
International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010 71

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords: Ambient Intelligence, Schedule-Agnostic, Schedule-Aware, Transactions, Two Phase Commit

INTRODUCTION

The rapid emergence of novel technologies in
the fields of mobile computing and network-
ing fostered the transition from conventional
distributed systems to mobile computing sys-
tems that consist of fixed and mobile devices
(such as PDAs, Pocket PCs, smart-phones),
which collaborate through wireless networking
infrastructures. Going one step further, the vi-
sion of Ambient Intelligence (AmI) investigates
the possibility of realizing mobile computing
environments that are aware and responsive
to the presence of people (Aarts, Harwig, &

Schedule-Aware Transactions
for Ambient Intelligence

Environments
Vasileios Fotopoulos, University of Ioannina, Greece

Apostolos V. Zarras, University of Ioannina, Greece

Panos Vassiliadis, University of Ioannina, Greece

ABSTRACT
In this paper, the authors investigate the concept of designing user-centric transaction protocols toward
achieving dependable coordination in AmI environments. As a proof-of-concept, this paper presents a protocol
that takes into account the schedules of roaming users, which move from one AmI environment to another,
avoiding abnormal termination of transactions when users leave an environment for a short time and return
later. The authors compare the proposed schedule-aware protocol against a schedule-agnostic one. Findings
show that the use of user-centric information in such situations is quite beneficial.

Schuurmans, 2003; Weber et al., 2003). AmI
is based on Weiser’s pioneer work on ubiqui-
tous computing (Weiser, 1991), which evolved
later on to the concept of pervasive computing.
Pervasive computing aims at a digital world,
consisting of interconnected electronic devices
that support the quotidian activities of people.
AmI is particularly concerned by the users’
experience in such a digital world. In other
words, AmI puts a specific focus on the users
and targets the development of user-centric
digital environments that account for the users’
needs, habits and satisfaction, while offering
support that allows them to perform their ev-
eryday activities.

DOI: 10.4018/jaci.2010100106

72 International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The vision of AmI motivates research
towards coordination protocols that involve
both mobile and fixed entities. In this paper, we
particularly investigate the need for designing
user-centric transaction protocols to achieve
dependable coordination in AmI environments.
User-centric information can be exploited while
coordinating a set of transaction participants
towards avoiding abnormal transaction ter-
minations.

In this context, we focus on the abnormal
ending of a transaction that takes place within
an AmI environment, due to the fact that one or
more participating users leave the environment.
Leaving the environment means that the users’
devices are no longer reachable, via the network-
ing infrastructure that supports the transaction
coordination. The idea behind our approach
is that if there is a certain level of knowledge
behind the schedule of each participating user
(i.e., the way the user moves from one environ-
ment to another), then we can exploit it to avoid
abnormal transaction terminations, where a
roaming user leaves the environment for short,
only to return later.

Taking a simple example, consider a confer-
ence that takes place in a number of conference
rooms. Several researchers attend a technical
session in conference room A (i.e., environment
A). In this situation, a number of colleagues want
to arrange a meeting for dinner or work after the
technical session. One of them browses, using
his Pocket-PC, information regarding available
meeting places. His goal is to book a place at
a certain time and insert a dinner meeting in
the agenda applications that execute on his
colleagues’ laptops or Pocket-PCs. Obviously,
setting up the dinner meeting involves perform-
ing a distributed transaction amongst the mobile
devices that host the agenda applications. The
transaction requires each participant’s agenda
application to execute a local transaction and
verify that there are no other obligations of the
participant at the meeting time. This task might
take a certain amount of time to complete. As-
sume now that during this time period, one of
the participants leaves the gathering before the
transaction completes, because his talk starts at

conference room B (i.e., environment B). In
such a situation, typical transaction protocols
would abort the transaction, wasting thus the
energy resources that were spent up to this
point. Nevertheless, the transaction may have a
chance for successful completion if we consider
that the colleagues shall reunite after the coffee
break. Hence, if the transaction protocol could
be enriched with such kind of user-centric in-
formation (i.e., the users schedules) and reason
with respect to this information, all the work
that has been performed for fixing the dinner
meeting would not be wasted.

Based on the previous discussion, the
contribution of this paper consists of designing
a schedule-aware protocol and comparing it
against a schedule-agnostic one. Specifically, in
Section 2 we present the necessary background
and state-of-the art for this paper. In Section 3
we detail the proposed protocol. In Section 4,
we present our experimental results. Finally, in
Section 5 we summarize our contribution and
provide insights for future work.

