

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Number of context parameters

enhanced tree
heuristic graph

no index

enhanced tree
heuristic graph

no index

 0

 5

 10

 15

 20

432

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Number of context parameters

Fig. 12. Cell accesses for locating preferences related to queries for synthetic profiles with different numbers of context parameters for (a) exact match

and (b) non-exact match.

K. Stefanidis et al. / Information Systems 36 (2011) 1158–11801176
context resolution stops at higher levels and for the
profile tree, there are less covering context states and
thus candidate paths. Fig. 12 shows results for profiles
with different numbers of context parameters. We use
profiles with 2, 3 and 4 context parameters with domains
as in Fig. 7b. The number of cell accesses increases as the
number of context parameters increases, mainly, because
the size of the data structures increases. The number of
hierarchy levels affects only non-exact matches (Fig. 13).
In this case, more cell accesses are required, since we
search for additional, more general context values; exact
matches do not directly depend on the number of levels.

K. Stefanidis et al. / Information Systems 36 (2011) 1158–1180 1177
The results for the real profiles are depicted in Fig. 14.
Overall, again the profile tree provides the most efficient
preference selection, if we ignore the overhead of sorting.
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2 3 4 5 6 7 8

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Number of hierarchy levels

enhanced tree
heuristic graph

no index

Fig. 13. Cell accesses for finding preferences related to queries for

synthetic profiles with different numbers of hierarchy levels for non

exact match.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

graphtreenigraphtreeni

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Points-of-Interest
Movies

Fig. 14. Cell accesses for finding preferences related to queries using the en

preference graph (denoted with graph), and when no index is used (denoted w

 0

 5

 10

 15

 20

 25

 30

0 1 2 3 4 5 6 7 8

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Number of context states in
profile (in thousands)

p, 20 states in parallel
p, 20 single states

p, 50 states in parallel
p, 50 single states

g, 20 states in parallel
g, 20 single states

g, 50 states in parallel
g, 50 single states

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Fig. 15. Cell accesses for finding preferences related to queries for synthetic

for (a) exact match and (b) non exact match. With p we denote the profile tre
Next, we compare the performance of searching for
more than one matching context states for queries with
varying number of context states using the QT_Resolution

and the QG_Resolution algorithms. Fig. 15 depicts our
results for exact (Fig. 15a) and non-exact (Fig. 15b) match
queries. Both optimizations result in more efficient reso-
lution than considering each context state individually.

The results for the real profiles are shown in Fig. 16.
We run this experiment for exact match queries (Fig. 16a)
and for non-exact ones (Fig. 16b), with query descriptors
consisting of 20 context states. Using the proposed algo-
rithms reduces access time in all cases.
7. Related work

In this paper, we use context to confine database
querying by selecting as results the best matching tuples
based on user preferences that depend on context.
We first review research on preferences, then on context
and finally, on contextual preferences.

The research literature on preferences is extensive.
In particular, in the context of database queries, there are
Points-of-Interest
Movies

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

graphtreenigraphtreeni

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

hanced profile tree (denoted with tree), the heuristic approach for the

ith ni).

 0

 5

 10

 15

 20

 25

 30

0 1 2 3 4 5 6 7 8
Number of context states in

profile (in thousands)

p, 20 states in parallel
p, 20 single states

p, 50 states in parallel
p, 50 single states

g, 20 states in parallel
g, 20 single states

g, 50 states in parallel
g, 50 single states

profiles using the query tree and the query graph for synthetic profiles

e and with g the preference graph.

 0

 1

 2

 3

 4

 5

20
 pa

ral
lel20

20
 pa

ral
lel20

20
 pa

ral
lel20

20
 pa

ral
lel20

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Point-of-Interest
Movie

Point-of-Interest
Movie

 0

 1

 2

 3

 4

 5

 6

20
 pa

ral
lel20

20
 pa

ral
lel20

20
 pa

ral
lel20

20
 pa

ral
lel20

N
um

be
r o

f c
el

ls
 (i

n
th

ou
sa

nd
s)

Fig. 16. Cell accesses for finding preferences related to queries using the query tree and the query graph for real profiles for (a) exact match and

(b) non-exact match.

