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INTRODUCTION

The rapid emergence of novel technologies in 
the fields of mobile computing and network-
ing fostered the transition from conventional 
distributed systems to mobile computing sys-
tems that consist of fixed and mobile devices 
(such as PDAs, Pocket PCs, smart-phones), 
which collaborate through wireless networking 
infrastructures. Going one step further, the vi-
sion of Ambient Intelligence (AmI) investigates 
the possibility of realizing mobile computing 
environments that are aware and responsive 
to the presence of people (Aarts, Harwig, & 
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ABSTRACT
In this paper, the authors investigate the concept of designing user-centric transaction protocols toward 
achieving dependable coordination in AmI environments. As a proof-of-concept, this paper presents a protocol 
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later. The authors compare the proposed schedule-aware protocol against a schedule-agnostic one. Findings 
show that the use of user-centric information in such situations is quite beneficial.

Schuurmans, 2003; Weber et al., 2003). AmI 
is based on Weiser’s pioneer work on ubiqui-
tous computing (Weiser, 1991), which evolved 
later on to the concept of pervasive computing. 
Pervasive computing aims at a digital world, 
consisting of interconnected electronic devices 
that support the quotidian activities of people. 
AmI is particularly concerned by the users’ 
experience in such a digital world. In other 
words, AmI puts a specific focus on the users 
and targets the development of user-centric 
digital environments that account for the users’ 
needs, habits and satisfaction, while offering 
support that allows them to perform their ev-
eryday activities.
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The vision of AmI motivates research 
towards coordination protocols that involve 
both mobile and fixed entities. In this paper, we 
particularly investigate the need for designing 
user-centric transaction protocols to achieve 
dependable coordination in AmI environments. 
User-centric information can be exploited while 
coordinating a set of transaction participants 
towards avoiding abnormal transaction ter-
minations.

In this context, we focus on the abnormal 
ending of a transaction that takes place within 
an AmI environment, due to the fact that one or 
more participating users leave the environment. 
Leaving the environment means that the users’ 
devices are no longer reachable, via the network-
ing infrastructure that supports the transaction 
coordination. The idea behind our approach 
is that if there is a certain level of knowledge 
behind the schedule of each participating user 
(i.e., the way the user moves from one environ-
ment to another), then we can exploit it to avoid 
abnormal transaction terminations, where a 
roaming user leaves the environment for short, 
only to return later.

Taking a simple example, consider a confer-
ence that takes place in a number of conference 
rooms. Several researchers attend a technical 
session in conference room A (i.e., environment 
A). In this situation, a number of colleagues want 
to arrange a meeting for dinner or work after the 
technical session. One of them browses, using 
his Pocket-PC, information regarding available 
meeting places. His goal is to book a place at 
a certain time and insert a dinner meeting in 
the agenda applications that execute on his 
colleagues’ laptops or Pocket-PCs. Obviously, 
setting up the dinner meeting involves perform-
ing a distributed transaction amongst the mobile 
devices that host the agenda applications. The 
transaction requires each participant’s agenda 
application to execute a local transaction and 
verify that there are no other obligations of the 
participant at the meeting time. This task might 
take a certain amount of time to complete. As-
sume now that during this time period, one of 
the participants leaves the gathering before the 
transaction completes, because his talk starts at 

conference room B (i.e., environment B). In 
such a situation, typical transaction protocols 
would abort the transaction, wasting thus the 
energy resources that were spent up to this 
point. Nevertheless, the transaction may have a 
chance for successful completion if we consider 
that the colleagues shall reunite after the coffee 
break. Hence, if the transaction protocol could 
be enriched with such kind of user-centric in-
formation (i.e., the users schedules) and reason 
with respect to this information, all the work 
that has been performed for fixing the dinner 
meeting would not be wasted.

