
Hecataeus: A What-If Analysis Tool for Database Schema Evolution

George Papastefanatos Fotini Anagnostou Yannis Vassiliou Panos Vassiliadis

National Technical University of Athens,
Dept. of Electr. and Comp. Eng.,

 Athens, Greece

Univ. of Ioannina,
Dept. of Computer Science,

Ioannina, Greece

{ gpapas, fanag, yv}@dblab.ece.ntua.gr pvassil@cs.uoi.gr

Abstract

Databases are continuously evolving environments,

where design constructs are added, removed or
updated rather often. Small changes in the database
configurations might impact a large number of
applications and data stores around the system:
queries and data entry forms can be invalidated,
application programs might crash. HECATAEUS is a
tool, which represents the database schema along with
its dependent workload, mainly queries and views, as a
uniform directed graph. The tool enables the user to
create hypothetical evolution events and examine their
impact over the overall graph as well as to define rules
so that both syntactical and semantic correctness of the
affected workload is retained.

1. Introduction

In typical organizational Information Systems, the
designer/administrator is frequently faced with the
necessity to predict the impact of a small change or a
more sophisticated reorganization in the overall
database configuration. For instance, assume that an
attribute has to be deleted from the underlying database
schema. A small change like this might impact a large
number of applications and data stores around the
system: queries and data entry forms can be
invalidated, application programs might crash
(resulting in the overall failure of more complex
workflows), and several pages in the corporate Web
server may become invisible (i.e., they cannot be
generated any more). Syntactic as well as semantic
adaptation of workload – mainly queries and views - to
changes occurring in the database schema is a time-
consuming task, treated in most of the cases manually
by the administrators or the application developers.
Research has extensively dealt with the problem of
database evolution. Nevertheless, problems arise with

existing queries and applications, mainly due to the fact
that, in most cases, their role as integral parts of the
environment is not given the proper attention.
Furthermore, queries and views are not designed to
handle database evolution.

In this paper, a tool, named HECATAEUS, which
allows the administrator/designer to execute what-if
analysis scenarios and determine the impact of a
potential change over a database graph, is presented.
The tool allows the definition of hypothetical evolution
events over a database graph and equips the designer
with the possibility of annotating the graph with
policies that either accept, or block such potential
events. The impact and the possible reshaping of the
graph are automatically determined in the proposed
framework, based on a set of rules provided by the
administrator.

This paper is organized as follows: In Section 2, the
framework for adapting queries and views to database
schema evolution changes is sketched. We present the
architecture and main features of Hecataeus tool in
section 3 and in section 4 we present the evaluation of
the tool over a real-world application and provide some
insights for future work.

2. A framework for handling database
schema evolution

Our approach is to provide a mechanism for
performing what-if analysis for potential changes of
database configuration [1]. A graph model that
uniformly models queries, views, relations and their
significant properties (e.g., attributes, conditions) is
introduced. Apart from the simple task of capturing the
semantics of a database system, the graph model allows
us to predict the impact of a change over the system.
Furthermore, we provide a framework for annotating
the database graph with policies concerning its
behavior in the presence of hypothetical changes

occurring in the database schema. Rules that dictate the
proper actions, when additions, deletions or
modifications are performed to relations, attributes and
conditions (all treated as first-class citizens of the
model) are provided. Specifically, assuming that a
graph construct is annotated with a policy for a
particular event (e.g., a relation node is tuned to deny
deletions of its attributes), the proposed framework (a)
performs the identification of the affected part of the
graph and, (b) if the policy is appropriate, proposes the
readjustment of the graph to fit to the new semantics
imposed by the change.
Example. Consider the simple example query SELECT
* FROM EMP. Assume that provider relation EMP is
extended with a new attribute PHONE. There are two
possibilities:
- The * notation signifies the request for any attribute

present in the schema of relation EMP. In this case,
the * shortcut can be treated as “return all the
attributes that EMP has, independently of which
these attributes are”. Then, the query must also
retrieve the new attribute PHONE.

- The * notation acts as a macro for the particular
attributes that the relation EMP originally had. In
this case, the addition to relation EMP should not be
further propagated to the query.

A naive solution to such modifications; e.g., addition of
an attribute, would be that an impact prediction system
must trace all queries and views that are potentially
affected and ask the designer to decide upon which of
them must be modified to incorporate the extra
attribute. We can do better by extending the current
modeling. For each element potentially affected by the
addition, we annotate its respective graph construct
(i.e., node, edges) with policies. According to the
policy defined on each construct the respective action
is taken to correct the query.
Therefore, for the example event of an attribute
addition, the policies defined on the query and the
actions taken according to each policy are:
- Propagate attribute addition. When an attribute is

added to a relation appearing in the FROM clause of
the query, this addition should be reflected to the
SELECT clause of the query.

- Block attribute addition. The query is immune to
the change: an addition to the relation is ignored. In
our example, the second case is assumed, i.e., the
SELECT * clause must be rewritten to SELECT
A1,…,An without the newly added attribute.

- Prompt. In this case (default, for reasons of
backwards compatibility), the designer or the
administrator must handle the impact of the change
manually; similarly to the way that currently

happens in database systems.

