
Benchmarking ETL Workflows

Alkis Simitsis1, Panos Vassiliadis2, Umeshwar Dayal1,
Anastasios Karagiannis2, Vasiliki Tziovara2

1 HP Labs, Palo Alto, CA, USA,

{alkis, Umeshwar.Dayal}@hp.com
2 University of Ioannina, Dept. of Computer Science, Ioannina, Hellas

{pvassil, ktasos, vickit}@cs.uoi.gr

Abstract. Extraction–Transform–Load (ETL) processes comprise complex data
workflows, which are responsible for the maintenance of a Data Warehouse. A
plethora of ETL tools is currently available constituting a multi-million dollar
market. Each ETL tool uses its own technique for the design and implementa-
tion of an ETL workflow, making the task of assessing ETL tools extremely
difficult. In this paper, we identify common characteristics of ETL workflows
in an effort of proposing a unified evaluation method for ETL. We also identify
the main points of interest in designing, implementing, and maintaining ETL
workflows. Finally, we propose a principled organization of test suites based on
the TPC-H schema for the problem of experimenting with ETL workflows.

Keywords: Data Warehouses, ETL, benchmark.

1 Introduction

Data warehousing is a technology that enables decision-making and data analysis in
large organizations. Several products are available in the market and for their evalua-
tion, the TPC-H benchmark has been proposed as a decision support benchmark [16].
TPC-H focuses on OLAP (On-Line Analytical Processing) queries and it mainly deals
with the data warehouse site. Another version termed TPC-DS has been around for
the last few years, but this version is still in a draft form [11, 15]. TPC-DS considers a
broader picture than TPC-H including the whole flow from the sources to the target
data warehouse. However, it partially covers the data warehouse maintenance part,
considering only simple mechanisms for inserting and deleting tuples.

To populate a data warehouse with up-to-date records extracted from operational
sources, special tools are employed, called Extraction – Transform – Load (ETL)
tools, which organize the steps of the whole process as a workflow. To give a general
idea of the functionality of these workflows we mention their most prominent tasks,
which include: (a) the identification of relevant information at the source side; (b) the
extraction of this information; (c) the transportation of this information to the Data
Staging Area (DSA), where most of the transformation usually take place; (d) the
transformation, (i.e., customization and integration) of the information coming from
multiple sources into a common format; (e) the cleansing of the resulting data set, on
the basis of database and business rules; and (f) the propagation and loading of the
data to the data warehouse and the refreshment of data marts.

 2

Due to their importance and complexity (see [2, 12] for relevant discussions and
case studies), ETL tools constitute a multi-million dollar market. There is a plethora
of commercial ETL tools available. The traditional database vendors provide ETL
solutions along with the DBMS’s: IBM with InfoSphere Information Server [7], Mi-
crosoft with SQL Server Integration Services (SSIS) [9], and Oracle with Oracle
Warehouse Builder [10]. There also exist independent vendors that cover a large part
of the market (e.g., Informatica with Powercenter [8] and Ab Initio [1]). Nevertheless,
an in-house development of the ETL workflow is preferred in many data warehouse
projects, due to the significant cost of purchasing and maintaining an ETL tool. The
spread of existing solutions comes with a major drawback. Each one of them follows
a different design approach, offers a different set of transformations, and provides a
different internal language to represent essentially similar functions.

Although Extract-Transform-Load (ETL) tools are available in the market for more
than a decade, only in the last few years have researchers and practitioners started to
realize the importance that the integration process has in the success of a data ware-
house project. There have been several efforts towards (a) modeling tasks and the
automation of the design process, (b) individual operations (with duplicate detection
being the area with most of the research activity) and (c) some first results towards the
optimization of the ETL workflow as a whole (as opposed to optimal algorithms for
their individual components). For lack of space, we refer the interested reader to [12]
for a detailed survey on research efforts in the area of ETL tools.

The wide spread of industrial and ad-hoc solutions combined with the absence of a
mature body of knowledge from the research community is responsible for the ab-
sence of a principled foundation of the fundamental characteristics of ETL workflows
and their management. A small list of shortages concerning such characteristics in-
clude: no principled taxonomy of individual activities exists, few efforts have been
made towards the optimization of ETL workflows as a whole, and practical problems
like recovering from failures and handling evolution have mostly been ignored. Thus,
a commonly accepted, realistic framework for experimentation is also absent.

Contributions. In this paper, we aim at providing a principled categorization of
test suites for the problem of experimenting with a broad range of ETL workflows.
First, we provide a principled way for constructing ETL workflows (Section 2). We
identify the main functionality provided by representative commercial ETL tools and
categorize the ETL operations into abstract logical activities. Based on that, we pro-
pose a categorization of ETL workflows, which covers frequent design cases. Then,
we describe the main configuration parameters and a set of measures to be monitored
for capturing the generic functionality of ETL tools (Section 3). Finally, we provide
specific ETL scenarios based on the aforementioned analysis, which can be used as an
experimental testbed for the evaluation of ETL design methods or tools (Section 4).

2. Problem Formulation

In this section, we introduce ETL workflows as graphs. Then, we zoom in the micro-
level of ETL workflows inspecting each individual activity in isolation and then, we
return at the macro-level, inspecting how individual activities are “tied” altogether to
compose an ETL workflow. Finally, we discuss the characteristics of ETL execution
and we tie them to the goals of the proposed benchmark.

 3

2.1 ETL workflows

An ETL workflow is a design blueprint for the ETL process. The designer constructs
a workflow of activities (or operations), usually in the form of a graph, to specify the
order of cleansing and transformation operations that should be applied to the source
data, before being loaded to the data warehouse. In what follows, we use the term
recordsets to refer to any data store that obeys a schema (such as relational tables and
record files) and the term activity to refer to any software module that processes the
incoming data, either by performing any schema transformation over the data or by
applying data cleansing procedures. Activities and recordsets are logical abstractions
of physical entities. At the logical level, we are interested in their schemata, seman-
tics, and input-output relationships; however, we do not deal with the actual algorithm
or program that implements the logical activity or with the storage properties of a
recordset. When in a later stage, the logical-level workflow is refined at the physical
level a combination of executable programs/scripts that perform the ETL workflow is
devised. Then, each activity of the workflow is physically implemented using various
algorithmic methods, each with different cost in terms of time requirements or system
resources (e.g., CPU, memory, disk space, and disk I/O).