Based on the previous discussion, the 
contribution of this paper consists of designing 
a schedule-aware protocol and comparing it 
against a schedule-agnostic one. Specifically, in 
Section 2 we present the necessary background 
and state-of-the art for this paper. In Section 3 
we detail the proposed protocol. In Section 4, 
we present our experimental results. Finally, in 
Section 5 we summarize our contribution and 
provide insights for future work.

1. RELATED WORK 
AND BACKGROUND

The overall idea of user-centric transaction 
protocols and the particular protocol discussed 
in this paper fall in the general field of mobile 
transactions (Pitoura & Samaras, 1998; Serano-
Alvarado, Roncancio, & Adiba, 2004). Until 
now there have been various approaches for 
mobile transactions that can be classified with 
respect to the system model that they assume into 
3 different categories (Serano-Alvarado et al., 
2004). In all of them the transaction initiator is 
a mobile host and the entities that comprise the 
data, processed during the transaction execution 
are fixed hosts. Moreover, Serano-Alvarado et 
al. (2004) further identified the following more 
generic execution models:

1.  In the first system model, transactions are 
initiated by mobile hosts and they aim at 
processing data located on other mobile 
hosts.
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2.  The second system model is the most ge-
neric one, where the execution of mobile 
transactions is distributed amongst several 
mobile and fixed hosts.

A few years ago, the previous execution 
models were considered as too ambitious but 
interesting (Serano-Alvarado et al., 2004). 
Nowadays, these models fit perfectly to the 
case of AmI environments. Until now, some 
interesting approaches have been proposed 
for dealing with transactions in the context 
of the aforementioned execution models. For 
instance, Bobineau, Pucheral, and Abdallah 
(2000), proposed a one-phase commit protocol 
for transactions involving mobile and fixed 
hosts, where the voting phase is eliminated and 
the master announces its own decision to the 
transaction participants; the decision is taken 
based on the master’s perception on the suc-
cessful execution of the individual transaction 
steps. Kumar, Prabhu, Dunham, and Seydim 
(2002), proposed TCOT where the master 
employs timeouts towards deciding about the 
outcome of a particular transaction. Younas, 
Chao, Wang, and Huang (2007) dealt with 
mobile host disconnections in transactions that 
involve several mobile and fixed hosts by a 
protocol that discovers alternative mobile hosts 
that may replace the disconnected ones. Nouali, 
Doucet, and Drias (2005) proposed a protocol 
for transactions that span across several mobile 
hosts, which may move across different inter-
connected network cells. The main idea is to use 
participant-agents (i.e. proxies to participants 
that move to different network cells) to provide 
relocation transparency and timeouts to handle 
participant disconnections. Alternatively, Le 
and Nygard (2005) proposed the use of a data 
sharing space. Finally, Böttcher, Gruenwald, and 
Obermeier (2006) discuss a protocol that aims 
at reducing aborts and blocking time. In this 
paper, we go one step further by investigating the 
issue of using user-centric information towards 
designing distributed transaction protocols for 
AmI environments.

The protocol that we investigate in this 
paper relies on the combination of two classical 
protocols: (a) the presume-abort 2-phase-com-
mit protocol (Mohan, Lindsay, & Obermark, 
1986) and (b) the strict 2-phase-locking protocol 
(Eswaran, Gray, Lorie, & Traiger, 1976).

In general, the execution of a transaction 
involves (1) an entity that initiates it (hereafter 
we use the term master to refer to the transaction 
initiator) and (2) entities that comprise data, 
processed during the transaction execution 
(hereafter we use the term cohort to refer to 
these entities). Typically, the transaction execu-
tion consists of an initiation state, during which 
the master invites the cohorts to participate in 
the transaction and the cohorts accept or deny 
the invitation. If all goes well, the initiation 
state is followed by an executing state, during 
which the master processes data that may be of 
his own, or of the participating cohorts. At the 
time when the master decides to complete the 
transaction, the presume-abort protocol takes 
place amongst the participants (see Figure 1). 
Briefly, the presume-abort protocol comprises 
the two phases of the classical 2-phase-commit 
protocol. During the first phase, the master of 
the transaction sends to all cohorts a PREPARE 
message. Upon the reception of this message 
the cohorts should respond with their votes 
concerning the outcome of the transaction. The 
voting messages may be either to commit or to 
abort the transaction.

