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Abstract

Extraction–Transformation–Loading (ETL) tools are pieces of software responsible for the extraction of data from several
sources, their cleansing, customization and insertion into a data warehouse. In previous work, we presented a modeling framework
for ETL processes comprised of a conceptual model that concretely deals with the early stages of a data warehouse project, and a
logical model that deals with the definition of data-centric workflows. In this paper, we describe the mapping of the conceptual
model to the logical model. First, we identify how conceptual entities are mapped to logical entities. Next, we determine the
execution order in the logical workflow using information adapted from the conceptual model. Finally, we provide a method for the
transition from the conceptual model to the logical model.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The design of the data warehouse back-stage has
always been strenuous work, due to the inherent amount
of complexity of this environment and the technical
detail into which the designer must delve, in order to
deliver the final design [6]. The task of the designer
involves (a) the tracing of the existing data sources and
the understanding of their hidden semantics, as well as
(b) the design of a workflow that extracts data from
these sources, cleans any inconsistencies they may have,
transforms them in a suitable format and finally loads
them into the target warehouse. The designer is aided by
a conceptual model in order to complete the former task

and a logical model in order to construct the latter. Also,
a method that acts as a “bridge” that transforms the
conceptual design to the logical one is also necessary.

In previous works, we presented a conceptual model
[17] and a logical [18,19] model for the warehouse
back-stage ETL (Extraction–Transformation–Loading)
processes. In this paper, we bridge the different levels of
our framework by presenting a semi-automatic transi-
tion from conceptual to logical model for ETL
processes. By relating a logical to a conceptual model,
we exploit the advantages of both worlds. On one hand,
there exists a simple model, sufficient for the early
stages of the data warehouse design. On the other hand,
there exists a logical model that offers formal and
semantically-founded concepts to capture the character-
istics of an ETL process. Although there are several
research approaches concerning the semi-automation of
several tasks of logical DW design from conceptual
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models [1,3–5,8–10,12], so far, we are not aware of any
other research approach concerning a mapping from a
conceptual to a logical model for ETL processes.

During the transition from one model to the other we
have to deal with several issues. First, we need to identify
the correspondence between the two models. Since the
conceptual model is constructed in a more generic and
high-level manner, each conceptual entity is mapped to a
logical entity; however, the opposite does not hold. In the
sequel, for each conceptual construct we provide its
respective logical entity and we describe a method for the
automatic transition from the former to the latter.

Moreover, we go beyond the simple one-to-one
mapping, and we combine information for more than
one conceptual construct in order to achieve a better
definition for a logical entity. For example, the
conceptual entity ‘transformation’ is mapped to a logical
‘activity’. However, it is not obvious how the activity is
fully described by the conceptual information provided.
Using the conceptual schemata (input and output) of the
transformation and its provider source, one can identify
the schemata of the respective activity either directly
(input, output and functionality) or indirectly (generated
and projected-out). Still, this is insufficient, because we
do not get any information about the instantiation of the
appropriate template activity. As we demonstrate later in
this paper, this issue can be addressed using extra
information adapted from a note attached to the
conceptual transformation.

The conceptual model is not a workflow; instead, it
simply identifies the mappings and the transformations
needed in an ETL process. The placement of the
transformations into the conceptual design does not
directly specify their execution order. However, the logical

model represents a workflow and thus, it is very important
to determine the execution order of the activities. To tackle
this, we provide a method for the semi-automatic
determination of a correct execution order of the activities
in the logical model, wherever this is feasible, by grouping
the transformations of the conceptual design into stages of
order-equivalent transformations.

Finally, with the goal of formalizing the mapping
between the two models and dealing with the afore-
mentioned problems, we present a sequence of steps that
constitutes the method for the transition from the
conceptual to the logical model.

1.1. Outline

The paper is organized as follows: In Sections 2 and 3,
we briefly describe the main characteristics of the
conceptual and logical models respectively. In Section
4, we discuss the mapping of each conceptual entity to a
logical one. In Section 5, we present a semi-automatic
determination of the execution order of the activities in the
logical workflow. In Section 6, we provide a method for
the realization of the mapping between the twomodels. In
Section 7, we present related work. Finally, in Section 8
we conclude our discussion with a prospect of the future.

2. Conceptual model

In this section, we focus on the conceptual part-of the
definition of the ETL process. In previous work [13,17],
we had proposed a graph-based conceptual model for
ETL processes. Here, after presenting a reference
example, we present the main characteristics of our
model along with its formal definition.

Fig. 1. Conceptual design of our example.
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2.1. Example

To motivate our discussion we introduce an example
involving two source databases, S1 and S2, as well as a
central data warehouse DW. The scenario involves the
propagation of data from the concept PARTS of source
S1 as well as from the concept PARTS of source S2 to
the data warehouse. In the data warehouse, DW.PARTS
stores daily (DATE) information for the available
quantity (QTY) and cost (COST) of parts (PKEY). We
assume that the first supplier is European and the second
is American, thus the data coming from the second
source needs to be converted to European values and
formats. For the first supplier, we need to combine
information from two different tables in the source
database, which is achieved through an outer join of the
concepts PS1 and PS2 respectively. Also, there exist
two data sources – files RecentParts and Annual-
Parts – that contain information on daily and annual
base respectively, for the population of the second
supplier. In Fig. 1, we depict the full-fledged diagram of
the example, in terms of our conceptual model. In Fig. 2,
we graphically depict the different entities of the
proposed model.

2.2. Model presentation

Each conceptual ETL scenario is represented as a
graph GC that we call the Conceptual Graph. The main
entities of our model are the following:

Attributes, ΩC. Attributes are the granular module of
information. Their role is the same as in the standard
ER/dimensional models (e.g., PKEY, DATE, COST).
Concepts, CC. A concept represents an entity in the
source databases or in the data warehouse (e.g., S1.
PARTS, DW.PARTS).
Transformations, TC. Transformations are abstrac-
tions that represent parts, or full modules of code,
executing a single task and include two large
categories: (a) filtering or data cleaning operations

(e.g., not null (NN) check); and (b) transformation
operations, during which the schema of the incoming
data is transformed (e.g., surrogate key assignment
(SK) transformation).
ETL Constraints, CnC. They are used in several
occasions when the designer wants to express the fact
that the data of a certain concept fulfill several
requirements (e.g., to impose a PK constraint to DW.
PARTS for the attributes PKEY and DATE).
Notes, NC. Notes are used to capture extra comments
that the designer wishes to make during the design
phase or render constraints attached to an element or
set of elements. A note in the conceptual model
represents explanations of the semantics of the
applied functions and/or simple comments explain-
ing design decisions or constraints. We consider that
the information for a note that is classified in the
former category indicates either the type or an
expression/condition of a function, and it is attached
to a transformation or an ETL constraint. The
information for a note of the second category is
simple text without special semantics; these notes are
used to cover different aspects of the ETL process,
such as the time/event based scheduling, monitoring,
logging, error handling, crash recovery and so on.
Formally, a note is defined by: (a) a name, and (b) a
content, which consists of one or more clauses of the
form: 〈type〉::〈text〉.
We support three different types of information
(clauses) in the content of a note using a simple
prefix: (a) f:: for a function type; (b) e:: for an
expression; and (c) t:: for simple text, before writing
the text of the respective information. In order to
keep our model simple, we do not obligate the
designer to attach a note to every transformation or
ETL constraint, or to fill all three types of
information in every note.
In Fig. 1, observe several notes of the first category
attached to transformations f1, f2, f3, and ⋈+.
For example, the note attached to the transformation
⋈+ indicates that the type of the transformation

Fig. 2. Notation for the conceptual model.
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template is OuterJoin and the expression needed
for its instantiation is PS1.PKEY+=PS2.PKEY.