Formally, we model an ETL workflow as a directed acyclic graph G(V,E). Each
node v∈V is either an activity a or a recordset r. An edge (a,b)∈E is a provider rela-
tionship denoting that b receives data from node a for further processing. Nodes a and
b are the data provider and data consumer, respectively. The following well-
formedness constraints determine the interconnection of nodes in ETL workflows:
− Each recordset r is a pair (r.name, r.schema), with the schema being a finite list

of attribute names.
− Each activity a is a tuple (N,I,O,S,A). N is the activity’s name. I is a finite set of

input schemata. O is a finite set of output schemata. S is a declarative description
of the relationship of its output schema with its input schema in an appropriate
language (without delving into algorithmic or implementation issues). A is the al-
gorithm chosen for activity’s execution.

− The data consumer of a recordset cannot be another recordset. Still, more than
one consumer is allowed for recordsets.

− Each activity must have at least one provider, either another activity or a record-
set. When an activity has more than one data providers, these providers can be
other activities or activities combined with recordsets.

− The data consumer of an activity cannot be the same activity.

2.2 Micro-level activities

At a micro level, we consider three broad categories of ETL activities: (a) extraction
activities, (b) transformation and cleansing activities, and (c) loading activities.

Extraction activities extract the relevant data from the sources and transport them
to the ETL area of the warehouse for further processing (possibly including opera-
tions like ftp, compress, etc.). The extraction involves either differential data sets with
respect to the previous load, or full snapshots of the source. Loading activities have to
deal with the population of the warehouse with clean and appropriately transformed

 4

left wing body right wing

Figure 1. Butterfly configuration

data. This is typically done through a bulk loader program; nevertheless the process
also includes the maintenance of indexes, materialized views, reports, and so on.
Transformation and cleansing activities can be coarsely categorized with respect to
the result of their application to data and the prerequisites, which some of them should
fulfill. In this context, we discriminate the following categories of operations:
− Row-level operations, which are locally applied to a single row.
− Router operations, which locally decide, for each row, which of the many (out-

put) destinations it should be sent to.
− Unary Grouper operations, which transform a set of rows to a single row.
− Unary Holistic operations, which perform a transformation to the entire data set.

These are usually blocking operations.
− Binary or N-ary operations, which combine many inputs into one output.

All frequently built-in transformations in the majority of commercial solutions fall
into our classification (see for example Figure A3 – in the appendix).

2.3 Macro level workflows

 The macro level deals with the way individual activities and recordsets are combined
together in a large workflow. The possibilities of such combinations are infinite. Nev-
ertheless, our experience suggests that most ETL workflows follow several high-level
patterns, which we present in a principled fashion in this section.

We introduce a broad category of workflows, called Butterflies. A butterfly (see al-
so Figure 1) is an ETL workflow that consists of three distinct components: (a) the
left wing, (b) the body, and (c) the right wing of the butterfly. The left and right wings
(separated from the body with dashed lines in Figure 1) are two non-overlapping
groups of nodes which are attached to the body of the butterfly. Specifically:
− The left wing of the butterfly includes one or more sources, activities and aux-

iliary data stores used to store intermediate results. This part of the butterfly per-
forms the extraction, cleaning and transformation part of the workflow and loads
the processed data to the body of the butterfly.

− The body of the butterfly is a central, detailed point of persistence that is popu-
lated with the data produced by the left wing. Typically, the body is a detailed
fact or dimension table; still, other variants are also possible.

− The right wing gets the data stored at the body and utilizes them to support re-
porting and analysis activity. The right wing consists of materialized views, re-
ports, spreadsheets, as well as the activities that populate them. In our setting, we
abstract all the aforementioned static artifacts as materialized views.

 5

Balanced Butterflies. A butterfly that includes medium-sized left and right wings
is called a Balanced butterfly and stands for an ETL scenario where incoming source
data are merged to populate a warehouse table along with several views or reports
defined over it. Figure 1 is an example of this class of butterflies. This variant
represents a symmetric workflow (there is symmetry between the left and right
wings). However, this is not always the practice in real-world cases. For instance, the
butterfly’s triangle wings are distorted in the presence of a router activity that in-
volves multiple outputs (e.g., copy, splitter, switch, and so on). In general, the two
fundamental wing components can be either lines or combinations. In the sequel, we
discuss these basic patterns for ETL workflows that can be further used to construct
more complex butterfly structures. Figure 2 depicts example cases of these variants.

Lines. Lines are sequences of activities and recordsets such that all activities have
exactly one input (unary activities) and one output. Lines form single data flows.

Combinations. A combinator activity is a join variant (a binary activity) that
merges parallel data flows through some variant of a join (e.g., a relational join, diff,
merge, lookup or any similar operation) or a union (e.g., the overall sorting of two
independently sorted recordsets). A combination is built around a combinator with
lines or other combinations as its inputs. We differentiate combinations as left-wing
and right-wing combinations.

Left-wing combinations are constructed by lines and combinations forming the left
wing of the butterfly. The left wing contains at least one combination. The inputs of
the combination can be:
− Two lines. Two parallel data flows are unified into a single flow using a combina-

tion. These workflows are shaped like the letter ‘Y’ and we call them Wishbones.
− A line and a recordset. This refers to the practical case where data are processed

through a line of operations, some of which require a lookup to persistent rela-
tions. In this setting, the Primary Flow of data is the line part of the workflow.

− Two or more combinations. The recursive usage of combinations leads to many
parallel data flows. These workflows are called Trees.

Observe that in the cases of trees and primary flows, the target warehouse acts as
the body of the butterfly (i.e., there is no right wing). This is a practical situation that
covers (a) fact tables without materialized views and (b) the case of dimension tables
that also need to be populated through an ETL workflow. In some cases, the body of
the butterfly is not necessarily a recordset, but an activity with many outputs (see last
example of Figure 2). Then, the main goal of the scenario is to distribute data to the
appropriate flows; this task is performed by an activity serving as the butterfly’s body.