K. Stefanidis et al. / Information Systems 36 (2011) 1158–11801178
two different approaches for expressing preferences: a
quantitative and a qualitative one. In the quantitative

approach (e.g., [3,4,18]), preferences are expressed indirectly
by using scoring functions that associate a numeric score
with every tuple of the query answer. In this work, we have
adapted the general quantitative framework of Agrawal and
Wimmers [3], since it is easier for users to employ than the
qualitative one. In the quantitative framework of Koutrika
and Ioannidis [5,14], user preferences are stored as degrees
of interest in atomic query elements (such as individual
selection or join conditions) instead of interests in specific
attribute values. Our approach can be generalized for this
framework as well, by making the degree of interest for
each atomic query element depends on context. In the
qualitative approach (for example, [1,2,19]), the preferences
between tuples in the answer to a query are specified
directly, typically using binary preference relations. This
framework can also be readily extended to include context.

There has been much work on developing a variety of
context infrastructures and context-aware middleware
and applications (such as the Context Toolkit [20] and
the Dartmouth Solar System [21]). However, although
there is much research on location-aware query proces-
sing in the area of spatio-temporal databases, integrating
other forms of context in query processing is less
explored. In the context-aware query processing frame-
work of Feng et al. [22], there is no notion of preferences,
instead context parameters are treated as normal attri-
butes of relations. Recently, context has been used in
information filtering to define context-aware filters which
are filters that have attributes whose values change
frequently [23].

Storing context data using data cubes, called context
cubes, is proposed in [24] for developing context-aware
applications that use archive sensor data. In this work,
data cubes are used to store historical context data and to
extract interesting knowledge from large collections of
context data. The Context Relational Model (CR) intro-
duced in [25] is an extended relational model that allows
attributes to exist under some contexts or to have
different values under different contexts. CR treats con-
text as a first-class citizen at the level of data models,
whereas in our approach, we use the traditional relational
model to capture context as well as context-dependent
preferences. Context as a set of dimensions (e.g., context
parameters) is also considered in [26] where the problem
of representing context-dependent semistructured data is
studied, while in [27], an overview of a Multidimensional
Query Language is given, that may be used to express
context-driven queries. A context model is also deployed
in [28] for enhancing web service discovery with con-
textual parameters. In [29], the current contextual state of
a system is represented as a multidimensional subspace
within or near other situation subspaces.

Extending the typical recommendation systems
beyond the two dimensions of users and items to include
further contextual information is studied in [30].
Contextual information is modeled using a number of
parameters with hierarchical structure [31,30]. Using context
is shown to improve the prediction of customer behavior.

There has been some recent work on contextual
preferences. In [32], authors consider ranking database
results based on contextual qualitative preferences.
Context parameters are part of the database schema,
while in our approach, context parameters are considered
to be outside the database. Furthermore, our context
parameters have a hierarchical nature that we explore
in context resolution. A knowledge-based context-aware
query preference model is proposed in [33], where
context parameters are treated as normal attributes of
relations. Contextual preferences, called situated prefer-
ences, are also discussed in [34]. In this approach, a
context state is represented as a situation. Situations are
uniquely linked through an N:M relationship with pre-
ferences expressed using the qualitative approach. Again,
the context model is not hierarchical.

Finally, note that a preliminary abridged version of this
paper appears in [35]. The preference graph, computing
scores, multi-state resolution, various other enhance-
ments and most of the experiments are new here.

K. Stefanidis et al. / Information Systems 36 (2011) 1158–1180 1179
In other previous work [36], we have addressed the same
problem of expressing contextual preferences. However,
the model used there for defining preferences includes
only a single context parameter. Interest scores of pre-
ferences involving more than one context parameter are
computed by a simple weighted sum of the preferences
expressed by single context parameters. Here, we extend
context descriptors, so that contextual preferences
involve more than one context parameter and also,
associate context with queries. Context resolution is also
new here. In [38], we focus on the efficient execution of
contextual queries. In particular, we are interested in
creating groups of similar preferences for which we pre-
compute rankings of database tuples.

8. Conclusions

The focus of this paper is on annotating database
preferences with contextual information. Context is mod-
eled using a set of context parameters that take values
from hierarchical domains, thus, allowing different levels
of abstraction for the captured context data. A context
state corresponds to an assignment of values to each of
the context parameters from its corresponding domain.
Database preferences are augmented with context
descriptors that specify the context states under which a
preference holds. Similarly, each query is related with a
set of context states. We consider the problem of identi-
fying those preferences whose context states (as specified
by their context descriptors) are the most similar to that
of a given query. We call this problem context resolution.
To realize context resolution, we propose two data struc-
tures, namely the preference graph and the profile tree,
which allow for a compact representation of the context-
dependent preferences.