Part-of Relationships, PoC. Part-of relationships
emphasize the fact that a concept is composed of a
set of attributes, since we need attributes as first class
citizens in the inter-attribute mappings.
Candidate relationships, CrC. A set of candidate
relationships captures the fact that a certain data
warehouse concept (e.g., source table S1) can be
populated by more than one candidate source
concepts (e.g., source files AnnualParts and
RecentParts).
Active candidate relationships, ACrC. This relation-
ship denotes the fact that out of a set of candidates, a
certain one (e.g., source file RecentParts) has
been selected for the population of a concept.
Provider relationships, PrC. A 1:1 (N:M) pro-
vider relationship maps a (set of) input attribute(s)
to a (set of) output attribute(s) through a relevant
transformation.
Transformation Serial Composition, Tcomp

C . The
composition is used when we need to combine
several transformations in a single provider relation-
ship (e.g., the combination of SK and γ).

The proposed model is constructed in a customizable
and extensible manner, so that the designer can enrich it
with his own re-occurring patterns for ETL activities,
such as the assignment of surrogate keys or the check for
null values.

2.3. Formal definition of the model

A model is much more than a diagrammatic notation.
A conceptual model should be comprised of constructs
and constraints expressed in a rigorous mathematical
foundation, along with a user-friendly diagrammatic
notation. In the rest of this section we present a rigorous
definition for the constructs and constraints of our model
to compensate for the shortcoming of previous work
[17].

Assume the following infinitely countable pairwise
disjoint sets of attribute names Ω, concept names C,
transformation names T, constraint names Cn, and note
descriptions N. A specific design, or conceptual
schema, that obeys the proposed conceptual model
comprises the following finite sets of constructs:
attributes ΩC⊆Ω, concepts CC⊆C, transformations
TC⊆T, constraints CnC⊆Cn, and notes NC⊆N.

The aforementioned constructs are related to each
other in various forms. We define the following finite

sets of pairs to capture the relationship among the
constructs of a schema:

– Part-of relationships PoC are first defined among
attributes and their corresponding concepts, i.e.,
PoC⊆ (ΩC×CC). Part-of relationships are also
defined among notes and the transformations to
which they correspond, i.e., PoC⊆(NC×TC). Thus,
PoC⊆ (ΩC×CC)∪ (NC×TC).

– Some concepts are acting as placeholders for more
than one candidate concepts. Candidate relationships
CrC are defined as pairs (candidate, placeholder) and
formally this is captured by the set CrC⊆CC×CC.
Some candidates are annotated as active ones, so we
also assume a set of active relationshipsACrC⊆CrC.

– Finally, we need to interrelate source and target
attributes. We employ provider relationships PrC for
this task. Provider relationships are defined in the
following four cases:
– A source attribute is mapped to a target attribute.
– A source attribute is mapped to a transformation or
a transformation is mapped to a target attribute.

– A transformation is mapped to a transformation
(transformation serial composition).

– A constraint is applied over the attributes of a
concept.

Formally, this is captured as PrC⊆ (ΩC×ΩC)∪
(ΩC×TC)∪ (TC×ΩC)∪ (TC×TC)∪ (CnC×ΩC).

Formally, a conceptual schema is a directed graph
GC=(VC,EC) that obeys the following constraints (we
avoid overloading the mathematical notation to gain in
readability):

1. VC=ΩC∪CC∪TC∪CnC∪NC.
2. EC=PoC∪CrC∪PrC.
3. Every attribute is connected to a single concept via a

part-of edge.
4. Each member of a pair (transformation, note) does not

participate in any other part-of relationship (i.e., for each
transformation there exists exactly one note and for each
such note, there exists exactly one transformation).

5. For each set of candidates that target the same
placeholder relationship, exactly one active candi-
date can exist.

There are more correctness constraints that one can
imagine. Still, these constraints mostly refer to the
transformation process from the conceptual to the logi-
cal level. We choose to stop our consistency constraints
here for reasons of flexibility. This decision based on our
choice to provide a simple model with its main purpose
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of identification of the data stores and the transforma-
tions involved in the overall ETL process. This model
is addressed not only to administrators, but also to
managers and people with low expertise in data ware-
housing; thus, in order to facilitate the different groups
in gaining an understanding of each other, we use a sim-
ple design language. Therefore, we allow cases of bad
conceptual design, given that when the deliverable of this
stage propagates to the next level (the logical design) it
will be replenished and corrected wherever needed.
Instead of discussing these kinds of cases here, we refer
the reader to Section 5.1 where we provide an example of
problematic design blended in the process of conceptual
to logical transformation. This is also the reason for
characterizing our process as semi-automatic.

3. Logical model

In this section, we present a condensed version of the
logical model for ETLworkflows that concentrates on the
flow of data from the sources towards the data warehouse
through the composition of activities and data stores. The
full-blown version and the formal representation of the
model can be found in [16,18,19].

The full layout of an ETL workflow, involving
activities, recordsets and functions can be deployed
along a graph GL in an execution sequence that can be
linearly serialized. We call this graph, the Architecture
Graph. The graphical notation for the Architecture
Graph is presented in Fig. 3.

As we have already stressed, since the conceptual
model is constructed in a more generic and high-level
manner, not all the logical entities have a mapping to a
conceptual entity. In the logical modeling some entities
are used in order to capture more detailed semantics of
the logical design, e.g., the derived provider relation-
ships, which can be determined only after the deliver-
able of this mapping has been produced. Thus, in this
section, we present only the logical entities that can be
mapped to a conceptual entity. In this setting, the
components of our modeling framework are:

Attributes, ΩL. They are characterized by their name
and data type.

Recordsets, RSL. A recordset is characterized by its
name, its (logical) schema and its (physical) extension
(i.e., a finite set of records under the recordset schema).
Elementary Activities, AL. They are logical abstrac-
tions representing parts, or full modules of code. An
Elementary Activity (simply referred to as Activity
from now on) is formally described by the following
elements:

– Name: a unique identifier for the activity.
– Input Schemata, AL.in: a finite list of one or
more input schemata that receive data from the
data providers of the activity.

– Output Schemata, AL.out: a finite list of one
or more output schemata that describe the
placeholders for the rows that pass the checks
and transformations performed by the activity.

– Functionality Schema, AL.fun: a finite list of
the attributes which take part in the computa-
tion performed by the activity (in fact, these are
the parameters of the activity).

– Generated Schema, AL.gen: a finite list of attri-
butes, belonging to the output schema(ta), that are
generated due to the processing of the activity.

– Projected-Out Schema, AL.pro: a finite list of
attributes, belonging to the input schema(ta),
that are not further propagated from the activity.

– Operational Semantics: a program, in LDL++
[20], describing the content passing from the
input schemata towards the output schemata. For
example, the operational semantics can describe
the content that the activity reads from a data
provider through an input schema, the operation
performed on these rows before they arrive to an
output schema and an implicit mapping between
the attributes of the input schema(ta) and the
respective attributes of the output schema(ta).