Right-wing combinations are created by lines and combinations on the right wing
of the butterfly. These lines and combinations form either a flat or a deep hierarchy.
− Flat Hierarchies. These configurations have small depth (usually 2) and large

fan-out. An example of such a workflow is a Fork, where data are propagated
from the fact table to the materialized views in two or more parallel data flows.

− Right - Deep Hierarchies. We also employ configurations with right-deep hie-
rarchies. These configurations have significant depth and medium fan-out.

A more detailed description of the above structures is given in Section 4.2.
Butterflies are important for benchmarking at least in the following ways. Since

such constructs are based on the classification of ETL activities discussed before, they
form a taxonomy as aid for designing or understanding complex ETL workflows. In

 6

particular, we can use them for constructing more complex ETL workflows in a prin-
ciple way. For example, if we need a memory intensive workflow, we should consider
using tree or fork flows, which include routers/joins and a significant number of sort-
ing or aggregating operations. If we wish to examine pipelining as well, we may con-
sider extending these flows with line workflows (we need to tune the distribution of
blocking and non-blocking operations in these flows too). In addition, to further
enrich our workflows, we may also consider having multiple “bodies” in our design,
which can represent not necessarily data warehouse tables, but ETL activities as well.

Moreover, having in hand such categorization one may decompose existing com-
plex ETL workflows into sets of primitive constructs for getting insight into their
functionality. This decomposition can be used for optimization purposes too. We can
study the behavior of the abovementioned ETL patterns in isolation, and then, we can
use our findings for optimizing and tuning the whole workflow for performance,
maintainability or some other quality. For example, the performance of a complex
workflow can be derived from the performance of the component primitive ones.

2.4 Goals of the Benchmark

The design of a benchmark should be based upon a clear understanding of the charac-
teristics of the inspected systems that do matter. Therefore, we propose a configura-
tion that covers a broad range of possible workflows (i.e., a large set of configurable
parameters) and a limited set of monitored measures.

The goal of this benchmark is to provide the experimental testbed to be used for the
assessment of ETL engines and design methods concerning their basic behavioral
properties (measures) over a broad range of ETL workflows.

This benchmark’s goal is to study and evaluate workflows as a whole. Here, we are
not interested in providing specialized performance measures for very specific tasks
in the overall process. We are not interested either, in exhaustively enumerating all
the possible alternatives for specific operations. For example, this benchmark is not
intended to facilitate the comparison of alternative methods for duplicate detection in
a data set, since it does not take the tuning of all the possible parameters for this task
under consideration. On the contrary, this benchmark can be used for the assessment
of the integration of such methods in complex ETL workflows, assuming that all the
necessary knobs have been appropriately tuned.

There are two modes of operation for ETL workflows: off-line (batch) and active
(or continuous or real-time) modes. In the off-line mode, the workflow is executed
during a specific time window (typically at night), when the systems are not servicing
their end-users. Due to the low load of both the source and warehouse systems, the
refreshment of data and any other administrative activities (cleanups, auditing, and so
on) are easier to complete. In the active mode, the sources continuously try to send
new data to the warehouse. This is not necessarily done instantly; rather, small groups
of data are collected and sent to the warehouse for further processing. The two modes
do not differ only on the frequency of the workflow execution, but also on how the
workflow execution affects the load of the systems too.

Independently of the mode under which the ETL workflow operates, the two fun-
damental goals that should be reached are effectiveness and efficiency. Hence, given

 7

an ETL engine or a specific design method to be assessed over one or more ETL
workflows, these fundamental goals should be evaluated.

Effectiveness. Our extensive discussions with ETL practitioners and experts have
verified that in real-life ETL projects performance is not the only objective. On the
contrary, other optimization qualities are of interest as well. We refer to these collec-
tively as QoX [6]. The QoX metric suite is incorporated at all stages of the design
process, from high-level specifications to implementation. A non-exhaustive list of
metrics that can be used to guide optimization include: performance, recoverability,
reliability, freshness, maintainability, scalability, availability, flexibility, robustness,
affordability, consistency, traceability, and auditability. Some metrics are quantitative
(e.g., reliability, freshness, cost) while other metrics may be difficult to quantify (e.g.,
maintainability, flexibility). Also, there are significant tradeoffs that should be taken
under consideration, since an effort for improving one objective may hurt another one
[13]. For example, improving freshness typically hurts recoverability, since consider-
ing recovery points on the way to the warehouse may be prohibitive in this case; on
the other hand, having redundancy may be an interesting solution for achieving fault-
tolerance. Due to space consideration, we do not elaborate on all the abovementioned
measures (for a more detailed discussion we refer to [13]).

However, the main objective is to have data respect both database and business
rules. We believe that the following (non-exhaustive) list of questions should be con-
sidered in the creation of an ETL benchmark:

Q1. Does the workflow execution reach the maximum possible level of data fresh-
ness, completeness, and consistency in the warehouse within the necessary time
(or resource) constraints?

Q2. Is the workflow execution resilient to occasional failures?

Q3. Is the workflow easily maintainable?

Freshness. A clear business rule is the need to have data as fresh as possible in the
warehouse. Also, we need all of the source data to be eventually loaded at the ware-
house; the update latency depends on the freshness requirements. Nevertheless, the
sources and the warehouse must be consistent at least at a certain frequency (e.g., at
the end of a day).

Missing changes at the source. Depending on what kind of change detector we
have at the source, it is possible that some changes are lost (e.g., if we have a log snif-
fer, bulk updates not passing from the log file are lost). Also, in an active warehouse,
if the active ETL engine needs to shed some incoming data in order to be able to
process the rest of the incoming data stream successfully, it is imperative that these
left-over tuples need to be processed later.

Recovery from failures. If some data are lost from the ETL process due to failures,
then, we need to synchronize sources and warehouse and compensate the missing
data. Of course, tuples from aborted transactions that have been sent to the warehouse
(or they are on their way to it) should be undone.

Maintainability. In addition, keeping the ETL workflow maintainable is crucial for
the cost of ETL lifecycle. A number of parameters may affect the maintainability of
the system. Here, we focus on parameters indicating the cost of handling evolution
events during the ETL lifecycle. Ideally, a simple ETL design is more maintainable,
whereas in a complex one it is more difficult to keep track of a change.