To evaluate the usefulness of our model, we have
performed two usability studies. Our studies have showed
that annotating preferences with context improves the
quality of the retrieved results considerably. The burden
of having to specify contextual preferences is reasonable
and can be reduced by providing users with default
preferences that they can edit. We have also performed
a set of experiments to evaluate the performance of
context resolution using both real and synthetic datasets.
The proposed data structures were shown to improve
both the storage and the processing overheads. In general,
the profile tree is more space-efficient than the preference
graph. It also clearly outperforms the preference graph in
the case of exact matches. The main advantage of the
preference graph is the possibility for an incremental
refinement of a context state. In particular, at each step
of the resolution algorithm, we get a state that is closer to
that of the query. This is not possible with the profile tree.

There are many directions for future work. One is to
extend our model so as to support non-strict hierarchies.
Although the cover relation is still valid in this case, this
will require a revision of our definitions of distances
between context states and possibly small modifications
of the proposed data structures. Another direction
for future work is preference application. In our current
work, we assume that preferences are applied after the
execution of a query to rank its result. Re-writing the
query to incorporate contextual preferences is a promis-
ing alternative.

References

[1] J. Chomicki, Preference formulas in relational queries, ACM Trans.
Database Syst. 28 (4) (2003) 427–466 ISSN: 0362-5915.

[2] W. Kießling, Foundations of preferences in database systems, in:
VLDB, 2002, pp. 311–322.

[3] R. Agrawal, E.L. Wimmers, A framework for expressing and combin-
ing preferences, SIGMOD Rec. 29 (2) (2000) 297–306 ISSN 0163-
5808.

[4] V. Hristidis, N. Koudas, Y. Papakonstantinou, PREFER: a system for
the efficient execution of multi-parametric ranked queries, in:
SIGMOD, 2001, pp. 259–270.

[5] G. Koutrika, Y. Ioannidis, Personalized queries under a generalized
preference model, in: ICDE, 2005, pp. 841–852.

[6] A.K. Dey, Understanding and using context, Personal Ubiquitous
Comput. 5 (1) (2001) 4–7 ISSN 1617-4909.

[7] M. Bazire, P. Brézillon, Understanding context before using It, in:
CONTEXT, 2005, pp. 29–40.

[8] G. Chen, D. Kotz, A survey of context-aware mobile computing
research, Technical Report TR2000-381, Dartmouth College, Compu-
ter Science /ftp://ftp.cs.dartmouth.edu/TR/TR2000-381.ps.ZS, 2000.

[9] C. Bolchini, C. Curino, E. Quintarelli, F.A. Schreiber, L. Tanca, A data-
oriented survey of context models, SIGMOD Rec. 36 (4) (2007) 19–26.

[10] B. Mobasher, R. Cooley, J. Srivastava, Automatic personalization
based on Web usage mining, Commun. ACM 43 (8) (2000) 142–151.

[11] M. Ester, J. Kohlhammer, H.-P. Kriegel, The DC-tree: a fully dynamic
index structure for data warehouses, in: ICDE, 2000, pp. 379–388.

[12] P. Vassiliadis, S. Skiadopoulos, Modelling and optimisation issues
for multidimensional databases, in: CAiSE, 2000, pp. 482–497.

[13] G.A. Miller, WordNet: a lexical database for English, Commun. ACM
38 (11) (1995) 39–41 ISSN 0001-0782.

[14] G. Koutrika, Y.E. Ioannidis, Constrained optimalities in query
personalization, in: SIGMOD, 2005, pp. 73–84.

[15] W. Kießling, G. Köstler, Preference SQL – design, implementation,
experiences, in: VLDB, 2002, pp. 990–1001.

[16] Stanford Movie Database URL /http://kdd.ics.uci.edu/databases/
movies/movies.htmlS.

[17] C. Buckley, E.M. Voorhees, Retrieval evaluation with incomplete
information, in: SIGIR, 2004, pp. 25–32.

[18] C. Li, K.C.-C. Chang, I.F. Ilyas, S. Song, RankSQL: Query algebra and
optimization for relational top-k queries, in: SIGMOD, 2005,
pp. 131–142.

[19] P. Georgiadis, I. Kapantaidakis, V. Christophides, E.M. Nguer,
N. Spyratos, Efficient rewriting algorithms for preference queries,
in: ICDE, 2008, pp. 1101–1110.

[20] D. Salber, A.K. Dey, G.D. Abowd, The context toolkit: aiding the
development of context-enabled applications, in: CHI, 1999,
pp. 434–441.