– Execution priority. In the context of a scenario,
an activity instance must have a priority of
execution, determining when the activity will
be initiated.

Provider relationships, PrL. These relationships
capture the mapping between the attributes of the
schemata of the involved entities.

Fig. 3. Notation for the logical model.
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Part_of relationships, PoL. These relationships
involve attributes and parameters and relate them to
their respective activity, recordset or function to
which they belong.

Formally, the Architecture Graph is defined as GL=
(VL,EL) whereVL=ΩL∪AL∪RSL and EL=PrL∪PoL.
Fig. 4 depicts a simplified (due to the limited space)
diagram of the example of Fig. 1, in terms of our logical
model.

4. Mappings

In this section, we individually examine the con-
stituents of the conceptual model, identify their
respective logical entities, and describe how each
conceptual entity is mapped to a logical one. Concepts
and attributes are mapped to recordsets and attributes.
Transformations and ETL constraints are mapped to

activities. Notes are used for the determination and
instantiation of the appropriate template activity. More-
over, we tackle two special design cases: the case of
projected-out attributes and the convergence of two
separate data flows at a common data store. Formally,
we define a mapping from conceptual to logical models
MMMMMMMCL : GCYGL. Table 1 summarizes how the con-
ceptual entities are mapped to the logical ones.

4.1. Concepts and attributes

One of the main tasks of the conceptual model is to
identify all data stores, along with their attributes,
involved in the whole ETL process. For each concept in
the conceptual model, a recordset is defined in the logical.
The name and the list of attributes of the recordset are the
same with those of the concept. There is one-to-one
mapping from each attribute of the conceptual model to a
respective one in the logical model; i.e., its name and data

Fig. 4. Logical design of our example.

Table 1
Mappings from conceptual to logical objects

Conceptual GC(VC,EC) Logical GL(VL,EL) MMMMMMMCL : GCYGL

Attributes ΩC Attributes ΩL
WL ¼ fwj8xaWC;w ¼ MMMMMMMCLðxÞg

Concepts CC Recordsets RSL RSL ¼ frj8caCC; r ¼ MMMMMMMCLðcÞg

Transformations TC Activities AL
AL ¼ faj8taTC; 8naNC; a ¼ ðMMMMMMMCLðtÞ;MMMMMMMCLðnÞÞg [ faj8caCnC; a ¼ ðMMMMMMMCLðcÞg

Notes NC

Constraints CnC

Part-of PoC Part-of PoL PoL ¼fyj8xaPoC; x¼ ðc;xÞ; caCC;xaWC; y¼MMMMMMMCLðxÞ ¼ ðMMMMMMMCLðcÞ;MMMMMMMCLðxÞÞg

Provider PrC Provider PrL PrL¼fyj8xaPrC;x¼ðx1;x2Þ;x1;x2aWC;y¼MMMMMMMCLðxÞ¼ðMMMMMMMCLðx1Þ;MMMMMMMCLðx2ÞÞg

Candidate CrC – – –
Active candidate ACrC – – –
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type remain the same. Fig. 5 depicts the transition of
concepts S1.PARTS and DW.PARTS to the respective
recordsets along with its attributes.

Formally, for each concept attribute we introduce a
recordset attribute and the mapping of attributes is
defined as: WL ¼ fwj8xaWC;w ¼ MMMMMMMCLðxÞg. Addi-
tionally, for each concept we introduce a recordset and
the mapping of concepts to recordsets is defined as:
RSL ¼ frj8caCC; r ¼ MMMMMMMCLðcÞg.

4.2. Relationships

The conceptual model consists of four kinds of
relationships: part-of, candidate, active candidate, and
provider relationships.

The part-of relationships are used to denote the fact
that a certain concept comprises a set of attributes; i.e.,
that we treat attributes as ‘first-class citizens’ in our
model. We maintain this characteristic in the logical
model too; thus, the conceptual part-of relationships are
mapped to logical part-of relationships, with exactly the
same semantics and characteristics. Observe the usage
of part-of relationships in Fig. 5. Formally, for each part-
of edge that connects an attribute with its container
concept, we introduce a part-of edge and the respective
mapping is defined as: PoL ¼fyj8xaPoC; x¼ ðc;xÞ;
caCC;xaWC;y¼MMMMMMMCLðxÞ¼ðMMMMMMMCLðcÞ; MMMMMMMCLðxÞÞg.
The part-of edges that connect notes with trans-
formations are not further propagated to the logical
model.

The candidate and the active candidate relationships
are not directly mapped to the logical model. Their
introduction in the conceptual model covers the usual
case that in the early stages of the data warehouse design
there may exist more than one candidate concept (data
stores) for the population of a certain concept. When we
move on to the logical design, these problems have
already been solved at the previous steps of the lifecycle
[13]. Therefore, we only need to transform the active

candidate concept; i.e., the one that is chosen, to a logical
recordset.

The provider relationships intuitively represent the flow
of data during an ETL process. Consequently, a conceptual
provider relationship between a source and a target attribute
involves all the transformations that should be applied
according to design requirements. In the absence of any
transformation between a source and a target, the concep-
tual provider relationship can be directly mapped to a
logical provider relationship (Fig. 5). This is the case of
provider relationships between attributes and the respec-
tive mapping is defined as: PrL ¼ fyjx ¼ ðx1;x2Þ;
x1;x2aWC; y ¼ MMMMMMMCLðxÞ ¼ ðMMMMMMMCLðx1Þ;
MMMMMMMCLðx2ÞÞg. The case where one or more transformations
are needed between source and target attributes is covered
in the next subsection.

4.3. Conceptual transformations

In the conceptual model, we use transformations in
order to represent tasks that either: (a) maintain the schema
of data (e.g., cleansing, filtering); in general, we name these
transformations filters, or (b) change the schema of data
(e.g., aggregation); we name these transformations trans-
formers. In the logical level, we use activities to represent
the same tasks. Thus, the mapping of conceptual to logical
model includes the mapping of conceptual transformations
to logical activities.

By observing the characteristics of the logical model
and comparing the nature of its constructs to the constructs
of the conceptual model, we understand that in order to
fully describe the mapping between transformations and
activities, we have to deal with three main issues:

– The specification of the properties of an activity
(e.g., name, schemata, semantics).

– The serial composition of conceptual transformations.
– The definition of the execution order of activities in
the logical model.

Fig. 5. Transition of a simple provider relationship.
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In this subsection, we deal with the first two issues.
The latter is discussed later in the paper.

4.3.1. Properties of an activity
Formally, a transformation T in the conceptual level

(either a filter or a transformer) is mapped to an activity
A in the logical level. The input attributes of T (T.in)
comprise the functionality schema of the respective
activity A (A.fun). If there are attributes belonging to
the output schema of T (T.out) that do not have a
provider into the input schema of T, then these attributes
comprise the generated schema of the activity (A.
gen). Similarly, if there exist any attributes belonging
to the input schema of T that do not have a consumer in
the output schema of T, then these attributes comprise
the projected-out schema of the activity (A.pro). In
the simple case of an ETL process that involves only one
transformer, the attributes of the source concept (SS) of
T comprise the input schema of activity A (A.in) and
the attributes of the target concept (ST) of T comprise
the output schema of activity A (A.out). So the
following formulae are valid:

A:in ¼ SS :out
A:out ¼ ST:in
A:fun ¼ T:in
A:gen ¼ T:out−T:in
A:pro ¼ T:in−T:out

Obviously, for filters A.gen=∅ and A.pro=∅ hold.
Fig. 6 depicts an example of the determination of
activity's schemata for a transformer.