 8

Efficiency. Efficiency is an important aspect of ETL design. Since typically ETL
processes should run within strict time windows, performance does matter. In fact,
achieving high performance is not only important per se, it can also serve as a means
for enabling (or achieving) other qualities as well. For example, a typical technique
for achieving recoverability is to add recovery points to the ETL workflow. However,
this technique is time-consuming (usually, the i/o cost of maintaining recovery points
is significant), so in order to meet the execution time requirements, we need to boost
ETL performance. Typical questions need to be answered are as follows:

Q4. How fast is the workflow executed?

Q5. What degree of parallelization is required?

Q6. How much pipelining does the workflow use?

Q7. What resource overheads does the workflow incur at the source, intermediate
(staging), and warehouse sites?

Parallelization. The configuration in terms of parallelism plays an important role
for the performance of an ETL process. In general, there exist two broad categories of
parallel processing: pipelining and partitioning. In pipeline parallelism, the various
activities are operating simultaneously in a system with more than one processor. This
scenario performs well for ETL processes that handle a relative small volume of data.
For large volumes of data, a different parallelism policy should be devised: the parti-
tioning of the dataset into smaller sets. Then, we use different instances of the ETL
process for handling each partition of data. In other words, the same activity of an
ETL process would run simultaneously by several processors, each processing a dif-
ferent partition of data. At the end of the process, the data partitions should be merged
and loaded to the target recordset(s). Frequently, a combination of the two policies is
used to achieve maximum performance. Hence, while an activity is processing parti-
tions of data and feeding pipelines, a subsequent activity may start operating on a
certain partition before the previous activity had finished.

Minimal overheads at the sources and the warehouse. The production systems are
under continuous load due to the large number of OLTP transactions performed si-
multaneously. The warehouse system supports a large number of readers executing
client applications or decision support queries. In the offline ETL, the overheads in-
curred are of rather secondary importance, since the contention with such processes is
practically non-existent. Still, in active warehousing, the contention is clear.
− Minimal overhead of the source systems. It is imperative to impose the minimum

additional workload to the source, in the presence of OLTP transactions.
− Minimal overhead of the DW system. As the warehouse is populated by loading

processes, other processes ask data from it. Then, the desideratum is that the
warehouse operates with the lightest possible footprints for the loading processes
as well as the minimum possible delay for incoming tuples and user queries.

3. Benchmark Parameters

In this section, we propose a set of configuration parameters along with a set of meas-
ures to be monitored in order to assess the fulfillment of the benchmark goals.

 9

Experimental parameters. The following problem parameters are of particular
importance to the measurement of ETL workflows:
P1. the size of the workflow (i.e., the number of nodes contained in the graph),

P2. the structure of the workflow (i.e., the variation of the nature of the involved
nodes and their interconnection as the workflow graph),

P3. the size of input data originating from the sources,

P4. the workflow selectivity, based on the selectivities of the workflow activities,

P5. the values of probabilities of failure,

P6. the latency of updates at the warehouse (i.e., it captures freshness requirements),

P7. the required completion time (i.e., this reflects the maximum tolerated execution
time window),

P8. the system resources (e.g., memory and processing power), and

P9. the “ETL workload” that determines an execution order for ETL workflows and
the number of instances of the workflows that should run concurrently (e.g., for
evaluating parallelization in an ETL engine, one may want to run first a complex
ETL workload composed of a high number of line workflows that should run in
parallel, and then, a smaller set of tree workflows for merging the former ones).

Measured Effects. For each set of experimental measurement, certain measures
need to be assessed, in order to characterize the fulfillment of the aforementioned
goals. In the sequel, we classify these measures according to the assessment question
they are employed to answer.

Q1. Measures for data freshness and data consistency. The objective is to have data
respect both database and business rules. Also, we need data to be consistent with
respect to the source as much as possible. The latter possibly incurs a certain time
window for achieving this goal (e.g., once a day), in order to accommodate high re-
fresh rates in the case of active data warehouses or failures in the general case. Con-
crete measures are:

− (M1.1) Percentage of data that violate business rules.

− (M1.2) Percentage of data that should be present at their appropriate warehouse
targets, but they are not.

Q2. Measures for the resilience to failures. The main idea is to perform a set of
workflow executions that are intentionally abnormally interrupted at different stages
of their execution. The objective is to discover how many of these workflows were
successfully compensated within the specified time constraints. For achieving resi-
lience to failures, we consider two strategies or quality objectives: recoverability and
redundancy. For the former, the most typical technique is to enrich the ETL process
with recovery points (used for intermediate staging of data processed up to that point),
so that after a failure the process may resume from the latest recovery point. Howev-
er, where to put such points is not a straightforward task. Redundancy can be
achieved with three techniques: replication, diversity or fail-over. For lack of space,
here we refer only to replication, which involves multiple instances of the same
process (or of a part of it) that run in parallel. Concrete measures are:

− (M2.1) Percentage of successfully resumed workflow executions.

− (M2.2) MTBF, the mean time between failures.

 10

− (M2.3) MTTR, mean time to repair.

− (M2.4) Number of recovery points used.

− (M2.5) Resumption type: synchronous or asynchronous.

− (M2.6) Number of replicated processes (for replication).

− (M2.7) Uptime of ETL process.

Q3. Measures for maintainability. Maintainability is a qualitative objective and
finding measures to evaluate it is more difficult than the other quantitative objectives
(e.g, performance or recoverability). An approach to this, is to consider the effort for
modifying the process after a change has been occurred either at the SLA’s (service
level agreements) or the underlying systems (e.g., after adding, renaming or deleting
an attribute or a table at a source site). Concrete measures are:

− (M3.1) Length of the workflow or in other words, the length of its longest path
(i.e., how far in the process a change should be propagated).

− (M3.2) Complexity of the workflow refers to the amount of relationships that
combine its components [3].

− (M3.3) Modularity (or cohesion) refers to the extent to which the workflow com-
ponents perform exactly one job; thus, a workflow is more modular if it contains
less sharable components. Modularity imposes some interesting tradeoffs, for ex-
ample with parallelization.

− (M3.4) Coupling captures the amount of relationship among different recordsets or
activities (i.e., workflow components).