1. RELATED WORK
AND BACKGROUND

The overall idea of user-centric transaction
protocols and the particular protocol discussed
in this paper fall in the general field of mobile
transactions (Pitoura & Samaras, 1998; Serano-
Alvarado, Roncancio, & Adiba, 2004). Until
now there have been various approaches for
mobile transactions that can be classified with
respect to the system model that they assume into
3 different categories (Serano-Alvarado et al.,
2004). In all of them the transaction initiator is
a mobile host and the entities that comprise the
data, processed during the transaction execution
are fixed hosts. Moreover, Serano-Alvarado et
al. (2004) further identified the following more
generic execution models:

1. In the first system model, transactions are
initiated by mobile hosts and they aim at
processing data located on other mobile
hosts.

International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010 73

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

2. The second system model is the most ge-
neric one, where the execution of mobile
transactions is distributed amongst several
mobile and fixed hosts.

A few years ago, the previous execution
models were considered as too ambitious but
interesting (Serano-Alvarado et al., 2004).
Nowadays, these models fit perfectly to the
case of AmI environments. Until now, some
interesting approaches have been proposed
for dealing with transactions in the context
of the aforementioned execution models. For
instance, Bobineau, Pucheral, and Abdallah
(2000), proposed a one-phase commit protocol
for transactions involving mobile and fixed
hosts, where the voting phase is eliminated and
the master announces its own decision to the
transaction participants; the decision is taken
based on the master’s perception on the suc-
cessful execution of the individual transaction
steps. Kumar, Prabhu, Dunham, and Seydim
(2002), proposed TCOT where the master
employs timeouts towards deciding about the
outcome of a particular transaction. Younas,
Chao, Wang, and Huang (2007) dealt with
mobile host disconnections in transactions that
involve several mobile and fixed hosts by a
protocol that discovers alternative mobile hosts
that may replace the disconnected ones. Nouali,
Doucet, and Drias (2005) proposed a protocol
for transactions that span across several mobile
hosts, which may move across different inter-
connected network cells. The main idea is to use
participant-agents (i.e. proxies to participants
that move to different network cells) to provide
relocation transparency and timeouts to handle
participant disconnections. Alternatively, Le
and Nygard (2005) proposed the use of a data
sharing space. Finally, Böttcher, Gruenwald, and
Obermeier (2006) discuss a protocol that aims
at reducing aborts and blocking time. In this
paper, we go one step further by investigating the
issue of using user-centric information towards
designing distributed transaction protocols for
AmI environments.

The protocol that we investigate in this
paper relies on the combination of two classical
protocols: (a) the presume-abort 2-phase-com-
mit protocol (Mohan, Lindsay, & Obermark,
1986) and (b) the strict 2-phase-locking protocol
(Eswaran, Gray, Lorie, & Traiger, 1976).

In general, the execution of a transaction
involves (1) an entity that initiates it (hereafter
we use the term master to refer to the transaction
initiator) and (2) entities that comprise data,
processed during the transaction execution
(hereafter we use the term cohort to refer to
these entities). Typically, the transaction execu-
tion consists of an initiation state, during which
the master invites the cohorts to participate in
the transaction and the cohorts accept or deny
the invitation. If all goes well, the initiation
state is followed by an executing state, during
which the master processes data that may be of
his own, or of the participating cohorts. At the
time when the master decides to complete the
transaction, the presume-abort protocol takes
place amongst the participants (see Figure 1).
Briefly, the presume-abort protocol comprises
the two phases of the classical 2-phase-commit
protocol. During the first phase, the master of
the transaction sends to all cohorts a PREPARE
message. Upon the reception of this message
the cohorts should respond with their votes
concerning the outcome of the transaction. The
voting messages may be either to commit or to
abort the transaction.

After the voting the transaction gets into a
prepared state and the cohorts wait for the final
decision for the outcome of the transaction. The
second phase of the protocol starts after the
reception of all votes sent by the cohorts. If a
negative vote exists, the master decides to abort
the transaction, notifies accordingly all cohorts,
and releases all information concerning the
transaction (i.e., the transaction gets into an
aborting/aborted state). Otherwise, if all votes
were positive the master decides to commit the
transaction, notifies accordingly all cohorts and
waits for their acknowledgment (the transaction
gets into a committing state). Upon the reception

74 International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

of the acknowledgments, the master releases
all information concerning the transaction and
the transaction get into a committed state. The
presume-abort protocol further conforms to the
following basic principle: if a transaction
participant tries to find out about whether a
transaction was finally committed or aborted
and there is no information available about this
transaction, the transaction participant derives
the conclusion that the transaction was abort-
ed.