Note that in more complex cases, the input and
output schemata are not computed so easily. In [14], we
discuss how we confront such cases and present an
algorithm called Schema Generation that automates the
creation of all input and output schemata involved in the
whole ETL process.

4.3.2. Serial composition
In the conceptual model, when we need to combine

several transformations in a single provider relationship

(e.g., the combination of SK1 and γ in Fig. 1), we apply a
serial composition. Themapping of the serial composition
to the logical model is quite straightforward. The serial
composition of the two transformations T1 and T2 is
mapped to a sequence of two activities A1 and A2 in the
logical level. The execution order of the two activities is
determined from the order of the respective transforma-
tions in the serial composition. The schemata of the two
activities are defined as we have already seen. The only
difference is that the output schema of the initial activity
A1 will populate the input schema of the subsequent
activity A2, i.e., A2.in=A1.out.

4.4. Transformation of notes

So far, we have described how the schemata of an
activity, along with the appropriate inter-attribute
mappings are determined. The next step towards the
complete description of an activity is the identification
of its operational semantics; i.e., the appropriate LDL++
program that describes its operation. In previous work
[19], we provided a generic and extensible palette of
template activities, and presented how the expression of
an activity, which is based on a certain simple template,
is produced by a set of LDL++ rules of the following
form that we call Template Form:

OUTPUTðÞ
< − INPUTðÞ; EXPRESSION; MAPPING:

Clearly, the OUTPUT, INPUT and MAPPING parts of
the above formhave already been covered by themapping
of a conceptual transformation to a logical activity
previously presented. In this subsection, we concretely
describe: (a) how the designer chooses a template activity,
and (b) what the EXPRESSION part is.

To succeed in this task, we take advantage of the
usage of the notes attached to transformations. After
parsing the information of a note, we get extra
information concerning the transformation involved:
(a) its function type (clause f::); (b) the expression(s)
needed for the instantiation of its function type

Fig. 6. Mapping of a transformer T to an activity A.
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(clause e::); and (c) design decisions or constraints
(clause t::).

Using the type provided by the f:: clause, we chose a
template activity from a template library. In the case that
no template of such type exists in the library, the designer
can either register a new one or solve this problem later in
the logical design. In each template there are one or more
parts that should be determined during its instantiation.
This job is facilitated by the e:: clause. A properly com-
pleted e:: clause indicates the requisite expression(-s) for
a template. If more than one predicate is used in the
template definition; i.e., it is a program-based template
[19], then it is possible that more than one expression will
be required. Also, even a single predicate template is
possible to have more than one expression in its def-
inition. In such cases, the respective note should provide
all the expressions needed in the order they should be
placed into the template definition. If a note does not
contain all the appropriate expressions or if it does not
contain them in the right order or even if it contains them
improperly completed, then the template activity cannot
be automatically constructed and further interference
from the designer is required.

For instance, consider the transformation f3 depicted in
Fig. 1. This transformation represents a function tagged by
a note that provides twofold information about: (a) its type:
f::addAttribute; and (b) its required EXPRES-
SION: e::DATE=SYSDATE. Fig. 7 shows how to use
this information to instantiate the operational semantics of
activity f3. We use the f:: information to choose the
appropriate template for the logical activity. Thus, the
conceptual transformation f3 is mapped to the logical
activity f3 whose operational semantics are determined by
the template activity addAttribute (1st row). The
EXPRESSION part-of addAttribute is @OUT-
FIELD=@VALUE; i.e., the new attribute (OUTFIELD)
takes an initial value (VALUE). For transformation f3, the

EXPRESSION is: e::DATE=SYSDATE. After the para-
meter instantiation (2nd row) we get the operational
semantics of the activity f3 (3rd row).

For further information concerning the usage of
function types, templates, and expressions we refer the
interested reader to [19].

Finally, the t:: information is not directly used in the
logical model. The designer exploits such information, as
long as it is still useful in the logical design, to annotate the
logical workflow with informal notices concerning
several aspects of the ETL process, such as the time/
event based scheduling, monitoring, logging, error
handling, crash recovery, and/or runtime constraints.

4.5. Transformation of ETL constraints

In the conceptual model, ETL Constraints are used to
indicate that the data of a certain concept fulfill several
requirements. For instance, in Fig. 1, we impose a PK
constraint to DW.PARTS for the attributes PKEY and
DATE. The functionality of an ETL constraint is seman-
tically described from the single transformation that
implements the enforcement of the constraint. Thus, we
treat conceptual ETL constraints as conceptual transfor-
mations and we convert them into logical activities. More
specifically, each ETL constraint enforced to some
attributes of a concept Si is transformed to an activity A
that takes place in the logical workflow exactly before the
respective recordset Si that stands for the concept Si. The
schemata of the activity are filled in the same manner and
under the same procedures as in the case of themapping of
conceptual transformations. The finite set of attributes of
Si, over which the constraint is imposed, constitutes the
functionality schema of A. The input and output schemata
of A comprise of all the attributes of Si.

Formally, for each conceptual transformation, along
with its attached note, and for each conceptual

Fig. 7. Operational semantics of activity f3.
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constraint, we introduce a logical activity and the
mapping is defined as: AL ¼ faj8taTC; 8naNC; a ¼
ðMMMMMMMCLðtÞ; MMMMMMMCLðnÞÞg[ faj8caCnC; a¼ ðMMMMMMMCLðcÞg:

4.6. Special cases

In this subsection, we tackle two design issues that
arise in the mapping of conceptual to logical model.

4.6.1. Rejection of an attribute
During an ETL process some source attributes may be

projected-out from the flow. We discriminate two possible
cases:

– An attribute that belongs to the schema of a concept.
This case is covered by the conceptual model as an
attribute that has not an output provider edge (e.g., in
Fig. 1, the attribute S2.PARTS.DEPT is not further
propagated towards DW).

– An attribute that participates in a certain transfor-
mation but it is not further propagated. This case is
covered by the conceptual model as an attribute that
belongs to the input schema of a transformation, but
there is no output edge tagged with the name of the
discarded attribute from the transformation to any
attribute (e.g., in Fig. 1, the attribute PS1.DEPT parti-
cipates to the outer join, but is not further propagated
towards S1.PARTS).

In the mapping of conceptual to logical, the first case is
handled with the addition of an extra activity that projects-
out the appropriate attribute(s); this activity should be
placed immediately after the respective recordset. On the
other hand, the second case should not be examined as a
special case. The reason behind this is that the inter-
activity discarding of attributes is captured by the
semantics of the activity and the attributes discarded are
simply belonging to the projected-out schema of the
activity. Thus, this case is covered by the conversion of
conceptual transformations to logical activities.

4.6.2. Convergence of two flows
In the conceptual model, the population of a concept

(e.g., DW.PARTS) from more than one source is
abstractly denoted by provider edges that simply point
at this concept. The logical model, that is more rigorous,
needs a more specific approach to cover the population
of a recordset from more than one source. A solution to
this is the addition of an extra activity that unifies the
different flows. Therefore, the convergence of two (or
more) flows is captured in the logical model with the
usage of a union (U) activity. Obviously, before the

addition of a union activity, each of the involved flows
populates the same data store, i.e., the same schema.
Thus, the input schemata of the union activity are
identical. Since a union has empty functionality,
generated and projected-out schemata, its output schema
is the same with any of its input schemata and also, it is
the same with the schema of the target recordset.

