Similarity Measures for Multidimensional Data

Eftychia Baikousi
Georgios Rogkakos Panos Vassiliadis

Cube 1 or Cube 2 most Similar to Cube 0 ?

Cube 1
Cube 0

P		Date	
		2009	2010
r	Cola	10	12
d	Fanta	5	8
u	Chips	5	5
t	Popcorn	10	15

Cube 2

Cola	2008	2009
	7	10
Fanta	4	5
Chips	6	5
Popcorn	10	10

Motivating Example

Cube 1
Average sales by year

Cube 2
Average sales by year

Time Hierarchy Location Hierarçhy

Contents

- Background \& Related Work
- Distance Functions
- between 2 values of a dimension
- between 2 points in the multidimensional space
\square between 2 sets of points in the multidimensional space
- User Study Experiments
- User study between 2 values of a dimension
- User study between 2 sets of points in m / d space (cubes)

Background

- Fundamentals
- Distance Measures
- Hausdorff
- Controversy on Metric Axioms
- Distances on Graphs
- Highway Hierarchies
- Semantic Similarity between Words

Distance Measures

- A distance measure is called a metric when :
- $d(i, j) \geq 0 \& d(i, j)=d(j, i) \& d(i, i)=0 \& d(i, j) \leq d(i, k)+d(j, k)$
- Categorization
- interval-scaled variables (Euclidean, Minkowski, Manhattan)
- binary variables (Jaccard)
- categorical variables

Hausdorff distance

- Example:
$d_{\mathrm{H}}(A, B)=\max \left\{d_{\mathrm{s}}(A, B), d_{\mathrm{s}}(B, A)\right\}=\max \left\{\boldsymbol{d}_{\mathrm{e}}\left(\boldsymbol{a}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}\right), \boldsymbol{d}_{\mathrm{e}}\left(\boldsymbol{b}_{3}, \boldsymbol{a}_{2}\right)\right\}$
- d_{e} denotes the Euclidian distance
- d_{s} denotes the max distance of the set of minimum distances.

Controversy on Metric Axioms

- Properties of metrics are convenient for Mathematicians/Computer Scientists

However

- Human perception does not comply with properties of metrics

Highway Hierarchies

- highways in road maps
- The shortest paths among 2 points in a road network consists of
- small roads locally
- a highway road

- Hierarchy: highway edges with attached sub-trees of locally computable shortest paths

Sub-trees of locally computable shortest paths

Distances on Graphs

- Semantic Similarity between Words
- Word similarity measures
- Semantic hierarchies
- 2 datasets (pairs of words)
- One for constructing their method
- The other to test it

Distances for Collections of Structured Data

- Relax operator
- Diff operator
- Distance between two relational databases under the same schema

Contents

- Background \& Related Work
- Distance Functions
- between 2 values of a dimension
- between 2 points in the multidimensional space
- between 2 sets of points in the multidimensional space
- User Study Experiments
- User study between 2 values of a dimension
- User study between 2 sets of points in m / d space (cubes)

Contents

- Background \& Related Work
- Distance Functions
- between 2 values of a dimension
- between 2 points in the multidimensional space
- between 2 sets of points in the multidimensional space
- User Study Experiments
- User study between 2 values of a dimension
- User study between 2 sets of points in m / d space (cubes)

Distance functions between 2 values of a dimension

- Locally computable
- Hierarchical
- Highway

Distance functions between 2 values of a dimension

- Locally computable distance functions
- explicit assignment
\square based on the values x and y
- based on Attribute values

Hierarchical distance functions

- W.r.t. an aggregation function
- W.r.t. Hierarchy Path
- Percentage distance functions
- Highway distance functions

Distance functions w.r.t. an

 aggregation function- $x \in L_{\mathrm{i}}, \quad L_{\mathrm{L}} \prec L_{\mathrm{i}}$
- $\operatorname{desc}_{L_{\mathrm{L}}}^{L_{L_{1}}}(x)$ set of its descendants

$$
\begin{aligned}
& x_{\text {aggr }}=f_{\text {aggr }}\left(\operatorname{desc}_{L_{\mathrm{L}}}^{L_{\mathrm{L}}}(x)\right) \\
& y_{\text {aggr }}=f_{\text {aggr }}\left(\operatorname{desc}_{L_{\mathrm{L}}}^{L_{\mathrm{j}}}(y)\right)
\end{aligned}
$$