The strict 2-phase-locking protocol that
we assume is a variant of the classical 2-phase-
locking protocol, whose fundamental principle
states that no locks can be released until all
necessary locks have been acquired from the
transaction. In the strict 2-phase-locking vari-
ant, all locks are released at the end of the
transaction.

2. A SCHEDULE-AWARE
PROTOCOL FOR AMI
ENVIRONMENTS

In this section we discuss the issue of user-
centric transactions in the context of AmI
environments. The problem we wish to handle
concerns the abnormal ending of the transaction
due to the fact that a mobile user / transaction
participant leaves the AmI environment where
the transaction takes place. The idea behind
our approach is that if there is a certain level
of knowledge behind the schedule of the user,
then we can exploit it to avoid the abnormal
transaction termination. Based on this idea, we
present a schedule-aware transaction protocol.
Before presenting the protocol’s internals, in
Section 3.1, we start with preliminary concepts,
foundations and assumptions for our problem.

Figure 1. State diagram for a master completing a transaction under the a 2-phase commit protocol

International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010 75

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

2.1 Preliminaries

In this section we provide a formal definition of
the entities that participate in the AmI environ-
ment, along with any assumptions made for the
purpose of this paper.

In our modeling, an AmI environment is
a set of cooperating nodes N. We deal with
AmI environments as logical-level constructs
that group nodes in a workgroup where they
cooperate towards achieving a common goal.
Depending on the case, this workgroup can be
mapped to physical-level facilities (e.g., the
AmI environment can be defined with respect
to an area bounded by the connectivity range
of a conventional networking infrastructure
--e.g., a typical IEEE 802.11 network). More
nodes can later join the environment and
existing nodes can leave the environment. In
the context of this paper, the terms ‘join’ and
‘leave’ the environment refer to a logical level
participation to the AmI environment and not a
physical one; in fact, the particularities of these
actions at the physical level are orthogonal to
the proposed protocol.

Our overall system model consists of a set
of distinct AmI environments. Communication
between nodes of Ni, Nj, for all i, j | i ≠ j is not
possible.

The formation of the workgroup can be
done by gathering the mobile nodes around a
static, fixed point of reference (e.g., a standard
access point in a building), or by arranging an
ad-hoc network of mobile peers. In both of
these cases, two kinds of nodes participate:
(a) fixed nodes that are constantly part of their
environment and (b) mobile nodes, correspond-
ing to users that move over the set of AmI
environments. At any given time point, each
environment comprises its fixed nodes and a
(possibly empty) set of mobile nodes that happen
to be part of the environment at that moment.
Each node n has (a) a unique node id and (b)
a finite set of records, or variables, denoted as
var(n), which are either read or updated in the
context of a (possibly distributed) transaction.
Moreover, each mobile node is characterized
by a schedule that specifies its movement from

one environment to another. A node’s schedule
is a finite list of pairs of the form (environment,
duration) characterizing how long the node will
remain in each environment. In Figure 2, we
depict he schedule of a node which is going to
stay for 20 time points in environment N1, then
move to environment N2 where it will remain
for 30 time points, then return to environment
N1 for a duration of 40 time points and finally
move to environment N3 where it will stay for
44 time points.

All nodes issue flat distributed transactions,
i.e., transactions composed of tasks that are
executed at different nodes, with the extra as-
sumption that each node who is requested to
perform such a task can execute this task lo-
cally without issuing another (nested) transac-
tion. Also, we assume that each transaction is
executed within the context of a single environ-
ment (still, this particular assumption can be
relaxed with straightforward enhancements in
the proposed protocol.).

Formally, each transaction is defined as
the following tuple:

T = (TID, NID, MID, {Steps})

where TID is a unique identifier for the transac-
tion, NID is the identifier of the environment
within which the transaction must be executed,
MID is the node identifier for the master node of
the transaction and Steps is a finite list of steps
(to be defined right away). Each Step is defined
as a set of actions, with each action being a
request to read or write a cohort’s variable. An
action is, thus, defined as the following tuple:

A = (CID, Action, Variable)

where CID is the node identifier of the cohort
node that executes the action, Action belonging
to the set {READ, WRITE} and Variable being
the variable being read or written.

For reasons that will be apparent in the
sequel, we would like to point out that it is
easy to infer whether a node is mobile or fixed
by its node id.