4.6.3. Presentation issue
For clarity of presentation, in what follows, we avoid

using the formal notation previously presented. For
instance, when we write ‘a graph G’ instead of ‘a graph
GC’ or ‘a graphGL’, the related description will clarify
whether we refer to a conceptual or to a logical graph.

5. Execution order

So far, we have clarified that from the conceptual
model of an ETL process, one can: (a) identify the
concerned data stores; (b) pick out the transformations
that need to take place in the overall process; and (c)
describe the inter-attribute mappings. But a further, more
detailed, study of the data flow generates some questions
concerning the execution order of the activities in the
logical workflow. Consider the part-of Fig. 1 that involves
the population of DW.PARTS from S2.PARTS. In order
to design a logical workflow for this example, we have to
answer questions like ‘Q1: which of the activities SK1
and γ should precede?’ or ‘Q2: which of the activities
SK1 and f1 should precede?’

This section presents a method for determining the
execution order of activities in the logical workflow. At
first, without loss of generality, we examine the simple case
of the population of one target concept from one source.
With the intention of classifying the transformations
according to their placement into the design, we define
transformation stages and we give an algorithm for finding
them. Also, we discuss issues concerning the ordering of
transformations included in the same stage. Afterwards,we
extend this method to capture more complex and realistic
cases involving more than two data stores.

5.1. Stages

Assume the case of simple ‘one source-one target’
flow, like the example depicted in Fig. 8. The motivating
question Q1 can be answered by observing the
information presented in Fig. 8. Since the transforma-
tion γ has input attributes that belong to the output
schema of SK1, f1 and f2, it should follow them at the
logical level. For a similar reason, the activity σ should
follow γ. Moreover, after the presentation of the special
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cases in subsection 4.6, we should also take into account
twomore activities: (a) the ETL constraint PK; recall that
whenwe transform an ETL constraint into an activity, we
should place it exactly before the recordset involved
(DW.PARTS); and (b) the ‘hidden’ activity that projects-
out the attribute DEPT; recall that this activity should be
placed exactly after the source concept (S2.PARTS).

Intuitively, one can divide the design into several
groups of transformations, (see Fig. 8), mainly taking into
consideration the following observations: (a) the position
of some activities in the workflow can be determined by
detecting their providers and consumers; and (b) extra
activities can be placed in the workflow by applying the
mapping rules for ETL constraints and special cases.

5.1.1. Stages
The aforementioned observations guide us to divide

the design into several transformation stages. A trans-
formation stage (or a stage) is a visual region in a ‘one
source-one target’ conceptual design that comprises: (a)
a concept and its attributes (either the source or the
target concept); or (b) a set of transformations that act
within this region. A stage is shown as a rectangle
labeled at the bottom with a unique stage identifier: an
automatically incremented integer with initial value
equal to 0, where stage 0 comprises only the source
concept. The next subsection clarifies how stages are
derived and exploited.

5.1.2. Position of activities in different stages
Assume two conceptual transformations Ti and Tj.

Then, the execution order of their respective activities
Ai and Aj in the logical model is computed as follows:
When Ti belongs to a stage with smaller identifier than
the stage of Tj, then Ai has smaller execution priority
(i.e., it is executed prior) than Aj.

We have answered the question of determining the
execution priorities of activities in different stages.

Another issue which remains to be clarified is the
determination of the execution priority among transfor-
mations that belong to the same stage. The transforma-
tions that belong to the same stage are called stage-
equivalent transformations.

5.1.3. Position of activities within the same stage
We tackle this problem using the following thought:

If all activities that stem from stage-equivalent trans-
formations are swappable, then there is no problem in
their ordering. Consequently, we answer questions
concerning the ordering of activities of this kind, by
studying which of these activities can be swapped with
each other. For the rest of activities, extra action from
the designer is needed. In [14] we resolve the issue in
which two activities can be swapped in a logical ETL
workflow, i.e., when we are able to interchange their
execution priorities. Also, we provide a formal proof
that the swapping of two activities A1 and A2 is allowed,
when the following conditions hold:

1. A1 and A2 are adjacent in the graph; without loss of
generality assume that A1 is a provider for A2.

2. Both A1 andA2 have a single input and output schemata
and their output schema has exactly one consumer.

3. The functionality schema of A1 and A2 is a subset of
their input schema, both before and after the swapping.

4. The input schemata of A1 and A2 are subsets of their
providers, again both before and after the swapping.

All transformations belonging to the same stage can be
adjacent and this is valid for their respective activities too;
thus condition (1) holds. Since stages are defined between
two concepts, in a single stage all transformations, as well
as their respective activities, have a single input schema
and a single output schema; thus condition (2) holds too.
Therefore, we have to examine the validity of conditions
(3) and (4), in order to decide if two transformations
belonging to the same stage are swappable or not.

The transformations that belong to the same stage,
and whose respective activities in the logical design are
swappable, are called order-equivalent transformations.
For two order-equivalent transformations Ai and Ai−1

the following formulae hold:

Ai:funpAi:in

Ai:inpAi−1:out:

The above formulae represent conditions (3) and (4)
respectively. If these formulae do not hold for two
transformations belonging to the same stage, then we

Fig. 8. Transformation stages.
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cannot automatically decide their order and we need
additional information from the user.

5.1.4. Cases of bad design
Clearly, this extra information is required only in cases

of bad design. Consider the example of Fig. 9. In the left
side, part (a), we discern two stage-equivalent transforma-
tions: f and σ. Assume that concept SS contains costs in
dollars. The first transformation converts dollar costs to
euro values and the second filters out values below the
threshold of 100€. Obviously, if the filter has greater
execution priority than the function, then there is a
semantic problem; the result of filtering dollars with a
euro value threshold is not eligible. Besides, as we explain
thoroughly in [14], the condition (3) fires: if the filter is
applied first, then σ.fun={€COST}≠σ.in=

{$COST}. Therefore, these two transformations are not
order-equivalent and the designer will be asked for the
right order. If the designer creates the blueprint depicted in
Fig. 9(b), then the ordering is explicitly defined, since
both transformations belong to subsequent stages.

5.2. Stage derivation

We now present the FS algorithm (Fig. 10) that is
used for the automatic determination of all stages of a
conceptual design which involves a source and a target
concept. The FS algorithm accomplishes the following
tasks: (a) first, it finds out all the attributes that should be
projected-out in the terms introduced in subsection 4.6;
and (b) then, it divides the design into several stages, by
exploiting the observations about the provider(-s) and

Fig. 9. Cases of bad (a) and correct (b) design.

Fig. 10. The FS algorithm.
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the consumer(-s) of each transformation. The input of
the algorithm is a subgraph Gp=(V′,E′) of the whole
conceptual design G=(V,E); i.e., V′⊆V and E′⊆E,
that comprises a source concept CS, a target concept CT,
their respective attributes, and all transformations
between these two concepts. In the algorithm, we
consider all transformations of Gp as a set AT, the
creation of which is accounted as a trivial programming
task. The FS outputs the set of stages of the ‘one source-
one target’ flow concerning the concepts CS and CT. We
use an array of sets, named Stage[], to store all these
stages. Each element id of Stage[] is a set that
represents a stage, and it contains the transformations (or
concepts) belonging to the stage with id equal to id.