- $f_{\text {aggr }}$: count, min, max, avg, sum
- $\operatorname{dist}(x, y)=g\left(x_{\text {aggr }}, y_{\text {aggr }}\right)$
- g can be from the locally computable functions

Distance Functions w.r.t. Hierarchy Path

- Assume 2 values x and y s.t.
- $x \in L_{\mathrm{x}}$ and $y \in L_{\mathrm{y}}$
- lca (x, y) : the Lowest Common Ancestor of x and y
- $d_{\text {path }}(x, y)=\left(\frac{w_{\mathrm{x}}{ }^{*}|\operatorname{path}(x, l c a)|+w_{y} *|\operatorname{path}(y, l c a)|}{\left.\left(w_{\mathrm{x}}+w_{\mathrm{y}}\right)^{*\left|\operatorname{path}\left(A L L, L_{1}\right)\right|}\right)}\right.$
- $d_{\text {depth }}(x, y)=\left(\frac{\left|\operatorname{path}\left(l c a, L_{1}\right)\right|}{\left|\operatorname{path}\left(A L L, L_{1}\right)\right|}\right)$

Example w.r.t. Hierarchy Path

- $x=$ 'NY', $y=$ 'Canada' lca $(x, y)=$ 'America'

Percentage distance functions

- $\operatorname{dist}(x, y)=1-\frac{\left|\operatorname{des} c_{L_{1}}^{L_{x}}(x)\right|}{\left|\operatorname{desc}_{L_{\mathrm{i}}}^{L_{y}}(y)\right|}$, only when y is an ancestor of x
- the percentage of occurrences over the values of the hierarchy
- Example: dist('USA','America')
where L_{i} is the detailed level $L_{\text {city }}$

Highway Distance Functions

- Every level L grouped into k groups,
- r_{k} the representative
- distance between two representatives can be thought of as a highway

$$
d(x, y)=d\left(x, \boldsymbol{r}_{\mathrm{x}}\right)+d\left(\boldsymbol{r}_{\mathbf{x}}, \boldsymbol{r}_{\mathbf{y}}\right)+d\left(y, \boldsymbol{r}_{\mathbf{y}}\right)
$$

- r_{x}, r_{y} : representatives of the groups of x, y
- representative selected w.r.t an ancestor or a descendant

Highway Distance Functions

- $\mathbf{r}_{\mathbf{x}}$: is an ancestor

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{\mathrm{y}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{y}}, \mathrm{y}\right)
$$

- $\mathbf{r}_{\mathbf{y}}$: is an descendant

$$
d(x, y)=d\left(x, y_{x}\right)+d\left(y_{x}, x\right)
$$

Contents

- Background \& Related Work
- Distance Functions
- between 2 values of a dimension
- between 2 points in the multidimensional space
- between 2 sets of points in the multidimensional space
- User Study Experiments
- User study between 2 values of a dimension
- User study between 2 sets of points in m / d space (cubes)

Distance functions between 2 points

 in the multidimensional space- Assume two cells from a cube
- $c_{1}=\left(l_{1}{ }^{1}, l_{2}{ }^{1}, \ldots, l_{\mathrm{n}}{ }^{1}, m_{1}{ }^{1}, m_{2}{ }^{1}, \ldots, m_{\mathrm{m}}{ }^{1}\right)$
- $c_{2}=\left(l_{1}^{2}, l_{2}^{2}, \ldots, l_{\mathrm{n}}^{2}, m_{1}^{2}, m_{2}^{2}, \ldots, m_{\mathrm{m}}^{2}\right)$
- $\operatorname{dist}\left(c_{1}, c_{2}\right)$ can be expressed w.r.t.
- their level coordinates $d_{\mathrm{i}}\left(L_{\mathrm{i}}{ }^{1}, L_{\mathrm{i}}{ }^{2}\right)$ and
- their measure values $d_{\mathrm{i}}\left(M_{\mathrm{i}}{ }^{1}, M_{\mathrm{i}}{ }^{2}\right)$

$$
\operatorname{dist}\left(c_{1}, c_{2}\right)=f\left(d_{\mathrm{i}}\left(L_{\mathrm{i}}^{1}, L_{\mathrm{i}}^{2}\right), d_{\mathrm{i}}\left(M_{\mathrm{i}}^{1}, M_{\mathrm{i}}^{2}\right)\right)
$$