76 International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

2.2 The Freeze on Leave Protocol

The main thrust of our contribution lies in the
exploitation of the schedules of the mobile
nodes. Assume that a mobile node is about to
leave an environment where it participates as a
cohort to a distributed transaction. In this case, a
typical transaction protocol would simply abort
the transaction. Following a different direction,
we build on the idea on requiring the node to
notify the transaction’s master on its intention
to leave, instead of sending an abort message.
The crux of the proposed protocol is that the
master tries to find a rendezvous, i.e., a time
point and a subsequent interval where all the
participants of the transaction will meet again
in the same environment. If this is feasible, then
the transaction is frozen, its state is recorded at
the master and it will be de-frozen again when
the master’s clock reaches the starting point of
the rendezvous that the master has calculated.
Due to this mechanism, we call this protocol
Freeze on Leave (FOL).

Assume a transaction that takes place in
environment N1 and involves a fixed master and
two mobile cohorts, m1 and m2. Assume that at
time point τ the master receives a message from
cohort m1 that the latter is leaving environment
N1. The schedules of the two cohorts at time
point τ are depicted in Figure 3. The master, can
calculate that, according to the cohorts’ sched-
ules, cohort m1 will be back at the environment
N1 for the time interval [51-90] and cohort m2
will also be back for the time interval [71-90].
The overlap of the two schedules can serve as a
“rescue” interval for the successful completion
of the transaction.

Interestingly, the protocol does not guar-
antee successful completion of the transaction.
The risks of failure are primarily two: (a) a
cohort violates its schedule and misses the
rendezvous for the frozen transaction’s de-
freeze, or (b) the transaction cannot be com-
pleted in the common time interval of the
cohorts. In both of the aforementioned cases
the protocol guarantees that the transaction
shall be aborted.

In the rest of this section, we organize
the discussion of the internals of the Freeze
on Leave protocol in two parts: first we as-
sume that the master is fixed and following we
examine the case where the master is mobile.
In both cases, the reaction of the master is
also dependent upon the state in which it is in.

If the master of the transaction is fixed,
then it does not need to worry about its own
schedule, since it will continuously be pres-
ent at the environment where the transaction
takes place. As already mentioned, we are
particularly interested in the case where a
mobile cohort sends a message LEAVE to the
master, signifying the cohort’s intention to
leave the environment. Whenever the master
receives such a message it checks its state. If
the master is in any state before executing,
then it assumes that no work has actually
been done (and therefore worth saving) and
aborts the transaction. On the other hand, if the
master is in an executing or prepared state, it
understands that there is a chance of salvaging
the work that has been performed so far. The
actions of the master depend upon its state.

Figure 2. Exemplary schedule of a mobile node

International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010 77

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

A cohort leaves and the master is in execut-
ing state: In this case, when the master
receives the LEAVE message from the
cohort, it initiates the procedure for find-
ing a rendezvous, i.e., a common time
point and a subsequent interval where
all the mobile cohorts will be back in the
environment again. In case there is no
such interval, the transaction is aborted
as usually. If, on the other hand, such an
interval exists, the master proceeds as
following:

− First, the master checks whether there are
steps that can be executed without the
leaving cohort. If the next step requires
the departing cohort, then the master node
proceeds as follows:

− it notifies all cohorts about the rendezvous
by sending to them a FREEZE message;

− if the master has received acknowledgements
from the last step (i.e., read or write ac-
tions), it assumes a hung up state – else
it assumes an ack hung up state until all
acknowledgements arrive;

− If there are steps that can be executed with-
out the departing cohort, then the master
proceeds as follows:

− it notifies the departing cohort about the
rendezvous by sending to it a FREEZE
message;

− it assumes a temp executing state;
− it waits for a step that requires the presence

of an absent cohort to signal a FREEZE
message to all the cohorts and moves to
a state of hung up or ack hung up.

At the same time, when a cohort receives a
FREEZE message, it moves to a hung up state.

The execution of the transaction continues
interactively. Whenever a participating cohort
returns to the environment, the master node tries
to execute the next step of the transaction. If the
execution of the next step is possible the master
passes in a temp executing state and keeps up
with the execution of the transaction until a
step that requires a missing node; otherwise it
remains in its previous state.

The overall defreeze of the transaction takes
place when the rendezvous point arrives. At
this point, the master checks if every cohort is
present. If the rendezvous is missed, the master
aborts the transaction and notifies all cohorts
that are present accordingly. The cohorts that
missed the rendezvous are aware of this situa-
tion; when the rendezvous is missed each one
of them considers the transaction aborted.

Observe Figure 4 depicting the state dia-
gram for the master in this case. The darker
nodes correspond to the typical presume-abort
2-phase-commit protocol and the white nodes
present the proposed extension.