Q4. Measures for the speed of the overall process. The objective is to perform the
ETL process as fast as possible. In the case of off-line loading, the objective is to
complete the process within the specified time-window. Naturally, the faster this is
performed the better (especially, in the context of failure resumption). In the case of
active warehouse, where the ETL process is performed very frequently, the objective
is to minimize the time that each tuple spends inside the ETL module. Concrete
measures are:

− (M4.1) Throughput of regular workflow execution (this may also be measured as
total completion time).

− (M4.2) Throughput of workflow execution including a specific percentage of fail-
ures and their resumption.

− (M4.3) Average latency per tuple in regular execution.

Q5. Measures for partitioning. The partitioning parallelism is affected by a set of
choices. Partitioning a flow is not straightforward, since the splitting and especially,
the merging operations required for the partitioning do not come without a cost. Con-
crete measures are:

− (M5.1) Partition type (e.g., round-robin, hash-based, follow-database-partitioning,
and so on), which should be chosen according the characteristics of the workflow.
For example, a flow heavy on sort-based operations may consider hash-based par-
titioning instead of round-robin.

− (M5.2) Number and length of workflow parts that use partitioning.

− (M5.3) Number of partitions.

 11

− (M5.4) Data volume in each partition (this is related to partition type too).

Q6. Measures for pipelining. The pipelining parallelization is affected by parts of
the workflow that contain (or not) blocking operations (e.g., transformations based on
sort or aggregation). Concrete measures are:

− (M6.1) CPU and memory utilization for pipelining flows or for individual opera-
tion run in such flows.

− (M6.2) Min/Max/Avg length of the largest and smaller paths (or subgraphs) con-
taining pipelining operations.

− (M6.3) Min/Max/Avg number of blocking operations.

Q7. Measured Overheads. The overheads at the source and the warehouse can be
measured in terms of consumed memory and latency with respect to regular opera-
tion. Concrete measures are:

− (M7.1) Min/Max/Avg/ timeline of memory consumed by the ETL process at the
source system.

− (M7.2) Time needed to complete the processing of a certain number of OLTP
transactions in the presence (as opposed to the absence) of ETL software at the
source, in regular source operation.

− (M7.3) The same as 7.2, but in the case of source failure, where ETL tasks are to
be performed too, concerning the recovered data.

− (M7.4) Min/Max/Avg/ timeline of memory consumed by the ETL process at the
warehouse system.

− (M7.5) (active warehousing) Time needed to complete the processing of a certain
number of decision support queries in the presence (as opposed to the absence) of
ETL software at the warehouse, in regular operation.

− (M7.6) The same as M7.5, but in the case of any (source or warehouse) failure,
where ETL tasks are to be performed too at the warehouse side.

4. Specific Scenarios

A particular problem that arises in designing a test suite for ETL workflows concerns
the complexity (structure and size) of the employed workflows. A means to deal with
this is to construct a workflow generator, based on the aforementioned disciplines.
Another means is to come up with an indicative set of ETL workflows that serve as the
basis for experimentations. For space consideration, here we present the latter and we
propose a small, exemplary set of specific ETL flows based on the TPC-H [16].

4.1 Database Schema

The information kept in the warehouse concerns parts and their suppliers as well as
orders that customers have along with demographic data for the customers. The sce-
narios used in the experiments clean and transform the source data into the desired
warehouse schema. The sources for our experiments are of two kinds, the storage

 12

houses and sales points. Every storage house keeps data for the suppliers and parts,
while every sales point keeps data for the customers and the orders. (The schemata of
the sources and the data warehouse are depicted in Figure A1 – in the appendix.)

4.2 ETL Scenarios

We consider the butterfly cases discussed in Section 2 to be representative of a large
number of ETL scenarios and thus, we propose a specific scenario for each kind. Due
to space limitation, here we provide only small-size scenarios indicatively (e.g., a
right-deep scenario is not given). However, as we discussed, one may create larger
scenarios based on these exemplary structures. The scenarios are depicted in Figure 2
(their detailed descriptions can be found in the appendix of this paper).

The line workflow has a simple form since it applies a set of filters, transforma-

tions, and aggregations to a single table. This scenario type is used to filter source
tables and assure that the data meet the logical constraints of the data warehouse.

A wishbone workflow joins two parallel lines into one. This scenario is preferred
when two tables in the source database should be joined in order to be loaded to the
data warehouse or in the case where we perform similar operations to different data
that are later joined. In our exemplary scenario, we track the changes that happen in a
source containing customers. We compare the customers of the previous load to the
ones of the current load and search for new customers to be loaded in the warehouse.

The primary flow scenario is a common scenario in cases where the source table
must be enriched with surrogate keys. This exemplary primary flow that we use has as
input the Orders table. The scenario is simple: all key-based values (“orderstatus”,
“custkey”, “orderkey”) pass through surrogate key filters that lookup (join) the in-
coming records in the appropriate lookup table. The resulting rows are appended to
the relation DW.Orders. If incoming records exist in the DW.Orders relation and they
have changed values then they are overwritten (thus, the Slowly Changing Dimension
Type 1 tag in the figure); otherwise, a new entry is inserted in the warehouse relation.

The tree scenario joins several source tables and applies aggregations on the result
recordset. The join can be performed over either heterogeneous relations, whose con-
tents are combined, either over homogeneous relations, whose contents are integrated
into one unified (possible sorted) data set. In our case, the exemplary scenario in-
volves three sources for the warehouse relation PartSupp.

The fork scenario applies a set of aggregations on a single source table. First the
source table is cleaned, just like in a line scenario and the result table is used to create
a set of materialized views. Our exemplary scenario uses the Lineitem table as the
butterfly’s body and starts with a set of extracted new records to be loaded.

The most general-purpose scenario type is a butterfly scenario. It joins two or
more source tables before a set of aggregations is performed on the result of the join.
The left wing of the butterfly joins the source tables, while the right wing performs
the desired aggregations producing materialized views. Our first exemplary scenario
uses new source records concerning Partsupp and Supplier as its input. A second ex-
emplary scenario introduces a Slowly Changing Dimension plan, populating the di-
mension table PART and retaining its history at the same time.

 13

Line

Wishbone

Primary Flow

Tree

Figure 2. Specific ETL workflows

 14

Fork

Balanced Butterfly (1)

Balanced Butterfly (2)

Figure 2. Specific ETL workflows (continued)

 15

5. Related Work

Several benchmarks have been proposed in the database literature, in the past. Most of
the benchmarks that we have reviewed make careful choices: (a) on the database
schema & instance they use, (b) on the type of operations employed and (c) on the
measures to be reported. Each benchmark has a guiding goal, and these three parts of
the benchmark are employed to implement it.