Weighted Sum

c_{2}| Apr/2000 | Canada | 3 |
| :--- | :--- | :--- |

$\frac{0.5 *\left(d\left(M_{c_{1}}, M_{c_{2}}\right)+d\left(C_{c_{1}}, C_{c_{2}}\right)\right)}{0.5+0.5}+\frac{0.5 * d\left(S_{c_{1}}, S_{c_{2}}\right)}{0.5}$

- Minkowski

$$
L_{p}=\sqrt[p]{\sum_{i=1}^{n}\left(d_{i}\left(l_{i}{ }^{1}, l_{i}{ }^{2}\right)\right)^{p}}+\sqrt[p]{\sum_{i=1}^{m}\left(d_{i}\left(m_{i}{ }^{1}, m_{i}{ }^{2}\right)\right)^{p}} \quad \text { p-norm }
$$

- Minimum Partial distance
- cells $c_{l}=\left(l_{1}{ }^{1}, l_{2}{ }^{1}, \ldots, l_{\mathrm{n}}{ }^{1}, m_{1}{ }^{1}, m_{2}{ }^{1}, \ldots, m_{\mathrm{m}}{ }^{1}\right)$

$$
c_{2}=\left(l_{1}^{2}, l_{2}^{2}, \ldots, l_{\mathrm{n}}^{2}, m_{1}^{2}, m_{2}^{2}, \ldots, m_{\mathrm{m}}^{2}\right)
$$

$$
\operatorname{dist}\left(c_{1}, c_{2}\right)=\min _{d_{i}}\left\{d_{i}\left(l_{i}^{1}, l_{i}^{2}\right)\right\}+\min _{d_{i}}\left\{d_{i}\left(m_{i}^{1}, m_{i}^{2}\right)\right\}
$$

- Proportion of common coordinates

$$
\frac{\operatorname{count}\left(l_{\mathrm{i}}^{1}=l_{\mathrm{i}}^{2} \forall i \in\{1,2, \ldots, n\}\right)}{n}+\frac{\operatorname{count}\left(m_{\mathrm{i}}^{1}=m_{\mathrm{i}}^{2} \forall i \in\{1,2, \ldots, m\}\right)}{m}
$$

- n : number of level values, m : number of measures
- the number of level values same for both cells

[^0]
Contents

- Background \& Related Work
- Distance Functions
- between 2 values of a dimension
- between 2 points in the multidimensional space
- between 2 sets of points in the \mathbf{m} / \mathbf{d} space
- User Study Experiments
- User study between 2 values of a dimension
- User study between 2 sets of points in m / d space (cubes)

Distance functions between 2 sets of

 points in m / d space- Cubes: C of l cells and C^{\prime} of k cells
- $c=\left(l_{1}, l_{2}, \ldots, l_{\mathrm{n}}, m_{1}, m_{2}, \ldots, m_{\mathrm{m}}\right)$
- $c^{\prime}=\left(l_{1}{ }^{\prime}, l_{2}^{\prime}, \ldots, l_{\mathrm{n}}{ }^{\prime}, m_{1}{ }^{\prime}, m_{2}{ }^{\prime}, \ldots, m_{\mathrm{m}}{ }^{\prime}\right)$
- $\operatorname{dist}\left(C, C^{\prime}\right)=f\left(\operatorname{dist}\left(c, c^{\prime}\right)\right)$
- f : a function of the partial distances $\operatorname{dist}\left(c, c^{\prime}\right)$

The Cell Mapping method

- Map a cell in a cube to the "closest possible representative" cell in another cube
- Compute all dimension value distances between every cell of $1^{\text {st }}$ cube with every cell of $2^{\text {nd }}$ cube
- The Mapped cell of $2^{\text {nd }}$ cube: The cell with the less distance from a cell of $1^{\text {st }}$ cube