The source concept is placed in stage 0 (Ln: 5). All
the project-out cases are calculated first (Ln: 7–10). We
are interested only in the attributes of the source concept
(see subsection 4.6) that do not have a consumer to
populate (i.e., they do not have a provider relationship).
All project-out's are placed in the same stage (Ln: 9),
because, obviously, they are order-equivalent transforma-
tions. Then, the FS calculates the rest of transformations
(Ln: 11–17).We check all transformations inAT. If all the
input attributes of a certain transformation have providers
in a previously defined stage, then this transformation is
removed fromAT and placed to the current stage. In other
words, if all providers of a certain transformation belong to
previous stages, i.e., stages with smaller id than the current
stage, then this transformation should be placed in the
current stage (Ln: 14–17). If not, then we continue with
the next transformation, until we check all transformations
belonging to AT. Then, we proceed to the next stage and
we check again the rest of transformations inAT, untilAT
becomes empty. Finally, we add the last stage that contains
the target concept, in Stage[] (Ln: 18) and FS returns all
stages of the ‘one source-one target’ flow concerning the
concepts CS and CT in the array Stage[] (Ln: 19).

5.2.1. Correctness of the FS algorithm
Theorem 1 guarantees that the FS algorithm is correct,

in the sense that it produces correct stages. Specifically,
the theorem guarantees that all nodes, belonging to a
simple ‘one source — one target’ flow, are placed to the
stage that follows the maximal stage of their providers. In
other words, if a node n has providers that belong to stages
s1, s2, …, sκ, with sκ being the latest stage, then node
n is placed at stage sk+1.

Theorem 1. Every node of a simple ‘one source — one
target’ flow is placed in a stage as soon as all its
prerequisites are met; i.e., all its providers have already
placed in previous stages.

Proof. The validity of this theorem is assured from the
if-statement of Ln: 14. Every transformation Ti is
placed into the exact next stage than its provider(-s)
which is(-are) placed in the stage with the greater id
among all the other provides of Ti. Each loop of the
while statement of Ln: 11 checks all the activities. Each
time, the stage changes and the ones that are selected are
the activities whose providers are all assigned to
previous stages. No transformation Ti may be placed
in an earlier or a later stage. Additionally, the other two
nodes, the source and target concepts, that exist in this
simple flow are placed in the first (Ln: 5) and in the last
(Ln: 18) stage respectively. □

5.3. Stages in designs involving binary transformations

Up to now, we have dealt with simple ‘one source–one
target’ ETL processes. We extend this assumption by
taking into account the binary transformations that combine
more than one flow. In this case, we follow a threefold
procedure for finding the execution order of the activities in
the overall workflow: (a) we compute the stages of each
separate ‘one source–one target’ flow; (b) we construct the
linear logical workflows; and (c) we unify them into one
workflow. The union of two workflows is realized on their
common node; i.e., either a recordset or a binary
transformation, which is called the joint–point of the two
workflows. As we have already discussed in subsection
4.6, if the joint–point is a data store, then for the
convergence of two workflows we need an extra union
activity (U) that should be placed exactly before the joint
point; i.e., the common data store. If the joint–point is a
binary transformation then we simply unify the two flows
on that node.

At first, we give an intuitive description of howwe deal
with complex designs involving more than one source,
and then present an algorithm for the formal finding of
stages in such complex designs. Without loss of general-
ity, assume the case of ‘two sources–one target’ flow.
Obviously, for each binary transformation Tb there are
two providers and one consumer. These three entities can
be either concepts or transformations depending each time
from the position of Tb in the workflow. Assume the case
of the population of a target data storeDW from two source
data stores S1 and S2 (Fig. 11(a)) through several unary
transformations and one binary transformationTb.We use
an incremental technique for the design of the logical
workflow. At first, we compute StageS1,DW and
StageS2,DW that contain the stages of the ‘one source–
one target’ flows defined by the two pairs of conceptsS1-
DWand S2-DW. To find the appropriate order in the logical
workflow when a binary transformation Tb is involved,
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we select: a) all the transformations that take place in the
flow from the first source S1 to the target concept DW; and
b) a subset of the transformations from the second flow
that consists of all the transformations between the second
source conceptS2 and the binary transformationTb. Thus,
from StageS1,DW we use all its elements:

StageS1;DW½i�; i ¼ 0; N ; n where StageS1;DW½n� ¼DW

while from StageS2,DW we use only the elements:

StageS2;DW½i�; i¼ 0; N ; k where StageS2;DW½k� ¼Tb:

Finally, we unify the two flows on their joint–point, the
activity Tb (dashed arrow in Fig. 11(b)).

For example, in Fig. 11 we have:

for S1-DW: for S2-DW:
StageS1,DW[0]={S1} StageS2,DW[0]={S2}
StageS1,DW[1]={T1} StageS2,DW[1]={T2}
StageS1,DW[2]={Tb} StageS2,DW[2]={Tb}
StageS1,DW[3]={T3} StageS2,DW[3]={T3}
StageS1,DW[4]={DW} StageS2,DW[4]={DW}

In this example n=4 and k=2, and thus, from the
second flow we select only the first three stages (0..2).
We do not compute all stages of the second flow, rather
we compute only the k first stages (0. .k−1). We
construct the logical flow S1-DW based on all five stages
(0..4) and the logical flow S2-DW based only on the
first three stages (0..2). The two workflows are
depicted in Fig. 11(b). Finally, we unify the two flows
on their joint–point, the activity Tb (dashed arrow in
Fig. 11(b)). The following proposition guarantees that
we do not lose any transformation in this process.

Proposition. If two flows, S1–ST and S2–ST that
involve the population of a target data store ST from
two source data stores S1 and S2, respectively, have a
binary transformation Tb as a joint point, then the sub-
flow Tb–ST is common in both initial flows.

Proof. The proof is straightforward, since, by defini-
tion, each transformation has exactly one output
schema. For instance, the situation depicted in Fig. 12
is unacceptable, because the only way to have different
flows after a binary transformation is to allow it to have
two output schemas; and this is not valid. □

Next, we present an algorithm for Finding Stages in
Complex Conceptual Designs. The FSC algorithm
(Fig. 13) formally determines the execution order of ac-
tivities in workflows that involve more than one source. It
checks all the flows from each source to the target. It
applies theFS algorithm to each simple flow; i.e., to a flow
that does not involve a binary transformation. If the flow is
complex; i.e., a flow that involves at least one binary
transformation, then each time FSC keeps track of binary
transformations, and again, it applies the FS algorithm.

The FSC algorithm takes as input a directed graph
G=(V,E) that represents a conceptual design involving
probably more than one source along with binary
transformations and produces an array that contains all
the individual simple flows, each one in the form of a
Stage[] array, that are needed for the construction of
the logical workflow. At first, the algorithm checks
every possible flow that may be created by any two
concepts; a source CS and a target CT that belong to G
(Ln: 6). It becomes obvious from the aforementioned
intuitive analysis, that the main goal is to find the

Fig. 11. The case of a binary transformation.