A cohort leaves and the master is in prepared
state: If the master receives a LEAVE
message when it is in prepared state, it
also needs to check whether it is possible
to find a rendezvous. If such a rendezvous
can not be found the transaction is
aborted. Otherwise, the master (a) sends
a FREEZE message to the cohort leaving
the environment and (b) assumes a vote

Figure 3. Schedules for mobile nodes at the time of departure of m1

78 International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

hung up state, waiting for the remaining
cohorts’ votes. When the master can reach
a decision for the transaction, there are
two cases:

− If the transaction is to be aborted, the master
notifies all cohorts that are present about
the decision and assumes a partially abort
state, until the rendezvous point. At this
point, the master sends an ABORT mes-
sage to the returning cohorts and moves to
an aborted state. Note that some cohorts
may miss the rendezvous. These cohorts
can not be notified by the master about
the outcome of the transaction. However,
since they are aware of the missed ren-
dezvous, they shall abort the transaction
by themselves.

− If the transaction is to be committed, the mas-
ter moves to the partially commit state,
until the rendezvous. At this point, the
master checks if every cohort is present.
If the rendezvous is missed, the master
assumes an aborted state. As previously,
the cohorts that missed the rendezvous
abort the transaction by themselves. If

the rendezvous is met by all cohorts the
master assumes a committing state.

Observe Figure 5 depicting the state dia-
gram for the master in this case. The darker
nodes correspond to the typical presume-abort
2-phase-commit protocol and the white nodes
present the proposed extension.

If the master of the transaction is mobile,
the overall behavior of the protocol is quite
similar with what has been discussed for the
case where the master is fixed. Nevertheless,
below we summarize the main differences that
exist in the case of the mobile master:

− Whenever the master tries to calculate a
rendezvous, it takes into account its own
schedule along with the schedules of the
participating cohorts.

− If the master has to leave the environment
while being in the executing or in the pre-
pared state, there is nothing particularly
different from the case of a mobile cohort
leaving the environment. Nevertheless,
due to the fact that the master needs to

Figure 4. State diagram for the master, when a cohort leaves and the master is in prepared state

International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010 79

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

organize its departure and calculate the
rendezvous, the master arranges to send
a LEAVE message to itself somewhat
earlier than its departure.

2.3 Discussion: Risks and
Opportunities of the FOL Protocol

In this section we discuss possible risks and
opportunities for improvement of the proposed
protocol and explain some of our design choices.

Security and Privacy. A clear concern for
the proposed protocol has to do with the
fact that the cohorts’ schedules must be
released to the master resulting in a breach
of privacy for the cohorts. We should make
clear that the proposed protocol operates
under the assumption that the master is
trusted. If the master is not trusted by
even one of the cohorts, then clearly,
the transaction execution falls back to a
schedule-agnostic mode. Also, it is not
necessary to submit the full agenda of a

cohort to the master; it is only sufficient
to release a reasonably small subset of
it for the context of a transaction. This
can be achieved via a negotiation step
during the handshake phase between the
master and the cohorts. It is also possible
to devise further optimizations, such as
the anonymization of sensitive parts and
the disclosure only of the case where the
cohort will be back in the master’s envi-
ronment. Exploring these posibilities is
an issue orthogonal to the protocol per
se, especially since all of them result in
the identification (or not) of common
interval during which all the cohorts
will be present in the same environment.
So, for simplicity, in our deliberations
we assume the simplest case, where all
the cohorts automatically release their
agendas to the master.

Concerning security, the transmission of the
schedule to the master can be encrypted and even
locally stored in an encrypted scheme; still, this

Figure 5. State diagram for the master, when a cohort leaves and the master is in prepared state

80 International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

is a topic for the implementing middleware to
resolve and falls outside the scope of the paper.

Strictness of schedules. What happens if a
node does not stick to its schedule? This
is a realistic question that has to be an-
swered by the protocol. There are mainly
two cases:

(i) Α cohort is late in its rendezvous. Ιn
this case, the master initiates an abort
message and the late cohort presumes
by default that an abort will occur.
A simple extension of the protocol
can even give some extra time after
the rendezvous as a buffering period
for latecomers; in fact this buffering
period can even be calculated at the
determination of the rendezvous time
point. Still, this is a simple engineer-
ing extension to the protocol without
significant implications.

(ii) A cohort is early in its rendezvous.
This is no problem per se, if the cohort
intends to stick to its previous schedule
for the rest of its tasks. At the same
time, this also presents an opportunity
if all cohorts arrive early. It is possible
to devise schemes to take this case
into consideration; in our case we
considered this to be a rare case and
opted for a simpler protocol.