The cell mapping method

	$\begin{gathered} C U B E_{1} \\ D a y \end{gathered}$	City	Sales	$\begin{gathered} C_{\text {Year }}^{2} \end{gathered}$	Country	Sales
c_{1}	3/5/2000	London	5	2000	USA	3
c_{2}	3/5/2001	New York	6	2000	USA	6
$c_{3} 4 / 5 / 2001$		New York	7	2001	Canada	8
				2001	UK	5
			Cell	2000	USA	9

Dimension Location

Closest Relative

$$
\left.\operatorname{dist}\left(C, C^{\prime}\right)=\frac{\sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\operatorname{dist}\left(c_{i}, c^{\prime}\right)\right)}{\mathrm{k}} \forall c^{\prime} \right\rvert\, \operatorname{dist}_{\operatorname{dim}}\left(c_{i}, c_{\mathrm{i}}^{\prime}\right)=\min \left\{\operatorname{dist}_{\operatorname{dim}}\left(c_{i}, c^{\prime}\right)\right\}
$$

- dist $_{\text {dim }}$: the distance between two cells according to their dimension values
- Each one of the k cells from cube C is mapped to the cell of the cube C^{\prime} that has the minimum dist $_{\mathrm{dim}}$ from it.

Closest Relative

	$\begin{array}{r} C U B E_{1} \\ D a y \end{array}$	City	Sales	$\begin{gathered} C U B E_{2} \\ \text { Year } \end{gathered}$	Country	Sales
c_{1}	3/5/2000	London	5	2000	USA	3
c_{2}	3/5/2001	New York	6	2000	USA	6
c_{3}	4/5/2001	New York	7	2001	Canada	8
				2001	UK	5
			Cell	2000	USA	9

- cells c_{1}, c_{2}, c_{3}, mapped to cells c_{7}, c_{5}, and c_{5}

$$
d\left(\mathrm{c}_{1}, \mathrm{c}_{7}\right)=5 / 12, d\left(\mathrm{c}_{2}, \mathrm{c}_{5}\right)=5 / 12 \quad, d\left(\mathrm{c}_{3}, \mathrm{c}_{5}\right)=5 / 12
$$

-Dimensions : $f_{\text {path }}$, cells: weighted sum,
$d\left(\right.$ CUBE $\left._{1}, C U B E_{2}\right)=\frac{d\left(c_{1}, c_{7}\right)+d\left(c_{2}, c_{5}\right)+d\left(c_{3}, c_{5}\right)}{3}$

Hausdorff

$H\left(C, C^{\prime}\right)=\max \left(h\left(C, C^{\prime}\right), h\left(C^{\prime}, C\right)\right)$

- $h\left(C, C^{\prime}\right)$: directed Hausdorff
- measures the max distance of a cube C to the "nearest" cell of the other cube C'
- $h\left(C, C^{\prime}\right)=\max _{\mathrm{c} \in \mathrm{C}}\left\{\min _{\mathrm{c}^{\prime} \in \mathrm{C}^{\prime}}\left\{\operatorname{dist}\left(c, c^{\prime}\right)\right\}\right\}$
- $\operatorname{dist}\left(c, c^{\prime}\right)$ distance between two cells c and c^{\prime}
- Includes bidirectional cell mapping method

Hausdorff computation

- Two sets of mapped cells
- For each set
- for every pair of mapped cells
- compute their distance considering their measures as well
- Obtain two sets of min distances between cells
a) from C to C^{\prime}
b) from C^{\prime} to C
- For each set pick the greatest distance
- Pick the greater of the two greatest distances

Hausdorff

- $d\left(\right.$ CUBE $\left._{1}, C U B E_{2}\right)=$ $\max \left\{\max \left\{S_{1}\right\}, \max \left\{S_{2}\right\}\right\}=\max \{5 / 12,5 / 12\}=5 / 12$

Contents

- Background \& Related Work
- Distance Functions
- between 2 values of a dimension
- between 2 points in the multidimensional space
- between 2 sets of points in the multidimensional space
- User Study Experiments
- User study between 2 values of a dimension
- User study between 2 sets of points in m / d space (cubes)

User study between 2 values of a dimension

- 15 users users_all
- 10 users_cs, 5 users_non
- Dataset: ‘Adult'