As an example, we mention two benchmarks mainly coming from the Wisconsin
database group. The OO7 benchmark was one of the first attempts to provide a com-
parative platform for object-oriented DBMS’s [4]. The OO7 benchmark had the clear
target to test as many aspects as possible of the efficiency of the measured systems
(speed of pointer traversal, update efficiency, query efficiency). The BUCKY bench-
mark had a different viewpoint: the goal was to narrow down the focus only on the
aspects of an OODBMS that were object-oriented (or object-relational): queries over
inheritance, set-valued attributes, pointer navigation, methods and ADTS [5]. Aspects
covered by relational benchmarks were not included in the BUCKY benchmark.

TPC has proposed two benchmarks for the case of decision support. The TPC-H
benchmark [16] is a decision support benchmark that consists of a suite of business-
oriented ad-hoc queries and concurrent data modifications. The database describes a
sales system, keeping information for the parts and the suppliers, and data about or-
ders and the supplier's customers. The relational schema of TPC-H consists of eight
separate tables with 5 of them being clearly dimension tables, one being a clear fact
table and a couple of them combinations of fact and dimension tables. Unfortunately,
the refreshment operations provided by the benchmark are primitive and not particu-
larly useful as templates for the evaluation of ETL scenarios.

TPC-DS is a new Decision Support (DS) workload being developed by the TPC
[11, 15]. This benchmark models the decision support system of a retail product sup-
plier, including queries and data maintenance. The relational schema of this bench-
mark is more complex than the schema presented in TPC-H. There are three sales
channels: store, catalog and the web. There are two fact tables in each channel, sales
and returns, and a total of seven fact tables. In this dataset, the row counts for tables
scale differently per table category: specifically, in fact tables the row count grows
linearly, while in dimension tables grows sub-linearly. This benchmark also provides
refreshment scenarios for the data warehouse. Still, all these scenarios belong to the
category of primary flows, in which surrogate and global keys are assigned to all
tuples. Recently, a new effort has been started driven by the TPC-ETL committee, but
so far, concrete results have not been reported [15].

An early version of this paper was presented in [17]; due to lack of formal proceed-
ings, please refer to the online version.

6. Conclusions

In this paper, we have dealt with the challenge of presenting a unified experimental
playground for ETL processes. First, we have presented a principled way for con-
structing ETL workflows and we have identified their most prominent elements. We

 16

have classified the most frequent ETL operations based on their special characteris-
tics. We have shown that this classification adheres to the built-in operations of three
popular commercial ETL tools; we do not anticipate any major deviations for other
tools. Moreover, we have proposed a generic categorization of ETL workflows,
namely butterflies, which covers frequent design cases. We have identified the main
parameters and measures that are crucial in ETL environment and we have discussed
how parallelism affects the execution of an ETL process. Finally, we have proposed
specific ETL scenarios based on the aforementioned analysis, which can be used as an
experimental testbed for the evaluation of ETL methods or tools.

Open issues involve (a) the handling of non-relational data, the treatment of near
real time ETL, (c) the tuning of several parameters of the benchmark with values that
reflect real-world applications, (d) the handling of indexes, materialized views and
auxiliary data structures at the target side of the warehouse, and (e) the treatment of
platform and hardware characteristics. Extra care should be taken also for the control
flow part of ETL processes.

The main message from our work is the need for a commonly agreed benchmark
that reflects real-world ETL scenarios, both for research purposes and, ultimately, for
the comparison of ETL tools. Feedback is necessary for further tuning the benchmark.

References

[1] Ab Initio. In the Web, available at: http://www.abinitio.com/, 2009.
[2] J. Adzic, V. Fiore. Data Warehouse Population Platform. In DMDW, 2003.
[3] L.C. Briand, S. Morasca, V.R. Basili. Property-Based Software Engineering Measure-

ment. In IEEE Trans. on Software Engineering, 22(1), 1996.
[4] M. J. Carey, D. J. DeWitt, J. F. Naughton. The OO7 Benchmark. In SIGMOD, 1993.
[5] M. J. Carey et al. The BUCKY Object-Relational Benchmark. In SIGMOD, 1997.
[6] U. Dayal, M. Castellanos, A. Simitsis, K. Wilkinson. Data Integration Flows for Busi-

ness Intelligence. In EDBT, 2009.
[7] IBM, “ IBM InfoSphere Information Server”, in the Web, available at: http://www-

01.ibm.com/software/data/integration/info_server_platform/, 2009.
[8] Informatica, “PowerCenter”, in the Web, available at:

http://www.informatica.com/products/powercenter/, 2009.
[9] Microsoft. SQL Server Integration Services (SSIS), in the Web, available at:

http://technet.microsoft.com/en-us/sqlserver/bb331782.aspx, 2009
[10] Oracle, “Oracle Warehouse Builder 11g”, in the Web, available at:

http://www.oracle.com/technology/products/warehouse/, 2009.
[11] R. Othayoth, M. Poess. The Making of TPC-DS. In VLDB, 2006.
[12] A. Simitsis, P. Vassiliadis, S. Skiadopoulos, T. Sellis. Data Warehouse Refreshment.

In “Data Warehouses and OLAP: Concepts, Architectures and Solutions”, IRM Press,
2006.

[13] A. Simitsis, K. Wilkinson, M. Castellanos, U. Dayal. QoX-Driven ETL Design: Re-
ducing the Cost of the ETL Consulting Engagements. In SIGMOD, 2009.

[15] TPC. TPC Benchmark Status. TPC-ETL, in the Web, available at:
http://www.tpc.org/reports/status/, 2009.

[16] TPC. TPC-H benchmark. Transaction Processing Council, in the Web, available at:
http://www.tpc.org/, 2009.

[17] P. Vassiliadis, A. Karagiannis, V. Tziovara, A. Simitsis. Towards a Benchmark for
ETL Workflows. In QDB, 2007, in the Web, available at:
http://www.cs.uoi.gr/~pvassil/publications/publications.html

 17

Appendix

The schemata of the sources and the data warehouse are depicted in Figure A1.