Other possible directions involve the moni-
toring of cohorts progress with respect to their
registered schedule and the adaptation of the
rendezvous point. We believe that the protocol
should stick to local scope principle, in the sense
that each master should only be interested in
what happens in its specialized purview without
global coordination or monitoring back-stage
activities. Still, it is possible that in special-
ized situations, this could be performed with
significant gains of committed transactions –at
the expense, of course, of simplicity.

Opportunities for improvements. It is possible
for the skeptical reader to raise questions

related to the assumptions made in this
paper. A simple example involves the role
of environments in the whole setting: for
example, if two different environments
are close in terms of wireless transmis-
sion, or, if they have direct connection
of their fixed nodes, is it possible to take
advantage of this fact and improve the
protocol? So far, we have assumed that
an environment is an area within which
the mobile nodes can communicate with
each other, so, strictly speaking, as long as
there is network connectivity among the
involved nodes we should still consider
that they are in the same environment.
Still, it is possible to consider situations
where an environment is bounded by
geographical and connectivity con-
straints. Mesh networks, each employing
a dedicated gateway node could possibly
be considered in such a scenario and a
cooperative scheme between them could
be devised. We consider this opportunity
as a topic for future research.

A second possibility has to do with the
mobility of the nodes. Improvements of the
protocol could be explored for the case that
the nodes move groupwise, in a ‘herd’ fashion
(Musolesi & Mascolo, 2007) as well in cases
of other mobility models derived based on
real-world observations (e.g., Bittner, Raffel, &
Scholz, 2005; Tian, Haehner, Becker, Stepanov,
& Rothermel, 2002). In general, a restriction
of our model is that the nodes must return to
the initiating environment to complete the
transaction. It is possible to think of schemes
where the nodes complete the transaction in
another environment. Nevertheless, adopting
such an approach would require total, detailed
knowledge of all the schedules (against the
aforementioned comments for privacy issues)
and the environments and would result in a
global scope rendezvous protocol. For practi-
cal purposes of efficiency and simplicity, we
believe that a local, or at best, a limited horizon
scope must be adopted, in which the rendezvous

International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010 81

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

are considered without total knowledge of the
network structure or the nodes’ schedules. In
other words, there is a trade-off between network
and schedule knowledge, protocol simplicity
and speed vs. the percentage of committed
transactions. This trade-off is a function of the
extent of the horizon that should be considered
and its intricacies suggest another topic for
future research.

3. EXPERIMENTS

To assess the idea of designing user-centric
transaction protocols for AmI environments we
implemented a simulator and performed a num-
ber of experiments. The goal of our experimental
evaluation was to compare the FOL protocol
we proposed in Section 3 against a schedule-
agnostic protocol. The schedule-agnostic proto-
col relies on the following principle: whenever
the designated time interval for the staying of a
mobile node at a certain environment expires,
the node (a) sends a message that aborts all the
transactions to which it participates, and (b)
leaves the environment (possibly to join the
next environment in its schedule). The main
metrics for our study were the percentages of
aborted and committed transactions in the case
of each protocol.

Concerning our experimental setup, we
assumed 3 different AmI environments, each
one of which comprised 30 fixed nodes. Given
these environments we performed 4 different
sets of experiments where the number of mobile
nodes varied as follows: 10, 15, 20 and 25 mobile
nodes. The overall number of variables for the
fixed nodes was 640, while the overall number
of variables for the mobile nodes was 320. The
variables were equally distributed among the
fixed and the mobile nodes.

The schedule of each mobile node was
randomly generated with respect to the overall
simulation time which was set to 1000 time
units. The average visiting time of each node in
a particular environment was 50 time units (i.e.,
it was randomly generated in the range [40, 60]
with a uniform distribution). Therefore, each

mobile node performed on average 25 visits in
the 3 AmI environments.

The set of transactions used in our ex-
periments was also randomly generated. In
particular the number of steps of each transaction
varied uniformly in the range of [1, 20]. The
number of actions performed on each step was
uniformly distributed in the range [1, 3]. Each
action had a probability of 0.5 to be performed
on a variable that belonged to a mobile node.
Given that for each action a node is randomly
selected with a uniform distribution, the num-
ber of nodes involved in the transactions was
bounded by the number of steps that constituted
the transactions. In each one of the 4 different
sets of experiments that we performed we
varied the percentage of read actions over the
total number of actions from 10% to 100%.
The percentage of read operations influences
the contention for locks within each node, since
read operations can read-lock the same vari-
able simultaneously, whereas write operations
lock the variables exclusively. Finally, in all
our experiments, transactions were initiated in
the AmI environments according to a Poisson
distribution; on average, 2 transactions were
initiated every 10 time units.