Table	Value Type	\# Tuples	\# Dim. Levels
Adult fact		30418	-
Age Dim.	Numeric	72	5
Education Dim.	Categorical	16	5
Gender Dim.	Categorical	2	2
Marital Status Dim.	Categorical	7	4
Native Country Dim.	Categorical	41	4
Occupation Dim.	Categorical	14	3
Race Dim.	Categorical	5	3
Work Class Dim.	Categorical	7	4

Dimension Hierarchies of Adult

Age hierarchy Work cl. hierarchy education hierarchy marital status hiearchy

Ocupation hierarchy gender hierarchy native c. hierarchy race hierarchy

Experimental setting

- Purpose of the experiment:
- which distance function between two values of a dimension is best in regards to the user preferences
- Each user was given 14 scenarios
- Each scenario contains:
- a reference cube
- a set of variant cubes
- variant cubes: slightly altering the reference cube
- The 14 scenarios included different kinds of cubes
- value types, levels of granularity

Variant cubes

- altering
- granularity level for one dimension
- value range of the reference cube
ag_level1 wc_level1

$52-56$	Gov
$52-56$	Private
$52-56$	Self-emp
$52-56$	Without-pay

- Example
- reference cube
- dimension levels Age_level1, WorkClass_level1 - age interval [52, 56].
- $\quad 1^{\text {st }}$ type modification: change dimension level (e.g.,age_level1 to age_level2)
- $2^{\text {nd }}$ type modification: change the age interval to [22, 26] or to [17, 26].

ag_level2	wc_level1
$47-56$	Gov
$47-56$	Private
$47-56$	Self-emp
$47-56$	Without-pay

ag_level1	wc_level1
$47-51$	Gov
$47-51$	Private
$47-51$	Self-emp
$47-51$	Without-pay

Sample scenario

- Reference Cube

Cube4 ag_level1	wc_level1	ra_level1
$52-56$	Gov	White
$52-56$	Private	Colored
$47-51$	Self-emp	White
$52-56$	Without-pay	White

- Variant Cubes

\uparrow	$\left\lvert\, \begin{aligned} & 52-56 \\ & 47-51 \\ & 52-56 \end{aligned}\right.$	Self-emp Without-pay	White White
	Cube4_6 ag_level1	wc_level1	ra_level1
	47-51	Self-emp	White
	52-56	Without-pay	White
	Cube4_8 ag_level2	wc_level1	ra_level1
	47-56	Gov	White
	47-56	Private	Colored
	47-56	Self-emp	White
	47-56	Without-pay	White

Cube4_1

ag_level1	wc_level1	ra_level1
$37-41$ Gov White $37-41$ Private White $47-51$ Self-emp White $62-66$ Without-pay White		

Cube4_2

ag_level1	wc_level1	ra_level1
$52-56$	Gov	White
$47-51$	Private	White
$47-51$	Self-emp	White
$52-56$	Without-pay	White

Cube4_3

ag_level1	wc_level1	ra_level1
$37-41$	Gov	White
$37-41$	Private	White
$42-46$	Self-emp	White
$42-46$	Without-pay	White

Cube4_7

ag_level1	wc_level2	ra_level1
$52-56$	With-Pay	White
$52-56$	With-Pay	Colored
$47-51$	With-Pay	White
$52-56$	Without-pay	White

ICDE 2011, Hannover, April 11-16, 2011

Scenarios of User Study

- Each variant cube: most similar to the reference cube according to a distance function
- 14 scenarios organized as:
- cubes with arithmetic type values (5 scenarios)
\square cubes with categorical type values (2 scenarios)
- cubes with mixed type values (7 scenarios)

Notation of distance functions

Family	Abbr.	Distance function name
Local	δ_{M}	Manhattan
Aggregation	$\delta_{\text {Low, } \mathrm{C}}$	With respect to a lower level of hierarchy $f_{\text {aggr }}=$ count
	$\delta_{\text {Low,m }}$	With respect to a lower level of hierarchy $f_{\text {aggr }}=$ max
	$\delta_{\text {LCA,P }}$	Lowest common ancestor through $f_{\text {path }}$
	$\delta_{\text {LCA,D }}$	Lowest common ancestor through $f_{\text {depth }}$
Percentage	$\delta_{\%}$	Applying percentage function
Highway	$\delta_{\text {Anc }}$	With respect to an ancestor x_{y}
	$\delta_{\text {Desc }}$	With respect to a descendant y_{x}
	$\delta_{\mathrm{H}, \text { Desc }}$	Highway, selecting the representative from a