3. HECATAEUS: Architecture and features

In the context of the aforementioned framework, we
have prototypically implemented a tool, HECATAEUS,
for graphical representation and what-if analysis of
several evolution events over a database schema. A
first version of the tool [2] enabled the user to represent
SQL queries as directed graphs, while current version
is enriched with evolution semantics and features for
performing what-if analysis for evolution of database
schemas.

The tool accepts as input files DDL definitions and
workload files (expressed in SQL). Regarding graph
representation, the tool creates and visualizes a graph
that holds all the semantics of the nodes and edges of
the aforementioned graph model. Moreover, the tool
assists the user in several ways: apart from the zoom-
in/zoom-out capability, HECATAEUS offers the user the
ability to isolate and highlight a part of a graph, in
order to facilitate the accurate and complete
understanding of the whole system as well as to modify
the graph by adding or removing graph constructs.
Regarding evolution functionality, users can define
evolution semantics on the graph constructs, such as
potential events and policies for the reaction of affected
graph constructs. Users can perform evolution
scenarios on the graph by assigning hypothetical events
on specific parts of the graph. The tool highlights the
affected parts and proposes a suitable transformation
according to the policies defined on the graph for the
occurring events.

The tool architecture consists of the coordination of
Hecataeus’ four main components: the Parser, the
Evolution Manager, the Graph Viewer and the
Catalog.

- Parser is responsible for parsing the input files

(i.e., DDL and workload definitions) and for

sending each command to the database Catalog

and then to the Evolution Manager.

- The functionality of the Catalog is to maintain

the schema of the relations as well as to validate

the syntax of the workload parsed, before they

are modeled by the Evolution Manager.

- Evolution Manager component is responsible

for representing the underlying database schema

and the parsed queries in the proposed graph

model. The Evolution Manager holds all the

semantics of nodes and edges of the

aforementioned graph model, assigning nodes

and edges to their respective classes. It

communicates with the catalog and the parser

and constructs the node and edge objects for

each class of nodes and edges (i.e., relation

nodes, query nodes, etc.). It retains all evolution

semantics for each graph construct (i.e., events,

policies) and methods for performing evolution

scenarios. It contains methods for transforming

the database graph from/to an XML format.

DDL files
SQL scripts

DB
Catalog

Parser

Create
DB

Schema

Evolution Manager

Workload representation

Evolution Semantics

Validate
Workload

Graph Viewer

DB Schema representation

XML,
jpegImport/

Export
ScenariosGraph Visualization

Figure 1: Hecataeus architecture

- Lastly, Graph Viewer is responsible for the

visualization of the graph and the interaction

with the user. It communicates with the

Evolution Manager, which holds all evolution

semantics and methods. Graph Viewer offers

distinct colorization for each set of nodes, edges

according to their types and the way they are

affected by evolution events, editing of the

graph, such as addition, deletion and

modification of nodes, edges and policies. It

enables the user to raise evolution events, to

detect affected nodes by each event and

highlight appropriate transformations of the

graph. Lastly, the user can import or export

evolution scenarios to XML format and save

scenarios to image formats (i.e., jpeg).

In Figure 1, we present the overall architecture of
the proposed tool.

Hecataeus is implemented in Java. For the parser
and the database engine, we have used HSQLDB, an
open source SQL relational database engine written in
Java [3], whereas for the graph visualization we have
used the Java Universal Network/Graph Framework
(JUNG), a software library that provides a common
and extendible language for the modeling, analysis, and

visualization of data that can be represented as a graph
or network [4].

4. Evaluation

We have evaluated the effectiveness of HECATAEUS

tool via the reverse engineering of real-world evolution
scenarios, extracted from an application of the Greek
public sector. We extracted queries and views from
within applications and stored procedures, monitored
the changes that took place to the underlying relations
over a period of 6 months and studied their impact to
affected workload. In Figure2, a part of the examined
system, comprising 2 relations, 1 view and 4 queries is
visualized.

Figure 2: Graph Visualization with Hecataeus

HECATAEUS is an ongoing project and further

development can be pursued in several directions. The
integration of a simple extension of SQL with clauses
concerning the evolution of important constructs is one
of our most prominent goals.

5. References

[1] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y.
Vassiliou. “What-if Analysis for Data Warehouse Evolution.”
In 9th International Conference on Data Warehousing and
Knowledge Discovery (DaWaK '07), Regensburg, Germany,
3-7 September, 2007, LNCS 4654, pp. 23–33, 2007.
[2] G. Papastefanatos, K. Kyzirakos, P. Vassiliadis, Y.
Vassiliou. Hecataeus: A Framework for Representing SQL
Constructs as Graphs. In 10th International Workshop on
Exploring Modeling Methods for Systems Analysis and
Design - EMMSAD '05 (in conjunction with CAISE'05) -
Oporto, Portugal, June 2005.
[3] HSQL Database Engine: http://hsqldb.org
[4] Java Universal Network/Graph Framework (JUNG):
http://jung.sourceforge.net/index.html