After the voting the transaction gets into a 
prepared state and the cohorts wait for the final 
decision for the outcome of the transaction. The 
second phase of the protocol starts after the 
reception of all votes sent by the cohorts. If a 
negative vote exists, the master decides to abort 
the transaction, notifies accordingly all cohorts, 
and releases all information concerning the 
transaction (i.e., the transaction gets into an 
aborting/aborted state). Otherwise, if all votes 
were positive the master decides to commit the 
transaction, notifies accordingly all cohorts and 
waits for their acknowledgment (the transaction 
gets into a committing state). Upon the reception 
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of the acknowledgments, the master releases 
all information concerning the transaction and 
the transaction get into a committed state. The 
presume-abort protocol further conforms to the 
following basic principle: if a transaction 
participant tries to find out about whether a 
transaction was finally committed or aborted 
and there is no information available about this 
transaction, the transaction participant derives 
the conclusion that the transaction was abort-
ed.

The strict 2-phase-locking protocol that 
we assume is a variant of the classical 2-phase-
locking protocol, whose fundamental principle 
states that no locks can be released until all 
necessary locks have been acquired from the 
transaction. In the strict 2-phase-locking vari-
ant, all locks are released at the end of the 
transaction.

2. A SCHEDULE-AWARE 
PROTOCOL FOR AMI 
ENVIRONMENTS

In this section we discuss the issue of user-
centric transactions in the context of AmI 
environments. The problem we wish to handle 
concerns the abnormal ending of the transaction 
due to the fact that a mobile user / transaction 
participant leaves the AmI environment where 
the transaction takes place. The idea behind 
our approach is that if there is a certain level 
of knowledge behind the schedule of the user, 
then we can exploit it to avoid the abnormal 
transaction termination. Based on this idea, we 
present a schedule-aware transaction protocol. 
Before presenting the protocol’s internals, in 
Section 3.1, we start with preliminary concepts, 
foundations and assumptions for our problem.

Figure 1. State diagram for a master completing a transaction under the a 2-phase commit protocol
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2.1 Preliminaries

In this section we provide a formal definition of 
the entities that participate in the AmI environ-
ment, along with any assumptions made for the 
purpose of this paper.

In our modeling, an AmI environment is 
a set of cooperating nodes N. We deal with 
AmI environments as logical-level constructs 
that group nodes in a workgroup where they 
cooperate towards achieving a common goal. 
Depending on the case, this workgroup can be 
mapped to physical-level facilities (e.g., the 
AmI environment can be defined with respect 
to an area bounded by the connectivity range 
of a conventional networking infrastructure 
--e.g., a typical IEEE 802.11 network). More 
nodes can later join the environment and 
existing nodes can leave the environment. In 
the context of this paper, the terms ‘join’ and 
‘leave’ the environment refer to a logical level 
participation to the AmI environment and not a 
physical one; in fact, the particularities of these 
actions at the physical level are orthogonal to 
the proposed protocol.

Our overall system model consists of a set 
of distinct AmI environments. Communication 
between nodes of Ni, Nj, for all i, j | i ≠ j is not 
possible.