[21] G. Chen, M. Li, D. Kotz, Design and implementation of a largescale
context fusion network, in: MobiQuitous, 2004, pp. 246–255.

[22] L. Feng, P.M.G. Apers, W. Jonker, Towards context-aware data
management for ambient intelligence, in: DEXA, 2004, pp. 422–431.

[23] J.-P. Dittrich, P.M. Fischer, D. Kossmann, AGILE: adaptive indexing for
context-aware information filters, in: SIGMOD, 2005, pp. 215–226.

[24] L.D. Harvel, L. Liu, G.D. Abowd, Y.-X. Lim, C. Scheibe, C. Chatham,
Context cube: flexible and effective manipulation of sensed context
data, in: Pervasive, 2004, pp. 51–68.

[25] Y. Roussos, Y. Stavrakas, V. Pavlaki, Towards a context-aware
relational model, in: CRR, 2005, pp. 5–8.

[26] Y. Stavrakas, M. Gergatsoulis, Multidimensional semistructured
data: representing context-dependent information on the web,
in: CAiSE, 2002, pp. 183–199.

[27] Y. Stavrakas, K. Pristouris, A. Efandis, T.K. Sellis, Implementing a
query language for context-dependent semistructured data, in:
ADBIS, 2004, pp. 173–188.

[28] C. Doulkeridis, M. Vazirgiannis, Querying and updating a context-
aware service directory in mobile environments, Web Intell. (2004)
562–565.

[29] A. Padovitz, S.W. Loke, A. Zaslavsky, Towards a Theory of Context
Spaces, PerCom 00 (2004) 38.

[30] G. Adomavicius, R. Sankaranarayanan, S. Sen, A. Tuzhilin, Incorporat-
ing contextual information in recommender systems using a multi-
dimensional approach, ACM Trans. Inf. Syst. 23 (1) (2005) 103–145.

ftp://ftp.cs.dartmouth.edu/TR/TR2000-381.ps.Z
http://kdd.ics.uci.edu/databases/movies/movies.html
http://kdd.ics.uci.edu/databases/movies/movies.html

K. Stefanidis et al. / Information Systems 36 (2011) 1158–11801180
[31] C. Palmisano, A. Tuzhilin, M. Gorgoglione, Using context to improve
predictive modeling of customers in personalization applications,
IEEE Trans. Knowl. Data Eng. 20 (11) (2008) 1535–1549.

[32] R. Agrawal, R. Rantzau, E. Terzi, Context-sensitive ranking, in:
SIGMOD, 2006, pp. 383–394.

[33] A.H. van Bunningen, L. Feng, P.M.G. Apers, A context-aware pre-
ference model for database querying in an ambient intelligent
environment, in: DEXA, 2006, pp. 33–43.

[34] S. Holland, W. Kießling, Situated preferences and preference
repositories for personalized database applications, in: ER, 2004,
pp. 511–523.

[35] K. Stefanidis, E. Pitoura, P. Vassiliadis, Adding context to prefer-
ences, in: ICDE, 2007, pp. 846–855.
[36] K. Stefanidis, E. Pitoura, P. Vassiliadis, A context-aware preference
database system, Int. J. Pervasive Comput. Commun. 3 (4) (2007)
439–460.

[37] P. Brézillon, Context in artificial intelligence: I. A survey of the
literature, Comput. Artif. Intell. 18 (4) (1999).

[38] K. Stefanidis, E. Pitoura, Fast contextual preference scoring of
database tuples, in: EDBT, 2008, pp. 344–355.

[39] C. Bolchini, C. Curino, G. Orsi, E. Quintarelli, R. Rossato, F. Schreiber,
L. Tanca, And what can context do for data? Commun ACM 52 (11)
(2009) 136–140.

[40] T. Strang, C. Linnhoff-Popien, A context modeling survey, in:
Workshop on Advanced Context Modelling, Reasoning and Man-
agement, 2004.

	Managing contextual preferences
	Introduction
	Contextual preferences
	Context model
	Context descriptors
	Contextual preference model

	Contextual preference selection
	Contextual queries
	The cover relation
	Distances between context states
	Preference application

	Data structures and algorithms
	Preference graph
	Profile tree
	Resolution for multiple context states
	Using the preference graph
	Using the profile tree

	Usability evaluation
	Profile specification
	Quality of results

	Performance evaluation of preference selection
	Storage
	Preference selection

	Related work
	Conclusions
	References