Data Warehouse:
PART (rkey s_partkey, name, mfgr, brand, type, size, container, comment)
SUPPLIER (s_suppkey, name, address, nationkey, phone, acctbal, comment, totalcost)
PARTSUPP (s_partkey, s_suppkey, availqty, supplycost, comment)
CUSTOMER (s_custkey, name, address, nationkey, phone, acctball, mktsegment, comment)
ORDER (s_orderkey, custkey, orderstatus, totalprice, orderdate, orderpriority, clerk, ship-

priority, comment)
LINEITEM (s_orderkey, partkey, suppkey, linenumber, quantity, extendedprice, discount,

tax, returnflag, linestatus, shipdate, commitdate, receiptdate, shipinstruct, ship-
mode, comment, profit)

Storage House:
PART (partkey, name, mfgr, brand, type, size, container, comment)
SUPPLIER (suppkey, name, address, nationkey, phone, acctbal, comment)
PARTSUPP (partkey, suppkey, availqty, supplycost, comment)
Sales Point:
CUSTOMER (custkey, name, address, nationkey, phone, acctball, mktsegment, comment)
ORDER (orderkey, custkey, orderstatus, totalprice, orderdate, orderpriority, clerk, shippriori-

ty, comment)
LINEITEM (orderkey, partkey, suppkey, linenumber, quantity, extendedprice, discount, tax,

returnflag, linestatus, shipdate, commitdate, receiptdate, shipinstruct, shipmode,
comment)

Figure A1. Database schemata

Detailed description of scenarios

Line. In the proposed scenario, we start with an extracted set of new source rows
LineItem.D+ and push them towards the warehouse as follows:
1. First, we check the fields "partkey", "orderkey" and "suppkey" for NULL values.

Any NULL values are replaced by appropriate special values.

2. Next, a calculation of a value "profit" takes place. This value is locally derived
from other fields in a tuple as the amount of "extendedprice" subtracted by the
values of the "tax" and "discount" fields.

3. The third activity changes the fields "extendedprice", "tax", "discount" and "prof-
it" to a different currency.

4. The results of this operation are loaded first into a delta table DW.D+ and subse-
quently into the data warehouse DWH. The first load simply replaces the respec-
tive recordset, whereas the second involves the incremental appending of these
rows to the warehouse.

5. The workflow is not stopped after the completion of the left wing, since we would
like to create some materialized views. The next operation is a filter that keeps on-
ly records whose return status is "False".

6. Next, an aggregation calculates the sum of "extendedprice" and "profit" fields
grouped by "partkey" and "linestatus".

7. The results of the aggregation are loaded in view View01 by (a) updating existing
rows and (b) inserting new groups wherever appropriate.

 18

8. The next activity is a router, sending the rows of view View01 to one of its two
outputs, depending on the "linestatus" field has the value "delivered" or not.

9. The rows with value “delivered” are further aggregated for the sum of "profit" and
"extendedprice" fields grouped by "partkey".

10. The results are loaded in view View02 as in the case for view View01.

11. The rows with value different than “delivered” are further aggregated for the sum
of "profit" and "extendedprice" fields grouped by "partkey".

The results are loaded in view View03 as in the case for view View01.

Wishbone. The scenario evolves as follows:

1. The first activity on the new data set checks for NULL values in the "custkey"
field. The problematic rows are kept in an error log file for further off-line
processing.

2. Both previous and old data are passed through a surrogate key transformation.
We assume a domain size that fits in main memory for this source; therefore, the
transformation is not performed as a join with a lookup table, but rather as a loo-
kup function call invoked per row.

3. Moreover, the next activity converts the phone numbers in a numeric format,
removing dashes and replacing the '+' character with the "00" equivalent.

4. The transformed recordsets are persistently stored in relational tables or files
which are subsequently compared through a difference operator (typically im-
plemented as a join variant) to detect new rows.

5. The new rows are stored in a file C.D+ which is kept for the possibility of failure.
Then the rows are appended in the warehouse dimension table Customer.

Tree. The scenario evolves as follows:

1. Each new version of the source is sorted by its primary key and checked against its
past version for the detection of new or updated records. The DIFFI,U operator
checks the two inputs for the combination of pkey, suppkey matches. If a match is
not found, then a new record is found. If a match is found and there is a difference
in the field “availqty” then an update needs to be performed.

2. These new records are assigned surrogate keys per source

3. The three streams of tuples are united in one flow and they are also sorted by
“pkey” since this ordering will be later exploited. Then, a delta file PS.D is pro-
duced.

4. The contents of the delta file are appended in the warehouse relation DW.PS.

At the same time, the materialized view View04 is refreshed too. The delta rows
are summarized for the available quantity per pkey and then, the appropriate rows in
the view are either updated (if the group exists) or (inserted if the group is not
present).

 19

Fork. The fork scenario evolves as follows:
1. Surrogate keys are assigned to the fields "partkey", "orderkey" and "suppkey".

2. We convert the dates in the "shipdate" and "receiptdate" fields into a “dateId”, a
unique identifier for every date.

3. The third activity is a calculation of a value "profit". This value is derived from
other fields in every tuple as the amount of "extendedprice" subtracted by the val-
ues of the "tax" and "discount" fields.

4. This activity changes the fields "extendedprice", "tax", "discount" and "profit" to a
different currency. The result of this actvity is stored at a delta table D+.LI. The
records are appended to the data warehouse LineItem table and they are also
reused for a number of aggregations at the right wing of the butterfly. All records
pushed towards the views, either update or insert new records in the views, de-
pending on the existence (or not) of the respective groups.

5. The aggregator for View05 calculates the sum of the "profit" and "extendedprice"
fields grouped by the "partkey" and "linestatus" fields.

6. The aggregator for View06 calculates the sum of the "profit" and "extendedprice"
fields grouped by the "linestatus" fields.

7. The aggregator for View07 calculates the sum of the "profit" field and the average
of the "discount" field grouped by the "partkey" and "suppkey" fields.

8. The aggregator for View08 calculates the average of the "profit" and "extended-
price" fields grouped by the "partkey" and "linestatus" fields.

Butterfly. The first scenario uses Partsupp and Supplier as its input.