The formation of the workgroup can be 
done by gathering the mobile nodes around a 
static, fixed point of reference (e.g., a standard 
access point in a building), or by arranging an 
ad-hoc network of mobile peers. In both of 
these cases, two kinds of nodes participate: 
(a) fixed nodes that are constantly part of their 
environment and (b) mobile nodes, correspond-
ing to users that move over the set of AmI 
environments. At any given time point, each 
environment comprises its fixed nodes and a 
(possibly empty) set of mobile nodes that happen 
to be part of the environment at that moment. 
Each node n has (a) a unique node id and (b) 
a finite set of records, or variables, denoted as 
var(n), which are either read or updated in the 
context of a (possibly distributed) transaction. 
Moreover, each mobile node is characterized 
by a schedule that specifies its movement from 

one environment to another. A node’s schedule 
is a finite list of pairs of the form (environment, 
duration) characterizing how long the node will 
remain in each environment. In Figure 2, we 
depict he schedule of a node which is going to 
stay for 20 time points in environment N1, then 
move to environment N2 where it will remain 
for 30 time points, then return to environment 
N1 for a duration of 40 time points and finally 
move to environment N3 where it will stay for 
44 time points.

All nodes issue flat distributed transactions, 
i.e., transactions composed of tasks that are 
executed at different nodes, with the extra as-
sumption that each node who is requested to 
perform such a task can execute this task lo-
cally without issuing another (nested) transac-
tion. Also, we assume that each transaction is 
executed within the context of a single environ-
ment (still, this particular assumption can be 
relaxed with straightforward enhancements in 
the proposed protocol.).

Formally, each transaction is defined as 
the following tuple:

T = (TID, NID, MID, {Steps})

where TID is a unique identifier for the transac-
tion, NID is the identifier of the environment 
within which the transaction must be executed, 
MID is the node identifier for the master node of 
the transaction and Steps is a finite list of steps 
(to be defined right away). Each Step is defined 
as a set of actions, with each action being a 
request to read or write a cohort’s variable. An 
action is, thus, defined as the following tuple:

A = (CID, Action, Variable)

where CID is the node identifier of the cohort 
node that executes the action, Action belonging 
to the set {READ, WRITE} and Variable being 
the variable being read or written.

For reasons that will be apparent in the 
sequel, we would like to point out that it is 
easy to infer whether a node is mobile or fixed 
by its node id.
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2.2 The Freeze on Leave Protocol

The main thrust of our contribution lies in the 
exploitation of the schedules of the mobile 
nodes. Assume that a mobile node is about to 
leave an environment where it participates as a 
cohort to a distributed transaction. In this case, a 
typical transaction protocol would simply abort 
the transaction. Following a different direction, 
we build on the idea on requiring the node to 
notify the transaction’s master on its intention 
to leave, instead of sending an abort message. 
The crux of the proposed protocol is that the 
master tries to find a rendezvous, i.e., a time 
point and a subsequent interval where all the 
participants of the transaction will meet again 
in the same environment. If this is feasible, then 
the transaction is frozen, its state is recorded at 
the master and it will be de-frozen again when 
the master’s clock reaches the starting point of 
the rendezvous that the master has calculated. 
Due to this mechanism, we call this protocol 
Freeze on Leave (FOL).

Assume a transaction that takes place in 
environment N1 and involves a fixed master and 
two mobile cohorts, m1 and m2. Assume that at 
time point τ the master receives a message from 
cohort m1 that the latter is leaving environment 
N1. The schedules of the two cohorts at time 
point τ are depicted in Figure 3. The master, can 
calculate that, according to the cohorts’ sched-
ules, cohort m1 will be back at the environment 
N1 for the time interval [51-90] and cohort m2 
will also be back for the time interval [71-90]. 
The overlap of the two schedules can serve as a 
“rescue” interval for the successful completion 
of the transaction.

Interestingly, the protocol does not guar-
antee successful completion of the transaction. 
The risks of failure are primarily two: (a) a 
cohort violates its schedule and misses the 
rendezvous for the frozen transaction’s de-
freeze, or (b) the transaction cannot be com-
pleted in the common time interval of the 
cohorts. In both of the aforementioned cases 
the protocol guarantees that the transaction 
shall be aborted.

In the rest of this section, we organize 
the discussion of the internals of the Freeze 
on Leave protocol in two parts: first we as-
sume that the master is fixed and following we 
examine the case where the master is mobile. 
In both cases, the reaction of the master is 
also dependent upon the state in which it is in.