- Top three most preferred distance functions

	Users_all	Users_cs	Users_non
$\boldsymbol{\delta}_{\text {LCA,PP}}$	40.47%	38.57%	44.28%
$\boldsymbol{\delta}_{\text {Anc }}$	18.09%	20%	14.28%
$\boldsymbol{\delta}_{\mathbf{H}, \text { Desc }}$	9.52%	10.71%	7.14%

- Most preferred function by users w.r.t value type

Value Type	Users_all	Users_cs	Users_non
Arithmetic	$\delta_{\text {Anc }}$	$\delta_{\text {LCA,P }} \delta_{\mathrm{H}, \text { Desc }}, \delta_{\mathrm{Anc}}$	$\delta_{\mathrm{LCA}, \mathrm{P}}$
Categorical	$\delta_{\mathrm{LCA}, \mathrm{P}}$	$\delta_{\mathrm{LCA}, \mathrm{P}}$	$\delta_{\mathrm{LCA}, \mathrm{P}}$
Arithmetic \& Categorical	δ_{Anc}	δ_{Anc}	$\delta_{\mathrm{LCA}, \mathrm{P}} \delta_{\mathrm{Anc}}$

winner distance function

per scenario

- winner function: is the most frequent function per scenario for all 15 users
- The most frequent winner function was $\delta_{\text {LCA, } \mathrm{P}}$
- Percentages
- 35.71% for the Users_all group
- $35,71 \%$ for the Users_cs group
- 57.14% for the Users_non group

Diversity and spread of user choices

- Two major findings
- (a) All functions were picked by some user
- (b) certain functions appeared as user choices for all users of a user group
- $\delta_{\mathrm{LCA}, \mathrm{P}}, \delta_{\mathrm{H}, \text { Desc }}$ and $\delta_{\text {Anc }}$ for Users_cs
- $\delta_{\text {LCA,P }}, \delta_{\text {Low, } \mathrm{m}}$ and $\delta_{\text {Anc }}$ for Users_non

most preferred family of functions

	Local	Aggregation	Hierarchy Path	Percentage	Highway
Users_cs	1	9	69	9	52
Users_non	2	5	34	5	24
Users_all	3	14	103	14	76

Selection stability of users

- $13^{\text {th }}$ and $14^{\text {th }}$ scenarios replicas of $3^{\text {rd }}$ and $10^{\text {th }}$ scenario
- 4 out of 5 Users_non users
- 6 out of 10 Users_cs users
- selected the same function for both of the two replicas scenarios
- The rest of the users selected the same function for only one replica

Contents

- Background \& Related Work
- Distance Functions
- between 2 values of a dimension
- between 2 points in the multidimensional space
- between 2 sets of points in the multidimensional space
- User Study Experiments
- User study between 2 values of a dimension
- User study between 2 sets of points in $\mathbf{~ m} / \mathbf{d}$ space (cubes)

User study between 2 sets of points in

M/D space

- which distance function between two cubes do the users prefer?
- Closest Relative
- Hausdorff
- Between dimensions $\delta_{\text {LCA,P }}$
- Between cells weighted sum

Scenarios of User Study

- 14 scenarios
- Each scenario contains 4 cubes (A, B, C, D)
- Cube A: reference cube
- B,C,D: variant cubes
- one most similar to A according to the Closest relative
- one most similar to A according to the Hausdorff
- remaining less similar to A for both functions
- Users were asked to order the three cubes from the most similar to the less similar when compared to the cube A

Sample scenario

A
ag_level1

wc_level1	AVG(hours_per_week)	
$27-31$	Gov	41.636
$27-31$	Private	42.2742
$27-31$	Self-emp	46.3854
$27-31$	Without-pay	65