Fig. 12. Problematic conceptual design.
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boundaries of each flow. Clearly, we search only for the
target of a flow, given that the source is always known.
Initially, in each flow the first concept CS is the source
and the second CT is the target (Ln: 7). Then we find all
transformations of the flow CS–CT as a set AT, the
creation of which (function find_all_transfor-
mations(〈source〉,〈target〉)) is accounted as a
trivial programming task (Ln: 8). If there does not exist
any binary transformation in this flow then the target is
still the second concept. If there exists a binary
transformation Tb, then we confront this in a twofold
way (Ln: 9–12). The very first time that we find Tb, we
simply add it to a set, named visited_Tb, and the
ordering is determined from the whole flow. In the next
appearance (or appearances, if we consider that an n-ary
transformation can have more than two input schemata)
of Tbwe use the binary transformation Tb as the target; in
this case, the second concept is not considered anymore
as the target of the current flow checked (Ln: 10). This is
because the flow from Tb towards the second concept has
been determined before, at the first appearance of Tb. The
set visited_Tb is used for storing every binary
transformation counted so far in its first appearance.

After having determined the target, we have fixed the
boundaries of the flow that should be checked in order to
determine the execution order of the logical activities.
Once again, this is achieved through the application of
the FS algorithm to the flow between the source concept
and the target chosen (Ln: 13). The FS algorithm
outputs the array Stage[] (see previous subsection)
that contains the necessary information about the
execution order of a certain flow. All arrays Stage[]
of all the conceptual flows examined are stored in
another array LW[].

When FSC finishes, it returns the array LW[] that
contains all the individual simple flows, each one in the
form of a Stage[] array, that are needed for the
construction of the logical workflow (Ln: 19). We
should note here, that the term ‘construction’ refers to
the determination of the placement (execution order) of
all data stores and transformation involved in the whole
ETL process, rather than the whole composition of all
constituents of the logical model.

5.3.1. Correctness of the FSC algorithm
Theorem 2 guarantees that the FSC algorithm is

correct; in the sense that it produces correct stages and
that every transformation exists only in one stage. In
other words, it guarantees that the whole conceptual
graph is correctly divided into several stages, the
ordering of stages is appropriate and that all its nodes
are correctly placed in the appropriate stage.

Theorem 2. The conceptual graph G=(V,E) may be
divided into stages that: (a) uniquely comprise all its
nodes; and (b) are ordered in such a way that the
topological sort of the graph of stages is feasible.

Proof. Assume the graph G′=(V′,E′) where each
stage is represented as a node. It is easy to prove that
there exists a topological sort of G′=(V′,E′) that
produces the same ordering of the graph's stages. This
is clear, since stages that: (a) are found after a binary
transformation or recordset; and (b) belong to more
than one flow are examined only once from algorithm
FSC (Ln: 10–11). Clearly, the ordering of the non-
common parts of the two flows, before their joint node
can be ordered arbitrarily (remember also that if they
had another common part, this would have been traced

Fig. 13. The FSC algorithm.
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in advance). The completeness of the algorithm is
guaranteed by the Lines 6, 9, and 13: all paths are
considered; all joint nodes; and all intermediate nodes,
respectively. □

5.4. Execution order of activities

So far, we have introduced stages and we have
presented how they can be automatically identified in
the conceptual design. We are ready now to describe
how the execution order of activities in the logical
design can be determined.

Usually, ETL processes consist of more than one ‘one
source–one target’ flow, probably involving more than
one binary activity. Thus, in general we should follow
the technique described in the previous subsection for
finding the execution order of activities involved in the
overall process. At first, we find the proper execution
order for every simple flow in the conceptual design, in
order to establish the proper placement of the activities
in linear logical workflows. As we have discussed in the
previous section, each element of the LW[] array
contains all the nodes, separated into stages, for each
one of these workflows.

The execution order of the activities in the logical
workflow is determined by the EOLW algorithm. The
EOLW algorithm (Fig. 14) takes as input the array LW[]
computed by FSC algorithm. Again, its main task is to
construct the logical design, in terms of finding the

appropriate execution order, rather than build the whole
ETL process with its semantics; the latter is a later task
presented in the next section. Thus, it creates and
outputs a graph G=(V,E) that contains all the necessary
data stores and activities.

The procedure is realized as follows: For every
simple flow, i.e., for every element of LW[], algorithm
EOLW processes all transformation stages, i.e., all
elements of Stage[] (Ln: 7–20). Each time it finds a
new node, either data store or activity, it adds it to the
graph along with an edge that connects this node with its
prior node in the flow (Ln: 9–13). If a node has already
been added in the graph then this is a case of
convergence of two flows: the current one and the one
already connected to this node (Ln: 14). We discriminate
two possible cases: the node is either a binary activity or
a data store, i.e., it belongs to A or RS. The case of an
already visited binary activity is the simplest; then, we
need only a connection from its prior node in the current
flow processed to the binary activity (Ln: 15). The
second case necessitates the usage of an extra Union
activity (see subsection 4.6) placed exactly before the
respective data store (Ln: 16–20). To achieve this, we
first delete the edge between the data store and the last
node of the flow already connected to it (Ln: 17). Then
we add a new node representing the Union activity (Ln:
18) and connect it to both flows and the data store (Ln:
19). Finally, EOLW returns the graph that represents the
logical design.

Fig. 14. The EOLW algorithm.
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Theorem 3. The EOLWalgorithm is correct in the sense
that: (a) all transformations are mapped to activities;
and (b) the order of stages is preserved in the order of
activities.

Proof. The completeness part-of the algorithm is
guaranteed by the completeness of algorithm FSC and
the two for loops of Ln: 7–8. The order of the stages is
preserved by the fact that the array LW is processed in
order (Ln: 7). □

As we have already discussed, normally, a stage
contains only order-equivalent transformations (those
with their respective activities in the logical workflow
that are swappable). The correct design assures that non-
order-equivalent transformations shall be placed in
different stages. However, since we have chosen to
follow a more comprehensible approach for the non-
expert users, mistakes are allowable. Even then, as we
present in the next section, the last step of the mapping
consists of a schema verification method that is able to
indicate such errors, and in that case, the system
administrator/designer shall deal with such problems.

6. Method

This section presents a sequence of steps that a
designer should follow, during the transition from the
conceptual to logical model, with the ultimate goal of
the production of a mapping between the two models,
along with any relevant auxiliary information.

Step 1: Preparation. We refine the conceptual model
in terms that no ambiguity is allowed. After we decide
the active candidate, a simplified ‘working copy’ of the
scenario that eliminates all candidates, is produced [13].
Also, any additional information depicted as a note (e.g.,
comments, runtime constraints), which is not useful
during the mapping, is discarded from the design and it
is stored to a log file.

Step 2: Concepts and Attributes. Next, we add all
necessary recordsets along with their attributes. All
concepts of the conceptual design are mapped to
recordsets in the logical design. Similarly, their attributes
are mapped to the attributes of the respective recordsets.
Obviously, the part-of relationships remain the same
after the transition from one model to the other.

Step 3: Transformations. After that, we determine the
appropriate activities along with their execution order.
The determination of activities is captured by the
conceptual design; all transformations involved in the

conceptual design are mapped to logical activities. Also,
we incorporate activities that are not shown in the
conceptual design, to capture the rejection of an attribute
or the convergence of two flows. Afterwards, we
determine the execution order of the activities, and we
exploit the information provided by the notes to fully
capture the semantics of every activity.