If the master of the transaction is fixed, 
then it does not need to worry about its own 
schedule, since it will continuously be pres-
ent at the environment where the transaction 
takes place. As already mentioned, we are 
particularly interested in the case where a 
mobile cohort sends a message LEAVE to the 
master, signifying the cohort’s intention to 
leave the environment. Whenever the master 
receives such a message it checks its state. If 
the master is in any state before executing, 
then it assumes that no work has actually 
been done (and therefore worth saving) and 
aborts the transaction. On the other hand, if the 
master is in an executing or prepared state, it 
understands that there is a chance of salvaging 
the work that has been performed so far. The 
actions of the master depend upon its state.

Figure 2. Exemplary schedule of a mobile node
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A cohort leaves and the master is in execut-
ing state: In this case, when the master 
receives the LEAVE message from the 
cohort, it initiates the procedure for find-
ing a rendezvous, i.e., a common time 
point and a subsequent interval where 
all the mobile cohorts will be back in the 
environment again. In case there is no 
such interval, the transaction is aborted 
as usually. If, on the other hand, such an 
interval exists, the master proceeds as 
following:

−  First, the master checks whether there are 
steps that can be executed without the 
leaving cohort. If the next step requires 
the departing cohort, then the master node 
proceeds as follows:

−  it notifies all cohorts about the rendezvous 
by sending to them a FREEZE message;

−  if the master has received acknowledgements 
from the last step (i.e., read or write ac-
tions), it assumes a hung up state – else 
it assumes an ack hung up state until all 
acknowledgements arrive;

−  If there are steps that can be executed with-
out the departing cohort, then the master 
proceeds as follows:

−  it notifies the departing cohort about the 
rendezvous by sending to it a FREEZE 
message;

−  it assumes a temp executing state;
−  it waits for a step that requires the presence 

of an absent cohort to signal a FREEZE 
message to all the cohorts and moves to 
a state of hung up or ack hung up.

At the same time, when a cohort receives a 
FREEZE message, it moves to a hung up state.

The execution of the transaction continues 
interactively. Whenever a participating cohort 
returns to the environment, the master node tries 
to execute the next step of the transaction. If the 
execution of the next step is possible the master 
passes in a temp executing state and keeps up 
with the execution of the transaction until a 
step that requires a missing node; otherwise it 
remains in its previous state.

The overall defreeze of the transaction takes 
place when the rendezvous point arrives. At 
this point, the master checks if every cohort is 
present. If the rendezvous is missed, the master 
aborts the transaction and notifies all cohorts 
that are present accordingly. The cohorts that 
missed the rendezvous are aware of this situa-
tion; when the rendezvous is missed each one 
of them considers the transaction aborted.

Observe Figure 4 depicting the state dia-
gram for the master in this case. The darker 
nodes correspond to the typical presume-abort 
2-phase-commit protocol and the white nodes 
present the proposed extension.

A cohort leaves and the master is in prepared 
state: If the master receives a LEAVE 
message when it is in prepared state, it 
also needs to check whether it is possible 
to find a rendezvous. If such a rendezvous 
can not be found the transaction is 
aborted. Otherwise, the master (a) sends 
a FREEZE message to the cohort leaving 
the environment and (b) assumes a vote 

Figure 3. Schedules for mobile nodes at the time of departure of m1
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hung up state, waiting for the remaining 
cohorts’ votes. When the master can reach 
a decision for the transaction, there are 
two cases:

−  If the transaction is to be aborted, the master 
notifies all cohorts that are present about 
the decision and assumes a partially abort 
state, until the rendezvous point. At this 
point, the master sends an ABORT mes-
sage to the returning cohorts and moves to 
an aborted state. Note that some cohorts 
may miss the rendezvous. These cohorts 
can not be notified by the master about 
the outcome of the transaction. However, 
since they are aware of the missed ren-
dezvous, they shall abort the transaction 
by themselves.