Figure 6 summarizes the results we ob-
tained. More specifically, Figure 6 gives the
percentages of aborted transactions resulted
by the use of the two protocols in the 4 differ-
ent configurations of our environments. In all
cases, we can observe that the schedule-aware
protocol exhibits a much better behavior; the
percentages of aborted transactions in the case of
the schedule-agnostic protocol are much higher
than the percentages of aborted transactions in
the case of the schedule-aware protocol. Nev-
ertheless, as we increase the number of mobile
nodes involved in the 3 AmI environments the
difference between the two protocols decreases
given that the probability of finding rendezvous
decreases.

Concerning the percentages of committed
transactions (see Figure 7), we have also mea-
sured the effect of the number of mobile nodes
and the composition of transactions with respect

82 International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Figure 6. FOL vs. a schedule-agnostic protocol: Percentage of aborted transactions

International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010 83

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Figure 7. FOL vs. a schedule-agnostic protocol: Percentage of committed transactions

84 International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

to reads and writes. The percentage of commit-
ted transactions is not the complement of the
percentage of aborted transactions: this is due
to the fact that due to strict locking of resourc-
es, starvations occur and some transactions
never start. In this case we consider the transac-
tion cancelled. If too many write operations
take place, then the possibilities for concurren-
cies are reduced and many cancellations take
place. Moreover, due to this fact, the schedule-
aware and the schedule-agnostic protocols
behave similarly. Still, as the number of read
operations increases, more transactions can
operate concurrently; the experiments show
that (a) cancellations decrease (and the percent-
age of committed transactions increases) and
(b) the schedule-aware protocol performs bet-
ter than the schedule-agnostic one. Moreover,
the difference between the two protocols be-
comes clearer as we increase the number of
mobile nodes involved in the environments.

4. CONCLUSION AND FUTURE
WORK

In this paper we discussed our general position
that concerns the need for designing user-centric
transaction protocols towards achieving de-
pendable coordination in AmI environments.
We proposed such a protocol that takes into
account the schedules of roaming users that
move from one AmI environment to another,
to avoid abnormal terminations of transactions
when the users leave an environment for short,
only to return later. We compared the proposed
schedule-aware protocol against a schedule-
agnostic one. Our findings showed that the use
of user-centric information in such situations
is quite beneficial. Our results motivate further
investigation of the issue of user-centric trans-
action protocols. Currently we focus on more
stochastic approaches for defining and exploit-
ing user centric information (e.g., probabilistic
schedules, or schedules based on fuzzy sets).
Privacy is also an interesting issue involved.
Moreover, our research is oriented towards
the design of customizable protocols where the

outcome of transactions shall be decided with
respect to user-defined context rules. Finally,
we envision the provisioning of middleware
support for user-centric transaction protocols,
which consequently involves several issues
including the specification of interoperable
schedules and monitoring the availability of
nodes in a particular environment.

ACKNOWLEDGMENT

We would like to thank the reviewers of earlier
versions of this paper for their valuable com-
ments that significantly improved the clarity
of the paper.

REFERENCES

Aarts, E., Harwig, R., & Schuurmans, M. (2001).
The Invisible Future: The Seamless Integration of
Technology into Everyday Life . In Denning, P. J.
(Ed.), Ambient Intelligence (pp. 235–250). New
York: McGraw-Hill.

Bittner, S., Raffel, W.-U., & Scholz, M. (2005, March
8-12). The Area Graph-based Mobility Model and
its Impact on Data Dissemination. In Proceedings of
the PerCom 2005 Workshops, the 3rd International
Conference on Pervasive Computing and Commu-
nications, Kauai Island, HI (pp. 268-272).

Bobineau, C., Pucheral, P., & Abdallah, M. (2000).
A Unilateral Commit Protocol for Mobile and Dis-
connected Computing. In Proceedings of the 12th
International Conference on Parallel and Distributed
Computing Systems (PDCS’00), Las Vegas, NV.

Böttcher, S., Gruenwald, L., & Obermeier, S. (2006,
July 18-20). Reducing Sub-transaction Aborts and
Blocking Time within Atomic Commit Protocols.
In Proceedings of the 23rd British National Confer-
ence on Databases (BNCOD 23), Belfast, Northern
Ireland, UK.