Step 4: ETL Constraints. The next step takes into
account the ETL constraints imposed on the data stores.
Recall that when we transform an ETL constraint into an
activity, we should place it exactly before the recordset
involved. Thus, in this step, we enrich the logical design
with extra activities that represent all ETL constraints of
the conceptual design. The execution order of these
newly inserted activities is defined according to the same
criteria and techniques with those unfolded in the case of
stage-equivalent transformations.

Step 5: Schemata Generation. As a final step, we
should ensure that all the schemata involved in the overall
process are valid. For this reason, we use the algorithm
Schema Generation (SGen), introduced in [14]. SGen
automatically creates all the schemata involved in the
logical design. The main idea of SGen is that after the
topological sorting of an ETL workflow, the input schema
of an activity is the same with the (output) schema of its
provider and the output schema of an activity is equal to
(the union of) its input schema(ta), augmented by the
generated schema, minus the projected-out attributes.
Therefore, for two subsequent activities A1 and A2, the
following equalities hold:

A2:in ¼ A1:out

A2:out ¼ A2:in [A2:gen−A2:pro:

Thus, given that the schemata of the source recordsets
are known and the generated and projected-out
schemata of each activity are provided by the template
instantiation, the calculation of the schemata of the
whole ETL process is feasible.

7. Related work

This section presents the state of the art concerning the
correlation of two different levels of ETL design:
conceptual and logical. Although, there exists several
approaches [6,7,15,17] for the conceptual part-of the
design of an ETL scenario, so far, we are not aware of any
other research approach concerning a mapping from a
conceptual to a logical model for ETL processes.
However, in the literature there exist several approaches
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concerning the automation or semi-automation of several
tasks of logical DW design from conceptual models.

Ballard [1] proposes a method that starts applying
transformations to the ER-enterprise model until a
representation of the corporate dimensions is obtained.
Then, the dimensional model is designed, mainly by
taking into account the gathered user requirements.

Boehnlein and Ulbrich-vom Ende [3] present an ap-
proach to derive initial data warehouse structures from the
conceptual schemes of operational sources. The authors
introduce a detailed description of the derivation of initial
data warehouse structures from the conceptual scheme,
through an example of a flight reservation system. Their
method consists of three stages: (a) identification of
business measures; (b) identification of dimensions and
dimension hierarchies; and (c) identification of integrity
constraints along the dimension hierarchies.

Golfarelli and Rizzi [4] propose a general methodo-
logical framework for data warehouse design, based on
Dimensional Fact Model (DFM). The authors present a
method for the DW design that consists of six phases: (a)
analysis of the existing information system; (b) collection
of the user requirements; (c) automatic conceptual design
based on the operational database scheme; (d) workload
refinement and schema validation; (e) logical design; and
(f) physical design. In general, the proposed method starts
from an ER-enterprise model. Then, the model is re-
structured and transformed until a conceptual schema is
obtained. Finally, the authors provide a method to pass
from this model to a logical dimensional model (in
particular the star schema in the relational model).

Hahn, Sapia and Blaschka [5] present a modelling
framework, BabelFish, concerning the automatic genera-
tion of OLAP schemata from conceptual graphical
models, and discuss the issues of this automatic
generation process for both the OLAP database schema
and the front-end configuration. The main idea of
BabelFish is that the DW designer models the universe
of discourse on a conceptual level using graphical
notations,while he/she is being supported by a specialized
Computer AidedWarehouse Engineering (CAWE) envir-
onment. This environment generates the implementation
of the conceptual design models, but hides the imple-
mentation details. Moreover, the authors list typical
mismatches between the data model of commercial
OLAP tools and conceptual graphical modeling notations,
and proposes methods to overcome these expressive
differences during the generation process.

Moody and Kortink [8] describe a method for
developing dimensional models from traditional ER-
models. This method consists of several steps that occur
after the completion of developing an enterprise data

model (if one does not already exist) and the completion
of the design for central DW: (a) the first step involves the
classification of entities of the ER-enterprise model in a
number of categories; (b) the second step concerns the
identification of hierarchies that exist in themodel; and (c)
the final step involves the collapse of these hierarchies and
the aggregation of the transaction data. The procedure
described by this method is an iterative process that needs
evaluation and refinement. Moreover, the authors present
a range of options for developing data marts to support
end user queries from an enterprise data model, including:
snowflake; star cluster; star; terraced; and flat schemata.

Peralta [10] presents a framework for generating a DW
logical schema from a conceptual schema. It presents a
rule-basedmechanism to automate the construction of DW
logical schemata. This mechanism consists of a set of
design rules that decide the application of the suitable
transformations in order to solve different design problems.
The proposed framework consists of: mappings between
source and DW conceptual schemata; design guidelines
that refine the conceptual schema; schema transformations
which generate the target DW schema; and design rules
that decide the application of the suitable transformations
in order to solve different design problems.

Phipps and Davis [12] propose algorithms for the
automatic design of DW conceptual schemata. Starting
from an enterprise schema, candidate conceptual schemas
are created using theME/Rmodel, extended to notewhere
additional user input can be used to further refine a
schema. Following a user-driven requirements approach,
the authors propose a method towards the refinement of a
conceptual schema. Additionally, Phipps [11] proposes an
algorithm for the creation of a logical schema (dimen-
sional star schema) from a conceptual one.

In a different line of research, Bekaert et al. [2]
describe a semi-automatic transformation from object-
oriented conceptual models in EROOS (an Entity
Relationship based Object-Oriented Specification
method that is an OO analysis method for building
conceptual models) to logical theories in ID-Logic
(Inductive Definition Logic that is an integration of first
order logic and logic programming, interpreting the
logic program as a non-monotone inductive definition).

8. Discussion

In this paper we have presented a semi-automatic
transition from a conceptual model to the logical model.
First, we have presented a rigorous definition for the
constructs and constraints of the conceptual model.
Then, we have formally described the mapping from
conceptual to logical models. Also, we have provided a
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method for the determination of a correct execution
order of the activities in the logical model. Finally,
we have offered a cohesive method that consists of a
sequence of steps that a designer should follow, during
the transition from the conceptual to logical model.

Once again, our method is not a fully automatic
procedure. This is due to the fact that intentionally we do
not provide any strict verification method for the
conceptual model [17]. The goal of this mapping is to
facilitate the integration of the results accumulated in the
early phases of a data warehouse project into the logical
model, such as the collection of requirements from the
part-of the users, the analysis of the structure and
content of the existing data sources along with their
mapping to the common data warehouse model. Thus,
the deliverable of this mapping could not necessary be a
complete and accurate logical design. Hence, the
designer during the mapping from the one model to
the other or in the logical level, should examine,
complement or change the outcome of this method.

As a final note, the design of Fig. 4 is not the only
possible logical design that corresponds to the conceptual
design of Fig. 1. The constraints in the determination of
the execution order require only that the placement of
activities should be semantically correct or equivalently,
that these activities can interchange their position without
any semantic conflict. Clearly, n order-equivalent activ-
ities can produce n! different logical workflows. The final
choice of one of them depends on other parameters
beyond those examined in this paper; e.g., the total cost of
a workflow.We have resolved this issue in [14], where we
discuss optimization issues concerning ETL processes.
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