−  If the transaction is to be committed, the mas-
ter moves to the partially commit state, 
until the rendezvous. At this point, the 
master checks if every cohort is present. 
If the rendezvous is missed, the master 
assumes an aborted state. As previously, 
the cohorts that missed the rendezvous 
abort the transaction by themselves. If 

the rendezvous is met by all cohorts the 
master assumes a committing state.

Observe Figure 5 depicting the state dia-
gram for the master in this case. The darker 
nodes correspond to the typical presume-abort 
2-phase-commit protocol and the white nodes 
present the proposed extension.

If the master of the transaction is mobile, 
the overall behavior of the protocol is quite 
similar with what has been discussed for the 
case where the master is fixed. Nevertheless, 
below we summarize the main differences that 
exist in the case of the mobile master:

− Whenever the master tries to calculate a 
rendezvous, it takes into account its own 
schedule along with the schedules of the 
participating cohorts.

− If the master has to leave the environment 
while being in the executing or in the pre-
pared state, there is nothing particularly 
different from the case of a mobile cohort 
leaving the environment. Nevertheless, 
due to the fact that the master needs to 

Figure 4. State diagram for the master, when a cohort leaves and the master is in prepared state
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organize its departure and calculate the 
rendezvous, the master arranges to send 
a LEAVE message to itself somewhat 
earlier than its departure.

2.3 Discussion: Risks and 
Opportunities of the FOL Protocol

In this section we discuss possible risks and 
opportunities for improvement of the proposed 
protocol and explain some of our design choices.

Security and Privacy. A clear concern for 
the proposed protocol has to do with the 
fact that the cohorts’ schedules must be 
released to the master resulting in a breach 
of privacy for the cohorts. We should make 
clear that the proposed protocol operates 
under the assumption that the master is 
trusted. If the master is not trusted by 
even one of the cohorts, then clearly, 
the transaction execution falls back to a 
schedule-agnostic mode. Also, it is not 
necessary to submit the full agenda of a 

cohort to the master; it is only sufficient 
to release a reasonably small subset of 
it for the context of a transaction. This 
can be achieved via a negotiation step 
during the handshake phase between the 
master and the cohorts. It is also possible 
to devise further optimizations, such as 
the anonymization of sensitive parts and 
the disclosure only of the case where the 
cohort will be back in the master’s envi-
ronment. Exploring these posibilities is 
an issue orthogonal to the protocol per 
se, especially since all of them result in 
the identification (or not) of common 
interval during which all the cohorts 
will be present in the same environment. 
So, for simplicity, in our deliberations 
we assume the simplest case, where all 
the cohorts automatically release their 
agendas to the master.

Concerning security, the transmission of the 
schedule to the master can be encrypted and even 
locally stored in an encrypted scheme; still, this 

Figure 5. State diagram for the master, when a cohort leaves and the master is in prepared state
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is a topic for the implementing middleware to 
resolve and falls outside the scope of the paper.

Strictness of schedules. What happens if a 
node does not stick to its schedule? This 
is a realistic question that has to be an-
swered by the protocol. There are mainly 
two cases:

(i)  Α cohort is late in its rendezvous. Ιn 
this case, the master initiates an abort 
message and the late cohort presumes 
by default that an abort will occur. 
A simple extension of the protocol 
can even give some extra time after 
the rendezvous as a buffering period 
for latecomers; in fact this buffering 
period can even be calculated at the 
determination of the rendezvous time 
point. Still, this is a simple engineer-
ing extension to the protocol without 
significant implications.

(ii)  A cohort is early in its rendezvous. 
This is no problem per se, if the cohort 
intends to stick to its previous schedule 
for the rest of its tasks. At the same 
time, this also presents an opportunity 
if all cohorts arrive early. It is possible 
to devise schemes to take this case 
into consideration; in our case we 
considered this to be a rare case and 
opted for a simpler protocol.