1. Concerning the Partsupp source, we generate surrogate key values for the "part-
key" and "suppkey" fields. Then, the "totalcost" field is calculated and added to
each tuple.

2. Then, the transformed records are saved in a delta file D+.PS and appended to the
relation DW.Partsupp.

3. Concerning the Supplier source, a surrogate key is generated for the “suppkey”
field and a second activity transforms the "phone" field.

4. Then, the transformed records are saved in a delta file D+.S and appended to the
relation DW.Supplier.

5. The delta relations are subsequently joined on the "ps_suppkey" and "s_suppkey"
fields and populate the view View09, which is augmented with the new records.
Then, several views are computed from scratch, as follows.

6. View View10 calculates the maximum and the minimum value of the "supplycost"
field grouped by the "nationkey" and "partkey" fields.

7. View12 calculates the maximum and the minimum of the "supplycost" field
grouped by the "partkey" fields.

8. View11 calculates the sum of the "totalcost" field grouped by the "nationkey" and
"suppkey" fields.

9. View13 calculates the sum of the "totalcost" field grouped by the "suppkey" field.

 20

The second butterfly scenario concerns Slowly Changing dimensions, populating
the dimension table PART and retaining its history at the same time. The trick is
found in the combination of the “rkey”, “s_partkey” attributes. The “s_partkey” as-
signs a surrogate key to a certain tuple (e.g., assume it assigns 10 to a product X). If
the product changes in one or more attributes at the source (e.g., X’s “size” changes),
then a new record is generated, with the same “s_partkey” and a different “rkey”
(which can be a timestamp-based key, or similar). The scenario works as follows:
1. A new and an old version of the source table Part are compared for changes.

Changes are directed to P.D++ (for new records) and P.DU for updates in the
fields “size” and “container”

2. Surrogate and recent keys are assigned to the new records that are propagated to
the table PART for storage.

3. An auxiliary table MostRecentPART holding the most recent “rkey” per
“s_partkey” is appropriately updated.

Observe that in this scenario the body of the butterfly is an activity.

Statistics

Figure A2 presents summarized statistics of the constituents of the ETL workflows
depicted in Figure 2. Such statistics reveal the functionality (i.e., the nature) of each
workflow. (The numbers L+R refer to the left (L) and right (R) wings, respectively.)

 Filters Functions Routers Aggr Holistic

f.
Joins Diff Unions Load

Body
Load
Views

Line 1+1 2+0 0+1 0+3 INCR INCR
Wishbone 1+0 4+0 1+0 INCR -
Pr. Flow 3+0 I/U -
Tree 0+1 1+0 1+0 1+0 I/U I/U
Fork 3+0 0+4 INCR INCR
BB(1) 4+0 0+4 1+0 INCR FULL
BB(2) 0+2 1 - I/U
 2+1 13+2 0+1 0+12 1+0 6+0 1 1+0

Figure A2. Statistics of the proposed ETL workflows

Taxonomy of activities

Figure A3 presents a taxonomy of activities at the micro level and similar built-in
transformations provided by commercial ETL tools. For each category of activities
presented in Section 2.2, a representative set of transformations, which are provided
by three popular commercial ETL tools, is presented. The figure is indicative and in
many ways incomplete. The goal is not to provide a comparison among the three
tools. On the contrary, we would like to stress out the genericity of our classification.
For most ETL tools, the set of built-in transformations is enriched by user defined
operations and a plethora of functions. Still, as figure A3 shows, all frequently built-in
transformations existing in commercial solutions fall into our classification.

 21

Transformation

Category*
SQL Server Informa-

tion Services SSIS
DataStage

Oracle Warehouse
Builder

T
ra

n
sf

or
m

at
io

n
 a

n
d

C
le

an
si

n
g

Row-level: Func-
tion that can be
applied locally to a
single row

− Character Map
− Copy Column
− Data Conversion
− Derived Column
− Script Component
− OLE DB Command
− Other filters (not

null, selections, etc.)

− Transformer (A ge-
neric representative of
a broad range of func-
tions: date and time,
logical, mathematical,
null handling, num-
ber, raw, string, utili-
ty, type conver-
sion/casting, routing.)

− Remove duplicates
− Modify (drop/keeps

columns or change
their types)

− Deduplicator (distinct)
− Filter
− Sequence
− Constant
− Table function (it is

applied on a set of
rows for increasing
the performance)

− Data Cleaning Opera-
tors (Name and Ad-
dress, Match-Merge)

− Other SQL transfor-
mations (Character,
Date, Number, XML)

Routers: Locally
decide, for each row,
which of the many
outputs it should be
sent to

− Conditional Split
− Multicast

− Copy
− Filter
− Switch

− Splitter

Unary Grouper:
Transform a set of
rows to a single row

− Aggregate
− Pivot/Unpivot

− Aggregator
− Make/Split subrecord
− Combine/Promote

records
− Make/Split vector

− Aggregator
− Pivot/Unpivot

Unary Holistic:
Perform a transfor-
mation to the entire
data set (blocking)

− Sort
− Percentage Sam-

pling
− Row Sampling

− Sort (sequential,
parallel, total)

− Sorter

Binary or N-ary:
Combine many
inputs into one
output

Union-like:
− Union All
− Merge
Join-like:
− Merge Join (MJ)
− Lookup (SKJ)
− Import Column

(NLJ)

Union-like:
− Funnel (continuous,

sort, sequence)
Join-like:
− Join
− Merge
− Lookup
Diff-like:
− Change capture/apply
− Difference (record-

by-record)
− Compare (column-by-

column)

Union-like:
− Set (union, union all,

intersect, minus)
Join-like:

− Joiner
− Key Lookup (SKJ)

E
xt

r.

 − Import Column
Transformation

− Compress/Expand
− Column import

− Merge
− Import

L
oa

d

 − Export Column
− Slowly Changing

Dimension

− Compress/Expand
− Column import/export

− Merge
− Export
− Slowly Changing

Dimension

 * All ETL tools provide a set of physical operations that facilitate either the extraction or the loading
phase. Such operations include: extraction from hashed/sequential files, delimited/fixed width/multi-
format flat files, file set, ftp, lookup, external sort, compress/uncompress, and so on.

Figure A3. Taxonomy of ETL activities