B
ag_level1

$37-41$	wr_level1	AVG(hours_per_week)
$62-66$	Without-	40.2509

C
ag_level1

$22-26$	Gc_level1	AVG(hours_per_week)
$22-26$	Private	36.5979
$22-26$	Self-emp	38.602
$22-26$	Without-pay	43.6528

	$\mathbf{d}(\mathbf{A , B})$	$\mathbf{d}(\mathbf{A}, \mathbf{C})$	$\mathbf{d}(\mathbf{A}, \mathbf{D})$
Closest Relative	0.34126	0.19812	0.10799
Hausdorff	0.38151	0.25170	0.30385

D
ag_level1

wc_level1	AVG(hours_per_week)	
$27-31$	Gov	41.636
$32-36$	Private	42.8008

Scenario groups

- no_measures
\square Cube distances computed ignoring measures
- not_equal
\square Cube distances computed with different weights between k dimensions and l measures
- $w_{\mathrm{d}}=k / k+l, w_{\mathrm{m}}=l / k+l$
- equal
- Cube distances computed with equal weights between dimensions and measures
- $w_{\mathrm{d}}=w_{\mathrm{m}}$

User Reliability \& Stability

- User Reliability
- $6^{\text {th }}$ scenario has cube B identical to cube A
- 2 out of 39 users answered wrong
- 37 valid users
- User Stability
- $13^{\text {th }}$ and $14^{\text {th }}$ scenario were replicas of the $5^{\text {th }}$ and $9^{\text {th }}$ scenario
- User_ok: same ordering for one scenario
- User_half_ok: same first choice
- User_Stable : User_ok for both replicas
or User_ok and User_half_ok

User Stability

	User_OK		User_Half_OK		User_Stable	
	Frequency	Pct	Frequency	Pct	Frequency	Pct
$13^{\text {th }}$ scenario	28	75%	5	13%	24	65%
14 scenario	19	51%	8	21%	24	65%

Most frequent distance function

- Most frequent function chosen as the first ordering in all scenarios

Over all scenarios	Frequency	Percentage
Hausdorff	154	$\mathbf{3 8 \%}$
Closest relative	$\mathbf{2 3 2}$	$\mathbf{5 7 \%}$
Most distant cube	21	5%

Local scenario winner

- Local scenario winner function:
- function that was mostly selected as the first choice from the users in each scenario
- closest relative: 6 scenarios
- Hausdorff: 5 scenarios

Group winner function

Scenario Group	Scenario	Winning function	Winner function
no_measures	Scenario1	Closest relative	Closest relative
	Scenario2	Closest relative	
	Scenario3	Closest relative	
	Scenario4	Hausdorff	Hausdorff
not_equal	Scenario5	Hausdorff	
	Scenario7	Closest relative	
	Scenario8	Hausdorff	
	Scenario9	Hausdorff	
	Scenario10	Hausdorff	
	Scenario11	Closest relative	
	Scenario12	Closest relative	

Conclusions

- Taxonomy of distances
- Distance between values of a dimension:
- Most preferred function according to the path of the lowest common ancestor
- Distance between sets of points in a m/d space
- Closest relative and Hausdorff
- Future work
- More user studies
- Combine texts

Thank you for your attention!

User study Questionnaires \& Results can be found :
http://www.cs.uoi.gr/~ebaikou/publications/2011_ICDE/

References

- Simone Santini and Ramesh Jain. Similarity measures.IEEE Trans. Pattern Anal. Mach. Intell., 21(9):871-883, 1999.
- P. Sanders and D. Schultes. Highway Hierarchies Hasten Exact Shortest Path Queries. In ESA, LNCS 3669, pages 568-579, Springer, 2005.
- Yuhua Li, Zuhair Bandar and David McLean. An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources. In IEEE Trans. Knowl. Data Eng, pages 871-882, 2003
- Sunita Sarawagi. idiff: Informative summarization of differences in multidimensional aggregates. Data Min. Knowl. Dis- cov., 5(4):255-276, 2001.
- Sunita Sarawagi. User-adaptive exploration of multidimensional data. In VLDB, pages 307-316, 2000.
- Heiko Müller Johann-Christoph Freytag and Ulf Leser. Describing differences between databases. In CIKM, pages 612-621, 2006

[^0]: \square the number of measures that have the same value for both cells