Other possible directions involve the moni-
toring of cohorts progress with respect to their 
registered schedule and the adaptation of the 
rendezvous point. We believe that the protocol 
should stick to local scope principle, in the sense 
that each master should only be interested in 
what happens in its specialized purview without 
global coordination or monitoring back-stage 
activities. Still, it is possible that in special-
ized situations, this could be performed with 
significant gains of committed transactions –at 
the expense, of course, of simplicity.

Opportunities for improvements. It is possible 
for the skeptical reader to raise questions 

related to the assumptions made in this 
paper. A simple example involves the role 
of environments in the whole setting: for 
example, if two different environments 
are close in terms of wireless transmis-
sion, or, if they have direct connection 
of their fixed nodes, is it possible to take 
advantage of this fact and improve the 
protocol? So far, we have assumed that 
an environment is an area within which 
the mobile nodes can communicate with 
each other, so, strictly speaking, as long as 
there is network connectivity among the 
involved nodes we should still consider 
that they are in the same environment. 
Still, it is possible to consider situations 
where an environment is bounded by 
geographical and connectivity con-
straints. Mesh networks, each employing 
a dedicated gateway node could possibly 
be considered in such a scenario and a 
cooperative scheme between them could 
be devised. We consider this opportunity 
as a topic for future research.

A second possibility has to do with the 
mobility of the nodes. Improvements of the 
protocol could be explored for the case that 
the nodes move groupwise, in a ‘herd’ fashion 
(Musolesi & Mascolo, 2007) as well in cases 
of other mobility models derived based on 
real-world observations (e.g., Bittner, Raffel, & 
Scholz, 2005; Tian, Haehner, Becker, Stepanov, 
& Rothermel, 2002). In general, a restriction 
of our model is that the nodes must return to 
the initiating environment to complete the 
transaction. It is possible to think of schemes 
where the nodes complete the transaction in 
another environment. Nevertheless, adopting 
such an approach would require total, detailed 
knowledge of all the schedules (against the 
aforementioned comments for privacy issues) 
and the environments and would result in a 
global scope rendezvous protocol. For practi-
cal purposes of efficiency and simplicity, we 
believe that a local, or at best, a limited horizon 
scope must be adopted, in which the rendezvous 
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are considered without total knowledge of the 
network structure or the nodes’ schedules. In 
other words, there is a trade-off between network 
and schedule knowledge, protocol simplicity 
and speed vs. the percentage of committed 
transactions. This trade-off is a function of the 
extent of the horizon that should be considered 
and its intricacies suggest another topic for 
future research.

3. EXPERIMENTS

To assess the idea of designing user-centric 
transaction protocols for AmI environments we 
implemented a simulator and performed a num-
ber of experiments. The goal of our experimental 
evaluation was to compare the FOL protocol 
we proposed in Section 3 against a schedule-
agnostic protocol. The schedule-agnostic proto-
col relies on the following principle: whenever 
the designated time interval for the staying of a 
mobile node at a certain environment expires, 
the node (a) sends a message that aborts all the 
transactions to which it participates, and (b) 
leaves the environment (possibly to join the 
next environment in its schedule). The main 
metrics for our study were the percentages of 
aborted and committed transactions in the case 
of each protocol.

Concerning our experimental setup, we 
assumed 3 different AmI environments, each 
one of which comprised 30 fixed nodes. Given 
these environments we performed 4 different 
sets of experiments where the number of mobile 
nodes varied as follows: 10, 15, 20 and 25 mobile 
nodes. The overall number of variables for the 
fixed nodes was 640, while the overall number 
of variables for the mobile nodes was 320. The 
variables were equally distributed among the 
fixed and the mobile nodes.

The schedule of each mobile node was 
randomly generated with respect to the overall 
simulation time which was set to 1000 time 
units. The average visiting time of each node in 
a particular environment was 50 time units (i.e., 
it was randomly generated in the range [40, 60] 
with a uniform distribution). Therefore, each 

mobile node performed on average 25 visits in 
the 3 AmI environments.