Eswaran, K. P., Gray, J. N., Lorie, R. A., & Traiger, I.
L. (1976). The Notions of Consistency and Predicate
Locks in a Database System. Communications of the
ACM, 19(11), 624–633. doi:10.1145/360363.360369

Kumar, V., Prabhu, N., Dunham, M. H., & Seydim,
A. Y. (2002). TCOT- A Timeout-based Mobile Trans-
action Commitment Protocol. IEEE Transactions
on Computers, 51(10), 1212–1218. doi:10.1109/
TC.2002.1039846

International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010 85

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Le, H. N., & Nygard, M. (2005, August 22-26).
Mobile Transaction System for Supporting Mobile
Work. In Proceedings of the 16th IEEE Interna-
tional Workshop on Database and Expert Systems
Applications, DEXA Workshops 2005, Copenhagen,
Denmark (pp. 1090-1094). Washington, DC: IEEE
Computer Society.

Mohan, C., Lindsay, B., & Obermarck, R. (1986).
Transaction Management in the R Distributed
Database Management System. ACM Transac-
tions on Database Systems, 11(4), 378–396.
doi:10.1145/7239.7266

Musolesi, M., & Mascolo, C. (2007). Design-
ing Mobility Models Based on Social Network
Theory. ACM SIGMOBILE Mobile Computing
and Communications Review, 11(3), 59–70.
doi:10.1145/1317425.1317433

Nouali, N., Doucet, A., & Drias, H. (2005). A Two-
Phase Commit Protocol for Mobile Wireless Environ-
ment. In Proceedings of the Sixteenth Australasian
Database Conference, Database Technologies 2005,
Newcastle, Australia (pp. 135-143).

Pitoura, E., & Samaras, G. (1998). Data Management
for Mobile Computing. Dordrecht, The Netherlands:
Kluwer Academic Publishers.

Serrano-Alvarado, P., Roncancio, C., & Adiba,
M. (2004). A Survey of Mobile Transactions. Dis-
tributed and Parallel Databases, 16(2), 193–230.
doi:10.1023/B:DAPD.0000028552.69032.f9

Tian, J., Haehner, J., Becker, C., Stepanov, I., & Ro-
thermel, K. (2002). Graph-based Mobility Model for
Mobile Ad Hoc Network Simulation. In Proceedings
of the 35th Annual Simulation Symposium Annual
Simulation Symposium, San Diego, CA (pp. 337-344).
Washington, DC: IEEE Computer Society.

Weber, W., Braun, C., Glaser, R., Gsottberger, Y.,
Halik, M., Jung, S., et al. (2003). Ambient Intel-
ligence - Key Technologies in the Information Age.
In Proceedings of the IEEE International Electron
Devices Meeting (IEDM’03) (pp. 1.1.1-1.1.8).

Weiser, M. (1991). The Computer of the Twenty-
First Century. Scientific American, 135, 94–104.
doi:10.1038/scientificamerican0991-94

Younas, M., Chao, K.-M., Wang, P., & Huang, C.-L.
(2007). QoS-aware Mobile Service Transactions in a
Wireless Environment. Concurrency and Computa-
tion, 19(8), 1219–1236. doi:10.1002/cpe.1157

Vasileios Fotopoulos received his B.Sc. in Computer Science from the Department of Computer
Science, University of Ioannina in 2005. He received his M.Sc. in Computer Science from the
same department in 2008. His research interests include middleware and P2P networks.

Apostolos Zarras received his B.Sc. in Computer Science in 1994 from the Computer Science
Department of the University of Crete. From the same department he received his M.Sc. in
Distributed Systems and Computer Architecture. In 1999 he received his Ph.D. in Distributed
Systems and Software Architecture from the University of Rennes I. Now he holds an Assistant
Professor position at the Department of Computer Science of the University of Ioannina and he
is a member of the Distributed Management of Data (DMOD) Laboratory (http://www.dmod.
cs.uoi.gr/). His research interests include middleware, model-driven architecture development,
quality analysis of software systems and pervasive computing. Further information can be found
at http://www.cs.uoi.gr/~zarras.

Panos Vassiliadis received his Ph.D. from the National Technical University of Athens in 2000. He
joined the Department of Computer Science of the University of Ioannina as a lecturer in 2002.
Currently, Dr. Vassiliadis is also a member of the Distributed Management of Data (DMOD)
Laboratory (http://www.dmod.cs.uoi.gr/). His research interests include data warehousing, web
services and database design and modeling. More information is available at http://www.cs.uoi.
gr/~pvassil.

86 International Journal of Ambient Computing and Intelligence, 2(4), 71-86, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