The set of transactions used in our ex-
periments was also randomly generated. In 
particular the number of steps of each transaction 
varied uniformly in the range of [1, 20]. The 
number of actions performed on each step was 
uniformly distributed in the range [1, 3]. Each 
action had a probability of 0.5 to be performed 
on a variable that belonged to a mobile node. 
Given that for each action a node is randomly 
selected with a uniform distribution, the num-
ber of nodes involved in the transactions was 
bounded by the number of steps that constituted 
the transactions. In each one of the 4 different 
sets of experiments that we performed we 
varied the percentage of read actions over the 
total number of actions from 10% to 100%. 
The percentage of read operations influences 
the contention for locks within each node, since 
read operations can read-lock the same vari-
able simultaneously, whereas write operations 
lock the variables exclusively. Finally, in all 
our experiments, transactions were initiated in 
the AmI environments according to a Poisson 
distribution; on average, 2 transactions were 
initiated every 10 time units.

Figure 6 summarizes the results we ob-
tained. More specifically, Figure 6 gives the 
percentages of aborted transactions resulted 
by the use of the two protocols in the 4 differ-
ent configurations of our environments. In all 
cases, we can observe that the schedule-aware 
protocol exhibits a much better behavior; the 
percentages of aborted transactions in the case of 
the schedule-agnostic protocol are much higher 
than the percentages of aborted transactions in 
the case of the schedule-aware protocol. Nev-
ertheless, as we increase the number of mobile 
nodes involved in the 3 AmI environments the 
difference between the two protocols decreases 
given that the probability of finding rendezvous 
decreases.

Concerning the percentages of committed 
transactions (see Figure 7), we have also mea-
sured the effect of the number of mobile nodes 
and the composition of transactions with respect 
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Figure 6. FOL vs. a schedule-agnostic protocol: Percentage of aborted transactions



International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010   83

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Figure 7. FOL vs. a schedule-agnostic protocol: Percentage of committed transactions
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to reads and writes. The percentage of commit-
ted transactions is not the complement of the 
percentage of aborted transactions: this is due 
to the fact that due to strict locking of resourc-
es, starvations occur and some transactions 
never start. In this case we consider the transac-
tion cancelled. If too many write operations 
take place, then the possibilities for concurren-
cies are reduced and many cancellations take 
place. Moreover, due to this fact, the schedule-
aware and the schedule-agnostic protocols 
behave similarly. Still, as the number of read 
operations increases, more transactions can 
operate concurrently; the experiments show 
that (a) cancellations decrease (and the percent-
age of committed transactions increases) and 
(b) the schedule-aware protocol performs bet-
ter than the schedule-agnostic one. Moreover, 
the difference between the two protocols be-
comes clearer as we increase the number of 
mobile nodes involved in the environments.

4. CONCLUSION AND FUTURE 
WORK

In this paper we discussed our general position 
that concerns the need for designing user-centric 
transaction protocols towards achieving de-
pendable coordination in AmI environments. 
We proposed such a protocol that takes into 
account the schedules of roaming users that 
move from one AmI environment to another, 
to avoid abnormal terminations of transactions 
when the users leave an environment for short, 
only to return later. We compared the proposed 
schedule-aware protocol against a schedule-
agnostic one. Our findings showed that the use 
of user-centric information in such situations 
is quite beneficial. Our results motivate further 
investigation of the issue of user-centric trans-
action protocols. Currently we focus on more 
stochastic approaches for defining and exploit-
ing user centric information (e.g., probabilistic 
schedules, or schedules based on fuzzy sets). 
Privacy is also an interesting issue involved. 
Moreover, our research is oriented towards 
the design of customizable protocols where the 

outcome of transactions shall be decided with 
respect to user-defined context rules. Finally, 
we envision the provisioning of middleware 
support for user-centric transaction protocols, 
which consequently involves several issues 
including the specification of interoperable 
schedules and monitoring the availability of 
nodes in a particular environment.
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